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Abstract: In this paper, we present a new third-order family of iterative methods in order to compute
the multiple roots of nonlinear equations when the multiplicity (m ≥ 1) is known in advance. There
is a plethora of third-order point-to-point methods, available in the literature; but our methods are
based on geometric derivation and converge to the required zero even though derivative becomes
zero or close to zero in vicinity of the required zero. We use the exponential fitted curve and tangency
conditions for the development of our schemes. Well-known Chebyshev, Halley, super-Halley and
Chebyshev–Halley are the special members of our schemes for m = 1. Complex dynamics techniques
allows us to see the relation between the element of the family of iterative schemes and the wideness
of the basins of attraction of the simple and multiple roots, on quadratic polynomials. Several applied
problems are considered in order to demonstrate the performance of our methods and for comparison
with the existing ones. Based on the numerical outcomes, we deduce that our methods illustrate better
performance over the earlier methods even though in the case of multiple roots of high multiplicity.

Keywords: nonlinear equation; order of convergence; stability; multiple roots

1. Introduction

Finding the solution of nonlinear models that often come from Engineering, Chemistry,
Economics and Applied Science is one of the most fascinating and difficult problems in
the field of Numerical Analysis. Locating exactly such solutions is not possible, in general.
Then, we focus on iterative methods. One of the most celebrated and popular methods
with second-order of convergence is Newton–Raphson method, which is given by

xσ+1 = xσ −
f (xσ)

f ′(xσ)
. (1)

However, it has two major issues: the first one is that (1) fails whether first derivative
f ′(x) equals to zero or is close to it in the vicinity of the required zero of f (x); the second
one is that it looses the second-order of convergence in the case of multiple roots. In order
to overcome both problems, Schröder in [1,2] suggested a second-order modification of
Newton’s method for multiple roots when multiplicity (m ≥ 1) of the required zero is
known in advance, which is defined as

xσ+1 = xσ −m
f (xσ)

f ′(xσ)
. (2)
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Later on, several high order modification of scheme (2) have been suggested and
analyzed. A third-order Chebyshev’s method for multiple zeros suggested in [3,4], was
defined as

xσ+1 = xσ −m
[

m
2

f (xσ) f ′′(xσ)

f ′(xσ)2 +
3−m

2

]
f (xσ)

f ′(xσ)
. (3)

We denote this method by CS, for the computational comparison. A detailed local
convergence analysis of this method, for polynomial zeros, has been presented in [5]. Other
variants of Chebyshev’s scheme for multiple zeros can be found at [6].

In addition, Obreshkov in [3] and later Hansen and Patrick in [7], proposed the
following modified Halley’s method for multiple zeros:

xσ+1 = xσ −
2mvσ

m + 1− 2mA(xσ)vσ
, (4)

where A(xσ) = f ′′(xσ)
2 f ′(xσ)

and vσ = f (xσ)
f ′(xσ)

, that is denoted by HS. Theorem 4.4 of [8] gives
exact bounds of the convergence domain together with error estimates and an estimate of
the asymptotic error constant of Halley’s method for multiple roots.

Ostrowski in [9], presented the scheme method for multiple roots given by

xσ+1 = xσ −
√

mvσ√
1− 2A(xσ)vσ

. (5)

Method (5) is denoted by OS in the computational work.
Further, Osada [10], suggested the following well known third-order method for

multiple roots:

xσ+1 = xσ −mvσ

[
3−m

2
+ mA(xσ)vσ

]
. (6)

For computational issues, we denote method (6) by ONS.
Chun and Neta in [11] proposed another third-order method, which is defined by

xσ+1 = xσ −
2m2 f (xσ)2 f ′′(xσ)

m(3−m) f (xσ) f ′(xσ) f ′′(xσ) + (m− 1)2 f ′(xσ)3 . (7)

Expression (7) is denoted by CN, for the sake of computational comparison. For a
detailed historical survey about these methods we refer to [12].

However, the first problem in schemes (2) to (7), is that first-order derivative should
neither be zero or nor close to zero in a close point to the required root. More information
about these and other one-point schemes for simple and multiple roots can be found in
texts from Traub [4], Amat and Busquier [13], Ortega and Rheinboldt [14], Ostrowski [15],
Petković et al. [16], among others.

