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Abstract

This paper presents a new trapdoor-knapsack public-key-cryptosystem. The
encryption equation is based on the general modular knapsack equation, but
unlike the Merkle-Hellman scheme the knapsack components do not have to have

a superincreasing structure. The trapdoor is based on transformations between
the modular and radix form of the knapsack components, via the Chinese

Remainder Theorem. The resulting cryptosystem has high density and has a typical
message block size of 2000 bits and a public key of 14K bits. The security is
based on factoring a number composed of 256 bit prime factors. The major
advantage of the scheme when compared with the RSA scheme is one of speed.
Typically, knapsack schemes cuch as the one proposed here are capable of

throughput speeds which are orders of magnitude faster than the RSA scheme.
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Principal Symbols

PK

sl

11X

= a published knapsack component.
= a secret knapsack component.
= the public knapsack vector = ( a, ,'a2 y see 3 an).

= the secret knapsack vector

( ai y AL, e aé) .
also transformable to the secret knapsack matrix.
= a. mod p, = residue of the j th knapsack component
J modulo the i th prime.
= density of the cryptosystem.

= " number of bits in x, , the message sub-blocks.
i,max

= number of bits in p, .
i,min

= the number of distinct secret matrices g' .

= the number of knapsack components,
also, the number of primes p; -

= a prime number.

= a set of n distinct primes = ( Py » Py v eee 2 Py ) .

n
= l I P, = the product of n distinct primes .
i=1

= number of bits in the public key.

n

(1)
at .
:E: J i max

i1

= number of bits in

n
= the cryptogram = ig; a;. X, -

= the transformed cryptogram = S . Wl modp .

(1) s,(a)

also equal to ( §' ves S'(n)) in modular

= a secret modular multiplier, relatively prime to p .

= the message vector = (x1 , X ey X ).

27

form.
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Introduction

Public-key-cryptosystems have received considerable attention over the last
few years (Diffie and Hellman 1976, ref.l.). This is because such systems
offer secure communications without the need for prior key distribution, and
the possibility of digital signatures. The two most important schemes are the
RSA scheme (Rivest, Shamir, and Adelman 1978, ref.2.), and the
Trapdoor-Knapsack scheme (Merkle and Hellman 1978, ref.3.). Of these the
Knapsack scheme has fallen into disfavour because of successful attacks on the
original Merkle-Hellman scheme. Specifically, the attacks have not been on the
encryption equation which appears secure, but on the fact that the knapsack
components are transformations of a superincreasing sequence (Desmet 1982,
ref.4). In addition, it has been shown that if the density of the knapsack is
low, where density is locosly defined as the ratio of messagetext bits to
cryptogram bits, then even non-superincreasing knapsacks are insecure
(Brickell 1983, ref.5., Lagarias and Odlyzko 1983, ref.6.). Despite these
problems knapsack schemes have one major practical advantage over the RSA
scheme, and that is speed. This is because the encryption and decryption
processes used are intrinsically faster than performing the modular
exponentiations needed in the RSA. Typically, knapsack schemes can operate

at throughput rates of 20Mbits/sec, whereas the RSA is limited to about

BOKbits/sec, using current technology.

The new trapdoor-knapsack presented in this paper uses the general modular
knapsack equation (eqn. 1) , and does not require the knapsack components to
be superincreasing. In addition, the system parameters can be chosen to give
a very high density secure cryptosystem. The trapdcor is based on being able
to transform between the radix and modular representations of the subset sums
via the Chinese Remainder Theorem (Knuth 1968, ref.7.). The system bears a
resemblance to the Lu - Lee (1979, ref.8.) system, but whereas their
cryptosystem is linear and has been shown to be insecure (Goethals and
Couvreur, 1980, ref.9.), ours is based on the general modular knapsack

equation, which to date has not been generally broken.
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The New Trapdoor

The general modular knapsack equation is given by

n
S = i{_:l a; + x; modp eqn. 1.

