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Abstract. This paper describes the extension of the concepts

of connectedness and conservation of connectedness that un-

derlie the generalized Archie’s law for n phases to the inter-

pretation of the saturation exponent. It is shown that the sat-

uration exponent as defined originally by Archie arises nat-

urally from the generalized Archie’s law. In the generalized

Archie’s law the saturation exponent of any given phase can

be thought of as formally the same as the phase (i.e. cemen-

tation) exponent, but with respect to a reference subset of

phases in a larger n-phase medium. Furthermore, the con-

nectedness of each of the phases occupying a reference sub-

set of an n-phase medium can be related to the connectedness

of the subset itself by Gi =GrefS
ni
i . This leads naturally to

the idea of the term S
ni
i for each phase i being a fractional

connectedness, where the fractional connectednesses of any

given reference subset sum to unity in the same way that the

connectednesses sum to unity for the whole medium. One of

the implications of this theory is that the saturation exponent

of any phase can be now be interpreted as the rate of change

of the fractional connectedness with saturation and connec-

tivity within the reference subset.

1 Introduction

Currently, there is no well-accepted physical interpretation

of the saturation exponent other than qualitatively as some

measure of the efficiency with which electrical flow takes

place within the water occupying a partially saturated rock.

Some might say that the meaning is not important as long

as one can reliably obtain the water saturation of reservoir

rocks with sufficient accuracy to calculate reserves. Accord-

ing to the 2016 BP Statistical Review of World Energy (BP,

2016), the world had proven oil reserves at the end of 2015

of 1.6976 trillion (million million) barrels (Tbbl.), slightly

down on the value at the end of 2014 (1.7 Tbbl.) and sig-

nificantly above the respective values at the end of 1995

(1.1262 Tbbl.) and 2005 (1.3744 Tbbl.). The same source

lists proven natural gas reserves of 186.9 trillion cubic me-

tres (Tcm) at the end of 2015, slightly lower than at the end of

2014 (187.0 Tcm) and significantly and progressively higher

than the values at the end of 1995 (119.9 Tcm) and 2005

(157.3 Tcm). This represents combined oil and gas reserves

of approximately USD 78.4 trillion at end December 2015

prices (using WTI crude and Henry Hub).

Even a tiny uncertainty of, say, 0.01 in a saturation expo-

nent of 2 (i.e. 0.5 % or 2 ± 0.01) would result in an error in

the reserves of about USD ±254.36 billion; the equivalent

of 82 Queen Elizabeth class aircraft carriers or one mission

to Mars. This calculation has been carried out by calculat-

ing the percentage change in hydrocarbon saturation result-

ing from an error of 2 ± 0.01 in the value of the saturation

exponent. Since the calculated change in hydrocarbon sat-

uration also depends on other parameters in Archie’s equa-

tions, typical representative values for these parameters have

been used; RT = 500�m, Rw = 1�m, φ = 0.1, and m= 2.

When these values are used with n= 2 ± 0.01, a change of

±0.3245 % was calculated for the hydrocarbon saturation, al-

lowing the change in global reserves to be calculated. How-

ever, the degree to which we can carry out the real calcu-

lations does not match this precision. Uncertainties in input

parameters – over how representative seismic and petrophys-

ical parameters are and difficulties with heterogeneity and

anisotropy, to name but a few – result in the real calculations

having uncertainties in the order of ±20–40 %.

Within the hydrocarbon industry it is extremely com-

mon to assume that the saturation exponent is about 2 for

most rocks. However, it is worthwhile thinking about the

USD 254 billion global shortfall in revenue if it really is

equal to 2.01 instead. These frightening, large financial val-
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ues make it extremely important that the physical interpreta-

tion of the saturation exponent in the classical Archie’s law

is well understood. This paper attempts to provide a new the-

oretical and physical interpretation.

The classical Archie’s laws (Archie, 1942) link the elec-

trical resistivity of a rock to its porosity, to the resistivity of

the water saturating its pores, and to the fractional satura-

tion of the pore space with the water. They have been used

for many years to calculate the hydrocarbon saturation of the

reservoir rock and hence hydrocarbon reserves. The classical

Archie’s laws contain two exponents,m and n, which Archie

called the cementation exponent and the saturation exponent,

respectively. The conductivity of the hydrocarbon-saturated

rock is highly sensitive to changes in either exponent.

Like the cementation exponent, and despite its importance

to reserves calculations, the physical meaning of the satura-

tion exponent is difficult to understand from a physical point

of view, which leads to petrophysicists not giving it the re-

spect it deserves. It is common, for example, to hear that, in

the absence of laboratory measurements, the saturation ex-

ponent has been taken to be equal to 2, which it has just

been noted is bound to lead to gross errors. While it is true

that there seems to be a strong preference for values of sat-

uration exponent near 2 ± 0.5 for most water-wet rocks, oil-

wet rocks show much higher values (4–5) (Montaron, 2009;

Sweeney and Jennings, 1960), and there is evidence that the

saturation exponent changes with saturation, with the type

of rock microstructure, and with saturation history, leading

to hysteresis in the plot of resistivity index as a function of

water saturation.

When a saturation exponent is derived from laboratory

measurements, it is commonly done by fitting a straight line

to resistivity data where the y axis is the logarithm of the

resistivity index and the x-axis is the logarithm of the wa-

ter saturation. The resistivity index is the ratio of the mea-

sured rock resistivity at a given water saturation Sw divided

by the resistivity of the same rock when the pore space is

completely saturated with water (i.e. Sw = 1). The problem

is that the saturation exponent varies with water saturation,

becoming significantly smaller at low saturations, leading to

an uncertainty in which value to use. This observation also

gives us the first hint that it is the connectedness of the water

phase that is controlling the saturation exponent just as it did

the phase exponent in the generalized Archie’s law.

It is clear that the physical understanding of the saturation

exponent needs to be improved. The purpose of this paper is

to investigate the elusive physical meaning of the saturation

exponent, where it is shown that the saturation exponents are

intimately linked to the phase exponents in the generalized

Archie’s model.

