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Abstract. The numerical solution of linear discrete ill-posed problems typically requires regu-
larization, i.e., replacement of the available ill-conditioned problem by a nearby better conditioned
one. The most popular regularization methods for problems of small to moderate size, which allow
evaluation of the singular value decomposition of the matrix defining the problem, are the truncated
singular value decomposition and Tikhonov regularization. The present paper proposes a novel choice
of regularization matrix for Tikhonov regularization that bridges the gap between Tikhonov regu-
larization and truncated singular value decomposition. Computed examples illustrate the benefit of
the proposed method.
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1. Introduction. Consider the computation of an approximate solution of the
minimization problem

min
x∈Rn

‖Ax− b‖,(1.1)

where ‖ · ‖ denotes the Euclidean vector norm and A ∈ Rm×n is a matrix with many
singular values of different sizes close to the origin. Minimization problems (1.1) with
a matrix of this kind often are referred to as discrete ill-posed problems. They arise,
for example, from the discretization of linear ill-posed problems, such as Fredholm
integral equations of the first kind with a smooth kernel. The vector b ∈ Rm in (1.1)
represents error-contaminated data. We will for notational simplicity assume that
m ≥ n; however, the methods discussed also can be applied when m < n.

Let e ∈ Rm denote the (unknown) error in b, and let b̂ ∈ Rm be the (unknown)
error-free vector associated with b, i.e.,

b = b̂ + e.(1.2)

We sometimes will refer to the vector e as “noise.” The (unavailable) linear system
of equations with error-free right-hand side,

Ax = b̂,(1.3)

is assumed to be consistent; however, we do not require the least-squares problem
with error-contaminated data b (1.1) to be consistent.

Let A† denote the Moore-Penrose pseudoinverse of A. We are interested in com-
puting an approximation of the solution x̂ = A†b̂ of minimal Euclidean norm of the
error-free linear system (1.3) by determining an approximate solution of the error-
contaminated least-squares problem (1.1). Note that the solution of (1.1),

x̆ = A†b = A†(b̂ + e) = x̂ + A†e,(1.4)

typically is dominated by the propagated error A†e and then is meaningless.
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Tikhonov regularization seeks to determine a useful approximation of x̂ by re-
placing the minimization problem (1.1) by a penalized least-squares problem of the
form

min
x∈Rn

{‖Ax− b‖2 + ‖Lµx‖2},(1.5)

where the matrix Lµ ∈ Rk×n, k ≤ n, is referred to as the regularization matrix. The
scalar µ > 0 is known as the regularization parameter. The matrix Lµ is commonly
chosen to be µI, where I denotes the identity matrix; however, if the desired solution x̂
has particular known properties, then it may be meaningful to let Lµ be a scaled finite
difference approximation of a differential operator or a scaled orthogonal projection;
see, e.g., [1, 2, 3, 5, 7, 10, 11] for examples.

Solving (1.5) requires both the determination of a suitable value of µ > 0 and
the computation of the associated solution x = xµ of the minimization problem. We
will assume that a bound for the norm of the error-vector e is known. Then µ can
be determined with the aid of the discrepancy principle; see below for details. The
use of the discrepancy principle to determine µ generally requires the solution of (1.5)
for several values of µ. When Lµ = µI and the singular value decomposition (SVD)
of A is available, the desired value of µ can be computed inexpensively by using a
zero-finder, such as Newton’s method.

The regularization matrices mentioned above are linear functions of µ. We use the
notation Lµ (instead of µL), because we will introduce a regularization matrix that
depends on µ in a nonlinear fashion. This regularization matrix may be an attractive
substitute for µI when no particular properties of the desired solution x̂ are known.
Similarly as when the regularization matrix µI is used, the solution of (1.5) with the
proposed matrix Lµ easily can be computed when the SVD of A is available. Our
new regularization matrix is designed to dampen low frequencies less than the matrix
Lµ = µI. Numerical examples illustrate the proposed regularization matrix to often
yield more accurate approximations xµ of x̂ than the regularization matrix Lµ = µI.

