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ABSTRACT Transfer Learning is an effectivemethod of dealingwith real-world problemswhere the training

and test data are drawn from different distributions. Transfer learningmethods use a labeled source domain to

boost the task in a target domain that may be unsupervised or semi-supervised. However, the previous transfer

learning algorithms use Euclidean distance or Mahalanobis distance formula to represent the relationships

between instances and to try and capture the geometry of the manifold. In many real-world scenarios,

this is not enough and these functions fail to capture the intrinsic geometry of the manifold that the data

exists in. In this paper, we propose a transfer learning framework called Semi-Supervised Metric Transfer

Learningwith Relative Constraints (SSMTR), that uses distancemetric learningwith a set of relative distance

constraints that capture the similarities and dissimilarities between the source and the target domains better.

In SSMTR, instance weights are learned for different domains which are then used to reduce the domain

shift while a Relative Distance metric is learned in parallel. We have developed SSMTR for classification

problems as well, and have conducted extensive experiments on several real-world datasets; particularly,

the PIE Face, Office-Caltech, and USPS-MNIST datasets to verify the accuracy of our proposed algorithm

when compared to the current transfer learning algorithms.

INDEX TERMS Transfer Learning, metric learning, semi-supervised learning, relative distance constraints.

I. INTRODUCTION

The main assumption made in classical statistical learning is

that the training and test data are drawn from the same data

distribution. However, in many real-world applications, test

examples are usually in a different context than the training

data. Then new test samples need to be collected for training

a classifier. For example, classic object category recognition

requires a large number of training examples to ensure good

generalization on test problems [1]. Usually, there exists some

domain with a scarcity of labelled data, often called the

target domain, and some related domain with an abundance

of labelled data, often called the source data. The marginal

and conditional variations in domain distributions are rarely

small and hence, a source domain classifier cannot be applied

directly to the target domain data.Minimizing the distribution

shifts is necessary to accurately classify a given task and the

task of learning a discriminative model by shifting the source
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and target domain data distributions is known as Transfer

Learning (TA) [2]. However, previous approaches to TA have

faced the following difficulties: a) the domain shift increases

with minute changes in factors like the environment, etc.

b) real-world datasets are expensive to manually review and

label and there exist abundance of unlabelled target domain

data and c) the geometries of the source and target domain

data are not captured well and some information of the mani-

fold is lost when re-weighting the domains or projecting them

into a common subspace.

Based on the type of target domain data that is avail-

able, transfer learning algorithms can be classified as semi-

supervised or unsupervised [3]. Semi-supervised transfer

learning has well-labelled source domain data and a small

amount of labelled target domain data while the rest of the

target data is unlabelled [4]. Unsupervised transfer learning

has well-labelled source domain data and unlabelled target

domain data. Three common approaches to transfer learn-

ing are feature-based, instance-based and metric learning

based [5].
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Feature-based transfer learning focuses on minimizing

domain shift by either a) learning a transformation for the

source and target domains so as to project the data from the

two domains into a common subspace or b) only looks at

the shared features of both domains, which can fail when

the domain shift is large. Feature-based transfer learning is

explored in [6]–[11] and [12]. Instance-based transfer learn-

ing involves re-weighting the labelled data in the source

domain to better match the target domain data distribu-

tion. Instance-based transfer learning is used in [13]–[15],

and [16]. Metric-Learning based transfer learning involves

learning the metric of the target domain with the help of

source domain. Metric-Learning based transfer learning is

explored in [17]–[23] and [24].

The existing transfer learning algorithms generally make

use of either the Euclidean distance formula or the Maha-

lanobis distance formula to capture the intrinsic geometry

of the manifold and preserve it while projecting the source

and target domain data to a subspace or while re-weighting

the source domain to better match that of the target domain.

The Euclidean and Mahalanobis distance formulas cannot

accurately represent the similarities and dissimilarities of

the domain in a manifold and this leads to an inaccurate

representation of the source-target relationship and can lead

to a limited knowledge transfer that reduces the accuracy

of the transfer learning algorithm [24]. To deal with this

problemwe have developed a semi-supervised transfer metric

learning framework called SSMTR that uses relative distance

constraints to estimate a relative distance metric to find bet-

ter projection of the data and the KL-divergence to mini-

mize the distribution between the source and target domain

data.

The major contributions of this paper are:

• To the best of our knowledge (after conducting a

thorough literature survey), our proposed approach is

a unique attempt in solving the problems detailed

above, i.e. in the research gap, by estimating the rel-

ative distance metric and minimizing the distribution

between both source and target domain are carried out

simultaneously.

• In this paper, we have used Distance Metric Learning

with Relative Distance comparison constraints instead

of a Mahalanobis distance metric that uses Must-

Link (ML) and Cannot-Link (CL) constraints which are

commonly used in other algorithms (seen in the litera-

ture survey), and thus our approach is capable of quan-

tifying the appropriate geometry of the data in different

domains.