So, in order to overcome these problems, we suggest a new third-order family of
iterative methods in the next section. The beauty of our scheme is that Chebyshev, Halley,
super-Halley all are not only special case of our scheme, when m = 1. But, they also
work, for multiple roots and failure cases ( f ′(x) = 0 at some x = xλ different from
the root). The development and order of convergence of our scheme are depicted in
Section 2. Their stability is analyzed under the technique of complex discrete dynamics in
Section 3. In Section 4, we assume several real life problems for checking the effectiveness
and comparison of ours methods with the existing ones. We finish in Section 5 with
some conclusions.
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2. Construction of Higher-Order Scheme

The proposed iterative scheme is defined by fitting function f (x) in the following
form:

pσ

{
y

1
m e−α(x−xσ) − f

1
m (xσ)

}2
+ qσ(x− xσ)

{
y

1
m e−α(x−xσ) − f

1
m (xσ)

}

+
{

y
1
m e−α(x−xσ) − f

1
m (xσ)

}
+ rσ(x− xσ) + sσ = y(x),

(8)

where α ∈ R, |α| < ∞. By adopting the following tangency conditions at x = xσ

y(xσ) = f (xσ), y′(xσ) = f ′(xσ), and y′′(xσ) = f ′′(xσ), (9)

we can easily obtain the values of disposable parameters pσ, qσ, rσ and sσ, which are
given by

sσ = 0, (10)

rσ = − f
1
m (xσ)

m f (xσ)

(
f ′(xσ)−mα f (xσ)

)
, (11)

pσ =

[
− qσm f (xσ)

f ′(xσ)−mα f (xσ)
(12)

− (1−m) f ′2(xσ) + m f (xσ) f ′′(xσ)− 2mα f (xσ) f ′(xσ) + α2m2 f 2(xσ)

2( f ′(xσ)−mα f (xσ))2

]
f
−1
m (xσ)

Therefore, at an estimation xσ+1 of the root

y(xσ+1) ≈ 0, (13)

and it follows from (13) that the iterative expression that estimates the root is

xσ+1 = xσ −
f

1
m (xσ)

(
pσ f

1
m (xσ)− 1

)

rσ − qσ f
1
m (xσ)

. (14)

If expression (8) is an exponentially fitted straight line, then pσ = qσ = 0 and from
(14), we obtain

xσ+1 = xσ −
m f (xσ)

f ′(xσ)−mα f (xσ)
. (15)

This is one-parameter family of modified Newton’s method. In order to obtain
quadratic convergence, the entity in the denominator should be largest in magnitude.
For α = 0 and m = 1, it reduces to classical Newton’s method.

So, the general iterative expression of our parametric class of iterative procedures is

xσ+1 = xσ −


1 +

1
2

L f

1 + qσ

(
m f (xσ)

f ′(xσ)−mα f (xσ)

)


 m f (xσ)

f ′(xσ)−mα f (xσ)
, (16)

where qσ is a parameter and

L f =
m f (xσ)

(
f ′′(xσ) + mα2 f (xσ)

)
− f ′(xσ)2(m− 1)− 2mα f (xσ) f ′(xσ)

( f ′(xσ)−mα f (xσ))2 .

This scheme does not fail if f ′(xσ) is very small or zero in the vicinity of the root.
For particular values of qσ in (16), one can obtain
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1. For qσ = 0, we have

xσ+1 = xσ −
[

1 +
1
2

L f

]
m f (xσ)

f ′(xσ)−mα f (xσ)
. (17)

2. For qσ = −
m f (xσ)

(
f ′′(xσ)+mα2 f (xσ)

)
− f ′(xσ)2(m−1)−2mα f (xσ) f ′(xσ)

2m f (xσ)( f ′(xσ)−mα f (xσ))
, we obtain

xσ+1 = xσ −
[

2
2− L f

]
m f (xσ)

f ′(xσ)−mα f (xσ)
. (18)

3. For qσ = −
m f (xσ)

(
f ′′(xσ)+mα2 f (xσ)

)
− f ′(xσ)2(m−1)−2mα f (xσ) f ′(xσ)

m f (xσ)( f ′(xσ)−mα f (xσ))
, it yields

xσ+1 = xσ −
[

1 +
1
2

L f

1− L f

]
m f (xσ)

f ′(xσ)−mα f (xσ)
. (19)

4. For qσ = −β
m f (xσ)

(
f ′′(xσ)+mα2 f (xσ)

)
− f ′(xσ)2(m−1)−2mα f (xσ) f ′(xσ)

m f (xσ)( f ′(xσ)−mα f (xσ))
, we get

xσ+1 = xσ −
[

1 +
1
2

L f

1− βL f

]
m f (xσ)

f ′(xσ)−mα f (xσ)
. (20)

5. For qσ = ±∞, expression (16) reduces to (15).

It can be checked that, for α = 0 and m = 1, Formulas (15), (17)–(20) are reduced
to Newton, Chebyshev, Halley, super-Halley and Chebyshev-Halley classical methods,
respectively. In general, parameter α is chosen to give a larger value to the denominator.
We can further derive some new families of multipoint iterative methods free from second
derivative by discretizing the second-order derivative involved in family (14).