2 Traditional interpretations

Considering the classical form of Archie’s laws; the first

Archie’s law relates the formation factor F , which is the ra-

tio of the resistivity of a fully saturated rock ρo(Ro) to the

resistivity of the fluid occupying its pores ρf (Rw), to the

rock porosity φ and a parameter he called the cementation

exponent m, where the symbols in parentheses are those tra-

ditionally used in the hydrocarbon industry. Archie’s first

law can be expressed as F = ρo/ρf = φ−m using resistivi-

ties (Archie, 1942) or asG= σo/σf = φ+m using conductiv-

ities. In the latter case,G is called the conductivity formation

factor or the connectedness (Glover, 2009). It can easily be

seen that the effective resistivity and effective conductivity

of the fully saturated rock can be expressed as ρo = ρf φ
−m

and σo = σf φ
+m using resistivities or conductivities, respec-

tively. It should be noted that this work does not consider the

form of Archie’s law which includes the so-called “tortuos-

ity factor” a, which was developed by Winsauer et al. (1952).

The role of this parameter is discussed fully in Glover (2016).

Archie’s second law considers that the rock is not fully

saturated with a conductive fluid but is partially saturated

with a fractional water saturation Sw. It relates the resis-

tivity index I , which is the ratio of the resistivity of a par-

tially saturated rock ρeff to the resistivity of the fully sat-

urated rock ρo, to the water saturation Sw and a parame-

ter he called the saturation exponent n. Archie’s second law

can be expressed as I = ρeff/ρo = S−n
w using resistivities or

1/I = σeff/σo = S+n
w using conductivities.

The two laws may be combined to give ρeff = ρf φ
−mS−n

w

using resistivities and σeff = σf φ
+mS+n

w if conductivities are

used. In reserves calculations, the resistivity of the partially

saturated rock, the resistivity of the pore water, the porosity

of the rock, and the two exponents are “known” from logging

or laboratory measurements. This enables the water satura-

tion Sw and hence the hydrocarbon saturation Sh = (1 − Sw)

and, consequently, the reserves to be calculated.

Archie’s laws require that both the rock matrix and all but

one of the fluid phases that occupy the pores have infinite re-

sistivity. Hence, it is a model for the distribution of one con-

ducting phase (the pore water) within a rock sample consist-

ing of a non-conducting matrix and other fluids which also

have zero or negligible conductivity. Problems arise when

there are other conducting phases in the rock, such as clay

minerals. These problems have generated a huge amount of

research in the past (e.g. Waxman and Smits, 1968; Clavier et

al., 1984), which is reviewed in Glover (2015). The classical

Archie’s laws were based upon experimental determinations.

However, there has been progressive theoretical work (Sen et

al., 1981; Mendelson and Cohen, 1982) showing that for at

least some values of cementation exponent, Archie’s law has

a theoretical pedigree, while hinting that the law may be truly

theoretical for all physical values of cementation exponent.

A study has recently shown that the Winsauer et al. (1952)

modification to Archie’s law is only needed to compensate
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for systematic errors in the measurement of its input parame-

ters and has no theoretical basis (Glover, 2016). Meanwhile,

independent modifications to the original Archie’s law have

allowed it to be used when both the pore fill and the ma-

trix have significant electrical conductivities (Glover et al.,

2000a; Glover, 2009), such as the case when a rock melt

occupies spaces between a solid matrix in the lower crust

(Glover et al., 2000b). This has culminated in a generalized

Archie’s law which is valid for any number of conductive

phases in the three-dimensional medium and which was pub-

lished in 2010 (Glover, 2010).

3 The generalized Archie’s law

The generalized Archie’s law (Glover, 2010) extends the

classical Archie’s law to a porous medium containing n

phases. It is based on the same concept of connectedness that

was introduced in the present author’s previous interpreta-

tion of the cementation exponent (Glover, 2009). It should be

noted that from this point in this paper the symbol φ refers

not just to the porosity of the rock but to the volume fraction

of a particular phase, whether it be the matrix, the water, hy-

drocarbon or whatever other phase may be present. It will ei-

ther be used for a specific phase such as water (e.g. φf ) or for

a set of phases (e.g. φi). The unsubscripted symbol continues

to refer to conventional porosity, where φ =
∑

i

φi −φm; φm

is the phase fraction of the rock matrix (conventionally equal

to 1 −φ). Occasionally, the unsubscripted symbol will also

be used when the general properties of phase fractions are

being discussed, such as in the following two equations.

In the 2009 paper the connectedness was defined as

G≡
σo

σw
=

1

F
= φm, (1)

where F is the formation factor. The connectedness of a

given phase is a physical measure of the availability of path-

ways for conduction through that phase. The connectedness

is the ratio of the measured conductivity to the maximum

conductivity possible with that phase (i.e. when that phase

occupies the whole sample). This implies that the connected-

ness of a sample composed of a single phase is unity. Con-

nectedness is not the same as connectivity. The connectivity

is defined as the measure of how the pore space is arranged

in its most general sense as that distribution in space which

makes the contribution of the specific conductivity of the ma-

terial express itself as a different conductance (see Glover,

2010). The connectivity is given by χ = φm−1 and depends

upon the porosity and the classical Archie’s cementation ex-

ponent m. It should be noted that the connectedness is also

given by

G= φχ, (2)

and then it becomes clear that the connectedness depends

both upon the amount of pore space (given by the porosity)

and the arrangement of that pore space (given by the connec-

tivity).

The generalized Archie’s law was derived by

Glover (2010) and is given by

σ =
∑

i

σiφ
mi
i with

∑

i=1

φi = 1, (3)

where there are n phases, each with a conductivity σi , a phase

volume fraction φi , and an exponentmi . The porosity and ce-

mentation exponent in the classical Archie’s law are the same

as the pore space phase volume fraction and pore space phase

exponent in the generalized Archie’s law, respectively. How-

ever, the pore space and the matrix may be subdivided into

any number of other phases as required. Indeed, the general-

ized Archie’s law will not contain a term that represents the

pore space unless the pore space is only occupied by a single

phase.