• We have compared the performance of SSMTR with

11 other transfer learning algorithms on the PIE

Face, Office-Caltech, and USPS-MNIST datasets and

our results have shown that the proposed algorithm

achieves much greater accuracy when compared to other

algorithms.

• Our proposed SSMTR approach achieved 77.94% mean

accuracy for all tasks of the PIE Face dataset while none

of the compared approaches achieved more than 43.74%

accuracy.

In the following sections, we have detailed our proposed

method and the results obtained while comparing it to other

state of the art transfer learning methods. Section II we

have presented an overview of relevant related literature and

Section III explains the proposed method, in which we have

detailed the problem statement as well as the proposed frame-

work. In the next section, Section IV we have solved the

optimization problem presented in Section III to arrive at

the objective function for SSMTR. In Section V, we have

first described the benchmark datasets that have been used

to compare the results obtained by the proposed method with

other state of the art methods. We have then analyzed param-

eter sensitivity of the proposed method and then analyzed

the results obtained on the benchmark datasets. We have

also provided a time complexity analysis of our method and

compared it with other algorithms. Table 1 compares SSMTR

with other algorithms and highlights the improved accuracy.

II. RELATED WORKS

In this section, we have discussed different transfer learning

algorithms that are related to ours, and highlighted their

differences from our proposed method. After conducting a

thorough literature survey [25], we see that transfer learning

approaches can be classified into three categories: feature-

based, instance-based and transfer metric based transfer

learning.

In the first category, a feature space is found where the

divergence between the data distributions of the source and

target domains is made the minimum. Pan et al. [6] proposed

two algorithms, TCA (Transfer Component Analysis) and

SSTCA (Semi-supervised Transfer Component Analysis)

which minimize the distance between the domains means

in a Reproducing Kernel Hilbert Space (RKHS) using Max-

imum Mean Discrepancy (MMD). The JDA (Joint Distri-

bution Adaption) algorithm, proposed by Long et al. [7]

improves on TCA and minimizes the marginal and condi-

tional distribution shift between domains using principled

dimensionality reduction methods like PCA (Principal Com-

ponent Analysis). TJM (Transfer Joint Matching), proposed

by Long et al. [8], addresses the issue of having large domain

shift and thus improves on TCA. TJM identifies and re-

weights the instances that are common across domains by

jointly matching the features. It then constructs a feature

representation in a RKHS using MMD, by using features that

are common to both domains so that the subspace has mini-

mum distribution and domain shift. In [9], Si et al. proposed

algorithms that transfer knowledge from source to target

domain by minimizing the Bregman divergence between the

two distributions. GFK (Geodesic Flow Kernel), proposed

by Gong et al. [10], is a kernel-based method that considers

an infinite number of subspaces and models marginal and

distributional shifts between domains. In [11], Zhang et al.

proposed an algorithm called JGSA (Joint Geometrical and

Statistical Alignment) that reduces the shift between domains
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TABLE 1. Comparison of the accuracies of our proposed approach with various state of art algorithms over different tasks of the datasets.

both statistically and geometrically simultaneously. JGSA

projects the source and target domain into lower dimen-

sional subspaces while reducing the domain shift simultane-

ously. MIDA (Maximum Independence Domain Adaptation)

and SMIDA (Semi-supervised MIDA), proposed by

Yan et al. in [12], are for domain adaptation in the field of

sensors and measurement. Their proposed algorithm treated

instrumental variation and time-varying drift to be a discrete

and continuous distributional change in the feature space.

In the second category, the objective is to re-weight the

samples in the source domain to better match the target

domain distribution. Bickel et al. [13] proposed a novel

approach to discriminative learning using Co-variate Shift.

In [14], data from both domains are aligned to the same

space and then the weights of source domain are adjusted

to better match those of the target domain. KLIEP, proposed

by Sugiyamate at al. [15] directly estimates the importance

of source domain data points by minimizing the Kullback-

Leibler divergence from the actual input density to its esti-

mate. Zhang et al. [16] proposed an algorithm that takes an

adversarial-based approach by using a weighted adversarial

net-based method when the source domain has a larger num-

ber of classes compared to the target data.

In the third category of transfer learning, the first model for

metric learning was introduced by Zha et al. [17] by consid-

ering that the source task has sufficient labelled information

in the form of prior metric and that the target task has some

labelled information. Zha et al. proposed TML (TransferMet-

ric Learning) [18] and STML (Semi-supervised TML) [19]

that use co-relations between tasks to formulate a task

relationship between source and target task which boosts the

performance of the target task. Oh et al. [20] used lifted struc-

tured feature embedding and pairwise distance constraints to

learn a distance metric that is then used to train the neural

network. This is a deep learning metric learning method.

In [26], Sanodiya et improved the performance of the semi-

supervised transfer metric learning algorithm STML [19] by

generating the appropriate graph with relative distance con-

straints. In [21], Mahadevan et al. considered the Riemannian

geometry of covariancematrices tominimize geometrical and

statistical shifts between domains while learning a metric.

