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Abstract. We present the configuration of the Météo-France

Chemistry and Transport Model (CTM) MOCAGE-Climat

that will be dedicated to the study of chemistry and climate

interactions. MOCAGE-Climat is a state-of-the-art CTM

that simulates the global distribution of ozone and its precur-

sors (82 chemical species) both in the troposphere and the

stratosphere, up to the mid-mesosphere (∼70 km). Surface

processes (emissions, dry deposition), convection, and scav-

enging are explicitly described in the model that has been

driven by the ECMWF operational analyses of the period

2000–2005, on T21 and T42 horizontal grids and 60 hybrid

vertical levels, with and without a procedure that reduces cal-

culations in the boundary layer, and with on-line or climato-

logical deposition velocities. Model outputs have been com-

pared to available observations, both from satellites (TOMS,

HALOE, SMR, SCIAMACHY, MOPITT) and in-situ instru-

ment measurements (ozone sondes, MOZAIC and aircraft

campaigns) at climatological timescales. The distribution

of long-lived species is in fair agreement with observations

in the stratosphere putting aside the shortcomings associated

with the large-scale circulation. The variability of the ozone

column, both spatially and temporarily, is satisfactory. How-

ever, because the Brewer-Dobson circulation is too fast, too

much ozone is accumulated in the lower to mid-stratosphere

at the end of winter. Ozone in the UTLS region does not

show any systematic bias. In the troposphere better agree-

ment with ozone sonde measurements is obtained at mid and

high latitudes than in the tropics and differences with obser-

vations are the lowest in summer. Simulations using a simpli-

fied boundary layer lead to larger ozone differences between
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the model and the observations up to the mid-troposphere.

NOx in the lowest troposphere is in general overestimated,

especially in the winter months over the Northern Hemi-

sphere, which may result from a positive bias in OH. Dry

deposition fluxes of O3 and nitrogen species are within the

range of values reported by recent inter-comparison model

exercises. The use of climatological deposition velocities

versus deposition velocities calculated on-line had greatest

impact on HNO3 and NO2 in the troposphere.

1 Introduction

The modelling of chemistry and climate interactions has be-

come increasingly complex over the last twenty years. A

first approach was to use climatologies of the trace gases

that have a radiative impact upon climate, such as carbon

dioxide (CO2), methane (CH4) or ozone (O3). Then, sim-

plified chemistry of stratospheric O3 was introduced in mod-

els, like the linear scheme developed by Cariolle and Déqué

(1986), or described in McLinden et al. (2000). Large

scale perturbations of the atmosphere, e.g., the Antarc-

tic ozone hole or the evolution of the halogen loading of

the atmosphere, were thus taken into account. The Car-

iolle and Déqué (1986) scheme has been introduced in

many models such as the ARPEGE-Climat General Circu-

lation Model (GCM) (Déqué et al., 1994; Cariolle et al.,

1990) or the European Center for Medium-Range Weather

Forecasts (ECMWF) IFS model (Oikonomou and O’Neill,

2006). A more sophisticated approach deals with the chem-

istry of a few tens of chemical species of the stratosphere

(Lefèvre et al., 1994; Chipperfield et al., 1994). The strato-
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spheric composition can then be simulated at seasonal or

longer time-scales. For example, the REPROBUS Lefèvre et

al. (1994) scheme has been coupled to the ARPEGE-Climat

GCM (WMO, 1998). For a comprehensive description of

the atmospheric chemistry, including the modelling of the

chemistry of the troposphere, much shorter time-scales have

to be considered to represent processes such as scavenging

or dry deposition at the surface. The chemistry of short-lived

chemical species, with a lifetime of several hours like many

Volatile Organic Compounds (VOCs), needs to be accounted

for, but this substantially increases modelling costs.

Very few models nowadays consider the chemistry of the

entire atmosphere up to the mesosphere with a detailed de-

scription of the complex chemical reactions in the tropo-

sphere, though it has become more and more evident that it is

crucial to take into account both the stratosphere and the tro-

posphere to better simulate the coupling between these two

layers. For example, the description of one of these models

and its direct evaluation with in-situ and satellite data appears

in Jöckel et al. (2006).

MOCAGE is the multiscale 3-D Chemistry and Trans-

port Model (CTM) of Météo-France that is an evolution

of the Lefèvre et al. (1994) stratospheric model. It rep-

resents processes from the regional to the planetary scale,

and extending from the surface up to the middle strato-

sphere. The model comprises several levels of two-way

nested domains, the parent global grid providing fully-

consistent boundary conditions to the inner grids. This set-

up enables the model to be used for a wide range of scientific

applications, from the study of global-scale distributions of

species (Josse et al., 2004), to “chemical weather” forecast-

ing, down to the regional scale (Dufour et al., 2004; Drobin-

ski et al., 2007), and chemical data assimilation (Cathala et

al., 2003; Geer et al., 2006; Pradier et al., 2006; Clark et

al., 2007). MOCAGE has been evaluated against several ob-

servational campaigns such as ESCOMPTE (Etude sur Site

pour COntraindre les Modèles de Pollution atmosphérique

et de Transport d’Emissions, Dufour et al. (2004)), and

ICARTT/ITOP (International Consortium for Atmospheric

Research on Transport and Transformation /Intercontinental

Transport of Ozone and Precursors, Bousserez et al. (2007)).

In addition, it is part of a number of international projects,

and it has been run in operational mode (24 h/7 d) since the

summer of 2005 on the Météo-France supercomputers for air

quality simulations on the French Prévair national platform

(http://www.prevair.org, Honoré et al. (2007)).

In this article, we present MOCAGE-Climat that is the ver-

sion of MOCAGE developed for the study of climate and

chemistry interactions. Therefore, this version of the model

covers the whole troposphere and the whole stratosphere.

The objective of our work here is to evaluate efficiently how

the MOCAGE-Climat CTM represents the climatological

chemical state of the atmosphere when driven by ECMWF

meteorological forcing commonly used for this kind of ex-

ercise. This objective is achieved by analysing comprehen-

sive comparisons with observations. Such a thorough review

is required before undertaking the coupling of MOCAGE-

Climat with the ARPEGE-Climat GCM. This coupling will

enable us to consider the feedback of the chemistry on radi-

ation and dynamics within the Coupled Chemistry-Climate

Model (CCM). The Météo-France CCM will then become

one of the participants of international projects such as the

World Climate Research Programme (WCRP) Stratospheric

Processes And their Role in Climate (SPARC) Chemistry-

Climate Model Validation Activity (CCMVal) (http://www.

pa.op.dlr.de/CCMVal/), that has involved an increasing num-

ber of CCMs in recent years. We also show in this paper the

results of a number of sensitivity studies. The aim here is

twofold, on the one hand improve our knowledge of the im-

pact of the lower troposphere on the rest of the atmosphere,

and on the other hand evaluate if and how CPU time could

be reduced in order to perform longer simulations.

We present MOCAGE-Climat in Sect. 2. In Sect. 3, we

evaluate the model against observed climatologies, both in

the stratosphere and the troposphere, focusing on quanti-

ties that are important for the simulation of ozone. We first

present long-lived species, as they are an indication of the

robustness of the transport, and then we describe the reser-

voir and short-lived species. These comparisons enable us to

identify strengths and weaknesses in the chemistry. The final

evaluation section deals with ozone, that is affected by all the

compounds first presented, and that is the trace gas most ob-

served in the atmosphere. Finally, results from a sensitivity

study to surface processes appear in Sect. 4 and conclusions

in Sect. 5.

2 Model description

2.1 General features

The horizontal and vertical resolutions of MOCAGE-Climat

are specific to the study of global processes, with a special fo-

cus on studies pertaining to the stratosphere and Upper Tro-

posphere Lower Stratosphere (UTLS) regions. In the hori-

zontal, Gaussian grids are used as they are closer to the orig-

inal Numerical Weather Prediction (NWP) calculations. In

the vertical, the coverage of the model has been extended, 60

vertical levels cover the troposphere, the whole stratosphere

and the lower mesosphere, up to 0.07 hPa (approximately

70 km). The number of vertical levels and their distribution

are identical to those of the ECMWF analyses used in this

paper (see Sect. 3.1). This vertical distribution agrees with

the recommendations of Strahan and Polansky (2006) for a

realistic representation of the middle atmosphere.

The model has been run in an off-line mode, driven by

a variety of meteorological inputs, including data from NWP

models, such as the analyses or forecasts of the ECMWF sys-

tem. Wind, temperature, humidity, and pressure, available

every 3 or 6 h, are then linearly interpolated to yield hourly
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values, which is the time step for advection. Shorter time

steps are used for physical processes and chemistry. Large-

scale transport of chemical constituents or tracers is ensured

by a semi-Lagrangian advection scheme (Williamson and

Rasch, 1989) which is not supposed to conserve mass, as

soon as the grid is irregular. MOCAGE that has σ -pressure

levels is in such case. We therefore apply a global uniform

correction, since the whole mass of tracer has to remain con-

stant considering advection processes only. This is relevant

as our 3D wind field is conservative and as volumic mix-

ing ratios have the property to be conservative. However,

although this conservation appears necessary, Chipperfield

(2006) indicated that many CTMs seem to give reasonable

simulations without concern over mass conservation in ad-

vection schemes or the balance of winds. Turbulent dif-

fusion follows Louis (1979), while the convection scheme

(mass-flux type) adopted after a number of studies is that of

Bechtold et al. (2001). For further details on the transport in

MOCAGE and its evaluation, see Josse et al. (2004).

Wet removal by precipitation is included. In convective

clouds, it is parameterized according to Mari et al. (2000);

convective transport and scavenging are therefore computed

simultaneously. In large-scale precipitation clouds, removal

follows the first-order scheme of Giorgi and Chamedeis

(1986). Below clouds, the recommendations of Liu et al.

(2001) (again a first-order scheme) are used. Wet removal

has been evaluated with simulations of 210Pb, a highly solu-

ble tracer, by comparing model outputs with both climatolo-

gies and fine temporal resolution observations.

At the crossroads between dynamics, physics and chem-

istry, we use the mixing ratios of the ECMWF analyses up

to the 380 K isentropic level for the representation of water

vapour. Above this level, H2O is calculated by the chemical

scheme of MOCAGE-Climat (see below) and advected by

its semi-lagrangian transport scheme. Prescribing the water

vapour field between the surface and the 380 K level allows

MOCAGE-Climat to benefit from the ECMWF analyses and

from their modelling of the physical processes in the tropo-

sphere and the UTLS region. At middle and high latitudes

the 380 K surface may be partly in the stratosphere, depend-

ing on the meteorological situation. The numerical diffusion

of H2O into the stratosphere is thus reduced and the strato-

spheric profile is still satisfactory since the ECMWF analyses

include a simple parameterization of water vapour produc-

tion by methane oxidation (Oikonomou and O’Neill, 2006).

Radiation is taken into account both indirectly via the ex-

ternal meteorological forcing provided to the CTM and di-

rectly via photolysis rates. These photolysis rates have been

computed off-line from the solar radiation with the Tropo-

spheric Ultraviolet-Visible model version 4.0 (see Madronich

and Flocke, 1998). The impact of clouds on the photolysis

rates is calculated on-line, increasing (weakening) photoly-

sis rates above (below) clouds according to Brasseur et al.

(1998).

Table 1. Transported trace gases of the RELACS chemical scheme

(∗ species that are not included in the REPROBUS chemical

scheme).