In the generalized law the phase exponents can take any

value from 0 to ∞. Values less than unity represent a phase

with an extremely high degree of connectedness, such as that

for the solid matrix of a rock. Connectedness decreases as

the phase exponent increases. Phase exponents that tend to-

wards 1 are associated with a highly connected phase which

is analogous to the low cementation exponents occurring in

the traditional Archie’s law for networks of high aspect ratio

cracks. Phase exponents about 2 represent the degree of con-

nectedness that one might find when the phase is partially

connected in a similar way to which the pore network in a

sandstone is connected and which is, again, analogous to that

scenario in the traditional Archie’s law. By extension, higher

values of phase exponents represent lower phase connected-

ness, such as that in the traditional Archie’s law for the pores

in a vuggy limestone.

It is clear that the classical and generalized laws share the

property that the exponents modify the volume fraction of the

relevant phase with respect to the total volume of the rock.

However the exponents in the generalized law differ from the

classical exponent because some of them have values which

are not measurable because their phases are composed of ma-

terials with negligible conductivity. Despite this, each phase

has a well-defined exponent providing (i) it has a non-zero

volume fraction and (ii) the other phases are well-defined.

It should be noted that higher phase exponents tend to be

related to lower phase fractions, although this relationship is

not implicit in the generalized Archie’s law as it is currently

formulated.

The generalized Archie’s law as formulated by

Glover (2010) hinges upon the proposal that the sum

of the connectednesses of the phases in a three-dimensional

n-phase medium is given by
∑

i

φ
mi
i =

∑

i

Gi = 1. (4)

It is important to consider Eqs. (1) and (4) together to develop

a fuller understanding of the model. There is an infinite num-
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ber of solutions to Eq. (4) even in the most restrictive two-

phase system. However, there is only a small subset of solu-

tions if both Eqs. (1) and (4) are to be fulfilled together, as

the model requires. The problem of having enough degrees

of freedom is not problematic for three phases or more and

is trivial for one phase. Consequently, if there is to be a prob-

lem with the Glover (2010) model, it should be clearest for a

two-phase system.

Considering a two-phase system, Eq. (1) gives φ1 = 1−φ2

while Eq. (4) can be written as φ
m1

1 +φ
m2

2 = 1. Substituting,

we obtain either (1 − φ2)
m1+φ

m2

2 = 1 or (1 −φ1)
m2+φ

m1

1 =

1. These equations are formally the same. They each have

trivial solutions when each of the volume fractions tends

to unity, the other volume fraction consequently tending to

0. Another solution occurs when m1 =m2 = 1, which is

the simple parallel conduction model. Only one other solu-

tion exists for the general case where the volume fractions

are variable, and that requires m1 > 1 when m2 < 1 or vice

versa. Consequently, the non-trivial solution for a two-phase

medium falls into one of the following classes:

i. m1 =m2 = 1. The phases, whatever their volume frac-

tions, are arranged in parallel and both have a unity ex-

ponent.

ii. m1 > 1 and m2 < 1. This implies that Phase 1 has a

path across the 3-D medium that is less connected than

a parallel arrangement of that phase. Since we have a

two-phase medium, Phase 2 must have a path across

the medium which is more connected than a parallel ar-

rangement, hence forcing m2 < 1.

iii. m1 < 1 and m2 > 1. Since the system is symmetric.

This scenario is formally the same as (ii) above, but with

the phase numbers switched around.

Consequently, for a two-phase medium, defining the porosity

and connectedness (or exponent) of one of the phases imme-

diately fully defines the other phase. For higher numbers of

phases, there are more solutions, but if the porosity and con-

nectedness (or exponent) of n−1 of the phases is known, the

nth phase is also fully defined in the same way. The logical

extension of this idea is that both the sum of the volume frac-

tions of the n phases is unity and the sum of the connected-

nesses of the n phases is also unity or that both volume frac-

tion and connectedness are conserved in a three-dimensional

n-phase mixture.

Another, more intuitive way of looking at this is as follows.

It has already been shown that the connectedness of a system

that contains only one phase is unity as a result of Eq. (1); i.e.

if there is one phase, φ = 1 and henceG= 1. Let us imagine

that a second phase is introduced. Intuitively, it seems rea-

sonable that as the phase fraction of the new phase increases,

its connectedness will increase and that when this happens

both the volume fraction and connectedness of the first phase

will decrease. The same would be true if any number of new

phases were introduced – all the phases would compete for a

fixed amount of connectedness, its increase for one phase be-

ing balanced by a decrease in at least one of the other phases.

In other words there is a fixed maximum amount of connect-

edness possible in a three-dimensional sample, expressed by

Glover (2010) as Eq. (4).

