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Abs t rac t  

This paper p r e s e n t s  a new trapdoor-knapsack public-key-cryptosystem. The 

encryption equa t ion  is based on t h e  genera l  modular knapsack equat ion ,  b u t  

un l ike  t h e  Merkle-Hellman scheme t h e  knapsack components do n o t  have t o  have 

a supe r inc reas ing  s t r u c t u r e .  The trapdoor is  based on t ransformat ions  between 

t h e  modular and r a d i x  form of t h e  knapsack components, v i a  t h e  Chinese 

Remainder Theorem. The r e s u l t i n g  cryptosystem has  high dens i ty  and h a s  a typical 

message block size of 2000 b i t s  and a publ ic  key of 14K b i t s .  The s e c u r i t y  is 

based on f a c t o r i n g  a number composed of 256 b i t  prime f a c t o r s .  The major 

advantage of t h e  scheme when compared with t h e  RSA scheme is one of speed. 

Typica l ly ,  knapsack schemes cuch as the  one proposed here are capable of 

throughput speeds  which are o r d e r s  of magnitude faster than t h e  RSA scheme. 
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--	 a published knapsack component. 
c 


-- a secret knapsack component. 


-- the public knapsack vector = ( al ;a2 , ... , an). 

-	- the secret knapsack vector = ( a; , a; , ... , a;) , 

also transformable to the secret knapsack matrix. 

-- a. mod p = residue of the j th knapsack componentJ i modulo the i th prime. 

-	- density of the cryptosystem. 
-	- number of bits in x .i,max ' the message sub-blocks. 

-	 number of bits in pi,min ' 
-
-	- the number of distinct secret matrices _a' . 
-	 the number of knapsack components,-

also, the number of primes p.
1 

. 

a prime number. 


a set of n distinct primes = ( p1 , p2 , ... , p, . 

the product of n distinct primes .fi

i d  
pi = 


number of bits in the public key. 


number of bits in 1 5 1 . 

j=1 max 


n 

the cryptogram = ai. xi . 


i=l 


the transformed cryptogram = S . W-' mod p . 
also equal to ( S' (l), d2), , S'(n)) in modular form.1.. 


a secret modular multiplier, relatively prime to p . 
the message vector = ( x1 r x 2 , . . . ' X  n 1. 
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Introduction 


Public-key-cryptosystems have received considerable attention over the last 

few years (Diffie and Hellman 1976, ref.1.)- This is because such systems 

offer secure communications without the need for prior key distribution, and 

the possibility of digital signatures. The two most important schemes are the 

RSA scheme (Rivest, Shamir, and Adelman 1978,ref.2.1, and the 

Trapdoor-Knapsack scheme (Merkle and Hellman 1978,ref.3.). Of these the 

Knapsack scheme has fallen into disfavour because of successful attacks on the 

original Merkle-Hellman scheme. Specifically, the attacks have not been on the 

encryption equation which appears secure, but on the fact that the knapsack 

components are transformations of a superincreasing sequence (Desmet 1982; 

ref.4). In addition, it has been shown that if the density of the knapsack is 
low, where density is loosly defined as the ratio of messagetext bits to 

cryptogram bits, then even non-superincreasing knapsacks are insecure 

(Brickell 1983, ref.5., Lagarias and Odlyzko 1983, ref.6.). Despite these 

problems knapsack schemes have one major practical advantage over the RSA 

scheme, and that is speed. This is because the encryption and decryption 
processes used are intrinsically faster than performing the modular 

exponentiations needed in the RSA. Typically, knapsack schemes can operate 

at throughput rates of 20Mbits/sec, whereas the RSA is limited to about 
SOKbits/sec, using current technology. 

The new trapdoor-knapsack presented in this paper uses the general modular 

knapsack equation (eqn. 1) , and does not require the knapsack components to 
be superincreasing. In additim, the system parameters can be chosen to give 
a very high density secure cryptosystem. The trapdoor is based on being able 

to transform between the radix and modular representations of the subset sums 

via the Chinese Remainder Theorem (Knuth 1968, ref.7.). The system bears a 

resemblance to the Lu - Lee (1979, ref.8.) system, but whereas their 

cryptosystem is linear and has been shown to be insecure (Goethals and 

Couvreur, 1980. ref.9.1, ours is based on the general modular knapsack 

equation, which to date has not been generally broken. 
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The New Trapdoor 


The general modular knapsack equation is given by 

n 
S = c  a . .  xi m o d p .  eqn. 1. 

i=l 

When used for cryptography, the a's are the n published knapsack components, 

p is a published modulus. and the x ' s  are the message bits. I n  the binary 
knapsack the x ' s  are 0 or 1. but in the general knapsack they are g bit 
numbers. The subset sum S is the cryptogram which is sent to the legitimate 

user, who is the only one who can unwind the cryptogram back to the 

original XIS .  

Let ( p1 p2 -.. , pn be a set of prime integers whose product is given by 

n 
, and where a!i) = a mod p. 

P = n P i  J j 11=1 


is the residue of the j th knapsack component modulo the i th prime. 


