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ABSTRACT In this article, a derivative-free method of Hestenes-Stiefel type is proposed for solving

system of monotone operator equations with convex constraints. The method proposed is matrix-free, and

its sequence of search directions are bounded and satisfies the sufficient descent condition. The global

convergence of the proposed approach is established under the assumptions that the underlying operator

is monotone and Lipschitz continuous. Numerical experiment results are reported to show the efficiency

of the proposed method. Furthermore, to illustrate the applicability of the proposed method, it is used in

restoring blurred images.

INDEX TERMS Derivative-free algorithm, Monotone operator equations, projection technique, image

restoration.

I. INTRODUCTION

In this article, the problem of finding v ∈ � for which

G(v) = 0, (1)

is considered. The set � is a nonempty closed and convex

subset of Rn and G : � → R
n is continuous and monotone.

The nonlinear monotone operator equations with convex

constraint (1) have a wide range of application in various

areas such as the power flow equation [1], chemical equi-

librium systems [2], economic equilibrium problems [3] and

several others. This has inspired so many researchers to

explore efficient methods for solving (1). Among the var-

ious methods developed for solving (1), Newton method,

quasi-Newton method, Gauss-Newton method, Levenberg-

Marquardt method, trust region method and its variants are

The associate editor coordinating the review of this manuscript and

approving it for publication was Huaqing Li .

very prominent due to their fast local superlinear convergence

properties [4]–[9]. However, these methods are not suitable

choice for solving nonlinear equations of large-scale, as they

need to solve a linear equation using the Jacobianmatrix or its

approximation per-iteration.

Motivated by the Solodov and Svaiter projection scheme

[10], some researchers have exploited the simplicity and

low storage of some of the methods used to solve large-

scale unconstrained optimization problems such as conjugate

gradient methods, spectral gradient methods, and spectral

conjugate gradient methods to solve large-scale nonlinear

equations. For instance, Cruz and Raydan [11] popularized

the spectral gradient approach for solving the unconstrained

version of problem (1) by developing a spectral algorithm

(SANE). Subsequently, a complete derivative-free SANE

algorithm was studied by La Cruz et al. [12] which works

well for a class of unconstrained monotone nonlinear equa-

tions. Cheng [13] extended the well known PRP method
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FIGURE 1. Performance profile for number of iterations.

FIGURE 2. Performance profile for the number of function evaluations.

[14], [15] and proposed a hyperplane projection type method

to solve unconstrained nonlinear monotone equations. Sim-

ilarly, Zhang and Zhou [16] combined the spectral gradient

method [17] with the projection technique [10]. The Wei-

Yao-Liu conjugate gradient projection algorithm for solving

(1) was also as a result of the projection technique and the

proposed method by Hu and Wei [18]. Also, Liu and Feng

[19] introduced a derivative-free projection method which

converges to the solution of the convex constraint problem

(1). The proposed scheme involves only one projection per

iteration with a monotone and Lipschitz continuity assump-

tion imposed on the underlying mapping. Their proposed

method can be viewed as a modification of the well known

Dai-Yuan conjugate gradient method for unconstrained opti-

mization. Besides, just quite recent, Djordjević [20] proposed

a hybrid conjugate gradient method for solving unconstrained

optimization problems. The proposed method combines the

FIGURE 3. Performance profile for time in seconds.

FIGURE 4. The original images: Lenna (top left), Tiffany (top right),
Barbara (bottom left) and Airline (bottom right).

well known Liu-Storey and Fletcher Reeves conjugate gra-

dient parameter using a convex combination. The reported

numerical performance indicates that the method is efficient

for solving unconstrained optimization problem. Motivated

by [20], Ibrahim et al. [21] extended the hybrid conjugate

gradient method of Djordjević [20] to solve (1) using the

hyperplane projection technique. Kaelo and Koorapetse [22]

introduced a derivative-free conjugate gradient-based projec-

tion method for solving (1). The proposed method in [22] was

developed by combining the projection technique with the

family of conjugate gradient methods introduced by Li et al.