Amid et al. [22], proposed an algorithm that learns a kernel

matrix using the log-determinant divergence that is subject to

a set of relative distance constraints. Dai et al. proposed an

alg orithm called EigenTransfer [23] which learns the spectra

of a graph that is obtained from the learning task to obtain

eigenvectors that are able to accurately capture the structure

of the graph. MTLF (Metric Transfer Learning Framework),

proposed by Xu et al. [24], learns instance weights from the

source domain and uses Mahalanobis distance to reduce con-

ditional variance. These are learned in a parallel framework

to reduce error propagation.

In recent years, researchers have proposed novel meth-

ods for feature selection, optimization and training which

greatly improve the accuracy obtained on various benchmark

datasets. Al et al. in citeal2018feature propose a feature

selection method that can determine the optimal feature

subset of a dataset for diagnosing coronary artery disease.
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Support Vector Machines (SVM) are used for the classifica-

tion problem while Grey Wolf Optimization (GWO) is used

for feature selection. In citeal2018hybrid

These three transfer learning approaches make use of dis-

tance formulae that do not capture the manifold of the data

very well. This can lead to a misrepresentation of the sim-

ilarities and dissimilarities of the data, especially the class

relationships in the manifold which can then lead to limited

knowledge transfer that reduces the accuracy of the transfer

learning algorithm. To deal with this problem, our proposed

framework, SSMTR, uses relative distance constraints to esti-

mate a relative distance metric and KL-divergence is used

to minimize the distribution between the source and target

domain data.

III. SEMI-SUPERVISED METRIC TRANSFER LEARNING

WITH RELATIVE CONSTRAINTS

A. PROBLEM STATEMENT

Given a labelled source domain with ns data sam-

ples: {X s,Y s} = {(xs1, y
s
1), (x

s
2, y

s
2), . . . , (x

s
n, y

s
n)} where

{xsi ∈ Rd } is a feature vector. Define {X tl ,Y
t
l } =

{(x t1, y
t
1), (x

t
2, y

t
2), . . . , (x

t
l , y

t
l )} as labelled data samples and

{X tn} = {(x t1), (x
t
2), . . . , (x

t
n)} as unlabelled data samples in

the target domain. Since the source and target data samples

are distributed in different feature spaces, there exist marginal

and conditional distributions between the two domains.

Hence, PT (x) 6= PS (x).

B. SSMTR FRAMEWORK

1) RELATIVE DISTANCE METRIC

In this paper, we have proposed a unified framework to learn

instance weights v for the source domain data and a rela-

tive distance metric ADt for the target domain that captures

the relationship between the two domains more accurately.

To estimate the instance weights, the entire data distributions

of the source and target domains are used.

To learn the Relative Distance Metric, we consider con-

straints that are applied on groups of three data samples

i, j and k where, i, j, k belong to some domain. Unlike

Must-Link and Cannot-Link (ML/CL) constraints [27] that

are used to represent pair-wise similarities in and between

classes, relative constraints are relative distance comparisons

between data points and do not hold any information about the

clustering structure. Relative Distance Constraints [28] are of

two types, 1) k is an outlier in a group of i, j and k data points.

This can be defined as a tuple (i,j | k) where δ(i, j) < δ(i, k)

and δ(j, i)< δ(j, k) and 2) i, j and k are equidistant from each

other and δ(i, j) = δ(i, k) = δ(j, k).

Using these Relative Distance Constraints, we are able to

capture the structure of the manifold better. Let ADt be the

positive definite metric for the target domain and i, j, and k

be three data points where i and j belong to the same class

and k belongs to some other class for inequality constraints

while all three points belong to the same class for equality

constraints. Then the constraints can be defined as follows:

σ
∥

∥xi − xj
∥

∥

2

ADt
≤ ‖xi − xk‖

2
ADt

(1)

where σ is a constant factor. Equation 1 indicates that if there

is an inequality constraint then the distance between similar

data points, i and j, always is less than that between dissimilar

data points, i and k , else the distance between them must be

equal.

2) REGULARIZED TERM ψ(V )

Since the distributions in both domains are different,

we require a co-variate shift adaptation to minimize the dis-

tribution accurately. Therefore, we define a regularization

term, ψ(v), to influence the co-variate shift as follows,

ψ(v) = ‖v− v0‖
2 (2)

where v0(xi) is the initial weight of data sample, xi, in the

source domain under the Euclidean metric. With the value

v0(xi), we can determine how much the data sample xi is

similar to source data or target data. If the value of v0(xi) is

high, it is more similar to source domain compared to target

domain.

For calculating the value of v0(xi), we adopt the method

proposed in the paper [15], where the importance of v0(xi)

is determined by the following linear model, i.e., v0(xi) =
∑

ibl=1δlϕl(x), where {ωl}
b
l=1 are non-negative parameters

to be learned from the available data and {ϕl(xi)}
b
l=1 are

a set of Gaussian kernel functions for all l = 1, . . . , b.