Another common regularization method for (1.1) is the truncated SVD (TSVD)
method. In this method the smallest singular values of A are set to zero and the
minimal-norm solution of the resulting least-squares problem is computed. We deter-
mine the truncation index with the discrepancy principle and compare TSVD with
Tikhonov regularization.

This paper is organized as follows. Section 2 discusses regularization by the
TSVD and Tikhonov methods and introduces our new regularization matrix. Section
3 contains a few computed examples. Concluding remarks and comments on possible
extensions can be found in Section 4.

2. Regularization methods. We first introduce the SVD of A and then discuss
regularization by the TSVD and Tikhonov methods. The SVD of A is given by

A = UΣV T ,(2.1)

where U = [u1,u2, . . . ,um] ∈ Rm×m and V = [v1,v2, . . . ,vn] ∈ Rn×n are orthogonal
matrices, and

Σ = diag[σ1, σ2, . . . , σn] ∈ Rm×n

is a (possibly rectangular) diagonal matrix, whose nonnegative diagonal entries σj are
the singular values of A. They are ordered according to σ1 ≥ σ2 ≥ . . . ≥ σn ≥ 0.
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Let A be of rank `. Then (2.1) can be expressed as

A =
∑̀
j=1

σjujv
T
j(2.2)

with σ1 ≥ σ2 ≥ . . . ≥ σ` > 0. When the matrix A stems from the discretization of a
Fredholm integral equation of the first kind with a smooth kernel, the vectors vj and
uj represent discretizations of singular functions that are defined on the domains of
the integral operator and its adjoint, respectively. These singular functions typically
oscillate more with increasing index. The representation (2.2) then is a decompo-
sition of A into rank-one matrices ujv

T
j that represent more and more oscillatory

components of A with increasing index j.

2.1. Regularization by truncated singular value decomposition. The
Moore-Penrose pseudoinverse of A is given by

A† =
∑̀
j=1

σ−1
j vju

T
j .

The difficulty of solving (1.1) without regularization stems from the fact that the ma-
trix A has “tiny” positive singular values and the computation of the solution (1.4) of
(1.1) involves division by these tiny singular values. This results in severe propagation
of the error e in b and of round-off errors introduced during the calculations into the
computed solution of (1.1).

Regularization by the TSVD method overcomes this difficulty by ignoring the
tiny singular values of A. Introduce, for k ≤ `, the rank-k approximation of A,

Ak =
k∑

j=1

σjujv
T
j ,

with Moore-Penrose pseudoinverse

A†k =
k∑

j=1

σ−1
j vju

T
j .

The TSVD method yields approximate solutions of (1.1) of the form

xk = A†kb =
k∑

j=1

uT
j b

σj
vj , k = 1, 2, . . . , `.(2.3)

It is convenient to use the transformed quantities

x̃k = V T xk, b̃ = [̃b1, b̃2, . . . , b̃m]T = UT b

in the computations. Thus, we compute

x̃k =

[
b̃1

σ1
,
b̃2

σ2
, . . . ,

b̃k

σk
, 0, . . . , 0

]T

(2.4)
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for a suitable value of 1 ≤ k ≤ ` and then determine the approximate solution
xk = V x̃k of (1.1).

Assume that a bound for the norm of the error

‖e‖ ≤ ε

is available. We then can determine the truncation index k by the discrepancy prin-
ciple, i.e., we choose k as small as possible so that

‖Axk − b‖ ≤ ηε,(2.5)

where η > 1 is a user-specified constant independent of ε. Thus, the truncation index
k = kε depends on ε and generally increases as ε decreases. A proof of the convergence
of xkε to x̂ as ε ↘ 0 in a Hilbert space setting is presented in [5]. It requires the
constant η > 1 in (2.5). In actual computations, we use the representation

‖Axk − b‖2 =
m∑

j=k+1

b̃2
j

to determine kε from (2.5). Further details on regularization by TSVD can be found
in, e.g., [5, 7].