In the next result, we prove that scheme (16) attains third-order of convergence for all
α ∈ R.

Theorem 1. Let us suppose x = ξ is a multiple solution of multiplicity m ≥ 1 of function f .
Consider that function f : D ⊂ C → C is analytic in D surrounding the required zero ξ. Then,
scheme (16) has third-order of convergence, and it satisfies the error equation

eσ+1 =
2c1m

(
qσ − 3α

)
+ m

(
αm
(
3α− 2qσ

)
− 2c2

)
+ c2

1(m + 3)

2m2 e3
σ + O(e4

σ).

Proof. Let x = ξ be a multiple zero of f (x) and ck = m!
(m+k)!

f (m+k)(ξ)

f (m)(ξ)
, k = 1, 2, . . . be the

asymptotic error constants. Expanding f (xσ), f ′(xσ) and f ′′(xσ) about x = ξ by Taylor’s
series, we obtain

f (xσ) =
f (m)(ξ)

m!
em

σ

(
1 + c1eσ + c2e2

σ + c3e3
σ + c4e4

σ + O(e5
σ)

)
, (21)

f ′(xσ) =
f m(ξ)

m!
em−1

σ

(
m + (m + 1)c1eσ + (m + 2)c2e2

σ + (m + 3)c3e3
σ (22)

+(m + 4)c4e4
σ + O(e5

σ)
)

, (23)
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and

f ′′(xσ) =
f m(ξ)

m!
em−2

σ

(
m2 −m + m(m + 1)c1eσ + (m2 + 3m + 2)c2e2

σ

+ (m2 + 5m + 6)c3e3
σ + (m2 + 7m + 12)c4e4

σ + O(e5
σ)
)

,
(24)

respectively.
By using expressions (21)–(24), we have

L f =
m f (xσ)

(
f ′′(xσ) + mα2 f (xσ)

)
− f ′(xσ)2(m− 1)− 2mα f (xσ) f ′(xσ)

( f ′(xσ)−mα f (xσ))2

=

(
2c1

m
− 2α

)
eσ −

3
(

m(α2m− 2c2)− 2αc1m + c2
1(m + 1)

)

m2 e2
σ

−
4
(

m2(−4αc2 − 3c3 + α3m) + c1m
(
c2(3m + 4)− 3α2m

)
+ αc2

1m(2m + 3)− c3
1(m + 1)2

)

m3 e3
σ

+ O(e4
σ).

(25)

By using the above value of L f and expressions (21)–(24) in (16), we get

eσ+1 =
2c1m

(
qσ − 3α

)
+ m

(
αm
(
3α− 2qσ

)
− 2c2

)
+ c2

1(m + 3)

2m2 e3
σ + O(e4

σ).
(26)

Expression (26) demonstrates the third-order of convergence for all α and qσ.

3. Stability Analysis

In the previous section, we have designed a modification of Chebyshev-Halley scheme
able to find multiple roots of nonlinear equations, holding the third-order of convergence
of their original partners. Our aim in this section is to check the role of the parameter of the
new class of iterative method in the stability of the resulting scheme: are these methods
capable to find also single roots? how far can be the initial estimation in order to assure
convergence? are these situations different depending on the value of qσ? that is, is the
stability different for the members of the set of parametric procedures?

In order to arrange this analysis, we apply our proposed schemes on the nonlinear
function p(z) = (z− 1)m(z + 1), with z = 1 as multiple root of multiplicity m and a simple
root at z = −1. In all cases, α = 1, although qualitatively similar results are found for other
values of α. This is the most simple nonlinear function containing two roots, one simple
and one m-multiple. Although the results cannot be directly extrapolated to any nonlinear
function, several analysis on different nonlinear problems confirm, in the numerical section,
these results.