[23]. In addition, Koorapetse et al. [24] introduced a three-

term derivative-free method for solving (1). The proposed

method was based on the Zheng and Zheng [25] conjugate

gradient method for the unconstrained optimization prob-

lems. To achieve the boundedness of their proposed direction,

they modified one of the directions defined in [25]. For more
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FIGURE 5. The blurred image (top left), the restored image by Algorithm 1
(top right) ((SNR = 16.77, PSNR = 22.11, SSIM = 0.9138)), by Algorithm 2
(bottom left) ((SNR = 16.74, PSNR = 22.07, SSIM = 0.9131 )) and by
Algorithm 3 (bottom right) (SNR = 16.77, PSNR = 22.10, SSIM = 0.9137).

FIGURE 6. The blurred image (top left), the restored image by Algorithm 1
(top right) (SNR = 21.02, PSNR = 22.86, SSIM = 0.9159), by Algorithm 2
(bottom left) (SNR = 21.00, PSNR = 22.83, SSIM = 0.9152) and by
Algorithm 3 (bottom right) (SNR = 21.01, PSNR = 22.85, SSIM = 0.9157 ).

recent articles on derivative-free iterative methods for solving

(1), readers can refer to [26]–[42] and references therein.

Inspired by the works in [43] and [44] as well as

the good numerical performance of the Hestenes-Stiefel

method, we modify and extend the three-term Hestenes-

Stiefel method with sufficient descent property for uncon-

strained minimization problems proposed in [45]. The aim

of the modification on the proposed search direction is to

achieve the sufficient descent property and boundedness inde-

pendent of the line search. In addition, such kind of mod-

FIGURE 7. The blurred image (top left), the restored image by Algorithm 1
(SNR= 13.67, PSNR= 20.09, SSIM = 0.6289) (top right), by Algorithm 2
(SNR = 13.65, PSNR = 20.07, SSIM = 0.6277) (bottom left) with and by
Algorithm 3 (SNR = 13.66, PSNR = 20.08, SSIM = 0.6285) (bottom right).

FIGURE 8. The blurred image (top left), the restored image by Algorithm 1
(top right) (SNR = 18.43, PSNR = 21.11, SSIM = 0.6803), by Algorithm 2
(bottom left) (SNR = 18.39, PSNR = 21.08, SSIM = 0.6773) and by
Algorithm 3 (bottom right) (SNR = 18.42, PSNR = 21.10, SSIM = 0.6795 ).

ification have been shown to have a significant impact on

the numerical efficiency of a method. Moreover, the global

convergence is proved without requirement of the operator to

be differentiable. Preliminary numerical results are given to

show the efficiency of the method.

II. ALGORITHM

In this section, a derivative-free projection based algorithm is

proposed to find approximate solutions to problem (1). The

search direction generated by the algorithm is of three term

and does not require the derivative of the operator. To have a

good understanding of themotivation, the algorithm proposed

by Baluch et al. [45] for finding solution to the unconstrained
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optimization problem is recalled. Consider the unconstrained

optimization problem:

min
v∈Rn

f (v), (2)

where f : Rn → R is a continuously differentiable real val-

ued function with gradient at v(t) denoted by g(t) := ∇f (v(t)).
The algorithm proposed in [45] produces a sequence {v(t)}t≥0

via the following iterative formula

v(t+1) := v(t) + α(t)d (t), t = 0, 1, · · · , (3)

where {v(t)}t≥0 is the previous point, {v(t+1)}t≥0 is the current

point, α(t) is a positive step size and d (t) is the search direction

defined as:

d (t) :=
{

−g(t), if t = 0,

−g(t) + β(t)d (t−1) − θ (t)y(t−1), if t ≥ 1.
(4)

β(t) and θ (t) are defined as follows:

β(t) := β
(t)
BZA :=

〈g(t), y(t−1)〉
〈d (t−1), y(t−1)〉 + γ |〈g(t), d (t−1)〉|

, (5)