2.2. Tikhonov regularization with Lµ = µI. Substituting (2.1), x̃ = V T x,
b̃ = UT b, and Lµ = µI into (1.5) yields the penalized least-squares problem

minex∈Rn
{‖Σx̃− b̃‖2 + µ2‖x̃‖2}

with solution

x̃µ = (ΣT Σ + µ2I)−1ΣT b̃(2.6)

for µ > 0. The solution of (1.5) is given by xµ = V x̃µ. It satisfies

(AT A + µ2I)xµ = AT b.(2.7)

The discrepancy principle prescribes that the regularization parameter µ > 0 be
determined so that

‖Axµ − b‖ = ηε,(2.8)

or, equivalently, so that

‖Σx̃µ − b̃‖2 = η2ε2,(2.9)

where the constant η > 1 is independent of ε. This nonlinear equation for µ can
be solved, e.g., by Newton’s method. Each evaluation of the left-hand side of (2.9)
requires at most O(m) arithmetic floating point operations. The computational effort
needed to determine the desired value of µ therefore is negligible compared with the
O(mn2) arithmetic floating point operations required for the evaluation of the SVD
(2.1) of A. Generally, µ decreases with ε. Proofs of the convergence xµ → x̂ as
ε ↘ 0 are provided in [5, 6]. The proofs are in Hilbert space settings and require the
constant η > 1 in (2.8).
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2.3. Tikhonov regularization with the new regularization matrix. It
follows from (2.6) that Tikhonov regularization with Lµ = µI and µ > 0 dampens
all components of ΣT b̃, i.e., all solution components vj of xµ. On the other hand,
TSVD does not dampen any solution component that is not set to zero; cf. (2.4). It
is known that Tikhonov regularization may oversmooth the computed solution when
the regularization parameter is well determined; see, e.g., [9] for a recent discussion.
We propose to choose a regularization matrix Lµ that provides no damping of solution
components vj with small index.

Introduce

Lµ = DµV T(2.10)

with

D2
µ = diag

[
max{µ2 − σ2

1 , 0},max{µ2 − σ2
2 , 0}, . . . ,max{µ2 − σ2

n, 0}
]
.

Analogously to (2.6), we obtain

x̃µ = (ΣT Σ + D2
µ)−1ΣT b̃.(2.11)

If σk > µ ≥ σk+1, then

ΣT Σ + D2
µ = diag

[
σ2

1 , σ2
2 , . . . , σ2

k, µ2, . . . , µ2
]
∈ Rn×n.

In particular, if µ > 0, then the above matrix is positive definite and the solution
(2.11) exists. The corresponding approximate solution of (1.1) is given by xµ = V x̃µ

and satisfies

(AT A + LT
µ Lµ)xµ = AT b;(2.12)

cf. (2.7). The value of µ used in (2.11) is the same as in Subsection 2.2.
In order to avoid severe propagation of the error e in b into the computed ap-

proximate solution xµ, the smallest eigenvalue of the matrix AT A + LT
µ Lµ, which is

max{µ2, σ2
n}, has to be sufficiently large. Moreover, we would like the matrix LT

µ Lµ

to be of small norm, because this may help us determine an accurate approximation
of x̂. The following result shows the matrix LT

µ Lµ to be optimal in the Frobenius
norm, which for a matrix M ∈ Rn×n is given by ‖M‖F =

√
trace(MT M).

Theorem 2.1. Let M ∈ Rn×n be a symmetric matrix with spectral factorization
M = V ΛV T , where V ∈ Rn×n is orthonormal and Λ = diag[λ1, λ2, . . . , λn]. Assume
that µ ≥ min1≤j≤n λj. Let the diagonal matrix Cµ = diag[c1, c2, . . . , cn] ∈ Rn×n have
the entries

cj = max{µ− λj , 0}, j = 1, 2 . . . , n.

Then the matrix M + V CµV T has the smallest eigenvalue µ and the distance in
the Frobenius norm between M and the closest symmetric matrix with the smallest
eigenvalue µ is ‖Cµ‖F .

Proof. Let N ∈ Rn×n be a symmetric matrix such that all eigenvalues of
H = M + N are larger than or equal to µ. Let the eigenvalues λ1, λ2, . . . , λn of M
and γ1, γ2, . . . , γn of H be arranged in nondecreasing order. Then by the Wielandt-
Hoffman theorem, see, e.g., [12, pp. 104–108], we have that

‖N‖2F = ‖H −M‖2F ≥
n∑

j=1

(γj − λj)2.
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The right-hand side is minimal when γj = max{λj , µ} for all j. Therefore

‖N‖2F ≥
∑

λj<µ

(µ− λj)2.