Species Name/Group

1 N2O nitrous oxide

2 CH4 methane

3 H2O water vapour

4 HNO3 nitric acid

5 N2O5 dinitrogen pentoxide

6 CO carbon monoxide

7 OClO chlorine dioxide

8 HCl hydrochloric acid

9 ClONO2 chlorine nitrate

10 HOCl hypochlorous acid

11 Cl2 diatomic chlorine

12 H2O2 hydrogen peroxide

13 ClNO2 chlorine nitrite

14 HBr hydrogen bromide

15 BrONO2 bromide nitrate

16 HNO4 peroxynitric acid

17 Cl2O2 dichlorine peroxide

18 HOBr hypobromous acid

19 BrCl bromochlorine

20 HCHO formaldehyde

21 MO2 methyl peroxy radical (CH3O2)

22 OP1 methyl hydrogen peroxide (CH3O2H)

23 CFC11 chlorofluorocarbon-11

24 CFC12 chlorofluorocarbon-12

25 CFC113 chlorofluorocarbon-113

26 CCl4 chlorofluorocarbon-10

27 CH3CCl3 methyl chloroform

28 CH3Cl methyl chloride

29 HCFC22 hydrochlorofluorocarbon-22

30 CH3Br methyl bromide

31 H1211 halon-1211

32 H1301 halon-1301

The chemistry scheme of MOCAGE-Climat, so-called

RELACS, comprises both tropospheric and stratospheric

species. It is a combination of the RELACS scheme de-

scribed in Crassier et al. (2000), which is a simplified ver-

sion of the tropospheric RACM scheme (Stockwell et al.,

1997), and of the REPROBUS scheme (Lefèvre et al., 1994)

relevant to the stratosphere that includes the heterogeneous

stratospheric chemistry described in Carslaw et al. (1995). A

total of 82 chemical species (see Tables 1 and 2) are consid-

ered throughout 242 thermal reactions. 65 of these species

are transported while the remaining 17 are assumed at in-

stantaneous chemical equilibrium, as described in Brasseur

and Solomon (1986). This scheme is a compromise between

a detailed representation of the tropospheric-stratospheric

chemistry and the CPU time that strongly constrains multi-

year CTM simulations. As for the chemistry of the strato-
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5818 H. Teyssèdre et al.: MOCAGE-Climat: a full tropospheric-stratospheric CTM

Table 1. Continued.

Species Name/Group

33 H2SO4 sulfuric acid

34 PSC polar stratospheric cloud tracer

35 HONO∗ nitrous acid

36 SO∗
2

sulfur dioxide

37 ETH∗ ethane

38 ALKANEbis∗ alkanes, alcohols, esters, and alkynes

39 ALKENEbis∗ ethene, terminal alkenes,

internal alkenes, butadiene

and other anthropogenic dienes

40 ISOTOT∗ isoprene, α-pinene, d-limonene, and other terpenes

41 AROMATIC∗ toluene, xylene, cresol, and other aromatics

42 ALD∗ acetaldehyde and higher aldehydes

43 KET∗ ketones

44 MACR∗ glyoxal, methyglyoxal,

and other alpha-carbonyl aldehydes,

unsaturated dicarbonyls,

metacrolein and other unsaturated monoaldehydes,

unsaturated dihydroxy dicarbonyl,

hydroxy ketone

45 ONIT∗ organic nitrate

46 PAN∗ peroxyacetal nitrate and higher saturated PANs,

unsaturated PANs

47 OP2∗ higher organic peroxides, peroxyacetic acid

and higher analogs

48 LINO∗
3

linear ozone

49 HC8P∗ peroxy radicals formed from ALKANEbis

50 OLIP∗ peroxy radicals formed from ALKENEbis

51 ISOP∗ peroxy radicals formed from ISOTOT

52 PHO∗ phenoxy radical and similar radicals

53 TOLP∗ peroxy radicals formed from AROMATIC

54 ACO3∗ acetyl peroxy and higher

saturated acyl peroxy radicals,

unsaturated acyl peroxy radicals,

peroxy radicals formed from RACM species KET

55 OLNN∗ NO3-alkene adduct

56 XO2∗ accounts for additional NO to NO2 conversion

57 SULF∗ sulfate

58 Ox odd oxygen

59 NOx nitrogen oxides

60 ClOx chlorine oxides

61 BrOx bromine oxides

62 NOy total nitrogen family (radicals + reservoirs)

63 Cly total chlorine family (radicals + reservoirs)

64 Bry total bromine family (radicals + reservoirs)

65 TRACEUR.FROID∗ cold tracer

sphere, the scheme allows the description of the nitrogen,

chlorine, and bromine species, from source to radical form,

through reservoir species. In the troposphere, both inor-

ganic and organic species are taken into account. The use

of RELACS versus RACM was evaluated in Crassier et

al. (2000) for clean to polluted conditions and showed that

RELACS compared favorably with RACM for ozone and

other atmospheric oxidants. Similar conclusions were made

when RELACS was included in MOCAGE-Climat. About

30% of the computer time is saved making simulations with

RELACS instead of RACM.

Atmos. Chem. Phys., 7, 5815–5860, 2007 www.atmos-chem-phys.net/7/5815/2007/
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A specific procedure can be applied in the boundary layer

of MOCAGE-Climat, again for the sake of saving computer

time. The computing of the chemical tendencies within the

boundary layer represents about 90% of the time dedicated

to chemistry, due to the large number of chemical species

with a short lifetime (less than 1 min). We then deal with the

chemical evolutions in the boundary layer considering it as

one layer only. The boundary layer is simply defined as the

10 levels closest to the surface. Firstly, we calculate at time t

the average mixing ratios of each chemical species and nec-

essary meteorological parameters. These vertical averages

are weighted by the air density profile. Then the chemistry

scheme simulates the new averages at t+1t , and we deduce

mean evolutions between t and t+1t , noted here τ for a spe-

cific compound. τ is then applied to the original full vertical

profile, yielding to the entire profile at t+1t . Simulations at

all levels of the boundary layer are performed every 6 h. With

this procedure, an extra 30% of computer time is saved, lead-

ing to a final cost of 23 min of CPU-time per day simulated

at T42 with 60 layers, on the Fujitsu VPP5000 of Météo-

France. We will present in this paper results from simulations

both with the full boundary layer chemistry calculations in-

cluded and approximating the boundary layer as a single bulk

layer.

In addition to the RELACS chemical scheme, MOCAGE-

Climat can consider a parameterization of the linear ozone

chemistry as first presented in Cariolle and Déqué (1986) and

recently revised by Cariolle and Teyssèdre (2007). This pa-

rameterization is essentially valid for the middle-atmosphere,

with “linear ozone” mainly driven by dynamics in the UTLS,

and with increasing photo-chemical influence as the altitude

increases.

2.2 Surface exchanges

The set of emissions that we used for our simulations

is multi-fold. Most of the emissions from anthropogenic

sources are those of the model inter-comparison exercise,

so-called “2030 Photocomp experiment” (referenced here-

after as 2030PE, see Dentener et al. (2006)). The baseline

emission scenario is considered as representative of the year

2000 and consists of International Institute for Applied Sys-

tems Analysis (IIASA) emissions and EDGAR v3.2 biomass

burning emissions normalized with the results presented in

van der Werf et al. (2003). For further information on these

emission datasets see Dentener et al. (2004). With regard to

emissions from biogenic sources, the 2030PE only made rec-

ommendations on the total emissions which are emitted an-

nually. We adopted these recommendations and thus comple-

mented the set of anthropogenic emissions as follows: NOx

emitted by soils, CH4 by oceans, and CO from vegetation and

oceans are those of a personal communication from L. Em-

mons and J.-F. Lamarque (NCAR, 2004). CH4 from wet-

lands are taken from Matthews and Fung (1987) (monthly

data for the reference year 1985), and emissions from ter-

Table 2. Trace gases at chemical equilibrium for RELACS.

Species Name/Group

1 O(3P) atomic oxygen

2 O(1D) atomic oxygen

3 O3 ozone

4 N atomic nitrogen

5 NO nitrogen monoxide

6 NO2 nitrogen dioxide

7 NO3 nitrogen trioxide

8 ClO chlorine monoxide

9 Cl atomic chlorine

10 BrO bromine monoxide

11 Br atomic bromine

12 H atomic hydrogen

13 OH hydroxyl radical

14 HO2 hydroperoxyl radical

15 CH3 methyl radical

16 CH3O methyl-oxygen

17 ADDT∗ product from aromatic-OH combination

mites are described in Fung et al. (1991). SO2 from volca-

noes are presented in Andres and Kasgnoc (1998). Biogenic

emissions of hydrocarbons from vegetation include isoprene,

monoterpenes, and other VOC emissions; monthly distribu-

tions are taken from Guenther et al. (1995).

N2O data, not provided for the 2030PE, are available from

the Global Emissions Inventory Activity (GEIA) web site;

we used the dataset described in Bouwman et al. (1995) that

we grouped into broad IPCC (1995) categories (reference

year 1990). It can be noted that our annual total emissions

of N2O (IPCC, 1995) are higher than those of other mod-

els (Michou and Peuch, 2002). Finally for the emissions

of chlorofluorocarbons, spatial distributions of CFC−11 and

CFC−12 are the ones of the GEIA v1 datasets, and for the

other compounds listed in Table 3 they are those of Olivier et

al. (1996); we adopted the annual totals of WMO (2002) for

the year 2000.

The splitting of the original VOCs into the VOCs of the

RELACS chemical scheme, both from anthropogenic and

biogenic sources, has been made according to the recommen-

dations of the IPCC Third Assessment Report (TAR) and to

Crassier et al. (2000). The annual global totals are presented

in Table 4.

The version of MOCAGE-Climat used in this paper does

not include NOx emissions from lightning (total estimated to

7 Tg(N) yr−1). Implementation in MOCAGE of a parame-

terization of these emissions is on-going and the first results

have been reported in Bousserez et al. (2007).

All the emission datasets have an original horizontal reso-

lution of 1◦×1◦ and, depending on the source, vary according

to the month or remain constant throughout the year. Table 3

details this temporal resolution, as well as the total amounts

www.atmos-chem-phys.net/7/5815/2007/ Atmos. Chem. Phys., 7, 5815–5860, 2007
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Table 3. Surface emissions considered in MOCAGE-Climat, A. for

annual data, M. for monthly data (see references in the text).

Species Source Total

N2O Tg(N) yr−1 Oceans 3.0 A.

Continental soils 9.5 A.

Anthropogenic 2.2 A.

All sources 14.7

NOx Tg(N) yr−1 Industrial 10.2 A.

Traffic 16.1 A.

Domestic 1.5 A.

Continental soils 5.0 M.

Bioma. burning 8.5 M.

All sources 41.3

CH4 Tg(CH4) yr−1 Industrial 83.6 A.

Land use 216.2 A.

Termites 24.9 A.

Wetlands 159.7 M.

Oceans 14.9 M.

Bioma. burning 21.3 M.

All sources 520.6

CO Tg(CO) yr−1 Industrial 37.5 A.

Traffic 194.3 A.

Domestic 238.0 A.

Oceans+Vegetation 100.6 M.

Bioma. burning 444.1 M.

All sources 1013.4

COVNM anth. Tg yr−1 Industrial 39.3 A.

Traffic 47.7 A.

Domestic 28.8 A.

Bioma. burning 31.2 M.

All sources 147.0

COV bio. Tg(C) yr−1

Isoprene 501.6 M.

Monoterpenes 114.4 M.

Other VOC 259.6 M.

SO2 Tg(S) yr−1 Industrial 43.8 A.

Traffic 5.6 A.

Domestic 4.8 A.

Bioma. burning 1.2 M.

Volcanoes 14.6 A.

All sources 70.0

CFC−11 Gg yr−1 all 86 A.

CFC−12 Gg yr−1 all 122 A.

CFC−113 Gg yr−1 all 23 A.

CH3CCl3 Gg yr−1 all 5 A.

emitted. We used the same emissions for the six years of

our simulations (2000–2005, see Sect. 3.1). Emissions are

distributed in the eight lowest levels of the model (that corre-

spond on average to a layer of 600 m), in order to avoid too

strong vertical gradients, as proposed in Josse et al. (2004).