First, we introduce some dynamical terms mentioned in this paper (see, for in-
stance, [17]). Let R : Ĉ −→ Ĉ be a rational function, where Ĉ is the Riemann sphere,
the orbit of a point z0 is given as:

{z0, R(z0), R2(z0), . . . , Rn(z0), . . .},

where the k-th composition of the map R with itself is denoted by Rk.
We analyze map R by classifying the starting points from the asymptotical performance

of the orbits. In these terms, a point z0 is called fixed point of R if R(z0) = z0; it is a periodic
point of period p > 1 if Rp(z0) = z0 and Rk(z0) 6= z0, for k < p.

On the other hand, a point z0 is called critical point of R if R′(z0) = 0. The asymptotic
behavior of the critical points is a key fact for analyzing the stability of the method: a
classical result from Fatou and Julia (see, for instance, [18]) each immediate basin of
attraction holds at least one critical point, that is, in the connected component of the basin
of attraction holding the attractor there is also a critical point.
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Moreover, a fixed point of R, z0, is said to be attracting if |R′(z0)| < 1, or superattract-
ing if |R′(z0)| = 0; it is repulsive if |R′(z0)| > 1 and parabolic if |R′(z0)| = 1.

Indeed, when R depends also on one or several parameters, then |R′(z0, α1, . . . , αk)|
is not a scalar, but a function of αi, for i = 1, 2, . . . , k. Then, |R′(z0, α1, . . . , αk)| is called
stability function of the fixed point and it gives us the character of the fixed point in terms
of the value of αi, for i = 1, 2, . . . , k.

On the other hand, let us also remark that when fixed and critical points are found
such that they are not equivalent to the roots of the polynomial p(z), then they are called
strange fixed and free critical points, respectively.

The basin of attraction of an attractor α is defined as:

A(α) = {z0 ∈ Ĉ : Rn(z0)→ α, n→ ∞}.

The Fatou set of the rational function R, is the set of points z ∈ Ĉ whose orbits tend to
an attractor (fixed point or periodic point). Its complement in Ĉ is the Julia set, J (R). So
the basin of attraction of any fixed point belongs to the Fatou set and the boundary of the
basin of attraction belongs to the Julia set.

3.1. Fixed Points and Stability

When the general class (20) is applied on polynomial p(z) with multiplicity m = 2,
rational function M(z) is obtained depending of free complex parameter qλ, that we denote
by β. This rational operator is

M(z) =
N(z)

(2x2 − 3x− 3)(3(β− 3) + 4(β− 1)x4 − 12(β− 1)x3 + (3− 9β)x2 + 2(7β− 9)x)
,

where N(z) = −6β + 8(β − 1)x7 − 4(7β − 6)x6 − 18(β − 1)x5 + (65β − 54)x4 + (43β −
59)x3 − 9(3β− 5)x2 + (77− 37β)x + 21. In order to get bounded the set of converging
seeds of the multiple root, a Möbius transformation is made, getting the conjugate rational
function of M by h, that we denote by MH;

MH(z, β) =
(

h ◦M ◦ h−1
)
(z),

where h(z) =
z + 1
z− 1

. It sends the multiple root to z = 0, the simple one to z = ∞, and the

divergence of the original scheme to z = 1. Operators M and MH have the same qualitative
properties of stability.

By solving equation MH(z, β) = z, the fixed points of MH operator are obtained.
Two of them, z = 0 and z = ∞, come from the roots of polynomial p(z); the rest of them,
if exist, are strange fixed points. The asymptotical behavior of all the fixed points (both
multiple and simple, strange or not) plays a key role in the stability of the iterative methods
involved, as the convergence to fixed points different from the roots means an important
drawback for an iterative method; so, we proceed below with this analysis.

To analyze the stability of the fixed points zF of MH(z, β), we calculate its first deriva-
tive and evaluate it at every fixed point. Let us recall that the absolute value of this operator,
|MH′(zF, β)| is the stability function of fixed point zF. This stability function gives us
information about the asymptotical behavior of zF. In general, the stability of other fixed
points than the multiple root of p(z) depends on the value of parameter β. From them,
the following result can be stated.

Theorem 2. Rational function MH(z, β) has seven fixed points:

(a) Coming from the roots of p(z), z = 0 is always superattracting and z = ∞ is a fixed point only
if β 6= −1; moreover, z = ∞ is attracting only if <(β) > − 1

2 . It is parabolic if <(β) = − 1
2

and repulsive in other cases.
(b) z = 1 is a parabolic strange fixed point, for any β ∈ C.
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(c) There exist also four strange fixed points, denoted by si(β), i = 1, 2, 3, 4, corresponding to the
roots of the fourth-degree polynomial q(t) = (2β + 1)z4 + (34− 28β)z3 + (57− 30β)z2 +
4(6β− 13)z + 8. These points can be attracting in small sets of the area [−1, 4]× [−2.5, 2.5]
of the complex plane.