Thus, we can estimate the weight of v0(x) by minimizing the

KL-divergence between PT (x) and v0(x) PS (x) as follows:

min
v0
KL(PT (x)||v0(x)PS (x)) =

∫

PT (x)log
PT (x)

v0(x)PS (x)
dx

(3)

According to [15], the problem in Eq 3 can be summarized

as follows:

max
ω

∑

xi∈DT

log

b
∑

j=1

ωjϕj(xi)

s.t.
∑

xi∈DS

b
∑

j=1

ωjϕj(xi) = ns, and ω > 0 (4)

The optimization problem in Eq. 4 is convex, hence the

optimal solution can be found using gradient descent.

C. SSMTR FOR CLASSIFICATION PROBLEMS

When addressing the classification problems for target

domain, we need to learn the target domain metric ADt from

sufficient source data as well as few labelled data of target

domain. For this, we obtain the specific optimization problem

for classification as follows:

min
ADt ,v̂

tr(ADtA
T
Dt
) + δ

∥

∥v̂− v̂0
∥

∥

2

+ β(σ
∑

i,j

v̂(xi)v̂(xj)
∥

∥xi − xj
∥

∥

2

ADt

−
∑

i,k

v̂(xi)v̂(xk ) ‖xi − xk‖
2
ADt

)

s.t.

ns
∑

i=1

v̂(xi) = ns, and v̂(xi) ≥ 0 (5)

VOLUME 7, 2019 42959



R. K. Sanodiya et al.: New Transfer Learning Algorithm in Semi-Supervised Setting

where δ and β are the trade-off parameters, σ is a constant

factor for constraints, and ns is the number of samples in

source domain.

IV. OPTIMIZATION

For solving the optimization problem in Eq.5, we need tomin-

imize both ADt and v̂ while satisfying the set of constraints.

Using the Lagrange multiplier, we can write Eq. 5 as follows:

min
ADt ,v̂

J = tr(ADtA
T
Dt
) + δ

∥

∥v̂− v̂0
∥

∥

2
+ β(σ

∑

i,j

v̂(xi)v̂(xj)

×
∥

∥xi − xj
∥

∥

2

ADt
−

∑

i,k

v̂(xi)v̂(xk ) ‖xi − xk‖
2
ADt

)

+γ ((v̂T I − ns)
2 +

ns
∑

i=1

(max(0,−v̂(xi)))
2) (6)

γ is Lagrange multiplier, nt is the number of samples in

target domain, and I is a vector of size (ns + nlt ) ∗ 1, where

Ii = 1 if i ≤ ns else ei = 0.

For learning the values of ADt and v̂, we use an alternative

optimization approach.

Firstly, for optimizing the objective function J with respect

to v̂ while ADt is fixed: the partial derivative of optimization

function J stated in Eq. 6 with respect to v̂ is formulated as

follows:

∂J

∂ v̂
= 2δ(v̂− v̂0) + 2β(σ

∑

i,j

v̂(xj)
∥

∥xi − xj
∥

∥

2

ADt

−
∑

i,k

v̂(xk ) ‖xi−xk‖
2
ADt

)+γ [2(v̂T I−ns)I + v̂2ε] (7)

where εi = sign(max(0,−v̂(xi)))

Secondly, optimizing objective function J with respect to

ADt while v̂ is fixed: the partial derivative of optimization

function J stated in Eq. 6 with respect to ADt is formulated as

follows:

∂J

∂ADt
= 2tr(ADt )

+ 2β(σ
∑

i,j

v̂(xi)v̂(xj)ADt (xi − xj)(xi − xj)
T

−
∑

i,k

v̂(xi)v̂(xk )ADt (xi − xk )(xi − xk )
T ) (8)

The values of v̂ and ADt are alternatively updated till their

values become less than some threshold values. The system-

atic algorithm is summarized in Algorithm 1.

V. EXPERIMENTS

A. BENCHMARK DATASETS

To verify the effectiveness of our proposed algorithm,

we have compared SSMTR1 with 11 other transfer learning

algorithms including both unsupervised and semi-supervised

transfer learning algorithms like MTLF [24], TJM [8],

JDA [7], GFK [10], JGSA [11], TCA and SSTCA [6], MIDA

1Source codes are available at https://github.com/rakesh1000/SSMTR

Algorithm 1 The Outline of SSMTR Algorithm

Input : Target task labelled data {X tl ,Y
t
l }, target task

unlabelled data {X tn}, source task data {X s,Y s},

step sizes µ1 and µ2, regularized parameters δ

and β, a constant factor σ , maximum number

of iterations τ , Lagrange multiplier γ , initial

value of target task regularized distance metric

ADt , weight vector v̂0 and threshold t

Output: ADt , v̂

1 for i: = 0 to τ do

2 Find out gradients
∂J (AiDt

,v̂i)

∂AiDt

and
∂J (AiDt

,v̂i)

∂ v̂
using

Eqs.7 and 8.