Table 4. Surface emissions of the VOCs of RELACS that are emit-

ted.

Species Tg(C) yr−1

ALKANEbis 281.8

ALKENEbis 23.6

ALD 3.9

AROMATIC 21.1

ETH 5.9

HCHO 0.4

ISOTOT 616.0

KET 21.8

In addition to dealing with surface emissions, the surface

module of MOCAGE-Climat enables the simulation of the

dry deposition sink of gaseous species and aerosols (Nho-

Kim et al., 2004). To compute realistic time-dependent fluxes

at the surface, a 2-D interface (Michou and Peuch, 2002)

between MOCAGE and outputs of NWP models has been

developed. The dry deposition velocity of about a hundred

compounds including O3, SO2, nitrogen-containing com-

pounds, as well as long-lived and short-lived intermediate

organic compounds, was parameterized on the basis of We-

sely (1989), considering the “big-leaf” resistance approach.

The module calculates dry deposition velocities from three

resistances in series, aerodynamic, laminar, and surface. In

the case of the work reported here these resistances are com-

puted using the surface meteorological fields of the 6 hourly

analyses of the ECMWF NWP model. The original surface

resistance scheme was modified with the introduction of a

specific parameterization for the stomatal resistance depend-

ing upon environmental factors; it is based on Noilhan and

Mahfouf (1996), and follows the Jarvis-type meteorological

approach that attempts to modify a minimum stomatal resis-

tance defined a priori through external factors, such as mois-

ture and radiation availability. This parameterization of the

stomatal resistance has been first validated in Michou and

Peuch (2002) and further analyzed in the context of Mediter-

ranean regions in Michou et al. (2004), as the coupling with

meteorological analyses allows the study of specific events.

We present in Sect. 4 results of a sensitivity study to the

deposition velocity.

3 Model results and evaluation

3.1 Description of the simulations performed

The MOCAGE-Climat model was run using the analyses of

the NWP model of ECMWF (IFS). The model was integrated

for six years using the same vertical resolution as IFS, 60 lay-

ers from the surface up to 0.07 hPa, from 1 January 2000 to

31 December 2005, at two truncations T21 and T42. For
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each horizontal resolution, we performed simulations with

and without the simplified treatment of the boundary layer

(see Sect. 2.1); four simulations have been performed, noted

in the rest of the paper by T21, T21BL1, T42 and T42BL1.

In general, unless otherwise specified, we analyse climato-

logical model monthly means calculated over the 2000–2005

period.

The initial conditions of the stratospheric species have

been derived from a zonal climatology built from a 6-year

simulation performed using the ARPEGE-Climat GCM cou-

pled to the REPROBUS CTM (WMO, 1998). This climatol-

ogy represented conditions of the mid-90s and was adapted

for the year 2000 according to the values reported in WMO

(2002). The climatological state provided to the model al-

lows us to reduce the spin-up in the stratosphere. For the

tropospheric species, a mean global value is used in the low-

est levels of the model that correspond approximately to the

boundary layer; this crude initial state is rapidly lost, within

a few days.

Another 6-year simulation was performed with the

“cheapest” configuration of MOCAGE-Climat (i.e.,

T21BL1) in order to analyze the model stability over a

longer time period, initializing 1 January 2000 with the

conditions of 31 December 2005 obtained from the first

6-year sequence, and driving the CTM again with the

2000–2005 ECMWF analyses (experiment T21BL1bis).

Finally, a 6-year simulation was performed as a sensitivity

test to the dry deposition velocity; forcings were identical

to the T21 forcings, except for the deposition velocities that

were climatological (simulation T21DvClim, see Sect. 4 for

details and results).

A summary of the six simulations appears in Table 5.

Model outputs retained to appear in the various figures corre-

spond to results whose resolution is the closest to the obser-

vations (e.g., T21 for stratospheric zonal comparisons, T42

for tropospheric CO), unless explained otherwise in the text.

Statistics compiled from all simulations appear in paragraph

3.8.

Prior to these experiments, specific simulations had been

completed to evaluate the transport processes in MOCAGE-

Climat. Considering idealized tracers only, a total of 20

years were simulated using repeatedly the ECMWF opera-

tional analyses of 2000 and 2001. These simulations were

performed according to the Stratospheric-Climate Links with

Emphasis on the Upper Troposphere and Lower Stratosphere

(SCOUT-O3) specifications; for instance, the use of a con-

tinuous and linearly increasing source in the tropical tropo-

sphere allowed us to access to age of air, and thus to trans-

port accuracy; we present a summary of the results obtained

in Sect. 3.2.

Before looking further into the results, it is important to

make sure that the model is conservative, that it does not pro-

duce or destroy mass during the simulations, especially for

climate purposes when simulations should run over decades.

One way to assess the numerical stability is to look at the evo-

Table 5. Summary of the 6-year simulations completed with

MOCAGE-Climat (see text for details).

Name Characteristics

T21 full version of MOCAGE-Climat at T21

T21BL1 same as T21 but with a simplified boundary layer

T21BL1bis same as T21BL1 with a different initial state

T21DvClim same as T21 but with climatological deposition velocities

T42 full version of MOCAGE-Climat at T42

T42BL1 same as T42 but with a simplified boundary layer

lution of the global mean of the ozone column (zonal and lat-

itudinal average), as ozone is directly or indirectly linked to

all other chemical species. Drifts of individual species could

in the end compensate and result in no drift of the ozone col-

umn, but analyzing the evolution of this parameter provides

a first estimation of the robustness of the model. The model

reaches equilibrium around 290 Dobson units (DU) for the

T21 simulation, 292 for T21BL1, 308 for T42, and 309 for

T42BL1; these figures are consistent with the generally ac-

cepted value of 300 DU (see the figure provided in supple-

mentary material: http://www.atmos-chem-phys.net/7/5815/

2007/acp-7-5815-2007-supplement.pdf).

A bias smaller than 2 DU exists between the T21 and the

T21BL1 simulations while the T42 simulations lead to ozone

columns higher by 17–18 DU than the T21 case. This in-

crease, in parallel with an increase in horizontal resolution,

could be related to stronger meridional circulation, and to

less numerical diffusion that would counteract the rapidity

of the circulation (see Sect. 3.2). The same behaviour has

been found when using the linear ozone chemistry within

MOCAGE-Climat. This tends to confirm the hypothesis of

dynamical causes for higher ozone columns when the hor-

izontal resolution increases. Using climatological deposi-

tion velocities in experiment T21DvClim, the resulting ozone

is quasi-identical to that obtained with the T21 simulation

which included a detailed calculation of these velocities.

According to this simple test, the numerical stability of

the various simulations completed with MOCAGE-Climat

appears satisfactory as there is no drift in the total ozone col-

umn even after a 12-year integration of the model.

3.2 Age of air (AOA)

Transport in the stratosphere involves a meridional circu-

lation, the so-called Brewer-Dobson circulation (Brewer,

1949), mixing across mid-latitudes, and vertical diffusion.

Mixing across latitudes is highly inhomogeneous with trans-

port barriers in the subtropics, and at the edge of winter time

polar vortices. Air parcels coming from the troposphere enter

the stratosphere at tropical latitudes.

Once in the stratosphere, they are elevated by the Brewer-

Dobson circulation, meridionally transported towards the

www.atmos-chem-phys.net/7/5815/2007/ Atmos. Chem. Phys., 7, 5815–5860, 2007
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Fig. 1. Latitude-pressure cross sections of the resulting age of air (years) when MOCAGE-Climat is driven by the ECMWF operational

analyses, at T21 (left) and T42 resolutions (middle), and by outputs from the ARPEGE-Climat GCM at T42 resolution (right). Fields are

those of the last year of the simulation.

winter pole and descend at mid- and high latitudes. The

longer a parcel stays in this stratospheric circulation, the

higher is the probability that it can be chemically or photo-

chemically affected. Therefore, the correct representation of

this circulation in a CTM is of primary importance as it de-

termines the accurate simulation of long-lived chemical com-

ponents originating from the troposphere (the stratospheric

source species). One way to assess the quality of this trans-

port is to follow air parcels from the troposphere to the lower

polar stratosphere. As there is an infinity of pathways corre-

sponding to the so-called “age spectrum”, an alternative way

is to determine the mean age of air (AOA) that is the first mo-

ment of the age spectrum. A simple tropospheric tracer con-

tinually emitted with a linear growth in time can be used to

diagnose the model mean age of air (Hall and Waugh, 1997).

MOCAGE-Climat simulations were performed at T21 and

T42 resolutions (see Fig. 1). The zonal distribution shows

the AOA to have minimum values in the tropical lower

stratosphere, illustrating the rapid motion of air through the

tropopause. AOA is maximum in the upper stratosphere with

a smoother latitudinal gradient as altitude increases. Simula-

tions of MOCAGE-Climat show much younger AOA than

deduced from observations of SF6 (Harnisch et al., 1996;

Boering et al., 1996): at 20 km of altitude, AOA derived from

measurements ranges from 1 year in the tropics up to 4.5–6

years at polar latitudes. The simulated AOA differs depend-

ing on the horizontal resolution, from 0.5 to 2.3 years for the

T21 simulation, and from 0.3 to 1.8 years for the T42 sim-

ulation, indicating that the transport is significantly too fast

in the stratosphere of MOCAGE-Climat when driven by the

ECMWF operational analyses. This was noted by Bregman

et al. (2006) for their CTM TM5 using the ECMWF opera-

tional analyses of 1999 and 2000. They obtained much older

AOA however, and this appears to be mainly related to the

fact that their CTM is Eularian while MOCAGE-Climat has

a semi-lagrangian transport scheme (Chipperfield, 2006).

We might expect the age of air to increase with increas-

ing horizontal resolution as has been observed in several Eu-

larian CTMs (Norton, 2000). In our case, with increasing

horizontal resolution, the age of air has slightly decreased

which is in agreement with the results of Scheele et al. (2005)

and of Chipperfield (2006). It is also consistent with the

results presented later in the paper. We repeated the same

AOA experiment driving MOCAGE-Climat with the meteo-

rological outputs of the ARPEGE-Climat GCM; the resulting

AOA ranges from 0.7 to 3.5 years, agreeing better with ob-

servations, but still too young. We chose however to drive

our simulations with the ECMWF meteorological analyses

rather than the ARPEGE-Climat outputs as these analyses

are the closest to the real atmospheric fields and are there-

fore the best to use for an evaluation of the CTM against ob-

servations. Outputs from ARPEGE-Climat will be used for

long-term simulations.

3.3 Observations used for the evaluation

The main characteristics of the observational datasets used

are presented in Appendix. They consist in satellite and in-

situ observations for which derived climatologies have been

evaluated and described in the literature (see Table 6 for a

summary). Unless otherwise specified, the satellite instru-

ments from which information on atmospheric trace gas con-

stituents is retrieved fly in near-polar, sun synchronous, low

earth orbits; for low and mid latitudes, this results in obser-

vations at a constant local time. Global satellite climatolo-

gies are already available for several chemical species in the

stratosphere, and the last decade has seen the implementation

of satellite measurements of tropospheric constituents.
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Table 6. Main characteristics of the observational datasets.