Proof. By solving equation MH(z, β) = z, it is found that,

−(z− 1)2z
(
(2β + 1)z4 + (34− 28β)z3 + (57− 30β)z2 + 4(6β− 13)z + 8

)
= 0.

So, z = 0, z = 1 (double) and the roots of polynomial q(t) = (2β + 1)z4 + (34−
28β)z3 + (57− 30β)z2 + 4(6β− 13)z + 8 are fixed points of MH(z, β). To check if z = ∞
(coming from the simple root of p(z)) is a fixed point, the Inverse MH (IMH) operator

IMH(z, β) =
1

MH(1/z, β)
,

is defined. Therefore, it can be checked that IMH(0, β) = 0 and then, z = ∞ is a fixed point
of MH(z, β).

Now, the stability of these fixed points must be analyzed. It is straightforward to check
that MH′(0, β) = 0, so z = 0 is superattracting; moreover, MH′(1, β) = 1 what yields to
the parabolic character of z = 1 (the divergence of the original operator, previous to Möbius
map). To check the stability of the fixed point coming from the simple root of p(z), we use
again the inverse operator, getting that

|IMH′(0, β)| =
∣∣∣∣−

β

β + 1

∣∣∣∣.

This allows us to conclude that the simple root of p(z) (z = ∞) is superattracting
if β = 0, attracting if <(β) > − 1

2 , but also that it is not a fixed point of MH if β = −1.
Regarding the rest of strange fixed points, si(β), i = 1, 2, 3, 4, they can be attracting or even
superattracting in some small areas of the complex plane, where their stability functions
satisfy |MH′(si(β), β)| < 1 for any i = 1, 2, 3, 4.

In Figure 1, the stability functions of the fixed points are presented. The code color is
as follows: s1(β) is attracting for values of β in orange regions, s2(β) is attracting where
parameter β belongs to red areas; blue color corresponds to values of β where s3(β) is
attracting and those where s4(β) is attracting are presented in purple color. In all cases,
the vertices of the cones correspond to the values of β where the related strange fixed point
is superattracting.
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will assure us the avoiding of basins of attraction of strange fixed points. However, if both 138

simple and multiple root are searched, then the best values of the parameters to be chosen 139

(a) |IMH′(0, β)| (b) |MH′(si(β), β)|

Figure 1. Stability functions of z = ∞ and strange fixed points of MH operator.

So, it has been proven that the multiple root is always a superattracting fixed point,
whereas the simple root can be repulsive (if <(β) < − 1

2 ), parabolic for <(β) = − 1
2 and

attracting elsewhere. Moreover, there exist strange fixed points that can be attracting in
small areas close to β = 0.
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Let us remark that, pretending to converge only to the multiple root, values of β < −1
will assure us the avoiding of basins of attraction of strange fixed points. However, if both
simple and multiple root are searched, then the best values of the parameters to be chosen
are β = 0 (where the simple root is also superattracting, as the multiple one) or β > 4,
where all the strange fixed points si(β) are repulsive.

3.2. Dynamical Planes

Each value of the parameter corresponds with a member of the class of iterative
methods. When β is fixed, the iterative process can be visualized in a dynamical plane. It
is obtained by iterating the chosen element of the family under study, with each point of
the complex plane as initial estimation. In this section, we have used a rectangular mesh
of 800× 800, that is, we have considered a partition of the real and imaginary intervals in
800 subintervals. The nodes of this rectangular mesh are our starting points in the iterative
processes. We represent in blue color those points whose orbit converges to infinity and
in orange color the points converging to z = 0, corresponding to the multiple root of p(z)
(with a tolerance of 10−3). Other colors (green, red, etc.) are used for those points whose
orbit converges to one of the strange fixed points, marked as a white star in the figures
if they are attracting or by a white circle if they are repulsive or parabolic. Moreover,
a mesh point appears in black if it reaches the maximum number of 200 iterations without
converging to any of the fixed points. The routines used appear in [19].

We plot the dynamical planes related to rational function MH(z, β), for
β ∈ {−1, 0, 1, 2, 3, 5}. These planes can be visualized in Figure 2. In Figure 2a, orange area is
the basin of attraction of z = 0 (multiple root) and black points correspond to the attracting
area of the parabolic fixed point z = 1 and the basin of a periodic orbit of period 2; in cases
of β = 0 and β = 5 (Figure 2b and f, respectively), the basin of attraction of the simple root
(z = ∞) appears in blue, and in black the attracting area of the parabolic fixed point z = 1;
in Figure 2c–e, the basin of attraction of an strange fixed point appears in green color.

