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Abstract—In this paper, we propose a new topological index, 
which is a numerical descriptor that characterizes survivable 
network topologies. A monotonically decreasing power law 
relationship can be found between this index and the total 
capacity allocation in the network. The new topological index is 
calculated based on the algebraic connectivity, which is adopted 
from spectral graph theory, more specifically it is based on the 
second-smallest eigenvalue of the Laplacian matrix of the 
network topology. Instead of the average nodal degree index that 
is usually used to characterize network connectivity in studies of 
the capacity allocation problem, our results suggest that this new 
topological index more accurately predicts the total capacity and 
is more informative. It can be used in studies on quantitative 
structure-performance relationships, in which the network 
performance or other properties of network are correlated with 
their topological structure. Extensive case studies confirm that 
the connections between the total capacity and its network 
structure can be well described by this topological index in 
network survivability studies. 
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connectivity; algebraic connectivity metric; second-smallest 
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I.  INTRODUCTION  
Survivability is one of the most important design issues of 
future multi-service Next Generation Networks (NGNs). 
Designing survivable networks involves pre-planning the 
network topology jointly with the allocation of spare link 
capacities (Spare Capacity Allocation or SCA problem) to be 
used in case of failures [1]. The performance of survivable 
routing protocols, the robustness of the network under failures 
and traffic engineering depend crucially on the topology of a 
given network. Network robustness can be characterized by 
the network topological connectivity, which determines the 
level of immunity / survivability of the network if failures of 
nodes and links occur. In general, as the network connectivity 
increases, one can find more node- and link-disjoint paths 
between pairs of communicating nodes, the pre-determined 
working and spare/protection paths can become shorter, and 
the additionally available paths can be used to reduce the 
requirements on the spare capacity. Thus the capacity needed 
for working and protection capacities decreases. In addition, 
the more disjoint protection paths can be distinguished, the 
higher the spare capacity sharing that can be obtained in the 
shared backup path protection (SBPP) survivable routing 
scheme [1, 2]. These dependencies underlie the search for an 

optimum and cost-efficient topology in network survivability 
design.  

The SCA design of survivable networks of given 
topologies has been subject to much research in recent years. 
Most studies [3-7] use the average nodal degree index for 
quantifying the relationship between capacity allocation and 
network connectivity. For a given network topology with bi-
directional links, the average nodal degree d  is defined as the 
ratio of twice the number of links to the number of nodes. The 
simulation studies presented in [3-7] have concentrated on 
showing how the working and spare capacity requirements of 
networks with various topologies vary with the average nodal 
degree index. Despite of the wide adoption of the average 
nodal degree index in these studies, we argue that this index is 
only a coarse indicator of how sparse or dense a given 
topology is. It carries insufficient information about the 
networks topological structure. Furthermore, employing the 
average nodal degree for describing the network’s 
characteristics may lead to misleading findings e.g., several 
networks have the same average node degree and thus the 
same network connectivity characteristic, their total capacity 
allocated should be similar, but they can be totally different 
[8]. We suggest a more informative and accurate topological 
index: the ratio of the algebraic connectivity 2 ( )G to the 
network mean distance ( )G , i.e., 2 ( ) / ( )G G  , here the 
network mean distance measures the hop count. The algebraic 
connectivity is defined as the second-smallest eigenvalue of 
the Laplacian matrix of a given topology, and it is an accurate 
descriptor of network characteristics such as connectivity in a 
broader spectrum of graphs [9]. It is one of the key invariants 
of a graph and has found a wide range of applications. One of 
its desirable properties we have used is that its magnitude (if 
non-zero) is related with the number of node- and link-disjoint 
paths, it is thus an important design input for the total capacity 
allocation in survivable network design.  

The structure of this paper is outlined as follows. Section 
II introduces the algebraic connectivity together with its 
theoretical ramification, and then the new proposed 
topological index is defined. In Section III we introduce the 
Integer Linear Programming (ILP) model of the shared backup 
path protection (SBPP) scheme, which is used to evaluate the 
correlation between the new topological index and capacity 
allocation. The results of our extensive case studies conducted 
for experimental comparison of the properties of different 
topological indices are reported in Section IV. Final 
conclusions are drawn in Section V.  