Species Horiz. resol. Vert. extens. Temp. resol. Period of obs. Reference

O3 column 1◦ lat×1.25◦ lon tot. month 1978–2005 Bodeker et al. (2005)

Uncertainty: 1%

O3 ∼10 km, 2.8◦ ×2.8◦ UTLS and tropo. 1 min, season 2000–2004 Marenco et al. (1998)

Uncertainty: 2%

NO2 column 0.25◦×0.25◦ tot. and tropo. month 2003– http://www.temis.nl

Uncertainty: 1–3.5 1015 molec cm−2

NOy ∼10 km, 2.8◦×2.8◦ UTLS and tropo. 1 min, season 2002–2004 Volz-Thomas et al. (2005)

Uncertainty: 10%

Strato. CH4, H2O 5◦ lat 316–0.1 hPa month. clim. 1991–2002 Grooss and Russel (2005)

Uncertainty: lower strato. CH4 11–19%, H2O 14–24% – upper strato. CH4 6–27%, H2O up to 30%

Strato. NOx, HCl, O3 5◦ lat 316-0.1 hPa month. clim. 1991-2002 Grooss and Russel (2005)

Uncertainty: lower strato. NOx 14–21%, HCl 14–24%, O3 9–25%

– upper strato. NOx up to 30%, HCl 12–15%, O3 9–20%

Strato. HNO3 4◦ lat 100–0.32 hPa month. clim. 1991–1993 Randel et al. (1998)

Uncertainty: 0.1–3 ppbv

Strato. N2O 4◦ lat 100–0.32 hPa month. clim. 1991–1993 Randel et al. (1998)

Uncertainty: up to 22%

Strato. ClO 4◦ lat 100–0.32 hPa month. clim. 1991–1997 Randel et al. (1998)

Uncertainty: 15–25%

Strato. N2O 10◦ lat 100–1 hPa month 2001–2005 Urban et al. (2005)

Uncertainty : up to 35 ppbv

Tropo. CO 1◦×1◦ surf.-150 hPa month 2000– Emmons et al. (2004)

Uncertainty: 10%

CO ∼10 km, 2.8◦×2.8◦ UTLS and tropo. 1 min, season 2002–2004 Nédélec et al. (2003)

Uncertainty: 2%

Tropo. OH 8◦ lat×10◦ lon 1000–200 hPa month. clim. 1978–1996 Spivakovsky et al. (2000)

Uncertainty: winter north tropics. 15–20% – south trop. 10–15% – south extra tropics. 25%

Tropo. O3 ∼40 stations surf.-10 hPa month. clim. 1980–1993 Logan (1999a,b)

Uncertainty: ±5% (strato.)

Tropo. HNO3 camp. regions Surf.-200 hPa clim. variable Emmons et al. (2000)

Uncertainty: 15–60%

3.4 Long-lived species

Chemical species that have a rather long lifetime, typically

more than one year, are often sources of stratospheric radi-

cals and reservoirs. The chemistry of these source species is

rather simple and mostly restricted to photo-dissociation or

thermal reaction with OH or O(1D), the latter being mainly

present in the middle atmosphere. Therefore, long-lived

species are well-mixed within the troposphere and their con-

centrations start to decrease once they enter the stratosphere.

As a consequence, they can be relatively good markers of

transport processes, particularly in the UTLS region, as used

for instance by El Amraoui et al. (2007). They are also of

primary importance for validating photo-dissociation rates as

they determine the nitrogen, chlorine or bromine contents of

the atmosphere of the model.

3.4.1 Methane (CH4) and water vapour (H2O)

CH4 is an atmospheric gas emitted at the surface that has a

major radiative impact on the atmosphere. It interacts with

the whole atmospheric chemistry through reacting with OH,

and therefore with several chemical cycles such as those in-

volving halogens (Brasseur and Solomon, 1986). In 2000,

www.atmos-chem-phys.net/7/5815/2007/ Atmos. Chem. Phys., 7, 5815–5860, 2007
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Fig. 2. MOCAGE-Climat T21 zonal monthly mixing ratios against the Grooss and Russel (2005) climatology, and relative differences

(100×((Model−Obs)/Obs)), between 100 and 0.1 hPa, in March (left panels) and September (right panels): first two columns CH4 (ppmv),

and last two columns H2O (ppmv).

the average mixing ratio at the surface ranged from 1708 to

1784 ppbv (WMO, 2002). The mean global growth for the

period 1983–2000 is estimated as 8.5 ppbv yr−1; however,

in the past few years, this rate has displayed striking fluc-

tuations, with for instance a negative rate in 2000 (Simpson

et al., 2002). The reason for these changes in behaviour is

still unclear and shows that extrapolations for the future are

difficult. The strengths of many of the sources are still un-

certain due to the difficulty in assessing the global emission

rates of the biospheric sources which are highly variable in

space and time (e.g., emissions from wetlands that represent

approximately 160 Tg(CH4) yr−1). Due to its long lifetime,

around 8.4 years (Houghton et al., 2001), methane is a good

dynamical tracer and may be used to verify the simulations

of meridional transport and diabatic descent in the polar vor-

tices. The ability to correctly simulate CH4 (and H2O) is a

useful benchmark for numerical models of the middle atmo-

sphere (Randel et al., 1998). In the stratosphere, the over-

all structure and variability of CH4 is strongly coupled with

H2O: as a first approach, it can be considered that the de-

struction of one molecule of CH4 yields to the production of

two molecules of H2O.

Comparisons between outputs of the MOCAGE-Climat

T21 simulation and the zonal climatology of Grooss and Rus-

sel (2005) are shown in Fig. 2, between 100 and 0.1 hPa,

for the months of March and September. Even though the

T21 AOA is too young (see paragraph 3.2), the overall model

CH4 distribution resembles the observed one: CH4 decreases

with height and latitude. However, the diabatic descent in

the southern polar vortex in September does not seem as

marked in the simulations (although observations exist up to

65 S only), and the distinctive ‘rabbit-ears’ shape in the ob-

servations in March is not clearly simulated. Nevertheless,

the seasonal shift of the maximum towards the winter hemi-

sphere appears similarly in the model and in the observations.

For H2O, the shape of the zonal distribution is qualitatively

well simulated, with low equatorial mixing ratios above the

tropical tropopause and generally a positive gradient towards

higher altitudes and latitudes. Moreover, the dehydration is

very similar in the simulations and in the observations. More

quantitatively, CH4 mixing ratios from the model appear gen-

erally too low, 5 to 30% (±−0.05 to −0.25 ppmv), and in

parallel H2O mixing ratios are underestimated throughout

the stratosphere, with relative differences between simula-

Atmos. Chem. Phys., 7, 5815–5860, 2007 www.atmos-chem-phys.net/7/5815/2007/
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Fig. 3. MOCAGE-Climat CO mixing ratios (ppbv) from the T42 simulation versus MOPITT mixing ratios (see text), and relative differences

(100×((Model−Obs)/Obs)), in January (2 upper rows) and July (2 bottom rows), at 700 and 350 hPa. The time versus latitude diagrams are

also shown.

tions and observations varying from −10 to −25% over large

parts of the stratosphere (±−0.9 to −1.3 ppmv). These dif-

ferences can have several causes including the chemical de-

struction of CH4 (consequently production of H2O), the un-

derestimation of the mixing ratios at the entry level, or the

deficiencies of the meridional transport. Further light on this

is provided by the analysis of the T42 simulation and of an

additional simulation with MOCAGE-Climat driven by the

ARPEGE-Climat GCM.

As expected in agreement with increasing age of air

(ECMWF T42 AOA < ECMWF T21 AOA < Arpege-

Climat T42 AOA, see paragraph 3.2), there is much more

CH4 in the entire stratosphere in the ECMWF T42 sim-

ulation than in the T21 simulation, the T42 simulation

overestimating observations. T21 CH4 outputs are in

turn larger than those of the ARPEGE-Climat simulations.

For H2O, mixing ratios are lower in T42 than in T21.

They are similar in T21 and in ARPEGE-Climat, but the

shape of the distribution from the ARPEGE-Climat sim-

ulation, being more centered around the equatorial lati-

tudes, is more realistic (see the figures provided as supple-

mentary material: http://www.atmos-chem-phys.net/7/5815/

2007/acp-7-5815-2007-supplement.pdf). The underestima-

tion of the T21 CH4 could explain the negative deviation of

H2O, however this explanation does not hold for the T42 out-

puts. The entry levels of CH4 are overestimated in March and

September. Therefore, there seems to be some deficiency in

the oxidation chain of CH4 as one would expect to obtain

T21 CH4 mixing ratios that are too large since the circulation

is too fast. As for H2O, both that the circulation is too fast

www.atmos-chem-phys.net/7/5815/2007/ Atmos. Chem. Phys., 7, 5815–5860, 2007
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Fig. 3. Continued.

and that the entry-level mixing ratios are too low are plau-

sible explanations of its deficient simulation. Indeed, if the

circulation is too fast, there is insufficient time for moisten-

ing through methane oxidation. This problem is even greater

in the T42 simulation, hence the lower H2O mixing ratios in

this case. The rate of methane oxidation could also possibly

be too slow. All this requires further investigation.

3.4.2 Carbon monoxide (CO)

Carbon monoxide is a precursor to tropospheric ozone, it in-

fluences the abundance of OH and hence the tropospheric

oxidation capacity and methane, and it is a source of carbon

dioxide. It thus affects two of the most important greenhouse

gases. Because of its relatively long lifetime in the tropo-

sphere (∼1 month) it provides a view of transport processes

in the model in this layer. Tropospheric CO is directly emit-

ted at the Earth’s surface and is also chemically produced by

the oxidation of hydrocarbons in the troposphere. Both direct

and indirect sources include a mixture of contributions from

natural (e.g., oceans or vegetation) and anthropogenic activ-

ities (e.g., biomass burning). Of all the tropospheric primary

pollutants, CO is among the best observed in the troposphere

on a global scale from satellites. It is the only pollutant for

which global satellite data includes information on the verti-

cal distributions.

We applied the monthly averaging kernels available with

the MOPITT data set (1◦ grid) to the monthly outputs of the

T42 simulation interpolated on the same 1◦ grid. We there-

fore obtained transformed model data, comparable to the

MOPITT data (Emmons et al., 2004). Figure 3 presents com-

parisons between the model and the observations as latitude-

longitude maps on pressure levels. We focus on January and

July which are monthly means of the six years of data as the

initial state is lost after about one month. These months are

intermediate between April, where there is a springtime max-

imum of CO in the Northern Hemisphere, and October, with

the peak of the Southern Hemisphere biomass burning sea-

son linked to biomass burning emissions in South America,

southern Africa, the maritime continent, and northern Aus-

tralia (see Shindell et al., 2006; Edwards et al., 2006). Two

pressure levels that contain vertically independent informa-

tion are shown. The 700 hPa level gives an indication of the

agreement in the lowest levels of the troposphere, while the

350 hPa level gives additional insight on the transport pro-

cesses.

MOCAGE is able to capture some of the characteristics

of the global spatial distribution of CO as observed by MO-

PITT. For instance, at 700 hPa the model successfully repro-

duces the maxima over Africa north of the Equator in Jan-

uary and south of the Equator in July, while the maximum

over South America in July is about 1 to 2 months too early.

This temporal shift induces positive biases of more than 40%

(around 30 ppbv) that extend over the tropical western Pa-

cific following trade winds. Agreement between model out-

puts and observations is better in July than in January, and

better at 350 than at 700 hPa. The model underestimates the

concentration of CO in the Northern Hemisphere in January,

and north of 30N in July, with relative differences varying

from less than 20% at 350 hPa over most of the globe in

July to around 30% over large parts of the Northern Hemi-

sphere at 700 hPa in January. In contrast, the model overesti-

mates the concentration of CO in the Southern Hemisphere,

for both seasons and pressure levels, with the largest rela-

tive differences (above 40%) essentially at low mixing ratios

Atmos. Chem. Phys., 7, 5815–5860, 2007 www.atmos-chem-phys.net/7/5815/2007/
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Fig. 4. Continued. As in Fig. 4, for NOy mixing ratios (ppbv).

(<60 ppbv). The model accumulates CO over northern In-

dia and the Himalaya, and this is related to high emissions

in the populated regions at the base of the mountains further

relayed by the Asian summer monsoon. Li et al. (2006) re-

ported on how the anthropogenic emissions are “trapped” by

the Tibetan anticyclone. However, the accumulation by the

model is too large compared with observations.