Figure 1 is an illustrative example of the idea of a fixed

amount of connectedness, using a 2-D slice for simplicity

and clarity. Hence, Fig. 1 shows a two-dimensional slice

through a 3-D four-phase water-wet medium composed of

detrital quartz grains, a string of clay, and a porosity that is

partially filled with water, at near irreducible saturation and

oil. The figure should be read in two columns. The left-hand

column shows an arbitrary arrangement of the four phases

that together completely make up the medium (Fig. 1a). In

this case I have chosen to represent the detrital quartz as sub-

angular detrital grains with a grain size distribution, the clay

as a stringer, the near-irreducible water as covering the quartz

grain surfaces and the oil as occupying the centre parts of

the pores as these geometries can be found in typical water-

wet shaly sandstone reservoirs. It should be noted, however,

that the equations make no such distinction and what fol-

lows is true for any geometrical set of four phases compos-

ing the 3-D medium completely. Reading downwards, pan-

els (c), (e), (g), and (i) show each of the quartz, clay, water,

and oil phases alone and respectively. One can imagine that

each phase has a certain phase fraction and a certain connect-

edness. Some of the phases look disconnected in the figure,

but it should be remembered that there will be a greater con-

nectedness in reality because there will be connection in the

third dimension that is not shown in the figure. If we imag-

ine hydraulic flow or electrical flow from the bottom to the

top of the medium, the quartz seems to have a relatively high

phase fraction and a moderate connectedness, the clay seems

to have a moderate phase fraction and a high connectedness,

the water seems to have a low phase fraction but a relatively

high connectedness due to the multiple pathways formed by

the thin “ribbons” of water, and the oil has a moderate phase

fraction but a relatively low connectedness as the patches of

oil are relatively isolated. The right-hand part of the figure

represents the same medium but with the small addition of

a quartz grain, labelled “Q”, and its accompanying thin film

of surface water. The addition of this makes a minuscule in-

crease in the phase fractions of the detrital quartz and water

phase fractions, and, literally, an equally small decrease in

the phase fractions of the clay and oil. Reading the distribu-

tions for the quartz, clay, water, and oil phases alone (pan-

els (d), (f), (h), and (j)) shows that the addition has made a

significant increase in the connectedness of the quartz as well

as some increase in that of the water, which was well con-

nected anyway. The low connectedness of the oil will have

changed little, but the addition has blocked the main path-

way through the clay, leaving only a minor secondary path-

way and consequently resulting in a significant decrease in

the clay connectedness. Consequently, Fig. 1 shows the prin-
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Figure 1. Distribution of a four-phase clay-rich, water-wet sand-

stone saturated with water and oil (quartz – orange; clay – brown;

water – blue; oil – grey) represented by a 2-D slice through a 3-D

medium. The left-hand column differs from the right-hand column

by the addition of a single grain of quartz with its associated surface

water, labelled Q. Consequently, the figure should be read vertically

comparing the two columns: (a, b) complete medium; (c, d) quartz

distribution; (e, f) clay distribution; (g, h) water distribution; and (i,

j) oil distribution.

ciple behind the idea of the conservation of connectedness

given in Eq. (4) but not a proof, the latter of which is consid-

ered in Glover (2010).

In summary, both the sum of the volume fractions and the

sum of the connectednesses of the phases composing a 3-D

medium is equal to unity. The corollary is that connectedness

is conserved; if the connectedness of one phase diminishes,

there must be an increase in the connectedness of one or more

of the other phases to balance it.

It is interesting to consider the role of percolation effects

within the generalized model (see Glover, 2010, for a full

treatment). In percolation theory, the bulk value of a given

transport property is only perturbed by the presence of a

given phase with a well-defined phase conductivity after a

certain phase volume fraction has been attained. This criti-

cal volume fraction is called the percolation threshold. This

works well for a two-phase system when one phase is non-

conductive, with a percolation threshold occurring near the

0.3316 to 0.342 (Montaron, 2009). For such a system, con-

sisting of one non-conducting and one conducting phase, the

effective conductivity of the medium depends only on the

conductivity of the conducting phase, its volume fraction,

and how connected it is. It is intuitive, therefore, that there

may exist a phase volume fraction below which the conduct-

ing phase is not connected and for which the resulting effec-

tive conductivity will be zero. The concept of a percolation

factor becomes unclear if the matrix phase has a non-zero

conductivity or one or more additional, either solid or fluid

conducting phases are added. Under these circumstances a

percolation threshold may not exist. Glover (2010) went fur-

ther than this claiming that Eq. (4) in this work (which is

Eq. 26 in Glover, 2010) contains enough information to make

the explicit inclusion of percolation effects unnecessary.

4 Origin of the saturation exponent

Within the framework of the classical Archie’s laws, it is

possible to envisage the cementation exponent as controlling

how the porosity is connected within the rock sample vol-

ume and to envisage the saturation exponent as controlling

how the water is connected within that porosity. The cemen-

tation exponent is defined relative to the total volume of the

rock, while the saturation exponent is defined relative to the

pore space, which is a subset of the whole rock. This is an

important concept for what follows.

The water is one of two phases within the porosity, while

that porosity is one of two phases within the rock. Hence,

there exists a three-phase system to which the generalized

Archie’s law can be applied. In fact, the generalized Archie’s

law can be used to show that the saturation exponents arise

naturally and have a physical meaning: they are defined in the

same way as the phase exponents but are expressed relative

to the pore space instead of the whole rock.

www.solid-earth.net/8/805/2017/ Solid Earth, 8, 805–816, 2017
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By writing the generalized law (Eq. 4) for three defined

phases – let us say matrix, water, and hydrocarbon gas – and

assuming that neither the matrix nor the gas is conductive,

i.e. σm = 0 and σh = 0, but allowing the pore space to be

partially saturated with water such that φh 6= 0, it is possible

to obtain σeff = σf φ
mf
f . This is a re-expression of Eq. (4),

which is the sum of three terms, one for each phase, two of

which are 0 because the conductivity of the material which

makes up each of those is 0 (i.e. the matrix and hydrocarbon).

The exponent mf is the phase exponent of the fluid phase,

which is the only phase contributing to the effective con-

ductivity of the three-phase medium. Since φh 6= 0, the pore

space is partially saturated with hydrocarbon and partially

saturated with water. It is also possible to write φf = φSw
and hence obtain

σeff = σf φ
mf S

mf
w . (5)

Comparison with the classical Archie’s laws, which can

be written as σeff = σf φ
mSnw (Tiab and Donaldson, 2004),

shows structural similarity. However, the exponent mf in

Eq. (5) is expressed relative to the whole rock because it is

the phase exponent for the fluid that appears in Eq. (4). By

contrast, although the cementation exponent m in the clas-

sical first Archie’s law is expressed relative to the whole

rock, the saturation exponent n is related to the pore space,

which is a subset of the whole rock. The distinction between

whether the exponent is expressed relative to the whole rock

or relative to a subset of the rock, such as the pore space,

can be made easily by imagining whether the saturation ex-

ponent is independent of any changes one might make to the

rock matrix. In this case, it is possible to see that the satura-

tion exponent is independent of the rock matrix and is only

sensitive to changes occurring within the pore space. Conse-

quently, it is expressed relative to the pore space rather than

the whole rock.