3 Update the value of v̂i by v̂i+1 = v̂i − µ1
∂J (AiDt

,v̂i)

∂ v̂i

4 Update the value of AiDtby

Ai+1
Dt

= AiDt − µ2
∂J (AiDt

,v̂i+1)

∂AiDt

5 if

∣

∣

∣

J (Ai+1
Dt
, v̂i+1) − J (AiDt , v̂

i)

∣

∣

∣

< t then

6 AiDt = Ai+1
Dt

7 v̂ = v̂i+1;

8 Break;

9 end

10 end

FIGURE 1. Sample images of Caltech Office, Handwritten digit
(USPS-MNIST), and PIE Face (PIE-C05, PIE-C09) datasets.

and SMIDA [12] and TML [18] and STML [19] on three

well-known datasets, the CMU Multi-PIE Face Database,

the Office-Caltech Dataset, and Handwriting Digit Recog-

nition on the MNIST-USPS dataset. Fig.1 shows the sample

images of Caltech Office, Handwritten digit (USPS-MNIST),
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FIGURE 2. Influence of K on SSMTR performance on the PIE Face, Office-Caltech and USPS-MNIST datasets, respectively. (a) PIE Face
dataset. (b) Office-Caltech and USPS-MNIST datasets.

and PIE Face (PIE-C05, PIE-C09) datasets. To train the

K-NN classifier, we have randomly selected x labelled sam-

ples from the source domain and y samples per class from the

target domain. The entire target domain has been considered

for testing. The experiments were conducted for each task and

the average results have been reported in Table 1.

The CMU Multi-PIE Face Database [29] consists of more

than 600 images of 68 subjects with 13 camera views and

43 different illumination conditions. Additionally, the sub-

jects display a range of facial expressions and the database

has high-resolution frontal images as well. The images were

re-sized to 32 × 32 pixels before the experiment and their

vectorized, gray-scale images were used as feature vectors.

For this experiment, we have generated 16 cross-domain tasks

from the dataset where each task pair, e.g., 29_07 represents

Pose PIE29 used as the source domain and PIE07 used as the

target domain. We have selected 8 labelled instances from the

source domain and 3 labelled instances are randomly selected

from the target domain for training the model.

The Office-Caltech Dataset found in [10] contains images

from the Caltech-256 dataset, Amazon (images downloaded

from web-retailers), DSLR (high-resolution images) and

Webcam (low-resolution images). We have selected 10 com-

mon images from each dataset: calculator, keyboard, mouse,

mug, projector, backpack, headphones, monitor, bike and

laptop, with the SURF feature dataset. For this experiment,

we have generated 12 cross-domain tasks from the dataset

where each task pair is composed of two domain datasets,

source domain (S) and the target domain (T), e.g., W_D. Here

too, we have selected 8 labelled instances per category and

3 labelled instances from the target domain for training the

model.

MNIST and USPS [30], [31] are two popular datasets in

data mining and pattern recognition applications. MNIST

dataset was taken from the mixed American Census Bureau

employees and an American high school. It has 60,000 train-

ing images and 10,000 testing images where each image size

is 28× 28. USPS dataset was collected by scanning envelops

from the US Postal Service and has a total of 9298 labelled

images where the size of each image is 16x16. However, for

our experiment purpose we randomly choose 1800 samples

fromUSPS dataset while 2000 samples fromMNIST dataset.

Here, both datasets have different marginal distributions,

so there are two domain adaptation cases since we can use

one domain as the source domain and the other one as the

target domain for one task and vice-versa for the second task.

Hence, in Table 1 and all the graphs, we have used M_U for

the task MNIST-USPS and U_M for the task USPS-MNIST.

B. PARAMETER SENSITIVITY

1) EXPERIMENTAL ANALYSIS ON PARAMETER K

The performance of the KNN classifier depends on the

parameter K . We vary the value of K from 1-10 while keep-

ing the value of the other parameters constant for all three

datasets, to find the value at which our proposed algorithm

works most efficiently. For the PIE Face dataset, the values of

the other parameters are kept constant atC = 5, σ = 3, δ = 1,

β = 10−2, γ = 1, d = 100, µ1 = 10−4 and µ2 = 10−5.

For the Office-Caltech andUSPS-MNIST datasets, the values

of the other parameters are kept constant at C = 2, δ = 1,

β = 10−3, γ = 1, d = 30, µ1 = 10−4 and µ2 = 10−5.

For Office-Caltech dataset, we consider σ = 2 while for

USPS-MNIST dataset, we consider σ = 3.5. It is seen in the

graphs in Fig. 2 that the performance of the algorithm keeps

on reducing as we vary the value ofK . AtK = 1, the proposed

algorithm shows maximum accuracy on all three datasets.

2) EXPERIMENTAL ANALYSIS ON

CONSTRAINTS PARAMETER C

The number of constraints is fixed by the parameter C .