(a) β = −1 (b) β = 0 (c) β = 1

(d) β = 2 (e) β = 3 (f) β = 5

Figure 2. Dynamical planes corresponding to MH(z, β) operator.

The information deduced from these planes confirm the theoretical results from Theo-
rem 2 regarding the stability of the strange fixed points. The parabolic character of z = 1 is
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the main drawback of the methods, as it is placed in the Julia set. However, in practice the
rounding error will yield an initial estimation in the basin of z = 1 to another the attracting
fixed point.

4. Numerical Results

Here, we check the effectiveness of our newly proposed iterative methods. We employ
some elements of our schemes: specifically scheme (18) for α = 1, α = 1

2 , α = 1
10 and (19)

for α = 1, α = 1
2 , α = 1

4 , denoted by MHS1, MHS2, MHS3, MSHS1, MSHS2 and MSHS3,
respectively, to solve nonlinear equations mentioned in Examples 1–5.

We contrast our methods with existing schemes of same order: (3), (4), (5), (6) and (7),
denoted by CS, HS, OS, NS and CN, respectively. In Tables 1–3, we display the values
of absolute residual errors | f (xσ+1)|, number of iterations in order to attain the desired
accuracy, and the absolute errors |xσ+1 − xσ|. Further, it is known that formula [20],

ρ ≈ ln |(xσ+1 − ξ)/(xσ − ξ)|
ln |(xσ − ξ)/(xσ−1 − ξ)| .

displays the computational order of convergence, COC. In this estimation, we need to
know the exact zero ξ of the nonlinear function to be solved. But, there are several practical
situations where the exact solution is not accessible. Therefore, Cordero and Torregrosa
in [21], suggested the following estimation of the order of convergence, known as ACOC

ρ ≈ ln |ěσ+1/ěσ|
ln |ěσ/ěσ−1|

, (27)

where ěσ = xσ − xσ−1 and exact zero is not needed. In tables, *, Div and F stand for
converge to undesired root, case of divergence and case of failure, respectively. Moreover,
dne stands for does not exist.

During the current numerical experiments with programming language Mathematica
(Version-9), all computations have been done with 1000 digits of mantissa, which mini-
mize round-off errors. In tables, (b1 ± b2) denotes (b1 × 10±b2). The configuration of the
computer used is given below:

Processor: Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz
RAM: 8:00GB
System type: 64-bit-Operating System, x64-based processor.

Now, we explore the performance of our proposed methods, in comparison with
known ones, on some chemical and engineering problems, that can be found in [22–25],
among others.
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Table 1. Comparison of distinct iterative functions based on absolute residual errors and absolute difference between two consecutive iterations. * stands for
convergence to undesired root.

Methods I.G. | f (xσ)| CS HS OS ONS CN MHS1 MHS2 MHS3 MSHS1 MSHS2 MSHS3
‖xσ+1− xσ‖

Ex. (1) 1.73 | f (x6)| F F F F F 1.3(−15) 3.0(−10) 2.0(−6) 7.7(−102) 2.0(−67) 2.2(−45)
‖x7 − x6‖ F F F F F 2.1(−7) 1.0(−4) 8.9(−3) 1.6(−50) 2.6(−33) 2.7(−22)

Ex. (2)

log 5 | f (x6)| F F F F F 3.2(−97) 2.0(−228) 3.8(−179) 2.6(−122) 2.7(−404) 2.9(−924)
‖x7 − x6‖ F F F F F 3.5(−32) 6.5(−76) 1.7(−59) 1.5(−40) 1.5(−134) 7.4(−308)

1.6 | f (x6)| Div 9.8(−2) 7.2(−464) Div Div 2.8(−97) 1.4(−228) 1.3(−179) 2.1(−122) 4.7(−404) 1.0(−926)
‖x7 − x6‖ Div 9.3(−1) 2.2(−154) Div Div 3.4(−32) 5.7(−76) 1.2(−59) 1.4(−40) 1.9(−134) 1.1(−308)

Ex. (3) 1.5 | f (x6)| 2.9(−274) * 2.2(−129) 7.6(−837) Div 3.8(−582) * 4.8(−593) 2.2(−652) 2.1(−294) 4.7(−1197) 8.4(−1217) 1.4(−1304)
‖x7 − x6‖ 2.0(−55) * 1.9(−26) 6.0(−168) Div 5.2(−117) * 3.4(−119) 4.7(−131) 1.8(−59) 8.6(−240) 6.1(−244) 1.7(−261)