Accordingly, both equations provide a valid measure of

the effective rock conductivity, so they may be equated

as σf φ
mf S

mf
w = σeff = σf φ

mSnw, hence resulting in φm =

φmf S
(mf−n)
w . It can be recognized that the classical Archie’s

saturation exponent refers to saturation with water and is

hence renamed as nf , giving

φm = φmf S
(mf−nf )
w . (6)

It is important to realize that the exponent nf is a “saturation”

exponent that refers to the arrangement of the water phase

within the pore space. In other words it is expressed with

respect to the pore space, not the whole rock, and is found

experimentally by varying the saturation of the water in the

pore space, the latter of which is assumed to always remain

unchanged.

Now it is possible to write Eq. (6) in terms of connected-

nesses. The left-hand side of Eq. (6) is simply the connected-

ness of the pore space, as defined by Eq. (1). It is the phase

volume fraction of the pore space, i.e. the classical porosity,

raised to the power of the phase exponent that contains the

information about how that pore space is distributed, which

is the classical cementation exponent m. Consequently, we

can write Gpore = φm, and Eq. (6) becomes

Gpore = φmf S
(mf−nf )
w . (7)

The right-hand side of the equation may be rewritten as

(φSw)
mf /S

nf
w , which allows Eq. (7) to be written as

GporeS
nf
w = (φSw)

mf . (8)

The term in brackets is simply the phase fraction of the water

with respect to the whole rock, i.e. φf = φSw, and the ex-

ponent mf is simply the phase exponent of the fluid phase

with respect to the whole rock. Consequently, Eq. (1) can be

applied for the fluid phase leading to

Gf = φ
mf
f = (φSw)

mf , (9)

which, when substituted into Eq. (8) and rearranged, gives

Gf =GporeS
nf
w . (10)

This equation is for one fluid phase, i.e. water, occupying the

pore space. Since the system is symmetric, Eq. (10) can be

generalized for any of the fluid phases occupying the pore

space

Gj = GporeS
nj
j , (11)

whereGj is the connectedness of fluid j , Sj is its saturation,

and the exponent nj is a saturation exponent that refers to

the arrangement of the water phase within the pore space. In

other words nj is expressed with respect to the pore space,

not the whole rock.

However, there is nothing geometrically special about the

entity we call the pore space or any distinction between solid

and fluid phases that compose the whole rock. Consequently,

Eq. (11) is only a partial generalization, and it is possible to

extend the result in Eq. (10) to any phase of i phases com-

posing a three-dimensional medium each of which partially

or fully occupies a saturation Si of a subset of the medium

whose connectedness is given as Gref, according to

Gi =GrefS
ni
i . (12)

The pore connectedness is relabelled as the reference con-

nectedness because the equation is valid not only for multiple

phases that fill the porosity but multiple phases composing

any other phase.

Equation (12) gives the connectedness of the ith phase in

an n-phase 3-D medium as depending on both its fractional

saturation Si within a larger volume which has a connected-

ness Gref and that reference connectedness. The distribution

of that saturation is taken into account by the exponent ni ,

which will have a general functional form.
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If one considers the whole 3-D n-phase medium (i.e. one

where
∑

i

φi = 1), Eq. (1) states that the connectedness of

each phase is the volume fraction of that phase raised to the

value of its phase exponent, and Eq. (4) states that the sum of

those connectednesses is unity.

If a subset of a whole n-phase medium (i.e. one where
∑

i

φi < 1) is considered and labelled the reference subset,

the reference subset will have a connectedness Gref = φ
mref

ref

relative to the whole rock, and the connectedness of any

phase which partially occupies the reference subset (e.g. wa-

ter within the pore space, clay within the rock matrix) is equal

to the connectedness of the reference phase multiplied by the

volume fraction of the phase within the reference subset (i.e.

the saturation relative to the reference subset) raised to the

value of its saturation exponent.

The definition above is somewhat complex due to the re-

quirement to be both completely general and precise and due

to the fact that there are two reference frames here. The first

is the whole 3-D n-phase medium. The second is the 3-D

reference subset which may contain between two and n− 1

phases. Conversion between the two reference frames can be

carried out using the relationship

φ
mi−ni
i = φ

mref−ni
ref . (13)

It can also be shown that (Glover, 2010)

∑

i

S
ni
i = 1, (14)

where the sum is carried out over all the phases within the

reference subset.

It should be noted that Eq. (14) is formally the same as

Eq. (4) except that Eq. (14) is valid for the reference subset of

phases, while Eq. (4) is valid for the whole n-phase medium.

Hence, it is possible to use Si = φi/φref to write both Eqs. (4)

and (14) as

∑

i

(

φi

φref

)mi

= 1. (15)

For a whole n-phase medium, φref = 1 and Eq. (15) be-

comes equal to Eq. (4). For a subset of the n-phase medium,

φref < 1 and Eq. (15) becomes equal to Eq. (14).

The distinction between the phase exponent and saturation

exponent becomes trivial; they each control how connected

the phase is relative to the reference volume fraction. In other

words, the transformation

1 ↔ φref leads to φi ↔ Si and mi ↔ ni . (16)

Figure 2 illustrates the concept of a subset of an n-phase

medium using a 2-D slice from a 3-D medium. Figure 2a

shows a simple two-phase situation, where Phase 1 is brown

and Phase 2 is yellow. Both phases are connected across the

Figure 2. Sets and subsets of a three-phase medium using a 2-D

slice to represent the whole 3-D medium. (a) Two phases: Phase 1,

brown, representing solid matrix; Phase 2, yellow, represents pore

space, with unspecified fill. Phase fractions and connectednesses

can be defined for each phase with respect to the whole medium

(dotted box). (b) Three phases created by filling (replacing) the

porosity with two phases: Phase 1, brown, representing solid ma-

trix as before; Phase 2, blue, representing water; Phase 3, green,

representing oil. Phase fractions and connectednesses can be de-

fined for each of the three phases with respect to the whole medium

(dotted box). (c) If only the pore space is considered by considering

Phase 1 to be unchanging, what remains is a two-phase subset of

the three-phase situation. Phase fractions and connectednesses can

be defined for the two fluid phases with respect to the subset which

is the porosity (inside the dotted interface).