We vary the C value from 2-10 while keeping the value

of the other parameters constant. For the PIE Face dataset,

the values of the other parameters are kept constant at K = 1,

σ = 3, δ = 1, β = 10−2, γ = 1, d = 100, µ1 = 10−4

VOLUME 7, 2019 42961
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FIGURE 3. Influence of number of constraints, C on SSMTR performance on the PIE Face, Office-Caltech and USPS-MNIST datasets,
respectively. (a) PIE Face dataset. (b) Office-Caltech and USPS-MNIST datasets.

FIGURE 4. Influence of dimension parameter, sigma (σ ), on SSMTR performance on the PIE Face, Office-Caltech and USPS-MNIST
datasets, respectively. (a) PIE Face dataset. (b) Office-Caltech and USPS-MNIST datasets.

and µ2 = 10−5. For the Office-Caltech and the USPS-

MNIST datasets, the values of the other parameters are kept

constant at K = 1, δ = 1, β = 10−3, γ = 1, d = 30,

µ1 = 10−4 and µ2 = 10−5. For Office-Caltech dataset,

we consider σ = 2 while for USPS-MNIST dataset, we con-

sider σ = 3.5. In doing so we obtain Fig 3. From Fig. 3

(a), we can see that the accuracy of the algorithm peaks at

C = 5 for the PIE Face dataset but for the Office-Caltech

and USPS-MNIST datasets, from Fig. 3 (b), we can see that

for all the tasks in the dataset, the algorithm shows maximum

accuracy at C = 2.

3) EXPERIMENTAL ANALYSIS ON CONSTANT

FACTOR σ FOR CONSTRAINTS

Similar to previous parameter analysis, the values of the other

parameters are kept constant while the value of parameter,

σ , was varied in the range: 0.5-5.0 and Fig. 4 was obtained.

For the PIE Face dataset, the values of the other parameters

were kept as: K = 1, = 5, δ = 1, β = 10−2, γ = 1, d =

100, µ1 = 10−4 and µ2 = 10−5. For the Office-Caltech and

USPS-MNIST datasets, the values of the other parameters are

kept constant as: K = 1, = 2, δ = 1, β = 10−3, γ = 1,

d = 30, µ1 = 10−4 and µ2 = 10−5. From Fig. 4 (a), we can

see that the accuracy of the proposed algorithm increases as

the value of σ increases and all the tasks show maximum

accuracy at σ = 3. From Fig. 4 (b), we can see that for Office-

Caltech dataset, the accuracy does not change a lot when σ

is varied and the tasks show maximum accuracy at σ = 2.

For USPS-MNIST dataset, we can see that the tasks show

maximum accuracy at σ = 3.5.

4) EXPERIMENTAL ANALYSIS ON TRADE-OFF PARAMETERS:

δ, β AND A LAGRANGE MULTIPLIER, γ

We analyze the performance of our proposed algorithm for

the three trade-off parameters: δ, β and Lagrange multiplier,

γ as seen in the objective function. To analyze the parameter

behavior, we vary the value of these trade-off parameters

as β from 10−5 to 105 and γ from 10−5 to 105. For the

PIE Face dataset, the values of the other parameters were

kept as: K = 1, = 5, σ = 3, d = 100, µ1 = 10−4
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FIGURE 5. Influence of Lagrange multiplier, β, on SSMTR performance on the PIE Face, Office-Caltech and USPS-MNIST datasets,
respectively. (a) PIE Face dataset. (b) Office-Caltech and USPS-MNIST datasets.

FIGURE 6. Influence of parameter Gamma (γ ) to SSMTR performance on PIE Face and Office-Caltech datasets, respectively. (a) PIE Face
dataset. (b) Office-Caltech and USPS-MNIST datasets.

TABLE 2. Optimized parameter values after conducting the parameter
sensitivity test on all three datasets.

and µ2 = 10−5. For the Office-Caltech and USPS-MNIST

datasets, the values of the other parameters are kept constant

as: K = 1, = 2, d = 30, µ1 = 10−4 and µ2 = 10−5.

For Office-Caltech we consider σ = 2 while for USPS-

MNIST, we consider σ = 3.5. As seen in 6, at value γ = 1,

the proposed algorithm shows maximum accuracy for all

three datasets. From Fig 5, we see that for PIE Face dataset,

β = 10−2 and for Office-Caltech and USPS-MNIST datasets,

β = 10−3 provides us the maximum accuracy. From Table 2,

it is revealed that on performing the same analysis on param-

eter δ, maximum accuracy is obtained at δ = 1 for all three

datasets.