Then by the Chinese Remainder Theorem 


is a bijective mapping. That is, the transformation is one-to-one for a l l  

a's between 1 and p-1. Thus if the factorisation of p is kept secret, then 

only the legitimate user will be able to transform the radix representation 

of the knapsack components into their modular representation. This forms 

the trapdoor. Let us now choose a set of n knapsack components and express 

them in both radix and modular form: 

a '1 a; (1) , a; (2), ... , a; (n) 

eqn. 2. 


a' a: (1), a: (2), ... , a' (n). n n 


Let us then disguise the trapdoor by forming a new set of knapsack components 


via the modular multiplication 


a .  = a! . W mod p eqn. 3. 
J J 

where W and p are relatively prime, and W-l is the multiplicative inverse Of 
W , modulo p. 
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We now publish p , and the modified knapsack components ( a ) in radix -
form. This is the public key. The factorisation of p and and the integer W 

are kept secret, and hence so is the modular representation of the a'. 

Now let Pi,min -> 2h eqn. 4. 

that is, the primes are at least h+l bit numbers. 


Let X.i,max c 2g eqn. 5 .  

that is, the message blo$ks are g bit numbers. 


And let eqn. 6. 

that is, the columns of a' sum to an r bit number. 
-

In order to ensure that the encryption equation has a unique decryption, 
we must ensure that the message to ciphertext transformation 2 +S is 
injective. To guarantee this we must have 

h z r + g  eqn. 7 .  

which also ensures that modular multiplication is equivalent to matrix 

multiplication : 

i.e. -S' = :.a*-
and that the transformation can be inverted (provided the matrix _a'  is 

non-singular) via 

-X = s . a@-'.- - eqn. 8 .  

The cryptosystem then operates as follows. A user wishing to send us a 

message forms the ciphertext 

S = ( x
1' al + x2. a2 + ... + x n . an) mod p 

via equation 1. We compute S '  via 

S' = S . W-' mod p 

and express in modular form via our known factorisation of p : 

S' ++ ( S I ( 1 !  s l ( * ), ... , s'(n)) 
we then apply -x = S '  . -a'-1 and hence recover the message. -
The cryptanalyst must either break the factorisation of p or attack the 

trapdoor in some other manner. 
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A Small Example 

We now give an example of the above method using n=3. The example is of course 


too small for security. 


Let n = 3 and define p = ( 37, 41, 43 ) , hence p = 65231, and h = 5 (eqn. 4).-
Choose g = 2 , that is, the message components are two bit numbers. This 
dictates that r = 3 via equation 7. ( h = 5 2 3  + 2 ).  Choose n = 3 knapsack 

components which satisfy equation 6, that is, the columns of ,a' add t o e  

and express in both modular and radix form: 

a'1 = ( 3 , 1 , 1 ) C, 125174 

-a' -- a; = ( 1 , 5 3 ) fJ 151664 

a; = ( 2 , 1 , 2 ) t, 122509 . 
Now choose W = 6553 which is relatively prime to p = 65231. Perform the modular 

multiplication of equation 3 , and publish the resulting hapsack components : 
a = 506281 


a2 = 59907 

a = 35603 

and the modulus p = 65231 . 
Compute the inverse W-' = 2618 via Euclid's algorithm and invert the matrix _a' : 

-a'-'= ( 1/16 ) 


+4 , +4 , -8 


To transmit the 6 bit message x = ( 1 , 2 3 ) a user computes the ciphertext -
S = ( 1 . 50628 ) + ( 2 . 59907 ) + (3 . 3560 ) 

= 181122 

= 50660 mod 65231 . 
Using the secret W-' the receiver cDmputes 

S' = 50660 . 2618 mod 65231 

= 13257 mod 65231 

and using the secret e is able to transform into modular form : 

S' = ( 11 , 14 , 13 ) 13257 .-
Fros  equation 8 , the receiver computes : 

1 6 .  x = ( 1 1 , 1 4 , 1 3 )-

-9 , -1 , +14 
+4 , +4 , -8 I 

giving E = ( 1 , 2 , 3 ) as transmitted. 



- -  
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P r a c t i c a l  Cons t r a in t s  

We now choose t h e  va lues  for n,  r, g, and h needed t o  give a secure p r a c t i c a l  

cryptosystem. 

In order  t o  p r e s e n t  a large knapsack problem w e  se t  

n . g z 2 5 6  . eqn. 9. 

The value of n is in f luenced  by t h e  f a c t  t h a t  t h e  general  knapsack problem 

is no t  as secu re  as t h e  b inary  knapsack because the  least s i g n i f i c a n t  b i t s  of 

t h e  message are n o t  as w e l l  hidden. We have reduced the  problem by performing 

the  reduction mod p , b u t  w e  must still set  a l i m i t ,  say 

n > 5 .  eqn. 10. 

I n  order  t o  p r o t e c t  the t rapdoor  and ensure t h a t  the  published p is n o t  

fac tored  w e  se t  

h >- 255 eqn. 11. 

so t h a t  t he  primes are a t  least  256 b i t  numbers. 