medium from top to bottom, and were they not in the 2-

D slice, they would likely be connected through the third

dimension. Phase 1 (brown) can be considered to be the

solid matrix of a rock, and Phase 2 (yellow) is considered

to be the pore spaces in the rock for the purposes of this

illustration, but the distinction is arbitrary. The rock matrix

has a phase fraction φ1 and a connectedness G1 = φ
m1

1 and

the pore space has a phase fraction φ2 and a connectedness

G2 = φ
m2

2 (Eq. 1). Both of these are expressed with respect to

the whole medium, which is bounded in the figure by the dot-

ted box. Consequently, φ1 +φ2 = 1 andG1 +G2 = 1 (Eqs. 3

and 4).
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The pore space may be occupied by any number of mis-

cible or immiscible fluids. Let us assume there are two im-

miscible fluids completely occupying the pores, which are

water and oil and which we will assign the names Phase 3

and Phase 4. Figure 2b shows this situation. Once again, the

phase fraction and connectedness of each of the three phases

that compose the medium can be defined as phase fractions

φ1,φ3, and φ4 and G1 = φ
m1

1 , G3 = φ
m3

3 , and G4 = φ
m4

4 for

the solid matrix, water, and oil, respectively. Since these

parameters are being considered with respect to the whole

medium, it is possible to write
∑

i=1,3,4

φi = 1 and
∑

i=1,3,4

Gi =

1.

However, it is possible to use a different reference medium

for calculations. For example, the classical Archie’s second

law is expressed in terms of saturations and uses the pore

space as a reference space in order to express the amount

of water and hydrocarbons not with respect to the total vol-

ume of the rock but as a fraction of the pore space. Let us,

therefore, also take the pore space as a convenient reference

sub-space of the whole medium. This situation is shown in

Fig. 2c, where the dotted line delineated the extent of the ref-

erence space. In this space, (i) what was the whole medium,

represented by unity in the transform given in Eq. (16), be-

comes the volume fraction of the reference space 1 ↔ φref

(i.e. the pore space in this example), (ii) the volumes of the

different phases are more efficiently described using satu-

rations Si with respect to the reference space (i.e. the pore

space) than using phase volume fractions which are defined

relative to the whole medium φi ↔ Si , and (iii) the whole-

medium connectednesses Gi = φ
mi
i are replaced by the en-

tity S
ni
i , which uses the saturation exponent in place of the

phase exponent mi ↔ ni . It will be seen that the entity S
ni
i

has its own properties in the next section and will be labelled

the fractional connectedness. Topologically, the occupation

of the fluids within the pore space (Fig. 2c) is identical to

the occupation of the whole medium by the matrix and pore

space (Fig. 2a), which leads to the symmetry in the mathe-

matical equations.

The transformation given in Eq. (16) is perhaps not imme-

diately clear when expressed in these most general terms. Let

us take an illustrative example. Imagine a three-dimensional

five-phase medium where the phases are (i) detrital quartz

(dq), (ii) calcite cement (cc), (iii) distributed clay (dc),

(iv) saline water (sw), and (v) hydrocarbon gas (hg), where

the subscripts that will be used for each phase are given in

parentheses. First let us consider the whole medium (i.e.

φref = 1). Each of the phase volume fractions is given by

φdq, φcc, φdc, φsw, and φhg, respectively. Each of their con-

nectednesses is equal to their phase volume fraction raised

to the power of their phase exponents (according to Eq. 1),

where the phase exponents contain the information about

how each of the five phases is distributed in the medium. The

connectednesses are Gdq = φ
mdq

dq , Gcc = φ
mcc
cc , Gdc = φ

mdc

dc ,

Gsw = φ
msw
sw , and Ghg = φ

mhg

hg . Equation (15) can be used,

setting φref = 1, to give

φ
mdq

dq +φmcc
cc +φ

mdc

dc +φmsw
sw +φ

mhg

hg = 1. (17)

This is the same result as applying Eq. (4) directly. It is ex-

pressed in terms of the parameters (i) φref = 1 (i.e. the whole

medium), (ii) individual phase fractions (φi), and (iii) indi-

vidual phase exponents (mi); the latter two are expressed rel-

ative to the whole medium. These are the conditions and pa-

rameters expressed by the left-hand components of the trans-

formation given by Eq. (16).

Now consider the subset of the whole medium which com-

prises just its solid parts. The reference fraction φref is the

sum of the solid-phase fractions (i.e. φ
mdq

dq +φ
mcc
cc +φ

mdc

dc ),

which is less than unity. Rewriting Eq. (15) for the reference

subset gives

(

φ
mdq

dq

φ
mdq

dq +φ
mcc
cc +φ

mdc

dc

)ndq

+

(

φ
mcc
cc

φ
mdq

dq +φ
mcc
cc +φ

mdc

dc

)ncc

+

(

φ
mdc

dc

φ
mdq

dq +φ
mcc
cc +φ

mdc

dc

)ndc

= 1, (18)

which can be written in terms of “saturations” (i.e. fractional

volumes of the reference subset) as

S
ndq

dq + Sncc
cc + S

ndc

dc = 1, (19)

because Sdq = φ
mdq

dq /
(

φ
mdq

dq +φ
mcc
cc +φ

mdc

dc

)

, etc.

There are two important aspects to note about Eq. (19).

First, there are no terms for the saline water and hydrocarbon

gas in the equation because these phases are not present in the

reference subset. Second, the phase exponents that were used

when considering the whole medium have been replaced by

saturation exponents because we are now considering the dis-

tribution of each of the phases within the reference subset

rather than within the whole medium. Third, both Eqs. (17)

and (19) are simultaneously true and may be equated.

Equation (19) is clearly the same as Eq. (14). Under the

transformation that considers a subset of the whole medium

(in this case the solid fractions only) where 1 ↔ φref, the in-

dividual phase fractions relating to the whole medium are

replaced by saturations relative to the subset (i.e. φi ↔ Si)

and the original phase exponents, which were related to the

whole medium, are now saturation exponents that are related

only to the reference subset (i.e. mi ↔ ni).