θ (t) := θ
(t)
BZA :=

〈g(t), d (t−1)〉
〈d (t−1), y(t−1)〉+γ |〈g(t), d (t−1)〉|

, γ > 1,

(6)

y(t−1) := g(t) − g(t−1). Inspired by β(t) and θ (t) defined

in (5)-(6), we propose a derivative-free projection based

algorithm to find approximate solutions to (1). For G(t) 6=
0 and d (t−1) 6= 0, the propose search direction is defined as

d (t) :=
{

−G(t), if t = 0,

−G(t) + β(t)d (t−1) − θ (t)y(t), if t ≥ 1,
(7)

β(t) :=
〈G(t), y(t−1)〉

〈d (t−1), x(t−1)〉 + γ ‖G(t)‖‖d (t−1)‖
(8)

and

θ (t) :=
〈G(t), d (t−1)〉

〈d (t−1), x(t−1)〉 + γ ‖G(t)‖‖d (t−1)‖
, γ > 0,

(9)

y(t−1) := G(t) − G(t−1),

x(t−1) := y(t−1) + u(t−1)d (t−1). (10)

u(t−1) := 1 + max

{

0, −
〈d (t−1), y(t−1)〉

‖d (t−1)‖2

}

. (11)

The parameters β(t) and θ (t) defined in (8)-(9) were

defined such that the search direction defined by (7) is

sufficiently descent and bounded. This is achieved by

replacing 〈d (t−1), y(t−1)〉 and γ |〈g(t), d (t−1)〉| in (5)-(6) by

〈d (t−1), x(t−1)〉 and γ ‖G(t)‖‖d (t−1)‖ respectively.

Remark 1: From the definition of x(t−1), u(t−1) in (10)-

(11) with d (t−1) 6= 0,

〈d (t−1), x(t−1)〉 ≥ 〈d (t−1), y(t−1) + ‖d (t−1)‖2

− 〈d (t−1), y(t−1)〉 = ‖d (t−1)‖2 > 0. (12)

The above remark guarantees that β(t) and θ (t) defined

by (8)-(9) are well defined. Before introducing the propose

algorithm, the following definition of the projection map is

given.

Definition 2: Suppose � ⊂ R
n is nonempty, closed and

convex set. Then the projection of every v ∈ R
n onto �,

denoted by P�(v), is defined by

P�(v) := argmin{‖v− y‖ : y ∈ �}.

P� is nonexpansive, that is for all v, y ∈ R
n,

‖P�(v) − P�(y)‖ ≤ ‖v− y‖. (13)

Below is a step by step implementation of the derivative-free

projection based algorithm.

Algorithm 1

Step 0. Select v(0) ∈ �, parameters σ > 0, µ > 0, 0 <

λ < 2, 0 < ρ < 1, γ > 0, Tol > 0 and set t := 0.

Step 1. If ‖G(t)‖ ≤ Tol, stop, otherwise go to Step 2.

Step 2. Compute d (t) by (7)–(9).

Step 3. Compute the step size α(t) := µρi where i is the

smallest non-negative integer such that

−〈F(v(t) + α(t)d (t)), d (t)〉 ≥ σα(t)‖d (t)‖2. (14)

Step 4. Set w(t+1) := v(t) + α(t)d (t). If w(t+1) ∈ � and

‖G(w(t+1))‖ ≤ Tol, stop. Else compute

v(t+1) := P�[v
(t) − λζ (t)G(w(t+1))] (15)

where

ζ (t) :=
〈G(w(t+1)), v(t) − w(t+1)〉

‖G(w(t+1))‖2
.

Step 5. Let t = t + 1 and go to Step 1.

III. CONVERGENCE ANALYSIS

To establish the global convergence of Algorithm 1,

we assume the following:

(A1) The operator G is monotone, that is for all v, y ∈ R
n,

〈G(v) − G(y), v− y〉 ≥ 0.

(A2) The operator G is Lipschitz continuous, that is there

exists a constant L > 0 such that for all v, y ∈ R
n

‖G(v) − G(y)‖ ≤ L‖v− y‖.

(A3) The solution set of (1) denoted by �′ is nonempty.

(A4) G(t) 6= 0 unless at the solution.