II. TOPOLOGICAL MEASURES OF NETWORK ROBUSTNESS 
In general, topological measures are functions of the network 
topology G(N, L). The number of nodes N and the number of 
links L are the mostly regarded parameters of a network, but 
they are not its metrics. Many measures depend on the size of 
the network N and the number of links L. For example, the 
degree id of a node i in a network is defined as the number of 
links that are incident on node i. The node degree represents an 
important characteristic of a node, as a node with larger id  can 
usually serve more streams of data. To simplify the following 
exposition, we regard D as a generic random variable giving 
the node degree (ranging from 0 to the maximum degree maxd ) 
of a given node in a network. The node degree distribution of 
this network then corresponds to the probability mass function 
of the random variable D for this network, i.e. it can be defined 
as the set of [ ]Pr D k , for max1 k d  , where [ ]Pr D k  
represents the fraction of nodes in the network with node 
degree k. In other words, it is the probability that a randomly 
chosen node has degree k. The average nodal degree, denoted 
as d , is defined as the expectation of D, for which in a 
network with N nodes L links we have:                                              

       
max

1

2[ ] [ ]
d

k

Ld E D k Pr D k
N

                  (1)       

In addition, the node connectivity ( )v G and the link 
connectivity ( )e G of a network are defined as the minimal 
number of nodes with all links that are incident to them and 
links, respectively, which have to be removed in order to 
disconnect that network. They appear to be natural quantifiers 
for network robustness, but are difficult to compute for large 
networks. Among the structural metrics mentioned above, the 
average nodal degree d  is widely used for quantifying the 
relationship between the network connectivity and the amount 
of allocated capacity, see for example [5, 6]. The simulation 
results presented there show how the total amount of working 
and spare capacity allocated in different network topologies, 
vary according to their different average nodal degrees. 
Despite of this wide adoption of the average nodal degree in 
survivability studies, we argue that it is only a coarse indicator 
of how sparse or dense a given topology is and it cannot 
differentiate the shape and size of the different topologies. 
Therefore, we suggest using a more informative topological 
index, which is based on the algebraic connectivity adopted 
from spectral graph theory. We will provide numerical 
evidence for this statement in Section IV.  

One of the main goals of the spectral graph theory is to 
deduce the principal properties and the structure of a graph 
from its spectrum [9]. Graph spectral analysis can be used to 
reveal the fundamental properties of a graph through 
geometric, analytic and algebraic techniques.  

Let G(N, L) be a network with N nodes from set  and 
L links from set  , i.e., N    and L   . The network 
G can be represented by its adjacency matrix, A(G), which is 
the N x N matrix whose (i, j)-th entry is “1” if node i is 

connected to node j, i.e., link (i, j)   , or 0 otherwise. The 
diagonal entries of A(G) are defined to be 0. Let D(G) be the 
N x N diagonal matrix with entries idi,iD , where id  is the 
degree of the i-th node of G. The Laplacian matrix, Q(G), of 
the network G is defined as:  

                     ( ) ( ) ( )G G G Q D A                       (2) 
For the Laplacian matrix Q(G), an N-dimensional and 

non-zero vector 

x  is an eigenvector if there is a scalar  , 

such that Q

x =


x . Here the   is the eigenvalue of Q(G) 

corresponding to the eigenvector

x . By its definition, Q(G) is 

a real symmetric and positive semi-definite matrix, thus all of 
its N eigenvalues are real and non-negative. Notice that the all-
ones vector is an eigenvector of any Laplacian matrix Q and 
its associated eigenvalue is 0. A Fiedler vector 

1( ,..., )Nx x

x satisfies:  

                               
1

0
N

i
i

x


 ,                                       (3) 

        since the all-ones vector is an eigenvector of the 
Laplacian matrix Q(G) and the eigenvectors of a symmetric 
matrix are orthogonal. The Laplacian matrix Q(G) has N 
nonnegative real eigenvalues: 
                        1 20 N                                        (4) 

It can be seen that 0 is always an eigenvalue of Q(G), and 
that  (1,1,...1)T1


is the corresponding eigenvector. The set of 

eigenvalues of the Laplacian matrix Q(G) for a given graph is 
called the Laplacian spectrum of G. These eigenvalues are 
closely related to almost all major invariants of a graph [9]. In 
particular, an important role is played by the second-smallest 
eigenvalue 2 ( )G , known as the algebraic connectivity, or 
Fiedler value in [11, 12]. It has been shown that the algebraic 
connectivity is only equal to zero if G is disconnected. In 
general, the number of eigenvalues of the Laplacian matrix 
Q(G) that have value zero coincides with the number of 
disconnected components of G. Moreover, the larger the 
algebraic connectivity of a network is, the more difficult it is to 
break up the network into separate components. Thus, the 
algebraic connectivity is a commonly accepted metric for 
studying network properties as their connectivity and minimum 
cut-sets. In addition, the algebraic connectivity is also widely 
studied in various fields of mathematics, for example in 
combinatorial optimization [13].  