To ensure s u f f i c i e n t  randomness i n ' t h e  knapsack components w e  need t o  bound 

t h e  number of v a l i d  ma t r i ces  a ' ,  which w e  c a l l  K. If w e  assume t h a t  any number -
1C a; < Zr can be chosen t o  be a knapsack component then the  number o f  

d i f f e r e n t  column v e c t o r s  t h a t  can be chosen is  2nr, and thus 

2 
K = 2n r  . 

However, because of t h e  r e s t r i c t i o n  on the  sum o f  the  column vec tors  imposed 

by equation 6, n o t  a l l  o f  t hese  matrices a r e  acceptable. L e t  us develop a 

c o n s e h a t i v e  lower bound on K by employing an averaging argument. Assume that 

all knapsack components a r e  chosen s o  t h a t  

1-< a; 5 sl-. 
n 

This guarantees t h a t  a l l  t h e  r e s u l t i n g  matrices w i l l  s a t i s f y  equation 6. 

The number of v a l i d  column vec to r s  t h a t  can be chosen i n  t h i s  way is  

2 
L 

Which g ives  K T Z n ' . [ - - 1  1 "  eqn. 12. 

To ensure s u f f i c i e n t  randomness i n  the  choice of  knapsack components w e  

requi re  say K 2 2128 . Taking logs o f  equation 12 we g e t  : 

n 2 (r - log2n ) 2 1 2 8  . eqn. 13. 
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The va lue  of r is  in f luenced  by s e v e r a l  f a c t o r s .  If r is small then t h e  

knapsack comppnents w i l l  have a s m a l l  remainder when divided by a f a c t o r  

of p (Goethals and Couvreur 1980, r e f .  9. ) This  has  been allowed f o r  by t h e  

d i sgu i s ing  modular m u l t i p l i c a t i o n  (eqn. 3 ) ;  b u t  r must be l a r g e  enough t o  

ensure t h a t  no knapsack component has  t h e  same remainder modulo any prime 

f a c t o r .  A loose lower bound falls  o u t  from equation 13. That is, 

r >log2 n 

but ,  if r is much less than n , t h e n  the  choice  o f  knapsack components is 

s e v e r e  reduced by e q u a t i o n  6.  Thus we set  

r z n .  eqn. 14. 

The dens i ty  of  t h e  c ryptosys tem i s  given by : 

D=l* 

if we assume t h e  pr imes  are a l l  e x a c t l y  h + l  b i t  numbers. Now, i n  o rde r  t o  

minimise t h e  redundancy of the scheme and t o  increase  the  r e s i s t a n c e  to 

low-density a t t a c k s ,  h should  be as small as poss ib le .  Thus w e  set  eqn. 7 to:  

h = r + g  

so t h a t  D =  
g + r + l  

Thus t o  maximise D, w e  must keep r small. From equation 14 w e  should set  r = n, 

and i f  w e  then  s e t  n = r = 7, w e  s a t i s f y  both equation 13 and equation 10. 

The s i z e  of  t h e  p u b l i c  key is given  by : 

PK = n . (n  + l ) . ( h  + 1) , 
and i n  o rde r  t o  keep t h i s  small we must keep h small. So l e t  u s  set eqn. 11 t o  

h = 255 

which g i v e s  g = 255 - 7 = 248 . 
The s i z e  of t h e  b a s i c  message b lock  is  then : 

n . g = 1736 b i t s  , 

which c e r t a i n l y  s a t i s f i e s  eqn. 9. 

The f i n a l  system parameters  a r e  then  : n = r = 7, g = 248, h = 255 which 

g ives  D = 0.97 and PK = 14336 b i t s .  

Conclusions 

In  t h i s  paper w e  have p resen ted  a new pub l i c  key cryptosystem based on t h e  

genera l  modular knapsack problem. Its s e c u r i t y  is not based on d i s g u i s i n g  

a super increas ing  sequence ,  bu t  on the  d i f f i c u l t y  of f ac to r ing  a number 

with seven 256 b i t  p r ime f a c t o r s ,  and on a knapsack problem with a t y p i c a l  
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dens i ty  o f  0.97 and a b lock  s i z e  o f  1736. The knapsack na ture  of t h e  sys tem 

ensures t h a t  fas t  enc ryp t ion  and decrypt ion  a r e  poss ib le  when compared w i t h  

the  RSA public-key-cryptosystem. I n  add i t ion ,  t h e  s i z e  of t h e  pub l i c  key 

which is t y p i c a l l y  1 U X b i t s  is n o t  excessive.  I t  may be poss ib l e  t o  a t t a c k  

t h e  t rapdoor  in fo rma t ion  more d i r e c t l y ,  bu t  w e  can see no productive method 

of doing t h i s .  The on ly  s u c c e s s f u l  a t t a c k s  on dense trapdoor-knapsacks to  date 

have been on t h e  s e c u r i t y  o f  t h e  supe r inc reas ing  sequence. Our method does  n o t  

r equ i r e  t h i s .  However, it may t u r n  out  t h a t  a l l  i n j e c t i v e  trapdoor knapsacks 

are so lvab le  i n  polynomial t i m e ,  i n  which case  a l l  such schemes a r e  u s e l e s s  

for cryptography. 
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