The theorem now follows from the observation that

‖V CµV T ‖2F = ‖Cµ‖2F =
∑

λj<µ

(µ− λj)2.

Corollary 2.2. Let Lµ be defined by (2.10) and assume that µ and σ1 are
strictly positive. Then

‖Lµ‖2F < ‖µI‖2F .

Proof. We have

‖Lµ‖2F = ‖Dµ‖2F =
∑

σ2
j <µ2

(µ2 − σ2
j ) < nµ2 = ‖µI‖2F .

We recall that for Tikhonov regularization with the regularization matrices Lµ =
µI or (2.10), the value of the regularization parameter µ is determined by the discrep-
ancy principle based on the regularization matrix Lµ = µI as described in Subsection
2.2. By Corollary 2.2, the matrix in the regularized normal equations (2.7) with
Lµ = µI differs more from AT A than the matrix in the regularized normal equations
(2.12) with the regularization matrix (2.10). This suggests that the solution of (2.12)
may be a better approximation of the desired solution x̂ than the solution of (2.7).
The numerical examples in Section 3 show this, indeed, often to be the case.

It is informative to consider the filter factors for the methods discussed. Investiga-
tions of regularization methods with the aid of filter factors can be found in Hansen [7]
for TSVD and Tikhonov regularization with Lµ = µI. Donatelli and Serra-Capizzano
[4] use filter factors to study multilevel methods. The unregularized solution x = A†b
of (1.1) can be expressed as

x =
∑̀
j=1

uT
j b

σj
vj .

The filter factors show how the components are modified by the regularization method
used. For instance, for the TSVD solution xk given by (2.3), we have

xk =
∑̀
j=1

ϕ
(TSVD)
k,j

uT
j b

σj
vj

with the filter factors

ϕ
(TSVD)
k,j =

{
1, 1 ≤ j ≤ k,
0, k < j ≤ `.
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Similarly, the Tikhonov solution xµ = V x̃µ defined by (2.6) with Lµ = µI can be
written as

xµ =
∑̀
j=1

ϕ
(Tikhonov)
µ,j

uT
j b

σj
vj

with the filter factors

ϕ
(Tikhonov)
µ,j =

σ2
j

σ2
j + µ2

, 1 ≤ j ≤ `.

Assume that σk > µ ≥ σk+1 and let µ > 0; if k = n, then we define σn+1 = 0.
Our new Tikhonov regularization method with Lµ given by (2.10) can be expressed
as

xµ =
∑̀
j=1

ϕ
(new)
µ,j

uT
j b

σj
vj

with the filter factors

ϕ
(new)
µ,j =


1, 1 ≤ j ≤ k,
σ2

j

µ2
, k < j ≤ `.

Thus, these filter factors are the same as ϕ
(TSVD)
k,j for 1 ≤ j ≤ k, and close to ϕ

(Tikhonov)
µ,j

for k < j ≤ `.

3. Computed examples. The calculations of this section were carried out us-
ing the Python programming language with the open source numerical computation
modules NumPy and SciPy. Floating point arithmetic was done with 64 bits, i.e.,
machine epsilon was about 2.2 · 10−16. The computed examples are taken from the
MATLAB package Regularization Tools [8] and were imported into Python using
Pytave, an open source Python module wrapper for Octave.

All examples are obtained by discretizing Fredholm integral equations of the first
kind ∫ b

a

κ(s, t)x(t) dt = g(s), c ≤ s ≤ d,(3.1)

with a smooth kernel κ. The discretizations are carried out by Galerkin or Nyström
methods and yield linear discrete ill-posed problems (1.1). MATLAB functions in
[8] determine discretizations A ∈ Rn×n of the integral operators and scaled discrete
approximations x̂ ∈ Rn of the solution x of (3.1). We add an error vector e ∈ Rn

with normally distributed random entries with zero mean to b̂ = Ax̂ to obtain the
vector b in (1.1); cf. (1.2). The vector e is scaled to yield a specified noise level
‖e‖/‖b̂‖. In particular, ‖e‖ is available and we can apply the discrepancy principle
with ε = ‖e‖ to determine the regularization parameter µ in Tikhonov regularization
and the truncation index k in TSVD. We let η = 1 in (2.5) and (2.9) in the computed
examples.