        We now consider the practical calculation of the algebraic 
connectivity. Since Q(G) is a symmetric matrix, the Rayleigh 
quotient of 


x  with respect to Q(G) is:   

                                   ( )
T

T

G
 
 

x Q x
x x

                                    (5) 

      The algebraic connectivity 2 of the network G satisfies:  
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         In equation (6), the minimum value of 2  occurs only 

when 

x  is the Fiedler vector. For any vector NR


x , we have:  

                                                             
                    2

( , )

( ) ( )
T

i j
i j
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                       (7) 

          We denote the standard norm of a vector 

x  in 

Euclidean space by T

x x x  and the algebraic connectivity 

metric 2  can be calculated from the following lemma [14].  

Lemma Let G (N, L) be a given network. Then 2 , the 
algebraic connectivity of G, is given by:  
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        where the minimum is taken over the vectors 

 1......
N

Nx x R
 

 such that
1

N

i
i

x


 0
 

, and 0


 denotes the all-

zeros vector. The magnitude of the value 2  reflects how well 
connected the network G is. Here, we also recall those two 
traditional concepts in network connectivity:  
 Link Connectivity ( )e G ,which is defined as the minimal 

number of links whose removal would result in losing 
connectivity of the network G; 

 Node Connectivity ( )v G , which is defined as the minimal 
number of nodes whose removal together with adjacent 
links, would result in losing connectivity of network G. 
The algebraic connectivity 2 is upper bounded by these 

two metrics and is claimed to be a better robustness metric 
[12]. In an incomplete graph, we have the following inequality:   

             n2 mi( ) ( )( () )v G eG G d G                    (9) 

The algebraic connectivity 2  is a more accurate 
measure with respect to the network connectivity than either 
the node or the link connectivity. Unlike those two traditional 
connectivity metrics, the algebraic connectivity depends on 
the number of nodes, as well as the way in which nodes are 
connected. The node connectivity ( )v G  is always no smaller 
than the link connectivity ( )e G , since deleting one node 
incident on each link in a cut-set succeeds in disconnecting the 
network. The minimum node degree the in network, denoted 
as min ( )d G , is an upper bound of both the link and node 
connectivity, since deleting all its neighbors (i.e., the links to 
all its neighbors) disconnects the network into one large and 
one single-node component. 

As shown in [10], the algebraic connectivity 2  is also 
closely related to some other graph invariants. One of the most 
interesting connections is its relation to the network mean 
distance, ( )G . The network mean distance here is defined 
as the average of all hop count between distinct nodes of the 
graph. In some sense, this metric can measure the size and 
shape of the graph. In [14], the bounds on the mean distance 

( )G are derived. Its lower bound is: 

                     
2

2 2( 1) ( )
2

NN G



                          (10) 

and its upper bound is:  

     2
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          (11) 

        Here G is a given network with N nodes, 2  is its 
algebraic connectivity, and ( )G  is the maximal node degree. 
As our case studies results show, the information provided by 
the network’s mean distance ( )G  is useful for comparing 
different network topologies.  

        On the basis of the above properties of the algebraic 
connectivity metric, we propose a new topological index: the 
ratio of the algebraic connectivity 2 ( )G  to network mean 
distance ( )G , i.e., 2 ( ) / ( )G G  . We use this as a 
topological index to reflect network topological properties 
such as the connectivity, size and shape of a given topology.  
Since these topological properties have impacts on the total 
capacity allocation in network survivability design, it is 
worthwhile to study the correlation between the new 
topological index and total capacity.  On this basis, we 
formulate the hypothesis that by leveraging the topological 
index of a given network topology, it can lead to optimization 
of both working and spare capacity allocations. 

III. SHARED BACKUP PATH PROTECTION SCHEME  
In order to evaluate the correlation between the new algebraic 
connectivity-based topological index versus the average nodal 
degree and capacity allocation in survivable network design, 
we use the shared backup path protection (SBPP) spare 
capacity allocation scheme. The AMPL model for SBPP has 
been adopted from [15].  

Let pF denote the set of links whose failure disrupts 
working capacity for a given pair (o,d) of nodes.  For each f  
pF, pDf denotes the set of (o,d) pairs affected by the failure of 
link f. Since the capacity for a demand pair, rod, can be split 
among multiple paths, qf(od) denotes the total amount of 
capacity from o to d that must be restored when f fails. Let us 
define the following decision variables:  
 tpf : the protection capacity on path p when link f fails, 
 te : the total protection capacity on link e, 
 we : the working capacity, 
 Se : the total capacity on link e,   
 Jo,d : the paths that can be used to satisfy demand (o,d),  
 Lpe :  the protection paths that use link e.  