The time versus latitude diagrams (Fig. 3) at 700 hPa

clearly show that the variability is lower in the model. Some

large structures are correctly reproduced, such as the lower

mixing ratios between 70 S and 30 S around the boreal win-

ter time, and the higher mixing ratios between 30 S and the

Equator that appear too early, as already mentioned. The du-

ration of this feature is also too long. Between the Equator

and 30 N, the seasonality is correctly simulated but with an

overestimation of the minima and an underestimation of the

maxima. The major discrepancy is north of 30 N, and this

also appears in the diagram at 350 hPa.

On-going validation of the MOPITT CO is reported in the

literature and gives a context to these results. Emmons et al.

(2004) validated MOPITT measurements from the beginning

of operations until December 2002 with a variety of aircraft

in-situ profiles. Over North America, they report at 700 hPa

a positive bias of 7–14% (±7–18%) consistent with that of

www.atmos-chem-phys.net/7/5815/2007/ Atmos. Chem. Phys., 7, 5815–5860, 2007



5828 H. Teyssèdre et al.: MOCAGE-Climat: a full tropospheric-stratospheric CTM

+50

+25

0

-25

-50

500

0

100

200

300

400

  
R

E
L
. 
D

IF
F
. 
  
  
  
  
  
M

O
D

E
L
  
  
  
  
  
  
 O

B
S

O3

DJF                                                                                                   JJA

Fig. 4. Continued. As in Fig. 4, for O3 mixing ratios (ppbv).

Emmons et al. (2007) who validated MOPITT measurements

over North America during several aircraft experiments in

the summer of 2004. At 350 hPa the bias was estimated as

∼3% (±6–8%). Emmons et al. (2004) indicate that larger

biases are seen in clean environments, such as the south Pa-

cific.

Further insight on model simulation of CO is given in

Shindell et al. (2006) who analyzed present-day and future

carbon monoxide simulations in 26 state-of-the-art atmo-

spheric chemistry models against MOPITT observations and

local surface measurements. The models showed large un-

derestimations of Northern Hemisphere extra-tropical CO,

while typically performing reasonably well elsewhere. Shin-

dell et al. (2006) attributed the negative bias to a substantial

underestimation of CO emissions. The same emissions were

used in this study. It is also probable that some of the under-

estimation is due to the fact that there is no seasonality in the

anthropogenic emissions that dominate over these regions. In

the Southern Hemisphere, the overestimation of MOCAGE-

Climat that we show suggests that emissions of CO south of

the Equator, which are mainly from a biomass burning ori-

gin, are too strong. It could be also that the transport from

the Equator towards the polar regions is too fast, bringing too

much CO towards latitudes where its lifetime is longer.

In the UTLS, systematic CO observations are mainly pro-

vided by MOZAIC measurements. For our evaluation, we

made on-line interpolations during the simulations to ob-

tain model outputs coincident in time and space with the

MOZAIC observations. At aircraft cruise level (Fig. 4),

MOZAIC shows a strong meridional gradient between the

Equator and 70N, modulated by a seasonal cycle; the highest

CO mixing ratios are encountered at low latitudes, with val-

ues up to 100 ppbv that extend in summer to mid-latitudes.

This gradient is related to air sampling, as aircraft fly in the

lower stratosphere at mid-latitudes, and in the troposphere

at low latitudes. MOCAGE-Climat captures both the latitu-

dinal gradient and the seasonal cycle. However, the model

generally overestimates CO in boreal summer while there is

no systematic bias in winter.

When looking at frequency distributions of CO with

MOZAIC measurements made at all flight levels, over var-

ious regions of the globe (see Sect. A6 for their definition,

and Fig. 5), MOCAGE-Climat exhibits narrower distribu-

tions than MOZAIC, with the T42 simulation closer to ob-

servations than the T21 simulation. This is most likely due

to the better description of the convection and to a better

resolution of the tropopause. In the tropical band, while

the model clearly underestimates measurements over South

America, the agreement is very good over Africa, partic-

ularly for the T42 simulation. At northern mid-latitudes,

MOCAGE-Climat underestimates the highest CO mixing ra-

tios, as already seen in the comparisons with the MOPITT

observations.

3.4.3 Nitrous oxide (N2O)

N2O is considered as one of the three most important anthro-

pogenic greenhouse gases along with CO2 and CH4; it is also

the major source of stratospheric nitrogen that can affect O3

(Crutzen, 1970; Randeniya et al., 2002). Its atmospheric bur-

den has increased from 295–299 ppbv in 1978 up to 315–

317 ppbv in 2002, as reported by Prinn et al. (2000) and

WMO (2002). Surface emissions represent the main source

of N2O, and comprise anthropogenic emissions (cultivated

soils, industrial processes, and biomass burning), and natural

emissions (continental soils and oceans). Its principal sinks

are photo-dissociation and reaction with O(1D) in the strato-

sphere. Both reactions produce molecular nitrogen N2, but

can also lead to NOx production. In this case, the main chan-
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H. Teyssèdre et al.: MOCAGE-Climat: a full tropospheric-stratospheric CTM 5829

CO		 	 	 NOy	 	 	 O3

N. AM

S. AM

ATL

Fig. 5. Left column: histograms of CO classes (20 ppbv bins) measured by MOZAIC (black) and simulated by MOCAGE-Climat at T21

(red) and T42 (blue), for North America (N.AM), South America (S.AM), northern Atlantic (ATL), Europe (EUR), Africa (AFR), and Asia

(ASIA) (see Appendix A6 for the definition of the geographical areas). Middle column: same as CO for NOy classes (0.4 ppbv bins). Right

column: same as CO for O3 classes (20 ppbv bins).

nel is N2O + O(1D)→2×NO with a relatively fast chemical

reaction rate. The lifetime of N2O has a mean value of 120

years (WMO, 2002), it is therefore rather well mixed within

the troposphere. Nevertheless, Ricaud et al. (2007) showed

from ODIN N2O observations that this compound can have

spatial variations in the UTLS, especially in the tropics where

troposphere to stratosphere exchange sometimes takes place

in association with convective events.

Figure 6 presents the UARS climatology of Randel et

al. (1998) and model outputs from the T21 simulation for

March and September: the modeled N2O field is consis-

tent with the observations, maximizing in the lower strato-

sphere and decreasing as the altitude increases. In the

lower stratosphere, MOCAGE-Climat simulates a smoother

N2O field as a function of latitude than UARS, with higher

mixing ratios than the measurements. In the upper strato-

sphere (from 10 to 1 hPa), at equatorial and mid-latitudes,

the model underestimates the observations, in March and

September. This tends to indicate that the destruction of

N2O (photolysis + reaction with O(1D)) may be somehow

too strong as we would expect the contrary on the basis of

the too quick circulation alone. This hypothesis is confirmed

by the outputs of both the ARPEGE-Climat driven simula-

tion and of the T42 simulation (see the figures provided as

supplementary material: http://www.atmos-chem-phys.net/

7/5815/2007/acp-7-5815-2007-supplement.pdf). Indeed, in

the former case, with a relatively realistic AOA (see para-

graph 3.2) N2O mixing ratios are lower than observations by

20% or more throughout the stratosphere. In the T42 case,

the model overestimates observations, again throughout the

www.atmos-chem-phys.net/7/5815/2007/ Atmos. Chem. Phys., 7, 5815–5860, 2007
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Fig. 5. Continued.

stratosphere by 20% or more which reveals that, though too

strong, the destruction of N2O is not too far off to counter-

act the fast T42 circulation. Further light is thrown on the

deficiencies of the N2O field by analysing the NOy field (see

paragraph 3.4.4). At high latitudes, differences between the

model and the UARS observations have a seasonal cycle; this

is also visible in the ODIN/SMR observations. For compar-

ison with these observations, the simulated N2O fields have

been averaged in 10 degree latitude boxes. Figure 7 shows

the evolutions between 2001 and 2005 of the zonal averages

over three latitude bands with different dynamical charac-

teristics, 80 S–70 S, 10 S–EQ, and 50 N–60 N. In the tropi-

cal high stratosphere (10 S–EQ), the underestimation of the

model, already mentioned in the comparison with the UARS

observations, appears in the time series for all years, though

in a limited way for the year 2002. In the tropical high

troposphere, that corresponds to the lowest altitudes ODIN

can observe, N2O is rather well mixed both in MOCAGE-

Climat and in the satellite observations. However, as men-

tioned before, some variability appears around the 100 hPa

level observed by ODIN with a minimum occurring during

the spring of 2004; this minimum is not reproduced by the

model. At high southern latitudes (80 S–70 S), the seasonal

cycle of larger and smaller mixing ratios at a given altitude is

not as marked in the model as in the observations. This is re-

lated, in winter to a too weak mesospheric subsidence in the

ECMWF analyses, and in summer to the bias of the chem-

ical destruction already mentioned. It results in alternating

underestimations and overestimations of the observations. In

the 50–60 N latitude band, differences are generally not as

important as for the other latitude bands, except for 2003,

which reflects that the circulation is better simulated in the

Northern Hemisphere.

3.4.4 Total nitrogen oxides (NOy)

The NOy family consists of all nitrogen compounds exclud-

ing N2O. NOy is produced from one branch of the reaction

Atmos. Chem. Phys., 7, 5815–5860, 2007 www.atmos-chem-phys.net/7/5815/2007/
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Fig. 6. MOCAGE-Climat T21 zonal monthly mixing ratios of N2O (ppmv) against the Randel et al. (1998) climatology, and relative

differences (100×((Model−Obs)/Obs)), between 100 and 0.3 hPa, in March (left panels) and September (right panels).

of N2O with O(1D). O(1D) itself comes from the photolysis

of N2O or O3. We have first validated the simulated NOy

in the UTLS with the MOZAIC observations. The compar-

isons between MOCAGE-Climat T42 outputs and observa-

tions in DJF and JJA appear in Fig. 4, while histograms of

NOy classes for several regions of the world are presented in

Fig. 5 (observations versus T21 and T42 simulations). The

model always presents a positive bias, over all regions of the

world. This overestimation is higher in the summer months

when the chemistry that controls NOy is the most effective.

It appears clearly in the plotted distributions of Fig. 5: peaks

of the distributions of the model are 2 to 4 times higher than

peaks of the observations, depending on the region. Further-

more, shapes of the distributions differ: observations have

asymmetric distributions with large occurrences of very low

mixing ratios (<0.4 ppb), mainly observed in winter, while

distributions of the model are quite symmetric and show no

occurrence of these low mixing ratios. In the UTLS, vari-

ous sources can contribute to augmenting the NOy content,

including lightning and aircraft emissions, transport from the

troposphere and stratospheric intrusions. In our case, the first

two sources are not relevant as we did not take them into ac-

count in the present simulations. On the contrary, transport

from the troposphere can be incriminated for this positive

bias in the UTLS: we will see later in the paragraph on nitro-

gen oxides (paragraph 3.5.1) that MOCAGE-Climat shows a

general overestimation of the NO2 tropospheric content, in

particular in winter. The impact on the UTLS is the positive

deviation against the MOZAIC observations that we see here.

As for the last hypothesis (intrusions from the stratosphere),

we got a sense of the validity of the stratospheric NOy of

the model by comparing it to the sum of HNO3 and sunset

NO + NO2 from the UARS observations, along the recom-

mendations of Park et al. (1999). In March and September

(not shown), months presented in our N2O comparison, the

model overestimates observations (by 10 to 20% between 50

www.atmos-chem-phys.net/7/5815/2007/ Atmos. Chem. Phys., 7, 5815–5860, 2007



5832 H. Teyssèdre et al.: MOCAGE-Climat: a full tropospheric-stratospheric CTM

2000 2002 2004 2000 2002 2004 2000 2002 2004

-40 0 +40

1

10

100

P
R

E
S

S
U

R
E

 (
h

P
a

)

1

10

100

P
R

E
S

S
U

R
E

 (
h

P
a

)

16 80 144 208 272

2000 2002 2004 2000 2002 2004 2000 2002 2004

1

10

100

P
R

E
S

S
U

R
E

 (
h

P
a

)

80S-70S 10S-Eq. 50N-60N

O
B
S

M
O
D
E
L

D
IF
F
E
R
E
N
C
E

Fig. 7. Time/pressure series for N2O zonally averaged bands of 10 degrees, 80 S–70 S (left panels), 10 S–EQ (middle panels) and 50 N–60 N

(right panels), for ODIN observations (upper line, in white no observations), simulated by MOCAGE-Climat (T21BL1 simulation, middle

line) and absolute differences (model – observations) (ppbv) (bottom line).

and 2 hPa) over most latitudes and altitudes, for both months.