When used for cryptography, the a's are the n published knapsack components,
p is a published modulus, and the x's are the message bits. In the binary
knapsack the x's are O or 1, but in the general knapsack they are g bit
numbers. The subset sum S is the cryptogram which is sent to the legitimate
user, who is the only cne who can unwind the cryptogram back to the

original x's.

Let ( pl , p2 s eee pn ) be a set of prime integers whose product is given by

n
= (1)
p = Ij! o » and where aj

aj mod pi
is the residue of the j th knapsack component modulo the i th prime.
Then by the Chinese Remainder Theorem
(1) (2) (n)
a, €—3» a a, . a.
J A T

is a bijective mapping. That is, the transformation is one-to-one for all
a's between 1 and p-1. Thus if the factorisation of p is kept secret, then
only the legitimate user will be able to transform the radix representation
of the knapsack components into their modular representation. This forms

the trapdoor. Let us now choose a set of n knapsack components and express

them in both radix and modular form:

a; <3 ai(l)’ ai(a) ' Eli(n)
ay <> ay, 2®@ LY
a’ = . eqn. 2.
.| '(l) .(2) ,(1’1)
a' - an R an R an .

Let us then disguise the trapdoor by forming a new set of knapsack components

via the modular multiplication

a. = a' . W mod
i p

where W and p are relatively prime, and W"l is

W , modulo p.

the multiplicative inverse of

eqn.

3.
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We now publish p , and the modified knapsack components ( a ) in radix
form. This is the public key. The factorisation of p and and the integer

are kept secret, and hence so is the modular representation of the a‘.

h
Now let pi,min > 2 eqn. 4.
that is, the primes are at least h+l bit numbers.
Let X, < 28 eqn. 5.
i,max
that is, the message blogks are g bit numbers.
- (i) r
And let 2: a’ <2 eqn. 6.
: J
i=1 max

that is, the columns of 3' sum to an r bit number.

In order to ensure that the encryption equation has a unique decryption,
we must ensure that the message to ciphertext transformation X —3 S is

injective. To guarantee this we must have

h>r + g eqn. 7.
which also ensures that modular multiplication is equivalent to matrix
multiplication :

1 n) (1 2 (n}
T s T G P L T R
a'(l) s a'(2) ) see s a'(n)
n n n
i.e. §' = X . 2'

and that the transformation can be inverted (provided the matrix 3' is

non-singular) via

x = S . a'". eqn. 8.

The cryptosystem then operates as follows. A user wishing to send us a
message forms the ciphertext

S = {( Xj- @)+ Xy @5 4 eeo 4 X an) mod p

via equation 1. We compute S' via

S' = s.w! mod p
and express in modular form via our known factorisation of p :
(1) g ()

S' «> (s’ , sy

we then apply X = §' . g'_l and hence recover the message.

The cryptanalyst must either break the factorisation of p or attack the

trapdoor in some other manner.
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A Small Example

We now give an example of the above method using n=3. The example is of course
too small for security.

Let n = 3 and define p = ( 37, 41, 43 ) , hence p = 65231, and h = 5 (eqn. 4).
Choose g = 2 , that is, the message components are two bit numbers. This
dictates that r = 3 via equation 7. ( h =65 >3+ 2 ). Choose n = 3 knapsack
components which satisfy equation 6, that is, the columns of g' add to <8 ,

and express in both modular and radix form:

ai=(3,l,l) <» 125174

e =
aé=(2,1,2)(—>122509.

Now choose W = 6553 which is relatively prime to p = 65231. Perform the modular

i

(1,5, 3) «» 151664

multiplication of equation 3 , and publish the resulting knapsack components :

a = 50628

a, = 59907

a, = 3560
and the modulus p = 65231 .

Compute the inverse W‘l = 2618 via Euclid's algorithm and invert the matrix 3'

3"1= ( 1/16 ) { +7 , -1 , =2

+4 , +4 , -8
-9, -1, +14} .,
To transmit the 6 bit message x = (1, 2, 3) a user computes the ciphertext
S = (1.50628 ) + (2. 59907 ) + (3 . 3560 )
= 181122
= 50660 mod 65231 .