5) EXPERIMENTAL ANALYSIS ON DIMENSIONALITY d

The dimensions of the PIE Face and Office-Caltech datasets

are 1024 and 800, respectively, and the processing time

required for performing the experiments is very high because

of the high dimensionality. This is not desirable and we use

PCA to project the data to lower dimensions to reduce the

processing time. As seen in previous subsections, we vary the

value of parameter, d , from 10-100 for both datasets while

keeping the values of the other parameters constant and plot

the Fig. 9. For the PIE Face dataset, the values of the other

parameters were kept as:K = 1,= 5, σ = 3, δ = 1, β = 10−2,

γ = 1,µ1 = 10−4 andµ2 = 10−5. For theOffice-Caltech and

USPS-MNIST datasets, the values of the other parameters are

kept constant as: K = 1, = 2, σ = 3 and 3.5 (for Office-

Caltech and USPS-MNIST datasets, respectively), δ = 1,

β = 10−3, γ = 1, µ1 = 10−4 and µ2 = 10−5. We see

that the plot for PIE Face dataset keeps on increasing as d is

varied and achieves maximum accuracy at d = 100. For both

the Office-Caltech and USPS-MNIST datasets, the algorithm

achieves maximum accuracy at d = 30.

VOLUME 7, 2019 42963



R. K. Sanodiya et al.: New Transfer Learning Algorithm in Semi-Supervised Setting

FIGURE 7. Influence of dimension parameter, d , on SSMTR performance on the PIE Face, Office-Caltech and USPS-MNIST datasets
respectively. (a) PIE Face dataset. (b) Office-Caltech and USPS-MNIST datasets.

FIGURE 8. Influence of Gradient parameter, µ1, on SSMTR performance on the PIE Face, Office-Caltech and USPS-MNIST datasets,
respectively. (a) PIE Face dataset. (b) Office-Caltech and USPS-MNIST datasets.

6) EXPERIMENTAL ANALYSIS ON PARAMETERS µ1 AND µ2

On performing similar analysis on parameters, µ1 and µ2,

we keep the values of the other parameters constant and vary

the values of µ1 and µ2. For the PIE Face dataset, the values

of the other parameters were kept as: K = 1, = 5, σ = 3, δ =

1, β = 10−2, γ = 1 and d = 100. For the Office-Caltech and

USPS-MNIST datasets, the values of the other parameters are

kept constant as: K = 1, = 2, σ = 3 and 3.5 (for Office-

Caltech and USPS-MNIST datasets, respectively), δ = 1,

β = 10−3, γ = 1 and d = 30. We find that the proposed

algorithm clearly attains maximum accuracy at µ1 = 10−4

and µ2 = 10−5 for all three datasets, as reported in Table 2.

7) DISCUSSION ON OPTIMAL PARAMETER VALUES

After conducting the above experiments on all the tuning

parameters, we have reported the suggested ranges or val-

ues for all the parameters of our proposed SSMTR learning

framework on different datasets in Table 2. This can be used

as prior information for cross-validation to optimize parame-

ters on specific datasets.

C. RESULTS AND DISCUSSION

Our proposed SSMTR framework utilizes the parameter val-

ues obtained after conducting the parameter sensitivity test,

shown in Table 2. We conducted the experiments on PIE

Face, Office-Caltech and USPS-MNIST datasets. The results

have been reported in Table 1, and the findings are discussed

below.

For the PIE Face dataset, it is seen that most methods show

a very poor accuracy on the given tasks. The state of art

algorithm, MTLF, has the best accuracy compared to all the

other algorithms that we have compared SSMTRwith.MTLF

has a mean accuracy of 43.74% while our proposed frame-

work has a mean accuracy of 77.94%. Thus, our proposed

algorithm outperforms all other frameworks and attains the

best accuracy on the given tasks.

For the Office-Caltech dataset, it is seen that for task

W_D, SSTCA attains the same accuracy as SSMTR while

for tasks A_D, SSTCA attains a greater accuracy than our

proposed framework. But it is seen that for all other tasks

in the dataset (W_A, A_W, A_C, C_A, C_W, C_D, D_C,
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D_A, D_W), SSMTR provides a greater accuracy than all

other 11 algorithms. Thus we can say that on a whole,

the SSMTR framework performs better than the other algo-

rithms.

On the USPS-MNIST dataset, SSMTR performs better

than all the other 11 algorithms on the U_M and M_U tasks.

On U_M, SSMTR shows 74.8% accuracy while the great-

est accuracy shown by the other algorithms is 67.20% by

MTLF. OnM_U,MTLF and SSMTR have similar accuracies

of 83.83% and 84.33% respectively. Hence, we can conclude

that SSMTR shows better performance on the USPS-MNIST

dataset when compared to previous algorithms.

D. COMPLEXITY ANALYSIS OF OUR

PROPOSED FRAMEWORK

Given a labelled source domain with ns data samples, where

each sample is a d dimensional vector, and a labelled target

domain with nlt data samples, let us consider τ to be the max-

imum number of iterations, C to be the maximum number of

constraints and g to be some constant parameter.

1) Note that in Eq. 5, the loss function value is determined

by considering the pairwise relative distance constraints set

C that contains both equality and inequality constraints.

However, considering a large number of such pairwise rel-

ative distance constraints may increase the computational

complexity of our proposed approach. Thus, the complexity

of the loss function of the proposed approach is O(Cd2).