Lemma 3: Let d (t) be defined by (7)-(9), then d (t) satisfies

the sufficient descent condition. That is

〈G(t), d (t)〉 = −‖G(t)‖2. (16)

Proof: For t = 0, we have from (7) that 〈G(0), d (0)〉 =
−‖G(0)‖2.
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TABLE 1. Efficiency comparison for Algorithm 1, Algorithm 2 and Algorithm 3 based on SNR, PSNR and SSIM.

TABLE 2. Numerical results of Problem 1.

As for t ≥ 1, using (7)-(9),

〈G(t), d (t)〉
= −‖G(t)‖2 + β(t)〈G(t), d (t−1)〉 − θ (t)〈G(t), y(t−1)〉

= −‖G(t)‖2 +
〈G(t), y(t−1)〉〈G(t), d (t−1)〉

〈d (t−1), x(t−1)〉 + γ ‖G(t)‖‖d (t−1)‖

−
〈G(t), d (t−1)〉〈G(t), y(t−1)〉

〈d (t−1), x(t−1)〉γ ‖G(t)‖‖d (t−1)‖

= −‖G(t)‖2. (17)

Remark 4: From (16) and applying the Cauchy-Schwartz

inequality, it can be deduced that for all t ≥ 0,

‖d (t)‖ ≥ ‖G(t)‖. (18)
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TABLE 3. Numerical results of Problem 2.

Lemma 5: If Assumption (A2) hold and the sequence

{v(t)}t≥0 is obtained via Algorithm 1, then

α(t) ≥ max

{

1,
ρ‖G(v(t))‖2

(L + σ )‖d (t)‖2

}

. (19)

Proof: Suppose by (14) α(t) 6= 1. Then for α
(t)
′ :=

α(t)ρ−1, (14) is not true,

−〈G(v(t) + α
(t)
′ d (t)), d (t)〉 < σα

(t)
′ ‖d (t)‖2.

By (16) and Assumption (A2),

‖G(t)‖2 ≤ −〈G(t), d (t)〉
= 〈(G(v(t) + α

(t)
′ d (t)) − G(t)), d (t)〉

− 〈G(v(t) + α
(t)
′ d (t)), d (t)〉

≤ α
(t)
′ (L + σ )‖d (t)‖2.

After making α
(t)
′ the subject, the result is obtained.

Lemma 6: If Assumptions (A1) and (A3) hold, {v(t)}t≥0

and {w(t+1)}t≥0 obtained via Algorithm 1, then {v(t)}t≥0 and

{w(t+1)}t≥0 are bounded. Furthermore,

lim
k→∞

‖v(t) − w(t+1)‖ = 0, (20)

and

lim
k→∞

‖v(t+1) − v(t)‖ = 0. (21)

Proof: Suppose ṽ ∈ �′, then by assumption (A1) and

(14), we have

〈G(w(t+1)), v(t) − ṽ〉 ≥ 〈G(w(t+1)), v(t) − w(t+1)〉, (22)

and

〈G(w(t+1)), v(t) − w(t+1)〉 ≥ σα2
k‖d (t)‖2 ≥ 0. (23)

Now,

‖v(t+1) − ṽ‖2

= ‖P�[v
(t) − λζ (t)G(w(t+1))] − P�(ṽ)‖2

≤ ‖v(t) − λζ (t)G(w(t+1)) − ṽ‖2
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TABLE 4. Numerical results of Problem 3.

= ‖v(t) − ṽ‖2 − 2λζ (t)〈G(w(t+1)), v(t) − ṽ〉
+ ‖λζ (t)G(w(t+1))‖2

= ‖v(t) − ṽ‖2

− 2λ
〈G(w(t+1)), v(t) − w(t+1)〉

‖G(w(t+1))‖2
〈G(w(t+1)), v(t) − ṽ〉

+λ2
(

〈G(w(t+1)), v(t) − w(t+1)〉
‖G(w(t+1))‖

)2

≤ ‖v(t) − ṽ‖2

− 2λ
〈G(w(t+1)), v(t) − w(t+1)〉

‖G(w(t+1))‖2
〈G(w(t+1)), v(t) − w(t+1)〉

+ λ2
(

〈G(w(t+1)), v(t) − w(t+1)〉
‖G(w(t+1))‖

)2

≤ ‖v(t) − ṽ‖2 − λ(2 − λ)

(

〈G(w(t+1)), v(t) − w(t+1)〉
‖G(w(t+1))‖

)2

= ‖v(t) − ṽ‖2 − λ(2 − λ)
σ 2‖v(t) − w(t+1)‖4

‖G(w(t+1))‖2
.