Using the secret W-l the receiver cpmputes
S’ S0660 . 2618 mod 65231
13257 mod 65231

and using the secret p 1is able to transform into modular form :

(11, 14, 13 ) e—>» 13257 .

S'
From equation 8, the receiver computes :
16 . (11, 14, 13 ) +7 , -1, =2

+4 , +4 |, -8

1%
]

-9 , =1 , +14

giving x = (1,2, 3) as transmitted.
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Practical Constraints

We now choose the values for n, r, g, and h needed to give a secure practical

cryptosystem.

In order to present a large knapsack problem we set

n.g2_256 . eqn. 9.
The value of n is influenced by the fact that the general knapsack problem
is not as secure as the binary knapsack because the least significant bits of
the message are not as well hidden. We have reduced the problem by performing
the reduction mod p , but we must still set a limit, say

n>5. eqn. 10.

In order to protect the trapdoor and ensure that the published p is not
factored we set
h 2255 eqn. 11l.

so that the primes are at least 256 bit numbers.

To ensure sufficient randomness in’ the knapsack components we need to bound
the number of valid matrices a', which we call K. If we assume that any number
1 5 a{ _<_ 2r can be chosen to be a knapsack component then the number of
different column vectors that can be chosen is an, and thus
2

k=2"7.
However, because of the restriction on the sum of the column vectors imposed
by equation 6, not all of these matrices are acceptable. Let us develop a
conservative lower bound on K by employing an averaging argument. Assume that
all knapsack components are chosen so that

1< ar < 2.

This guarantees that all the resulting matrices will satisfy equation 6.

The number of valid column vectors that can be chosen in this way is

n
2T t H } .
n
n2r 1 n2
Which gives K>2 . g a } . eqn. 12.

To ensure sufficient randomness in the choice of knapsack components we

require say K 2 2128 . Taking logs of equation 12 we get :

n° (r - logzn ) > 128 . eqn. 13.
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The value of r is influenced by several factors. If r is small then the
knapsack components will have a small remainder when divided by a factor

of p (Goethals and Couvreur 1980, ref. 8.) This has been allowed for by the
disguising modular multiplication (egqn. 3); but r must be large enough to
ensure that no knapsack component has the same remainder modulec any prime
factor. A loose lower bound falls out from equation 13. That is,

r >log2 n

but, if r is much less than n , then the choice of knapsack components is
severey reduced by equation 6. Thus we set

r>n . egn. 14.

The density of the cryptosystem is given by

D = "2
(h + 1)

if we assume the primes are all exactly h+l bit numbers. Now, in order to

minimise the redundancy of the scheme and to increase the resistance to

low-density attacks, h should be as small as possible. Thus we set eqn. 7 to:

h=r+g

so that D S - S
g+r +1

Thus to maximise D, we must keep r small. From equation 14 we should set r

and if we then set n =r = 7, we satisfy both equation 13 and equation 10.

The size of the public key is given by :
PK = n.(n + 1).(h + 1) ,

n,

and in order to keep this small we must keep h small. So let us set egn. 11l to

h = 255
which gives g =255 - 7 = 248 .
The size of the basic message block is then :
n . g = 1736 bits ,

which certainly satisfies egn. 9.

The final system parameters are then : n=r = 7, g = 248, h = 255 which
gives D = 0.97 and PK = 14336 bits.

Conclusions

In this paper we have presented a new public key cryptosystem based on the
general modular knapsack problem. Its security is not based on disguising
a superincreasing sequence, but on the difficulty of factoring a number

with seven 256 bit prime factors, and on a knapsack problem with a typical
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density of 0.97 and a block size of 1736. The knapsack nature of the system
ensures that fast encryption and decryption are possible when compared with
the RSA public-key-cryptosystem. In addition, the size of the public key

which is typically 14Kbits is not excessive. It may be possible to attack

the trapdoor information more directly, but we can see no productive method

of doing this. The only successful attacks on dense trapdoor-knapsacks to date
have been on the security of the superincreasing sequence. Our method does not
require this. However, it may turn out that all injective trapdoor knapsacks
are solvable in polynomial time, in which case all such schemes are useless -

for cryptography.
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