Both the phase (cementation) exponent and the saturation

exponent control how the phase is connected. The phase ex-

ponent does this with reference to the whole rock, while the

saturation exponent does it with reference to a subset of the

whole rock. The underlying physical meaning of the satura-

tion exponent is the same as that of the phase (cementation)

exponent; it is only the reference frame that changes. The im-

plication is that the general Archie’s law replaces both of the

classical Archie’s laws. For an application to a sandstone gas
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reservoir, one would use a three-phase generalized Archie’s

law.

Equation (12) is easily transformed to provide a calculable

value for the saturation exponent by taking the logarithm of

both sides of Eq. (12) and rearranging the result before sub-

stituting Eq. (1) for the relevant connectednesses and using

the relationship Si = φi/φref to obtain

ni =
log(Gi)− log(Gref)

log(Si)

=
mi log(φi)−mref log(φref)

log(φi)− log(φref)
. (20)

This equation may be illustrated using a three-phase medium.

Imagine a reservoir rock with a 20 % porosity. The pore space

contains only oil and water with a water saturation of 0.25.

We want to calculate the saturation exponent of the water if

the phase exponents of the matrix and the oil are 0.2 and 1.68,

respectively. It is simple to calculate the volume fractions of

matrix, oil, and water to be 0.8, 0.15, and 0.05, respectively.

The connectednesses of matrix and oil can be calculated

using Eq. (1) to be 0.956 and 0.0413, respectively. Using

Eq. (4) we obtain the connectednesses of the pores and water

as 0.0436 and 0.00236, respectively. In this case the reference

subset is the pore space, so Gref =Gpore = 0.0436. Equa-

tion (20) can now be used with Gwater = 0.00236, Gref =

0.0436, and Sw = 0.25 to give nw = 2.105. The saturation

exponent of the oil can also be calculated as no = 0.1931.

There is no value for the matrix as the matrix is not included

in the pore space reference subset.

There is a reiterative symmetry in this transformation

where both the whole-medium phase fractions and the ref-

erence subset saturations are both volume fractions with re-

spect to the whole medium and the reference subset, respec-

tively. Similarly, the phase exponents and the saturation ex-

ponents are also defined with respect to the whole medium

and the reference subset, respectively. This would, therefore,

allow the calculation of a reference subset of a subset of a

whole medium if required, and so on. There is of course the

possibility that the whole n-phase medium is itself a subset

of a larger medium with more phases. In this case Eq. (15)

still holds, but with φref > 1. The implication is that the def-

inition of the original whole medium is arbitrary and can be

defined to make the solution of the problem more tractable.

5 Physical interpretation of the saturation exponent

This section provides a physical interpretation for the satu-

ration exponent in a perfect analogy to that derived for the

cementation exponent by Glover (2009).

The connectedness G is the inverse of the Archie’s forma-

tion factor and is central to the generalized Archie’s law. The

inverse of the Archie’s resistivity (saturation) index 1/I =

Snw is also rather important. It relates the connectednesses

of each phase with respect to the whole rock to the con-

nectedness of the reference subset in Eq. (12), and when

summed over all the phases that occupy the reference sub-

set, it produces unity as in Eq. (14). In this paper the inverse

of the Archie’s resistivity (saturation) index has been given

the symbol Hi and defined as

Hi ≡ S
ni
i . (21)

Just as the saturation of any given phase Si is the ratio of the

volume fraction of the phase to that of all the phases making

up any reference set of phases, Hi is the ratio of the con-

nectedness of the phase to that of the all the phases making

up any reference set of phases. The parameter Hi is in fact a

fractional connectedness.

We follow the approach of Glover (2009) in the analy-

sis of the physical interpretation of the cementation expo-

nent. In this work Glover (2009) showed that the cementa-

tion exponent was the differential of the connectedness with

respect to both porosity and pore connectivity. Following the

same methodology, differentiating the fractional connected-

ness with respect to the phase saturation Si gives

∂Hi

∂S
= niS

ni−1
i . (22)

By analogy we recognize that S
ni−1
i represents the connectiv-

ity of Phase i with respect to the reference subset and define

this connectivity as

ψi = S
ni−1
i , (23)

to give

∂Hi

∂S
= niψi . (24)

A further differentiation, this time with respect to the con-

nectivity ψi allows us to obtain

ni =
∂

∂ψ

(

∂Hi

∂S

)

. (25)

Consequently, the saturation exponent is the rate of change

of fractional connectedness with respect to both phase

saturation and phase connectivity in a similar way that

Glover (2009) found that the physical interpretation of the

cementation exponent was the rate of change of connected-

ness with respect to phase fraction (porosity) and its connec-

tivity. This shows once again the symmetry between phase

fractions and saturations and between phase exponents and

saturation exponents.

The fractional connectedness is also the product of the sat-

uration and the connectivity with respect to the reference sub-

set

Hi = Siψi . (26)
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Table 1. Comparison of all the parameters in the classical and generalized Archie’s laws.

Parameter Generalized Archie’s law Classical Archie’s law

With respect to the

whole medium

With respect to a ref-

erence subset of the

whole medium

First law Second Law

Phase volume fraction φi
φi = φrefSi

Si
Si = φi/φref

φ

Vf = Vpore Sw

S

Sw = Vf /Vpore

Exponent mi = d
dχ

(

dGi
dφ

)

mi =
log(σi )−log

(

σf
)

log(φi )

ni = d
dψ

(

dHi
dS

)

ni =
mi log(φi )−mref log(φref)

log(φi )−log(φref)

m

m=
log(σeff)−log

(

σf
)

log(φ)

n

n=
log(σeff)−log(σ100)

log(Sw)