Thus,

‖v(t+1) − ṽ‖2 ≤ ‖v(t) − ṽ‖2 − λ(2 − λ)
σ 2‖v(t) − w(t+1)‖4

‖G(w(t+1))‖2
.

(24)

The inequality (24) implies that {‖v(t) − ṽ‖}t≥0 is non-

increasing and therefore, {v(t)}t≥0 is bounded. That is,

‖v(t)‖ ≤ b1, b1 > 0. (25)

Also, it can be recursively deduce from (24) that for all t ≥ 0,

‖v(t) − ṽ‖2 ≤ ‖v(0) − ṽ‖2.

Hence by Assumption (A2) and letting L‖v(0) − ṽ‖ = c1,

we obtain that

‖G(t)‖=‖G(v(t))−G(ṽ)‖≤L‖v(t) − ṽ‖ ≤ L‖v(0) − ṽ‖ = c1.

This implies that for all t ≥ 0,

‖G(t)‖ ≤ c1. (26)
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TABLE 5. Numerical results of Problem 4.

Moreover, using the Cauchy-Schwartz inequality, Assump-

tion (A1) and (23),

σ‖v(t) − w(t+1)‖ =
σ‖α(t)d (t)‖2

‖v(t) − w(t+1)‖

≤
〈G(w(t+1)), v(t) − w(t+1)〉

‖v(t) − w(t+1)‖

≤
〈G(t), v(t) − w(t+1)〉

‖v(t) − w(t+1)‖
≤ ‖G(t)‖. (27)

Since {v(t)}t≥0 and {G(t)}t≥0 are bounded, then from (27),

the sequences {w(t+1)}t≥0 and {w(t+1) − ṽ}t≥0 are also

bounded. That is, there exists d1 > 0 such that for all t ≥ 0

‖w(t+1) − ṽ‖ ≤ d1.

This combined with Assumption (A2) implies that

‖G(w(t+1))‖ = ‖G(w(t+1)) − G(ṽ)‖ ≤ L‖w(t+1) − ṽ‖ ≤ Ld1.

Again from (24),

λ(2 − λ)
σ 2

(Lν)2
‖v(t) − w(t+1)‖4≤‖v(t)−ṽ‖2−‖v(t+1) − ṽ‖2,

which implies

λ(2 − λ)
σ 2

(Lν)2

∞
∑

k=0

‖v(t) − w(t+1)‖4

≤
∞
∑

k=0

(‖v(t) − ṽ‖2 − ‖v(t+1) − ṽ‖2)

≤ ‖v(0) − ṽ‖ < ∞. (28)

Inequality (28) implies that

lim
k→∞

‖v(t) − w(t+1)‖ = 0.

In addition, utilizing (13) and the Cauchy-Schwartz inequal-

ity with v(t) ∈ �,

‖v(t+1) − v(t)‖ = ‖P�[v
(t) − λζ (t)G(w(t+1))] − P�(v

(t))‖
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TABLE 6. Numerical results of Problem 5.

= ‖v(t) − λζ (t)G(w(t+1)) − v(t)‖
= ‖λζ (t)G(w(t+1))‖
≤ λ‖v(t) − w(t+1)‖, ∀t ≥ 0. (29)

It follows that

lim
k→∞

‖v(t+1) − v(t)‖ = 0.

Remark 7: From equation (20), we have

lim
k→∞

α(t)‖d (t)‖ = 0. (30)

Lemma 8: Let d (t) be defined by (7), then for all t ≥ 0,

‖d (t)‖ ≤ M0, M0 > 0. (31)

Proof: For t = 0, ‖d (0)‖ = ‖G(0)‖ ≤ c1.