This positive bias in the stratosphere could well play a role

in the positive bias in the UTLS, and it is in agreement with

the destruction of N2O being too large (see paragraph 3.4.3).

3.5 Short-lived species

Long-lifetime species can degrade into chemical species that

are rather “aggressive” and therefore, have short lifetimes as

they may react with a large number of chemical constituents

in the atmosphere.

3.5.1 Nitrogen oxides (NOx)

Generally, the sum of nitrogen monoxide (NO) and nitro-

gen dioxide (NO2) is referred to as “nitrogen oxides” (NOx).

These two components are strongly linked to each other as in

the atmosphere they can change from one form to the other

very quickly. Hence the NOx family is more stable than its

two components. These species play a key role in the ozone

budget, particularly in the lower stratosphere (Brasseur and

Solomon, 1986), together with the HOx and ClOx families,

and so their correct representation is essential to simulate a

realistic ozone distribution there. In MOCAGE-Climat, NOx

is a so-called family that gathers NO, NO2, nitrogen triox-

ide (NO3), and atomic nitrogen (N) that is mainly present in

the middle atmosphere with mixing ratios lower than a few

pptv. The use of NO3 within the NOx family allows us to

take into account the equilibrium with NO2 that occurs at

night-time. In any case, day or night, the NO3 mixing ratio is

at least one order of magnitude smaller than the one of NO2.

Therefore, the NOx family defined within MOCAGE-Climat

can be considered as consistent with the NOx of Grooss and

Russel (2005).

Figure 8 presents the stratospheric mixing ratios, from 100

to 0.01 hPa, of MOCAGE-Climat and of Grooss and Russel

(2005), for January, May, and September. MOCAGE-Climat

are monthly averages that include day and night values. Al-

though there is an inconsistency here as the Grooss and Rus-

sel (2005) climatology have been compiled from sunset mea-

surements only, we obtained very similar outputs using day-

time data of the model. The general features of the NOx dis-

tribution are quite well reproduced by the model, both spa-

Atmos. Chem. Phys., 7, 5815–5860, 2007 www.atmos-chem-phys.net/7/5815/2007/
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Fig. 8. First two columns: MOCAGE-Climat T21 zonal monthly mixing ratios of NOx (ppbv) against the Grooss and Russel (2005)

climatology, between 100 and 0.1 hPa, in January (upper panels), May (middle panels), and September (lower panels). Last two columns:

MOCAGE-Climat T21 zonal monthly mixing ratios of HNO3 (ppbv) against the Randel et al. (1998) climatology, between 100 and 0.3 hPa,

in January (upper panels), May (middle panels), and September (lower panels).

tially and temporally: the vertical gradient conforms with ob-

servations, with a rapid increase and then a decrease around

a maximum centered at ∼3 hPa. The seasonal cycle appears

correctly simulated with higher mixing ratios in the mid-

upper stratosphere at all latitudes in the summer season. Fur-

thermore, the “rabbit-ear” shape clearly exists both in model

results and in observations in May. Above the stratopause,

the model overestimates NOx in all seasons. This can be

explained by several factors: firstly, we can expect a poorer

performance of MOCAGE-Climat in the highest levels of the

model due to both a combination of a poorer performance of

the forcing model and of a less accurate description of the

chemistry. We can also note that observations are of a poorer

quality in these regions: Grooss and Russel (2005) report

a 30% combined systematic and randon uncertainty of NO,

that dominates in the upper stratosphere.

Total (sum of stratospheric and tropospheric) NO2

columns from MOCAGE-Climat at 10.00 am local time

for May and September are shown in Fig. 9, together with

monthly total columns derived from SCIAMACHY measure-

ments interpolated on the T42 grid. High values are cor-

rectly simulated above regions of strong emissions of NOx

from fossil fuel combustion (e.g., over China or Western

Europe) or biomass burning. Furthermore, the seasonality

of biomass burning appears similar in both simulations and

observations, with in May relative maxima in Africa along

10 N and 5 S, and in September strong emissions in south-

ern Africa and Central South America. In September also,

smaller columns are correctly simulated in the 15 N–15 S

equatorial band. However, values from MOCAGE-Climat

are generally higher than those from SCIAMACHY. In May,

the model is within ±20% of the observations over most of

the Northern Hemisphere and South America. In Septem-

ber, relative differences are higher, overestimation is partic-

ularly important in regions of biomass burning emissions.

This is coherent with the overestimation we identified for

CO. Our bias is similar to the one presented in Bousserez

et al. (2007) who compared tropospheric NO2 columns from

MOCAGE with those from SCIAMACHY, over the north-

ern Atlantic from the USA to Europe, in July–August 2004.

Above southern oceans, where the total column is almost en-

tirely of stratospheric origin, model mixing ratios show a

www.atmos-chem-phys.net/7/5815/2007/ Atmos. Chem. Phys., 7, 5815–5860, 2007
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Fig. 9. MOCAGE-Climat T42 total NO2 columns (1015 molec cm−2) versus SCIAMACHY columns at T42 resolution also, and relative

differences (100×((Model−Obs)/Obs)), in May (left panels) and September (right panels).

pattern that is linked to the way we estimated off-line the

amounts of NO2 at 10.00 a.m. Indeed, we computed these

amounts from the 6-hourly 3-D archive, with a linear inter-

polation to yield hourly values. As NO2 exhibits strong dis-

continuities between day and night, such a linear interpola-

tion even though not fully adequate, still produces valuable

results.

MOCAGE-Climat simulations lead to larger NO2 column

biases during the boreal winter than during other seasons.

In the winter months, ratios between tropospheric and to-

tal columns from MOCAGE-Climat are larger than 0.7 over

most of the Northern Hemisphere (north of 30N, not shown).

These ratios are much larger than the SCIAMACHY ones;

there is no such dissimilarity between the model and the ob-

servations during the rest of the year. However, one has

to keep in mind that detailed validation of NO2 satellite

products is ongoing, with special attention to tropospheric

NO2 (Piters et al., 2006). It should also be noted that Sav-

age et al. (2004) who compared measurements of NO2 by

GOME to outputs from the TOMCAT global CTM reported

measurements to model ratios of 1.4 for North America

and 1.9 for Europe (mean values for an entire year). Sev-

eral hypotheses could explain the overestimation of NO2 in

MOCAGE-Climat (and TOMCAT). Firstly, there is no het-

erogeneous loss of N2O5 on tropospheric aerosols in the

model at present. Noije et al. (2006) and references therein

indicate that considering such reactions could reduce the tro-

pospheric NOx concentrations at middle and high latitudes

by up to 80% in winter and 20% in summer, and in the trop-

ics and subtropics by 10–30%. Secondly, too high mixing

ratios near the surface could be related to the local vertical

diffusion scheme of Louis (1979) that we use. Savage et al.

(2004) reported that the boundary layer mixing in the model

has been improved by replacing the Louis (1979) scheme

Atmos. Chem. Phys., 7, 5815–5860, 2007 www.atmos-chem-phys.net/7/5815/2007/
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Fig. 10. Left columns: MOCAGE-Climat T21 zonal monthly mixing ratios of ClO (ppbv, day-time values only) against the Randel et

al. (1998) climatology, and relative differences (100×((Model−Obs)/Obs)), between 100 and 0.3 hPa, in January (left panels) and July

(right panels). Right columns: MOCAGE-Climat T21 zonal monthly mixing ratios of HCl (ppbv) against the Grooss and Russel (2005)

climatology, and relative differences (100×((Model−Obs)/Obs)), between 100 and 0.1 hPa, in January (left panels) and July (right panels).

by a non-local vertical diffusion scheme. Finally, the bi-

ases of MOCAGE-Climat could be related to how the var-

ious species within the NOx family are handled; indeed, if

the repartition of these species is satisfactory for the strato-

sphere (Lefèvre et al., 1994), the NO2 mixing ratios modelled

here reveal that further investigation on the use of this family

concept in the troposphere should be pursued.

3.5.2 Chlorine monoxide (ClO)

As suggested by Farman et al. (1985) and confirmed by vari-

ous studies reported in WMO (1998) for instance, the amount

of chlorine monoxide is of primary importance for the ozone

depletion throughout the stratosphere, and especially for the

representation of the ozone hole. In the upper part of the

stratosphere, the ozone controlling regime is mainly driven

by the amount of chlorine, whereas at lower altitudes it is

driven by nitrogen oxides, the role of HOx being very impor-

tant throughout the atmosphere.

Figure 10 presents the MOCAGE-Climat T21 monthly

mixing ratios of ClO (day-time values only), between 100

and 0.3 hPa, in January and July along with the Randel et

al. (1998) climatology, and their relative differences. On the

whole, the model reproduces the typical structures of the ob-

servations, i.e., the two cells with higher values at approxi-

mately 3 hPa, and their seasonal shift towards high latitudes

of the summer hemisphere, as well as the relative maxima

between 50 and 20 hPa at high latitudes of the winter hemi-

sphere. These relative maxima appear somewhat too large

and shifted towards higher pressures. Quantitatively, mod-

eled ClO mixing ratios seem rather too low over part of the

stratosphere. This might result from a too large transfor-

mation of active chlorine into its reservoir form HCl (see

Sect. 3.6.2).

3.5.3 Hydroxyl radical (OH)

OH is the primary oxidant in the troposphere and is responsi-

ble for the removal of many reduced compounds; in addition,

it determines the lifetimes of CH4, CO, and other pollutants.

Errors of 15–25% in the global mean concentration of OH

may signify major misunderstandings about the chemistry or

www.atmos-chem-phys.net/7/5815/2007/ Atmos. Chem. Phys., 7, 5815–5860, 2007
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Fig. 11. MOCAGE-Climat T21 zonal OH mixing ratios (pptv) versus Spivakovsky et al. (2000) mixing ratios, between 1000 and 100 hPa,

in January (left panels) and July (right panels).

the abundance of precursors of OH in the troposphere (Spi-

vakovsky et al., 2000).

Zonal means of OH from MOCAGE-Climat at T21 resolu-

tion and as shown by Spivakovsky et al. (2000), for January

and July between 1000 and 100 hPa, are presented in Fig. 11.

Both model and the “reference” data set derived from ob-

servations reveal the seasonality of the OH mixing ratios,

with higher values in the Northern Hemisphere from March

to September, that reflects variations in sunlight and water

vapour. In general, simulated mixing ratios are larger than

Spivakovsky et al. (2000), from the surface up to 800 hPa,

and lower from 500 hPa up to the tropopause that is the up-

per limit of the Spivakovsky et al. (2000) dataset. In the

lower troposphere, the overestimation exceeds 80% at most

latitudes.

Biases in OH mixing ratios are reported in recent publi-

cations: Bousserez et al. (2007) also found that MOCAGE

overestimated the observations performed from research air-

craft during the ITOP campaign between the surface and

4 km, by a factor of 2, while it underestimated them for al-

titudes higher than 7 km, with analysed H2O consistent with

the observations. They suggested that the positive OH bias in

the lower troposphere may be due to photo-chemical effects

of aerosols not included in the MOCAGE used, e.g., aerosol

scattering, absorption of ultraviolet radiation and reactive up-

take of HO2, NO2 and NO3. Ren (2007) found that their box

model over-predicted OH by a factor of 1.7 throughout much

of the troposphere in northern mid-latitudes; their analysis

suggested the presence of unknown atmospheric constituents

or unknown reactions with OH that were suppressing the ob-

served OH at mid-latitudes.