Ex. (4)

4.4 | f (x6)| 1.9(−142) * 3.8(−375) 2.2(−694) 1.9(−142) * 1.9(−142) * 1.5(−497) 1.5(−613) 4.2(−462) 5.9(−705) 1.2(−828) 1.3(−1005)
‖x7 − x6‖ 5.8(−48) * 1.5(−125) 5.8(−232) 5.8(−48) * 5.8(−48) * 2.4(−166) 5.1(−205) 1.6(−154) 1.7(−235) 1.0(−276) 1.0(−335)

1.7 | f (x6)| 1.4(+7) 5.9(−331) 1.2(−646) 1.4(+7) 1.4(+7) 4.8(−403) 1.3(−566) 8.7(−427) 3.5(−669) 1.7(−865) 3.6(−885)
‖x7 − x6‖ 1.5 8.1(−111) 4.7(−216) 1.5 1.5 7.5(−135) 2.3(−189) 9.2(−143) 1.5(−223) 5.3(−289) 1.5(−295)

Ex. (5) | f (x6)| 5.7(−14, 352) 7.5(−21, 328) 4.7(−34, 103) Div 5.3(−21, 087) 3.1(−9344) 1.1(−13, 965) 1.1(−19, 577) 3.2(−23, 126) 5.0(−40, 450) 2.9(−38, 495)
‖x7 − x6‖ 1.0(−144) 1.8(−214) 3.2(−342) Div 4.6(−212) 1.2(−94) 7.5(−141) 5.7(−197) 1.9(−232) 1.1(−405) 3.8(−386)
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Table 2. Contrast of distinct iterative methods based on number of iterations. * stands for convergence
to undesired root.

Methods I.G. CS HS OS ONS CN MHS1 MHS2 MHS3 MSHS1 MSHS2 MSHS3

Ex. (1) 1.73 F F F F F 9 10 11 7 8 8

Ex. (2)
log 5 F F F F F 8 7 7 7 6 5

1.61 Div 12 6 Div Div 8 7 7 7 6 5

Ex. (3) 1.5 7 * 8 6 Div 6 * 6 6 7 6 6 6

Ex. (4)
4.4 7 * 6 6 7 * 7 * 6 6 6 6 6 5

1.7 1280 6 6 1280 1280 6 6 6 6 6 6

Ex. (5) 1.5 6 6 5 Div 6 7 6 6 6 5 5

Table 3. Contrast of distinct iterative methods based on Computational order of convergence. * stands
for convergence to undesired root.

Methods I.G. CS HS OS ONS CN MHS1 MHS2 MHS3 MSHS1 MSHS2 MSHS3

Ex. (1) 1.73 dne dne dne dne dne 3.000 3.000 3.000 3.000 3.000 3.000

Ex. (2)
log 5 dne dne dne dne dne 3.000 3.000 3.000 2.999 3.002 2.993

1.61 Div 3.000 3.000 dne dne 3.000 3.000 3.000 2.999 3.002 3.002

Ex. (3) 1.5 3.000 * 3.000 3.000 dne 3.000 3.000 3.000 3.000 3.000 3.000 3.000

Ex. (4)
4.4 3.000 * 3.000 3.000 3.000 * 3.000 * 3.000 3.000 3.000 3.002 3.000 3.000

1.7 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 2.998 3.000 3.000

Ex. (5) 3.000 3.000 3.000 3.000 dne 3.000 3.000 3.000 3.000 3.000 2.975

Example 1. Van der Waals equation of state (Case of failure):

(
P +

a1n2

V2

)
(V − na2) = nRT,

describes the nature of a real gas between two gases a1 and a2, when we introduce the ideal gas
equations. For calculating the volume V of the gases, we need the solution of preceding expression
in terms of remaining constants,

PV3 − (na2P + nRT)V2 + α1n2V − α1α2n2 = 0.

By choosing the particular values of gases α1 and α2, we can easily obtain the values for n, P
and T. Then, it yields

f1(x) = x3 − 5.22x2 + 9.0825x− 5.2675. (28)

Function f1 has 3 zeros, and among them ξ = 1.75 is a multiple zero of multiplicity m = 2
and ξ = 1.72 is a simple zero. At the initial guess 1.73, which is quite close to our desired zero,
all the known methods fail to work because the derivative turns zero at this initial point. But, our
methods work even if the derivative is zero or close to zero. So, our methods are better than the
existing one-point third-order methods. The results can be found in Tables 1–3.