Using this notation, the shared protection model uses 
three sets of constraints to determine the values for Se.  The 
demand for spare capacity is defined by the constraints: 


 fod LpJp \

tpf    =   qf(od)      f  pF, (o,d)  pDf     (12) 

Note that a protection path containing link f cannot be 
used to protect against failures of link f.  Conversion of 
protection path flows to link spare capacity requirements is 
accomplished by the following inequalities 



               
 eLpp

tpf   <   te         e  L, f  pF             (13) 

That is, the spare capacity must be sufficient to 
accommodate the failure that produces the largest traffic 
disruption. Provisioning of total traffic on a link is determined 
by the working capacity on the link plus the spare capacity on 
the link. From L equations, one gets a solution: 
                   Se   =   we + te ,   e  L                                 (14) 

The above AMPL model uses concepts of spare capacity 
sharing and path-based protection derived from SBPP 
algorithm, see [15] for more details. 

 

IV. CASE STUDIES 
 

In our case studies we have used ten different topologies [16], 
specified in Figure 1 and Table 1, to investigate the correlation 
between the topological indices and the total capacity allocated. 
Without loss of generality, and for easier comparison of results, 
we have assumed symmetric traffic flows only, i.e., one unit of 
bandwidth demand between any pair of nodes. The SBPP ILP 
model is solved using AMPL/CPLEX 11.1 [17, 18].  

 
Fig.1 Ten referenced network topologies 

Table 1 Network Information for ten referenced networks 

 
In our case studies, we have considered the different 

topologies, both in terms of their size and shape. We propose 

to use the new topological index, i.e. 2 ( ) / ( )G G  , to quantify 
arbitrary topologies. To show that accurate knowledge of the 
network mean distance ( )G is required, we also use its 
lower bound, ( )lower G  and upper bound, ( )upper G  
estimated by equations (13-14). The exact mean distance 

( )exact G can be calculated by the standard graph toolbox in 
MATLAB [19].  

Table 2 Total capacities vs. four different topological indices 
for ten reference networks 

 
 

 
 

Fig.2 Correlation between the algebraic connectivity and 
algebraic connectivity based topological indices 

 

 
Fig.3 Total capacities vs. four topological indices 

 
Fig.4 Total capacity vs. average nodal degree 



 
Fig.5 Total capacity vs. algebraic connectivity/exact mean 

distance 

 
Fig.6 Total capacity vs. algebraic connectivity/lower bound 

mean distance 

 
Fig.7 Total capacity vs. algebraic connectivity/upper bound 

mean distance 

  We compare four different topological indices:  
 d : average nodal degree 
 2 ( ) / ( )exactG G  : algebraic connectivity/exact mean 

distance 
 2 ( )/ ( )lowerG G  : algebraic connectivity/lower bound on 

mean distance 
 2 ( ) / ( )upperG G  : algebraic connectivity/upper bound 

on mean distance 
To carry out our comparison, we compute for each of our 

ten example networks the total capacity according to the SBPP 
algorithm, and furthermore the values of the above topological 
indices. Following this, for each of our topological indices we 
show a scatter plot between the value of the topological index 
and the total capacity, one point for each example network. 
Since our topological indices are real-valued, we can attempt 
to identify a functional relationship between the topological 
index and the total capacity. To achieve this, we use curve-
fitting (specifically, we use the ‘trendline” function of Excel). 
The results are shown in Figures 2 to 7. We include in these 

figures the coefficient of determination, 2R . This measures the 
percentage of variation in the dependent variable that is 
explained by the fitted line. It has a value between ‘0’ and ‘1’, 
with a higher value indicating a better fit. 2R  = ‘1’means best 
fitting and 2R  = ‘0’ means worst fitting. 