Finding the causes of these discrepancies appears neces-

sary for understanding the global-scale tropospheric oxida-

tion capacity. Spivakovsky et al. (2000) indicated that the

available tests did not establish significant errors in their es-

timates of OH except for a possible underestimate in winter

Atmos. Chem. Phys., 7, 5815–5860, 2007 www.atmos-chem-phys.net/7/5815/2007/
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Fig. 12. MOCAGE-Climat T42 mean vertical profiles of HNO3 mixing ratios (pptv, in green) against aircraft field campaign observations

(Emmons et al., 2000). Regions of the world are as presented in Horowitz et al. (2003); vertical is between the surface and 11 km. The

observations are shown as mean (red lines), ±2 standard deviations (blue dotted lines).

in the northern and southern tropics by 15–20% and 10–15%,

respectively, and an overestimate in southern extratropics by

∼25%. However, the sparsity of observations did not allow

for an unambiguous characterization of the distributions.

3.6 Reservoir species

Reservoir species, whose lifetime is longer than that of rad-

ical species, store radicals that they eventually release, and

by doing so they modulate chemical cycles. For instance,

the highly reactive radicals chlorine monoxide and nitrogen

dioxide can react together to form chlorine nitrate that has a

www.atmos-chem-phys.net/7/5815/2007/ Atmos. Chem. Phys., 7, 5815–5860, 2007
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much longer lifetime and inhibits ozone destruction by these

two radicals.

3.6.1 Nitric acid (HNO3)

Nitric acid is likely to be the main reservoir of nitrogen

species in the troposphere and the lower stratosphere. It is

a highly soluble species and therefore, strongly affected by

precipitation in the troposphere. It is a sink for nitrogen

species in the stratosphere.

Figure 8 presents the zonal monthly HNO3 mixing ratios

for the model and the observations, in January, May and

September, from 100 to 0.3 hPa. HNO3 is evidently very de-

pendent on the season at high latitudes, with an “eye-glasses”

shape distribution, and maximum values in the winter hemi-

sphere. The model reproduces quite accurately this distri-

bution, both in terms of its latitudinal and vertical distribu-

tions, and its seasonality; however, mixing ratios that are too

large at very high latitudes of the Southern Hemisphere in

September reveal that the sedimentation of HNO3, associ-

ated with Polar Stratospheric Cloud particles, is too weak in

MOCAGE-Climat.

We have evaluated HNO3 in the troposphere by comparing

model outputs to a selection of observations obtained from

aircraft campaigns, as compiled by Emmons et al. (2000) and

presented in Horowitz et al. (2003). We display in Fig. 12

model outputs corresponding to average profiles over the re-

gion and for the months of the campaign. Our agreement

with observations in the troposphere above 4 km is quite sat-

isfactory at most locations shown. However, simulations are

generally higher than observations in the layer between the

surface and 3 km. The HNO3 concentrations are very sen-

sitive to the parameterization of the wet deposition, and this

needs to be further investigated in MOCAGE-Climat. An-

other possible source of discrepancy could be higher biomass

burning emissions in the model compared to the emissions at

the time of the observations, and this could explain for in-

stance the profile in the E-Brazil region. Furthermore, this

overestimation of HNO3 is consistent with the overestima-

tion of the NO2 mixing ratios shown in Sect. 3.5.1 as HNO3

is predominantly produced by the oxidation of NO2. One has

to mention however that many other current 3-D CTM over-

estimate HNO3 concentrations at many locations throughout

the troposphere (Horowitz et al., 2003). Hauglustaine et al.

(2004) and references therein also outline the difficulty to

simulate nitric acid in CTMs.

3.6.2 Hydrochloric acid (HCl)

Hydrochloric acid is the main chlorine reservoir in the mid-

dle atmosphere. It is formed by thermal reactions between

ClOx and HOx and therefore is mainly present in the upper

atmosphere where both families exist simultaneously.

Figure 10 presents the zonal monthly HCl mixing ratios

for the model and the UARS observations, in January and

July, from 100 to 0.1 hPa, together with the relative differ-

ences. Most of the time, the values from the model are higher

than the observations, at all seasons and all latitudes, except

for the low values from the model at high latitudes in the

winter hemisphere, particularly in July, that do not appear in

the observations. The positive bias in the model is mostly in

the range of the uncertainties reported by Grooss and Russel

(2005) who indicate that the combined systematic and ran-

dom uncertainty of single HCl profiles in the lower strato-

sphere is between 14 and 24%, and between 12 and 15%

in the upper stratosphere. In addition, Grooss and Russel

(2005) note that HCl mixing ratios increased monotonically

over the investigated time period, i.e., from about 2.8 ppbv to

3.35 ppbv at 0.3 hPa between 1992 and 1997; however, much

slower mean changes have been observed thereafter (WMO,

2002). The model values might therefore be in better agree-

ment with observations performed during the period of simu-

lations (2000 to 2005). Nevertheless, the spatial characteris-

tics of model outputs and observations are quite similar, with

a positive gradient from the low stratosphere to the meso-

sphere, and with an equatorial low up to around 10 hPa; at

lower pressures, zonal mixing ratios do not show any latitu-

dinal gradient.

As already mentioned in Sect. 3.5.2, active chlorine in the

model mainly ends up in the reservoir form HCl in the strato-

sphere whilst it remains more in an active form in the obser-

vations. This is not the case at polar latitudes during win-

ter and spring. At seen in Sect. 3.6.1, HNO3 sedimentation

appears too weak, thus heterogeneous reactions occuring on

particles formed from HNO3 deplete HCl too much. As a

consequence ClO amounts are too high in polar vortices (see

Fig. 10).

3.7 Ozone (O3)

Ozone is the most abundant trace constituent of the strato-

sphere that is chemically active. It is produced by a cy-

cle initiated by photolysis of O2 (Chapman, 1930) which is

most efficient in the tropical middle stratosphere. Additional

reactions, involving nitrogen oxides, chlorine and bromine

species consume ozone; these reactive species can be tem-

porarily removed from catalytic cycles by being stored in

reservoir species. It should be mentioned that though ozone

mixing ratios in the stratosphere can be greater than 10 ppmv,

it is in “chemical equilibrium” with trace species whose mix-

ing ratios can be from one thousand to one million times

smaller.

Interest in tropospheric ozone results from its impact both

on the radiative forcing (Ramaswamy et al., 2001), on human

health (WHO, 2003) and on vegetation. Present and future

conditions of air quality are a subject of concern and scien-

tific studies have recently turned to the potential influence of

climate change on future levels of ozone (Stevenson et al.

(2006) and references therein). There are two sources of tro-

pospheric ozone: transport from the stratosphere, and in situ

Atmos. Chem. Phys., 7, 5815–5860, 2007 www.atmos-chem-phys.net/7/5815/2007/
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Fig. 13. Evolutions between 2000 and 2005 of the zonal mean total ozone column (DU) on a T21 grid, as in the NIWA climatology (top

panel, in white no observations), simulated by MOCAGE-Climat (middle panel), and relative differences (100×(model−obs)/obs).

chemical production. Ozone production takes place when

carbon monoxide and hydrocarbons are photo-oxidized in

the presence of nitrogen oxides. The main ozone precur-

sors are emitted by human activities, but also have significant

natural sources.The ozone budget is closed by two loss pro-

cesses: dry deposition to the Earth’s surface, and chemical

destruction (Wild, 2007). Ozone destruction occurs mainly

via reactions with water vapour (following photolysis) and

with hydroperoxyl (HO2) and hydroxyl radicals.

3.7.1 Total ozone column

The evolution between 2000 and 2005 of the zonally aver-

aged total ozone column from the model is in fair agree-

ment with the NIWA climatology (see Fig. 13). The well

known features of highest ozone values in northern spring,

low ozone values in the tropics with a small seasonal cy-

cle, a relative ozone maximum in the mid-latitudes of the

Southern Hemisphere in late winter/early spring, and a mini-

mum ozone column above the Antarctic are well represented.

However, two positive biases appear: first, there is too much

ozone at high and mid-northern latitudes, especially at the

end of the boreal winter. This bias is consistent with the

ECMWF forcings that drove our simulations; as shown in

Sect. 3.2, the Brewer-Dobson circulation is too fast, resulting

in too large a decrease in the amount of tropical ozone while

accumulating too much ozone in the polar lower stratosphere

in winter. As a result, the band of minimum ozone columns

in the tropics is too narrow, inducing stronger meridional gra-

dients than observed. This stratospheric circulation becomes

even faster when increasing the resolution to T42: maxima

of total ozone reach then unrealistic values over the pole (up

to 600 DU, not shown).

A second bias appears in the modeled Antarctic ozone

hole that is not deep enough in comparison to the NIWA cli-

matology. This seems in contradiction with the (too) large

ClO amounts found in the vortex (see Fig. 10). On further

analysis of various compounds, we noted that upon return

of the sunlight in September, ClO reacted preferably with

large amounts of NO2 rather than deplete ozone. These too

large amounts of NO2 were produced by the photolysis of

HNO3, whose sedimentation during winter appeared insuffi-

cient (see Fig. 8). One has to note however that observations

at high zenith angles have larger uncertainties (McPeters et

al., 1996). Interestingly, the variability in area and depth of

the ozone hole is well captured by MOCAGE-Climat. For

instance, in September 2002 when the ozone hole split up

into two cores, MOCAGE-Climat reproduced the two struc-

tures (not shown). This original feature of the ozone hole is

mainly driven by atmospheric dynamics.

Figure 14 shows latitude/longitude distributions of the

ozone column in January and July. MOCAGE-Climat repro-

duces total ozone extrema in association with tropospheric
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Fig. 14. Total ozone columns (DU) for January (left panels) and July (right panels) on a T21 grid, in the NIWA climatology (top panels, in

white no observations), simulated by MOCAGE-Climat (middle panels), and relative differences (100×(model−obs)/obs).

meteorological systems that affect the tropopause height, in-

ducing longitudinal variations in the ozone column. For in-

stance, the two maxima over the Labrador and Aleutian Is-

lands, linked to winter depressions, are well reproduced by

the model. However, the northern Atlantic ridge brings too

much ozone from the tropics towards northern high latitudes;

this could be due to wave breaking in the ECMWF ana-

lyzes being too strong, or to too strong horizontal diffusion

linked to the T21 resolution. Over the western tropical Pa-

cific, a minimum related to convection activated by warm

sea-surface temperatures can be seen in the observations and

is well captured by the model. In July, the total ozone distri-

bution in the Northern Hemisphere is mainly driven by pho-

tochemistry, and therefore by solar zenith angle, leading to

latitudinal bands of total ozone, with weak zonal gradients.

Relative differences are smaller than in January and are lower

than 10% over most of the globe.

The variability of the daily total ozone columns over a

month is presented in Fig. 15 for January, April, July and

October. TOMS and MOCAGE-Climat standard deviations

show similar patterns. Low standard deviations are found

in the tropics, with values typically smaller than 10 DU; the

main source of variation is related to convection that can in-

ject tropospheric air which is poor in ozone into the lower

stratosphere during sporadic convective events. Higher stan-

dard deviations are calculated near synoptic depressions in

winter or spring, for instance in April south of Greenland

and east of Japan (40 DU for the TOMS). Even larger devi-

ations appear at the edge of the polar vortices: in the North-

ern Hemisphere they reach 60 DU in January, while in the

Southern Hemisphere TOMS deviations linked to the polar

vortex are above 75 DU in October. Effectively, if the polar

vortex of the Northern Hemisphere is subject to strong plan-

etary wave breaking, inducing high geographical variations

of its shape, the differences in total ozone between the inside

and the outside of the vortex are almost similar to the dif-

ferences observed in relation to the moving of a depression.