Now for t ≥ 1, by (7)-(9) and (25)-(26), we have

‖d (t)‖ =
∥

∥

∥
−G(t) + β(t)d (t−1) − θ (t)y(t−1)

∥

∥

∥

=
∥

∥

∥

∥

− G(t)+
〈G(t), y(t−1)〉

〈d (t−1), x(t−1)〉+γ ‖G(t)‖‖d (t−1)‖
d (t−1)

−
〈G(t), d (t−1)〉

〈d (t−1), x(t−1)〉 + γ ‖G(t)‖‖d (t−1)‖
y(t−1)

∥

∥

∥

∥

≤ ‖G(t)‖ +
‖G(t)‖‖y(t−1)‖‖d (t−1)‖

γ ‖G(t)‖‖d (t−1)‖

+
‖G(t)‖‖y(t−1)‖‖d (t−1)‖

γ ‖G(t)‖‖d (t−1)‖

= ‖G(t)‖ + 2
‖G(t)‖‖y(t−1)‖‖d (t−1)‖

γ ‖G(t)‖‖d (t−1)‖

= ‖G(t)‖ + 2
‖y(t−1)‖

γ

≤ ‖G(t)‖ + 2L
(‖v(t)‖ + ‖v(t−1)‖)

γ

≤ c1 +
4Lb1

γ
. (32)

Choose M0 = c1 + 4Lb1
γ

, the result is obtained.

Theorem 9: If Assumptions (A1)-(A4) hold and the

sequence {v(t)}t≥0 is obtained via Algorithm 1, then

lim inf
k→∞

‖G(t)‖ = 0. (33)
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TABLE 7. Numerical results of Problem 6.

Proof: Suppose equation (33) is false. Then there exists

q > 0 such that for all t ≥ 0,

‖G(t)‖ ≥ q. (34)

Combining the inequality (34) with (18), we get

‖d (t)‖ ≥ q ∀t ≥ 0. (35)

Multiplying both sides of (19) with ‖d (t)‖,

α(t)‖d (t)‖ ≥ max

{

1,
ρ‖G(t)‖2

(L + σ )‖d (t)‖2

}

‖d (t)‖

≥ max

{

q,
ρq2

(L + σ )M0

}

.

This contradicts with (30) and hence (33) must hold.

IV. NUMERICAL EXPERIMENT

In this section, the numerical behavior of the proposed algo-

rithm (Algorithm 1) in comparison with two existingmethods

is examined. We compare the performance of Algorithm 1

with a conjugate gradient projection method for solving non-

linear equations with convex constraints by Zheng et al. [46]

denoted as Algorithm 2 and a new three-term conjugate

gradient-based projectionmethod for solving large-scale non-

linear monotone equations by Koorapetse et al. [24] denoted

as Algorithm 3. Algorithm 1 is implemented using the fol-

lowing parameters: σ = 0.001, µ = 1 ρ = 0.7, γ = 1.7

and λ = 1.2. The selected parameters for Algorithm 2 and

Algorithm 3 are chosen as reported in their respective papers.

The metrics used for evaluating the results of the numerical

experiments are the number of iteration (ITER), number of

function evaluations (FVAL) and the time in seconds (TIME).

In order to test the performance and robustness of the meth-

ods, we use the following initial points

v(1) = (1, . . . , 1)T , v(2) = (0.1, . . . , 0.1)T ,

v(3) =
(

1

2
,
1

22
, . . . ,

1

2n

)T

, v(4) =
(

1 −
1

n
. . . , n− 1

)T

,

VOLUME 9, 2021 18271



A. B. Abubakar et al.: New Three-Term Hestenes-Stiefel Type Method for Nonlinear Monotone Operator Equations

TABLE 8. Numerical results of Problem 7.

v(5) =
(

0,
1

n
, . . . ,

n− 1

n

)T

, v(6) =
(

1,
1

2
, . . . ,

1

n

)T

,

v(7) = rand(0, 1).