Firstly, we can investigate the correlation between the 
new topological index 2 ( ) / ( )G G   and the algebraic 
connectivity, and also the accuracy of the lower and upper 
bounds on the mean distance compared with the exact one. As 
shown in Figure 2, we can see that, there is a growing power 
law correlation between the algebraic connectivity and the 
new proposed topological index. The values of ( )lower G  and 

( )upper G  give the lower bound and upper bound on mean 
distance, thus they also give the upper and lower bounds on 
the new topological index: 2 ( ) / ( )G G  . As the algebraic 
connectivity increases, the curve of the 2 ( ) / ( )exactG G  is 
monotonically increasing among the curves 
of 2 ( ) / ( )lowerG G   and 2 ( ) / ( )upperG G   with a power law 

trend, i.e., 1.38230.5243y x  . We can also find the lower and 
upper bounds are always falling in the following ranges of the 
exact mean distance based on the ten topologies:  

              ( ) {23% 38%} ( )lower exactG G               
             ( ) {1.68 10.24} ( )upper exactG G    

From the equations (10-11) and Figure 2, it can be seen 
that the lower bound and upper bound on mean distance are all 
good estimation on the network mean distance. Therefore, the  

2 ( ) / ( )lowerG G   and 2 ( ) / ( )upperG G  have similar power law 

correlations to the 2 ( )G as the exact one. As the algebraic 
connectivity increases, the accuracy of the lower and upper 
bounds on the mean distance become worse.  

The Figure 3 gives an overview of the correlations 
between the total capacities and four topological indices, and 
we can see their relationships and numerical ranges to each 
other. More details of the numerical analysis for each 
topological index are shown in Figures 4-7. In Figure 4, we 
can see that there is no particularly strong correlation between 
the total capacity and average nodal degree index, the 
coefficient of determination is 2 0.6632R  . For example, four 
network topologies have the similar average nodal degree 
about 3, but they have total capacity solutions varying 
between 1351 and 10346 units, which means the average node 
degree index only tell us limited information about network 
topology. However, for larger values of the nodal degree the 
correlation is better than for lower values. On the other hand, 
as shown in Figure 5, there is clear power law trend (with 

1.045194y x ) with a good fitting of 2 0.9825R   between the 
total capacity associated with 2 / ( )exact G  .  Figure 5 shows 
that the total capacity obtained for different network 
topologies decreases with the value of the ratio 

2 ( ) / ( )exactG G   associated with topologies. When 2  is 

fixed, the total capacity increases as the ( )exact G  increases 
since as the mean distance becomes larger, and more working 
and protection capacity needs to be allocated. If ( )exact G  is 



fixed, the total capacity decreases as the algebraic connectivity 
2  increases, since a larger 2  indicates denser connectivity, 

and more capacity sharing can be achieved in SBPP scheme.  
Additionally, it can been seen in Figures 6 and 7 that 

there are similar monotonic power-law trends (with  
1.198655.14y x in Figure 6 and 0.732130.49y x  in Figure 7) 

with a good fitting of 2 0.977R  for 2 ( )/ ( )lowerG G  , and  
2 0.9864R  for 2 ( ) / ( )upperG G  , which are all sufficiently 

tight to show similar correlation as the one existing between 
the total capacity and the exact one. We note that for 
determining ( )lower G , we need to know N and 2  only, while 
for ( )upper G , the parameters of 2 , N and ( )G are all 
needed. Thus, the lower bound on mean distance is easier to 
calculate than the upper bound, which are all derived based on 
the algebraic connectivity 2 . On the other hand, it is a more 
complex procedure to calculate the exact mean distance by the 
shortest path finding algorithm in MATLAB and it has 
scalability problem as the network structure become larger. 
Therefore, we conclude that the algebraic connectivity metric, 

2 , can both used for assessing the network connectivity and 
for estimating the ( )G .  The newly proposed topological 
index, i.e., 2 ( ) / ( )G G   can indicate more characteristics 
such as size and shape of the network topology and it has a 
power law correlation i.e., by a x  to the total capacity 
allocated in survivable routing design. 

 

V. CONCLUSIONS AND FUTURE WORK 
 

In this paper, we have argued that the use of average nodal 
degree of a network for describing its connectivity 
characteristic is not satisfying. We suggest using an alternative 
topological index: the ratio of algebraic connectivity to mean 
distance of the network. Our results show that for the chosen 
example networks it is a better quantitative descriptor of 
network topologies in studies of the capacity allocation 
problem. We have found a power law relationship between 
this topological index and total capacity in survivable network 
designed with the SBPP algorithm. This new finding can be 
applied into network optimization, for such as the estimation 
on the total capacity if the topology is given, or on the other 
hand, the evaluation on the topology structure if the total 
capacity constraints are given. 

An extensive validation on our findings on more complex 
topologies is underway. Further studies on how to apply this 
new topological index into network capacity planning and 
optimization, e.g., one node/link addition problem are needed. 
In addition, how to configure the parameters such as ‘a’ and 
‘b’ in the power law function by a x   from the 
characteristics of the given topology structure should be 
studies in future work. 
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