Connectedness Gi ≡ φ
mi
i

Gi = φiχi
Gi = 1/Fi
Gi =GrefHi

Hi ≡ S
ni
i

Hi = Siψi
Hi = 1/Ii
Hi =Gi/Gref

Undefined Undefined

Connectivity χ = φ
mi−1
i

ψ = S
ni−1
i

χ = φm−1 Undefined

Rate of change of

connectedness

dGi
dφi

=miχi
dHi
dSi

= niψi Undefined Undefined

Sum of phases
∑

i=1

φi = 1

∑

i

Si > 1

∑

i=1

φi < 1

∑

i

Si = 1

φpore +φmatrix = 1 Sw + So+ Sg = 1

Sum of connected-

nesses

∑

i

φ
mi
i

=
∑

i

Gi = 1
∑

i

S
ni
i

=
∑

i

Hi = 1 Undefined Undefined

տ ր
∑

i

(

φi
φref

)mi
= 1

The transformation 1 ↔ φref leads to φi ↔ Si
and mi ↔ ni

Effective conductivity σeff =
∑

i

σiφ
mi
i

σeff =
∑

i

σiφ
mi
ref
S
mi
i

σeff = σf φ
m σeff = σf φ

mSnw

Hence, the saturation exponents obey the same laws as the

phase (cementation) exponents, but whereas the phase expo-

nents are defined relative to the whole rock, the saturation

exponents are defined relative to some subset of the rock. Ta-

ble 1 shows the relationships of the generalized Archie’s law

expressed relative to the whole rock and with respect to a

reference subset of the whole rock.

For petrophysicists the reference subset has been the

porosity, and there has only been one conducting phase that

partially saturates that porosity – the pore water. Now we are

not restricted to that model. The reference subset could be,

for example, the solid matrix, in which a number of separate

mineral phases can be defined, one of which might be, say, a

target ore or a clay phase. Let us take a four-phase medium

as an example. Imagine a four-phase medium composed of

65 % quartz matrix with a phase volume exponent of 0.3 and

15 % clay. Consequently, the medium’s porosity is φ = 0.2.

The porosity is occupied by gas and saline water with sat-

urations Sg = 0.625 and Sw = 0.375, respectively, and the

classical cementation exponentm= 1.8 and the classical sat-

uration exponent is n= 2.05. Imagine needing to calculate

the resistivity of the rock if the resistivity of the clay and

the water are known; ρclay = 50�m and ρwater = 5�m, say.

Equation (1) can be used to calculate Gquartz = 0.8788 and

Gpore = 0.0552. Using Eq. (4) providesGclay = 0.0660, with

no need to consider the various saturations of the fluids occu-

pying the pores. The phase exponent of the clay can be found

to be mclay = 1.43. The contribution of the clay to resistivity

can be calculated as ρclay = 757�m using Eq. (3), rewrit-

ten as ρcontclay = ρclayφ
−mclay

clay = ρclay/Gclay, noting that this

value takes full account of its volume fraction and its ge-

ometrical distribution. Now we must consider the relative

distributions of water and gas in the medium. Calculations

can be carried out in terms of connectednesses G or frac-

tional connectednesses H . In this case we use the connect-

ednesses G. Equations (11) or (12) can be used to calculate

Gwater = 0.00739 and Eq. (4) applied to giveGgas = 0.0478.

Once again, Eq. (1) may be applied, but this time in the rear-
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ranged form mi = logGi/ logφi in order to calculate the re-

spective phase exponents mwater = 1.895 and mgas = 1.462.

Now, the contribution of the saline water to the overall re-

sistivity can be calculated as ρwater = 677�m using Eq. (3),

rewritten as ρcontcwater = ρwaterφ
−mwater
water = ρwater/Gwater, not-

ing that this value takes full account of its volume fraction

and its geometrical distribution. The resistivity of the rock

can now be calculated by simply summing the contributions

to conductivity as implied by Eq. (3) to give ρeff = 357�m.

In this particular example, the conductivity of the medium is

controlled by the clay and water fractions in approximately

equal measure. It should also be noted that there are a num-

ber of different pathways for obtaining the same result using

the equations contained in this paper.

6 Conclusions

The main conceptual steps in this paper are summarized as

follows:

– The classical Archie’s saturation exponent arises natu-

rally from the generalized Archie’s law.

– The saturation exponent of any given phase can be

thought of as formally the same as the phase (i.e. cemen-

tation) exponent, but with respect to a reference subset

of phases in a larger n-phase medium.

– The connectedness of each of the phases occupying a

reference subset of an n-phase medium can be related to

the connectedness of the subset itself by Gi =GrefS
ni
i .

– The sum of the connectednesses of a 3-D n-phase

medium is given by
∑

i

φ
mi
i = 1, mirroring the relation-

ship for phase volumes
∑

i

φi = 1.

– Connectedness is conserved in a 3-D n-phase medium.

If one phase increases in connectedness, the connected-

ness of one or more of the other phases must decrease to

compensate for it, just as phase volumes are conserved

with the decrease in one leading to the increase in an-

other phase.

– The sum of the fractional connectednesses (saturations)

of an n-phase medium is given by
∑

i

S
ni
i = 1.

– Fractional connectedness is conserved in a 3-D n-phase

medium.

– The saturation exponent may be calculated using the re-

lationship ni =
mi log(φi )−mref log(φref)

log(φi )−log(φref)
.

– The connectivity of any phase with respect to the refer-

ence subset is given by ψi = S
ni−1
i .

– The connectedness of a phase with respect to a reference

subset (also called the fractional connectedness) is given

by Hi = Siψi and depends upon the fractional volume

of the phase divided by that of the reference subset (i.e.

its saturation) and the arrangement of the phase within

the reference subset (i.e. its connectivity with respect to

the reference subset).

– The rate of change of fractional connectedness with sat-

uration dHi
dSi

= niψi depends upon the connectivity with

respect to the reference subset ψi and the saturation ex-

ponent ni .

– Hence, the saturation exponent is interpreted as being

the rate of change of the fractional connectedness with

saturation and connectivity within the reference subset,

ni =
d2Hi

dψidSi
.

While this paper represents a theoretical treatment of the sat-

uration exponent and attempts to develop a theoretical in-

terpretation that should offer insight into the physical mean-

ing of the saturation exponent, it does not contain a physical

proof of these equations. That can only come from targeted

experimental work on multiphase media, which is difficult to

carry out and represents one of our research goals.
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