Let xcomp denote the computed solution using TSVD or Tikhonov regularization
with Lµ defined by (2.10) or with Lµ = µI. We are interested in the relative error
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Fig. 3.1. Example 3.1: The computed solutions determined with Lµ defined by (2.10) (solid red
graph), with Lµ = µI (dashed green graph), and with TSVD (dash-dotted blue graph). The vector b
is contaminated by 10% noise. The solid blue graph, which is flat near the ends, displays x̂.

Noise level Tikhonov regularization TSVD
% L defined by (2.10) L = µI

10.0 2.39 · 10−2 5.12 · 10−2 4.27 · 10−2

5.0 2.29 · 10−2 3.52 · 10−2 2.49 · 10−2

1.0 1.69 · 10−2 2.00 · 10−2 2.41 · 10−2

0.1 6.04 · 10−3 8.75 · 10−3 9.75 · 10−3

Table 3.1
Example 3.1: Average relative errors in the computed solutions for the phillips test problem for

several noise levels.

‖xcomp − x̂‖/‖x̂‖ determined by these regularization methods. This error depends
on the entries of the error vector e. To gain insight into the average behavior of the
solution methods, we report in every example the average of the relative errors in
xcomp over 1000 runs for each noise level. We let n = 200 in all examples.

Example 3.1. We first consider the problem phillips from [8]. Let

φ(t) =
{

1 + cos(πt
3 ), |t| < 3,

0, |t| ≥ 3.

The kernel, right-hand side function, and solution of the integral equation (3.1) are
given by

κ(s, t) = φ(s− t), x(t) = φ(t), g(s) = (6− |s|)
(

1 +
1
2

cos
(πs

3

))
+

9
2π

sin
(

π|s|
3

)
.

and a = c = −6, b = d = 6. Figure 3.1 shows computed solutions determined by
TSVD and Tikhonov regularization using the regularization matrices Lµ = µI and
(2.10). Table 3.1 displays the averages of the relative errors in the computed solutions
over 1000 runs for each noise level. Tikhonov regularization with the regularization
matrix (2.10) is seen to yield the smallest average errors for all noise levels considered.
2
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Noise level Tikhonov regularization TSVD
% L defined by (2.10) L = µI

10.0 1.60 · 10−1 1.70 · 10−1 1.60 · 10−1

5.0 1.51 · 10−1 1.56 · 10−1 1.51 · 10−1

1.0 8.43 · 10−2 1.10 · 10−1 8.69 · 10−2

0.1 4.68 · 10−2 4.91 · 10−2 4.76 · 10−2

Table 3.2
Example 3.2: Average relative errors in the computed solutions for the shaw test problem for

several noise levels.

Example 3.2. The test problem shaw from [8] is an integral equation (3.1) with

κ(s, t) = (cos(s) + cot(t))2
(

sin(u)
u

)2

, u = π(sin(s) + sin(t)),

x(t) = 2 exp

(
−6
(

t− 4
5

)2
)

+ exp

(
−2
(

t +
1
2

)2
)

.

and a = c = −π/2, b = d = π/2. Table 3.2 shows the average relative errors in the
computed solutions over 1000 runs for each noise level. Tikhonov regularization with
Lµ defined by (2.10) yields the smallest relative errors. 2

Noise level Tikhonov regularization TSVD
% L defined by (2.10) L = µI

10.0 2.04 · 10−1 2.15 · 10−1 2.14 · 10−1

5.0 1.92 · 10−1 2.02 · 10−1 1.99 · 10−1

1.0 1.72 · 10−1 1.78 · 10−1 1.76 · 10−1

0.1 1.46 · 10−1 1.50 · 10−1 1.48 · 10−1

Table 3.3
Example 3.3: Average relative errors in the computed solutions for the ilaplace test problem for

several noise levels.