2) There are two gradients
∂J (AiDt

,v̂i)

∂AiDt

and
∂J (AiDt

,v̂i)

∂ v̂
that have

been computed using Eqs.7 and 8, respectively, where the first

gradient is the partial derivative of function J with respect to

ADt while other one is with respect to v̂. The gradient
∂J (AiDt

,v̂i)

∂AiDt

takes O((ns + nlt )Cd
2) time and other gradient takes O(Cd2)

time. Thus, the total time complexity for computing both the

gradients in step 2 of the Algorithm 1 is (O((ns + nlt )Cd
2) +

O(Cd2)).

3) Moreover, from Lines 3-7 in Algorithm 1, the computa-

tional cost taken by other operations, is g.

4) Our proposed framework is iterated for τ number of

iterations.

So, total run-time complexity of our proposed approach is,

O(τ ((ns + nlt )Cd
2 + Cd2 + g))

H⇒ O(τ ((ns + nlt )Cd
2 + Cd2 + g))

H⇒ O(τ ((ns + nlt + 1)Cd2 + g))

H⇒ O(τ ((ns + nlt )Cd
2))

Thus, the total complexity of our proposed system is

O(τ ((ns + nlt )Cd
2))

E. COMPARISON OF TIME COMPLEXITY

WITH OTHER ALGORITHMS

We have compared the time complexity of our proposed

algorithm with the time complexities of the other algorithms

TABLE 3. Complexities of various existing comparative transfer learning
algorithms with our proposed SSMTR algorithm. Here, d is the number of
features in each data point; n is the total samples available in the
dataset; τ is the maximum number of iterations; C is the number of
constraints; ns and nl

t
are the number of samples in source domain and

target domain, respectively; m is the number of shared features.

and reported the comparative study in Table 3. The time

complexities which are reported in Table 3, are directly taken

from the respective reference papers. The time complexity

of SSMTR as discussed in Section V-D, is dependent on

various factors such as number of labelled data samples in

both source and target domain and constraint factor C. From

Table 3, we can see that our proposed method has a lesser

time complexity compared to the other if we keep all the

parameters constant except ns, nt , where ns is the number of

labelled samples in source domain and nt is the number of

labelled samples in the target domain, as the other algorithms

have their time complexity O(d2). However, keeping other

parameters constant, proposed approach may not perform

well. On comparing our algorithm with MTLF, TJM, JDA,

TCA and SSTCA, it was found that our proposed approach

has a little high computational time when compared to those

by others. However, the performance of our approach is much

better compared to all other existing approaches.

F. STATISTICAL SIGNIFICANCE TEST

In order to validate our obtained results statistically, we have

conducted Welch’s t-test [32] with the significance level of

0.05 to show whether the obtained results are statistically sig-

nificant or they happened by chance. While conducting the

experiments to determine p-values, we consider two groups;

the first group consists of a list of values of accuracies attained

by our proposed approach; while the second group consists

of a list of values of accuracies attained by other approaches.

We have considered two hypotheses, an alternative hypoth-

esis and a null hypothesis. The first hypothesis assumes that

there is a significant change between the median values of the

two groups while the second hypothesis assumes that there

is no significant difference between the median values of the

two groups.We have reported the p-values obtained in Table 4

for all the tasks of Office-Caltech andUSPS-MNIST datasets.

However, the p-values for all the tasks of PIE Face dataset are

less than 0.00001, which are significant. FromTable 4, we can

conclude that for the tasks, W_D, A_W and C_A, improve-

ments obtained by STCA algorithm are not significant while
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FIGURE 9. Influence of Gradient parameter, µ2, on SSMTR performance on the PIE Face, Office-Caltech and USPS-MNIST datasets,
respectively. (a) PIE Face dataset. (b) Office-Caltech and USPS-MNIST datasets.

TABLE 4. p-values obtained by t-test conducted on the accuracy values
obtained by different compared algorithms for the Office-Caltech and
USPS-MNIST datasets.

for task C_A, the improvement obtained by MTLF algorithm

is not significant for the Office-Caltech dataset. Similarly,

the improvement obtained by MTLF algorithm for the task

M_U is not significant.

VI. CONCLUSION

In this paper, we have presented a new method for Semi-

Supervised Metric Transfer Learning, SSMTR. By using the

DistanceMetric Learning with Relative Distance comparison

constraints instead of aMahalanobis distance metric that uses

Must-Link (ML) and Cannot-Link (CL) constraints, we are

able to express structures in greater detail. We have com-

pared our proposed algorithm with 11 other transfer learning

algorithms, MTLF, TJM, JDA, GFK, JGSA, TCA, SSTCA,

MIDA, SMIDA, TML, and STML, on three well-known

real-world datasets, PIE Face, Office-Caltech dataset and

MNIST-USPS dataset. The results suggest that our proposed

framework achieves greater accuracywhen compared to other

algorithms.

In many real-world applications, related tasks with very

few labeled data and abandoned amount of unlabeled data

are available. Therefore, in the future, to enhance the gener-

alization performance of all the related tasks we will extend

our model to multi-task metric learning while developing the

predictive model.
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