We tested ten different problems with the dimension

n ∈ {103, 5 × 103, 104, 5 × 104, 105}.

The three solvers were coded inMATLABR2019a and run on

a PC with Intel(R) Core(TM) i7-7100U processor with 8 GB

RAM and CPU 2.40 GHz. The iteration process is terminated

whenever the inequality ‖G(t)‖ ≤ 10−5 or ‖G(w(t+1))‖ ≤
10−5 is satisfied. If this condition is not satisfied after 1000

iterations, failure is declared.

We consider the following test problems where the oper-

ator G is G(v) = (g1(v), g2(v), . . . , gn(v))
T and v =

(v1, v2, . . . , vn)
T .

Problem 1: The Exponential Function [12].

g1(v) = ev1 − 1,

gi(v) = evi + vi − 1, for i = 2, 3, . . . , n, and � = R
n
+.

Problem 2 [12]:Modified Logarithmic Function.

gi(v) = ln(vi + 1) −
vi

n
, for i = 2, 3, . . . , n,

and � = {v ∈ R
n :

n
∑

i=1

vi ≤ n, vi > −1, i = 1, 2, . . . , n}.

Problem 3 [7]: Nonsmooth Function I.

gi(v) = 2vi − sin |vi|, i = 1, 2, 3, . . . , n,

and � = {v ∈ R
n :

n
∑

i=1

vi ≤ n, vi ≥ 0, i = 1, 2, . . . , n}.

It is clear that Problem 3 is nonsmooth at v = 0.

Problem 4: Strictly Convex Function I [12].

gi(v) = evi − 1, for i = 1, 2, . . . , n, and � = R
n
+.

Problem 5 [47]: Tridiagonal Exponential Function.

g1(v) = v1 − ecos(h(v1+v2)),

gi(v) = vi − ecos(h(vi−1+vi+vi+1)), for i = 2, . . . , n− 1,
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TABLE 9. Numerical results of Problem 8.

gn(v) = vn − ecos(h(vn−1+vn)),

h =
1

n+ 1
and � = R

n
+.

Problem 6 [48]: Nonsmooth Function II.

gi(v) = vi − sin |vi − 1|, i = 1, 2, 3, . . . , n.

and � = {v ∈ R
n :

n
∑

i=1

vi ≤ n, vi ≥ −1, i = 1, 2, . . . , n}.

Problem 7 [49]: Penalty Function 1.

ti =
n

∑

i=1

v2i , c = 10−5

gi(v) = 2c(vi − 1) + 4(ti − 0.25)vi, i = 1, 2, 3, . . . , n.

and � = R
n
+.

Problem 8 [21]: Pursuit-Evasion problem.

gi(v) =
√
8vi − 1, i = 1, 2, 3, . . . , n.

and � = R
n
+.

Problem 9 [7]:

g1(v) = 2v1 + sin v1 − 1,

gi(v) = −vi−1 + 2vi + sin vi − 1, for i = 2, . . . , n− 1,

gn(v) = 2vn + sin vn − 1,

and � = R
n
+.

Problem 10 [50]:

gi(v) = ev
2
i + 3 sin v1 cos vi − 1, for i = 1, 2, . . . , n

and � = R
n
+.

A detail report of the numerical experiments are presented

in Table 2-11 of the appendix section. The columns of the

presented tables have the following definitions:

DIM: denotes the dimension of the problem

INP: denotes the initial points

ITER: denotes the number of iterations

FVAL: denotes the number of function evaluations
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TABLE 10. Numerical results of Problem 9.

TIME: denotes the CPU time in seconds

NORM: denotes the norm of the operator at the solution

From Tables 2–11, it is clear that Algorithm 1 obtained the

solutions of virtually all the test problems with least number

of ITER, FVAL and TIME. These information is further illus-

trated in Figures 1-3 based on theDolan andMorè [51] perfor-

mance profile. The performance profile tells the percentage of

win by each solver. In all the experiments, we can see from

the Figures 1-3, that the proposed algorithm performs better

with higher percentage win in all the 3 metrics, i.e., ITER,

FVAL and TIME. The reasons behind the good performance

of Algorithm 1 are; the search direction is of three-term and

a good selection of the control parameters σ , ρ, γ and λ.