Example 3.3. We consider the problem ilaplace from [8], which is a discretization
of an inverse Laplace transform with

κ(s, t) = exp(−st), x(t) = exp(−t/2), g(s) =
2

2s + 1
,

and a = c = 0, b = d = ∞. Table 3.3 displays the average relative errors in the
computed solutions for each noise level. Tikhonov regularization with Lµ defined by
(2.10) yields the smallest relative errors over 1000 runs for each noise level. 2

Example 3.4. This test problem uses the code deriv2 in [8]. The kernel, solution,
and right-hand side of (3.1) are given by

κ(s, t) =
{

s(t− 1), s < t,
t(s− 1), s ≥ t,

x(t) = t,

g(s) =
s3 − s

6
,

and a = c = 0, b = d = 1. Thus, the kernel k is the Green’s function for the second
derivative. Table 3.4 shows the average relative errors in the computed solutions over
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Noise level Tikhonov regularization TSVD
% L defined by (2.10) L = µI

10.0 3.16 · 10−1 3.47 · 10−1 3.30 · 10−1

5.0 2.84 · 10−1 3.10 · 10−1 3.01 · 10−1

1.0 2.19 · 10−1 2.39 · 10−1 2.42 · 10−1

0.1 1.51 · 10−1 1.64 · 10−1 1.72 · 10−1

Table 3.4
Example 3.4: Average relative errors in the computed solutions for the deriv2 test problem for

several errors.

1000 runs for several noise levels. Tikhonov regularization with the regularization
matrix (2.10) gives the smallest average errors. 2

Noise level Tikhonov regularization TSVD
% L defined by (2.10) L = µI

10.0 2.33 · 10−2 4.39 · 10−2 4.27 · 10−2

5.0 2.16 · 10−2 3.17 · 10−2 2.49 · 10−2

1.0 1.57 · 10−2 1.92 · 10−2 2.39 · 10−2

0.1 5.47 · 10−3 8.19 · 10−3 9.92 · 10−3

Table 3.5
Example 3.5: Average relative errors in the computed solutions for the phillips test problem with

optimal regularization parameter µ for several noise levels.

Example 3.5. In the above examples the regularization parameter µ for Tikhonov
regularization and the truncation index k for TSVD are determined with the aid of
the discrepancy principle. The present example compares the performance of the
methods when the optimal values of µ and the truncation index are used, i.e., we
use the values that give the most accurate approximations of x̂. These values of
µ and k generally are not available when solving discrete ill-posed problems. This
example illustrates that the superior performance of Tikhonov regularization with
the regularization matrix (2.10) in Examples 3.1-3.4 does not depend on that the
discrepancy principle was used to compute µ and the truncation index k. Table 3.5
shows average relative errors in the computed solutions for Tikhonov regularization
using the regularization matrices Lµ = µI and (2.10), as well as for TSVD, for the
test problem of Example 3.1. Tikhonov regularization with the regularization matrix
(2.10) is seen to yield the smallest average relative errors for all noise levels. 2

The above example suggests that Tikhonov regularization with the regularization
matrix (2.10) may be attractive also when the regularization parameter µ is deter-
mined by methods other than the discrepancy principle, such as by extrapolation
[1, 2, 3], generalized cross validation, or the L-curve [7].

4. Conclusion and extensions. In all examples of Section 3, as well as in many
other computed examples, Tikhonov regularization with the regularization matrix
(2.10) yields a smaller average error in the computed approximate solutions than
Tikhonov regularization with the regularization matrix Lµ = µI and TSVD. The
regularization matrix (2.10) therefore can be attractive to use when the SVD of the
matrix A in (1.1) can be computed. We remark that the regularization method of
the present paper can be applied to penalized least-squares problems (1.5) with a
fairly general (linear) regularization matrix Lµ after the least-squares problem has



Tikhonov regularization 11

been transformed into standard form. Transformation methods are discussed, e.g.,
in [7, Sections 2.3.1 and 2.3.2] and [11]. The regularization method can be applied
to large-scale problems after these have been reduced to small or moderate size by a
Krylov subspace method.
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