Example 2. Planck’s radiation problem (Case of failure and divergence):
Consider the Planck’s radiation equation that determines the spectral density of electromagnetic

radiations released by a black-body at a given temperature, and at thermal equilibrium as

G(y) =
8πchy−5

e
ch

ykT − 1
,

where T, y, k, h, and c denotes the absolute temperature of the black-body, wavelength of radiation,
Boltzmann constant, Plank’s constant, and speed of light in the medium (vacuum), respectively.
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To evaluate the wavelength y which results to the maximum energy density G(y), set G′(y) = 0.
Then, we obtain the following equation,

( ch
ykT )e

ch
ykT

e
ch

ykT − 1
= 5.

Further, the nonlinear equation is reformulated by setting x = ch
ykT as follows:

f2(x) =
(

e−x − 1 +
x
5

)3
. (29)

The exact zero of multiplicity m = 3 is ξ ≈ 4.965114, and with this solution one can easily
find the wavelength y form the relation x = ch

ykT . Here, we can see that derivative is zero at log 5. So,
obviously the methods like CS, HS, OS, ONS and CN fail to work. With another choice of initial
guess 1.61, we found that the derivative is not zero but very close to zero. In this case, methods CS,
ONS and CN diverge from the required root. On the other hand, our method is able to converge
under these conditions. Methods HS and OS also converge to the required root but they are slower
than our method MSHS3, because they are consuming 12 and 6 numbers of iterations respectively,
as compared to our method MSHS3 that takes only 5 iterations. In this regards, please see the
computational results in Tables 1–3.

Example 3. Jumping and Oscillating problem, when we have infinite numbers of roots:
Here, we choose the following function for the computational results:

f3(x) =
(

sin x
)m

, m = 5 (30)

Function f3 has infinite number of zeros but our desired zero is ξ = 0 with multiplicity five.
With the help this example, we aim to show that the convergence of an iterative method is not always
guaranteed, even though we choose a nearest initial point. For example, methods CS and CN with
x0 = 1.5 are unsuitable because of numerical instability, which occurs due to large value of the
correction factor and it converges to 442π and 5π, respectively, far away from the required zero.
On the other hand, Osada’s method ONS diverges for the starting point x0 = 1.5. Therefore, care
must be taken to ensure that the root obtained is the desired one. But, there is no such problems with
our methods. The details of the computational results can be found in Tables 1–3.

Example 4. Convergence to the undesired root problem:
So, we consider an academical problem, which is given as follows:

f4(x) =
(

e−x + sin x
)3

. (31)

Expression (31) has an infinite number of roots with multiplicity three, being our desired
root ξ ≈ 3.183063. It can be seen that CS, ONS, and CN converge to undesired zero 6.281314,
after finite number of iteration when x0 = 4.4. On the other hand, with initial guess 1.7 methods CS,
ONS, and CN consume 1280 number of iterations as compared to 6. The computational outcomes
are given in Tables 1–3.

Example 5. Finally, we consider an academical problem with higher order of multiplicity m = 100,
which is defined by

f5(x) =
(
(x− 1)3 − 1

)100
. (32)

Expression (32) has a zero x = 2 of multiplicity 100. We show the computational results based
on the function f5 in Tables 1–3. From the numerical results, we conclude that our methods MSH2
and MSH3 need the same number of iterations in order to reach the desired accuracy, but they have
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smaller residual errors and smaller differences between two consecutive iterations as compared to
other existing methods.

5. Concluding Remarks

In this paper, we have suggested a new family of point-to-point third-order iterative
methods that works for multiple roots (m ≥ 1), where the multiplicity of the root is known
in advance; moreover, they converge to the required root even in the case of failure or
divergence, or oscillation, retaining the third-order of convergence. In addition to this, one
of the most popular third-order methods namely Chebyshev, Halley and super-Halley all
are the special cases of our scheme, when m = 1. Our scheme is based on a geometrical
derivation rather than derivation on some interpolations or weight function or analytic
approaches, etc. Complex dynamics has been used to check the stability of the class of
iterative methods. Finally, based on the numerical results, we concluded that our methods
not only perform better in the case of failure, divergence and oscillations but also in the
convergence cases. In the future, we will work on the multi-point variants of our family (16)
by estimating the second-order derivatives.
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