A. IMAGE RESTORATION

Fundamental theory of compressed sensing come up with

the possibility of obtaining the sparsest solution of the linear

system which involves finding solution to an l0-norm regu-

larized minimization problem [52]. The minimization prob-

lem belongs to combinatorial optimization and so becomes

difficult to find an efficient process to find the most sparsest

solution. On this basis, another process which replaces the

l0-norm with l1-norm [53] was introduced. That is, finding

solution to the following continuous optimization problem:

min
v

{‖v‖1 : Av = b}. (36)

It was shown that (36) possesses high possibility of finding

the most useful result for image restoration problems [53].

However, problem (36) can be reformulated as follows when

noise is taken into account:

min
v

{

ω‖v‖1 +
1

2
‖b− Av‖22

}

, (37)

where ω is called a balance parameter.

A number of methods have been proposed for finding

solution to problem (37). Interested readers are referred to

(Refs. [54]–[56]). Not so long, Figueiredo et al. [57] made a

breakthrough by showing that problem (37) can be written as
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TABLE 11. Numerical results of Problem 10.

a bound-constrained quadratic problem. Subsequently, Xiao

et al. [58] converted the bound-constrained quadratic problem

into the following nonlinear convex constrained equation:

G(p) = min{p,Bp+ h} = 0. (38)

where p =
[

qa
qb

]

, qa, qb > 0,B =
[

ATA −ATA
−ATA ATA

]

,A ∈

R
m×n(m < n) and h = τe2n +

[

−y
y

]

, τ > 0, en is an

n-dimensional vector with all elements one and y = AT b.

Furthermore, the equivalent nonlinear convex constrained

equation (38) was shown to be Lipschitz continuous and

monotone. Hence, Algorithm 1 can be used to solve problem

(38).

The efficiency of Algorithm 1 in restoring noisy and

blurred images is depicted in this experiment. Four colored

images of different sizes are considered in the experiment.

These images are distorted using a Gaussian noise with stan-

dard deviation of 10−2 . For Algorithm 1, we select the

following control parameters for its implementation: ρ =
0.1; µ = 0.1; σ = 0.0001; γ = 0.1. λ = 1. We compare

Algorithm 1 with Algorithm 2 and Algorithm 3 proposed in

[59] and [58], respectively. All methods were implemented

from same initial point v(0) = AT b and terminated when
|f (t)−f (t−1)|

|f (t−1)| < 10−5, where f (v) = ω‖v‖1 + 1
2
‖b − Av‖22

and f (t) is the function evaluation of f and v(t). Figure 4

shows the original images, the blurred with noise images and

the restored images by the various algorithm are presented

in Figure 5, 6, 7 and 8.

The experimental results of Algorithm 1, Algorithm 2 and

Algorithm 3 are presented in Table 1. The comparison is

based on the signal-to-noise ratio (SNR), Peak signal-to-

noise ratio [60] and the Structural Similarity index (SSIM)

[61]. From Table 1, it is evident that for all the test images,

the restored images by Algorithm 1 are closer to the original

than those restored by Algorithm 2 and Algorithm 3. This

is reflected by it’s bigger value of SNR, PSNR and SSIM

in Table 1.

V. CONCLUSION

This article modified and extended the work of Baluch et al.

[45] to solve nonlinear monotone operator equations. The
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modification become necessary so as to establish the descent

and boundedness property of the search direction without

the use of the line search. The algorithm was derivative-free

and could handle problems of high dimensions. Using some

suitable properties of the projection map as well as some

appropriate assumptions, we proved the global convergence

of the algorithm. Two types of numerical experiments were

conducted and presented in order to show the efficiency of

the proposed algorithm. The first was on some benchmark

nonlinear monotone operator equations and the second was

on image restoration. From the two experiments, the proposed

algorithm outperform some existing algorithms in terms of

the metrics considered.
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