In contrast, in Antarctica the meteorological situation con-

sists of a huge vortex almost centered over the South Pole,

surrounded by several depressions. In the vortex, heteroge-

neous chemistry occurs during austral spring and strongly

depletes ozone. Thus, the ozone column is minimum within

the vortex while it is maximum over the neighbouring de-

pressions. During the austral spring, distortion of the vortex
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Fig. 15. Standard deviation of the daily total ozone column (DU) for January (first line), April (second line), July (third line), and October

(bottom line) on a T21 grid, as observed by TOMS (left panels, in white no observations) and simulated by MOCAGE-Climat (right panels).

due to baroclinic activity can then lead to rapid changes in

the ozone amount, and to large standard deviations.

The main patterns of the standard deviation are well repro-

duced by MOCAGE-Climat, showing that the model is able

to capture the principal features of the variability of the total

ozone column.

3.7.2 Stratospheric ozone

The total ozone column reflects especially the ozone amount

in the lower stratosphere, and thus is not representative of

what occurs at higher levels. Therefore, it is worth compar-

ing modeled ozone with available climatologies. Figure 16

shows MOCAGE-Climat T21 zonal monthly mixing ratios

of O3 in April and October against the Grooss and Russel

(2005) climatology, between 300 and 0.1 hPa. The vertical

distribution is well reproduced by the model, with a clearly

marked maximum at tropical latitudes around 10 hPa; this

maximum is a little larger in the model (with relative differ-

ences smaller than 10%.) The broad envelope of large mix-

ing ratios distorts depending on the season, and the model

correctly reproduces these distortions. The minimum at high

latitudes of the Southern Hemisphere in October, in the polar

vortex below 30 hPa, is more pronounced in the observations.

Simulated ozone mixing ratios in the mid-mesosphere (at al-

titudes above 0.3 hPa) are larger than measurements. This is

largely linked to the marked diurnal cycle that exists at these

altitudes (see for instance Geer et al. (2006)). To test it in

MOCAGE-Climat, we compared day-time values from the

model with observations in July. The positive bias at these

altitudes was reduced then by ∼0.4 ppmv. Our underestima-

tion of H2O in the stratosphere (see paragraph 3.4.1) could

also contribute to this bias as the destruction of O3 is mostly

driven by HOx in the mesosphere. Furthermore, it should be

noted also that the peculiarities of the mesospheric chemistry

which involves species under ion form (see Brasseur and

Solomon (1986)) are not considered in MOCAGE-Climat.

The homogeneous gas-phase chemistry of the model may

therefore not be representative for the mesosphere, though

it appears to provide reasonable upper boundary conditions.
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Fig. 16. MOCAGE-Climat T21 zonal monthly mixing ratios of O3 (ppmv) against the Grooss and Russel (2005) climatology, and relative

differences (100×((Model−Obs)/Obs)), between 300 and 0.1 hPa, in April (left panels) and October (right panels).

3.7.3 Ozone in the UTLS region

Figure 4 shows MOZAIC O3 observations between the 340

and 350 K isentropic levels, for winter (DJF) and summer

(JJA), MOCAGE-Climat T42 fields, and relative differences.

The model tends to underestimate UTLS mixing ratios at mid

and northern latitudes, and to overestimate them in the trop-

ics; this behaviour is somewhat seasonally dependent. For

instance, discrepancies are less important in autumn, when

the planetary wave activity increases and transports ozone

towards the polar lower stratosphere, but discrepancies have

also an inter-annual variability, with a different behaviour

in 2002 for instance (not shown). The fact that modeled

O3 is weaker than MOZAIC O3 is in apparent contradiction

with comparisons with TOMS observations (model columns

larger than TOMS ones at northern latitudes see Sect. 3.7.1).

However, Figs. 17 and 18 throw some light on this as they

show that, at the same location, MOCAGE-Climat can both

underestimate mixing ratios in the UTLS region and over-

estimate them at lower pressures that drive the total column

value (see for example the profile at Resolute in July).

Two types of O3 distributions can be distinguished, de-

pending on the region of the world (see Fig. 5): at north-

ern mid-latitudes, with sampling in the UTLS, MOCAGE-

Climat and MOZAIC have similar shapes, with fewer occur-

rences of the smallest mixing ratios (0–20 ppbv) and a spread

of large ones, but MOCAGE-Climat shifts the maxima to-

wards larger mixing ratios and has fewer occurrences of very

high mixing ratios typical of the stratosphere. At tropical lat-

itudes, with narrow distributions centered around low mixing

ratios, typical of the troposphere, the model reproduces the

atmosphere well.

Our results are different from those of Law et al. (2000)

who compared ozone from five tropospheric CTMs to

MOZAIC observations. They found that models underesti-

mated the tropospheric O3 while they mainly overpredicted

Atmos. Chem. Phys., 7, 5815–5860, 2007 www.atmos-chem-phys.net/7/5815/2007/
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Fig. 17. MOCAGE-Climat vertical profiles of O3 mixing ratios (ppbv) against Logan (1999a) observations, from 1000 to 10 hPa (black

curve, ±1 standard deviation as grey curves), at various sites in January (left column), April (middle left), July (middle right), and October

(right). MOCAGE-Climat T21 simulations appear as red profiles, T42 simulations as green ones (both axes have a logarithmic scale).
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Fig. 18. As in Fig. 17.
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the stratospheric O3. They explained that the overpredic-

tion could be due, in addition to horizontal and vertical res-

olutions, to the stratospheric influx as the evaluated CTMs,

mainly tropospheric, had a rather “poor” representation of

the stratosphere. MOCAGE-Climat describes both layers,

and tends to slightly underestimate stratospheric O3, espe-

cially at high mixing ratios. This would seem to confirm the

Law et al. (2000) argument.

3.7.4 Tropospheric ozone

Figures 17 and 18 show vertical profiles of O3 mixing ra-

tios, from 1000 to 10 hPa, at various sites of the Logan

(1999a) climatology, in January, April, July and October;

both MOCAGE-Climat T21 and T42 simulations appear to-

gether with observations and their standard deviation.

At a number of mid-latitudes stations in the Northern

Hemisphere, such as Hohenpeissenberg or Sapporo, simula-

tions show ozone concentrations to be higher than the obser-

vations up to the tropopause, except in July where agreement

with observations is quite good. In July, however, simulated

concentrations are larger in the boundary layer at a few sites,

and this is in part related to the higher levels of ozone precur-

sors emitted from the surface in 2000. For the Wallops Island

site for instance, the period of observations spans the years

1980–1993. Wild (2007), who explored the variability in cur-

rent CTMs when simulating the tropospheric ozone budget,

demonstrated the importance of the emissions of the surface

precursors. Seasonal variations in the boundary layer and the

lower troposphere, reflecting variations in photochemistry

and/or in the O3 precursors linked for instance to the seasonal

cycle of the biomass burning activity, are correctly simulated

(see for example Wallops Island or Natal). At the tropical

stations, the model tends to slightly overestimate mixing ra-

tios in the lower part of the troposphere, and somewhat un-

derestimate them in its upper part. This could reflect some

weaknesses in the convection as well as in the deposition pro-

cesses. O3 in the upper-part of the tropical troposphere would

also be greatly enhanced with the introduction in MOCAGE-

Climat of a parameterization of NOx emissions from light-

ning, as outlined in Labrador et al. (2005). The resolution

of the tropopause is better at mid-latitudes than at high ones

(e.g., Resolute and Syowa stations). At these high latitudes,

the model overestimates the height of the tropopause, with

a smoother vertical gradient; the agreement between model

and observations in the UTLS region is better for tropical sta-

tions (see Natal and Hilo). Simulations at T42 lead to outputs

that conform better with observations in the UTLS region.

A closer insight into the simulated seasonal cycle of ozone

at selected stations is provided in Figs. 19 and 20 with mix-

ing ratios at three pressure levels (800, 500, and 300 hPa). At

800 hPa the model simulates quite well the spring maximum

that exists at most sites. Values at pristine air sites at high

latitudes or at mid-latitudes (e.g., Lauder) are in the range

of observations, i.e., lower than 60 ppbv the whole year. At

tropical sites, the seasonal cycle is quite similar to observa-

tions with a clear maximum at some stations linked to the

biomass burning activity (e.g., Brazzaville, Natal), somewhat

too accentuated in the model. At 500 hPa, the seasonal cycle

is correctly simulated at about half of the sites studied, with

good simulations of the tropical sites (e.g., Natal, Samoa).

For the other half of the sites, mixing ratios are within the ±1

standard deviation range during half of the year, from May to

October, while they are too high during the rest of the year.

At 300 hPa, simulations are well within the range of observa-

tions, except for Brazzaville, with large standard deviations

of observations at high latitudes (e.g., Alert, Syowa) reflect-

ing stratospheric air intrusion. The coincidence between ob-

servations and simulations is particularly good at Lauder and

Naha.

3.8 Summary statistics

We provide in this section a synthesized view of how the

four simulations T21, T21BL1, T42 and T42BL1 compare

with observations. This is shown in Fig. 21 as three Tay-

lor plots (Taylor, 2001). The horizontal and vertical axes

give the normalized standard deviation (model standard devi-

ation/observation standard deviation), the curved axis gives

the correlation coefficient, and the distance between the

model and the observations (not plotted at 1 on the horizontal

axis) is a measure of the centered root mean square error.

The first plot (see Fig. 21a) shows model outputs and ob-

servations in the stratosphere (100–1 hPa) against the Grooss

and Russel (2005) and Randel et al. (1998) climatologies for

all the chemical species previously analysed in the paper, i.e.

N2O, CH4, NOx, ClO, HNO3, HCl, O3. The points that

represent the four simulations are almost coincident for O3,

HNO3 and N2O. Furthermore, the points for the simulations

with and without the simplified boundary layer (T42 and

T42BL1 for instance) are very close for all chemical species

except for ClO. This is because we present daytime mixing

ratios against the observations for the T21 simulation, that we

recomputed in a second step as ClO observations appeared

to be daytime observations. For the other three simulations

we used for the Taylor diagram 6-hourly averages, hence the

discrepancy between the ClO points. The T21 simulation

is closer to observations than the T42 simulation for CH4,

NOx and HCl. Overall, although there are minor differences

between the four simulations, the T21 simulation is the one

that provides the best comparisons to the Grooss and Russel

(2005) and Randel et al. (1998) climatologies with correla-

tion coefficients higher than 0.9 and variabilities very com-

parable to the variabilities of the observations. This could be

due to the coherence between the horizontal resolutions of

the observations and the model.

The second plot (see Fig. 21b) displays statistical informa-

tion concerning the model and the MOZAIC observations in

the UTLS (340–350 K layer), for O3, CO and NOy. Three

simulations are shown (T21, T42 and T42BL1) as coinci-
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Fig. 19. MOCAGE-Climat monthly O3 mixing ratios (ppbv) at three different pressure levels, 800 (left), 500 (middle), and 300 hPa (right),

against Logan (1999a) observations (black curve, ±1 standard deviation as grey curves). MOCAGE-Climat T21 simulations appear as the

red curves.
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Fig. 20. As in Fig. 19.
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5848 H. Teyssèdre et al.: MOCAGE-Climat: a full tropospheric-stratospheric CTM

Table 7. Biases between modeled and observed tropospheric O3 (model-obs, ppbv).

High lats High lats Mid lats Mid lats Tropics Tropics

1000-800 800-400 1000-800 800-400 1000-800 800-400

T21 1.5 4.3 13.5 12.9 14.1 3.9

T21BL1 4.2 7.9 21.3 18.7 18.9 7.6

T42 7.5 6.9 14.7 12.0 15.8 0.6

T42BL1 9.6 9.9 18.6 16.6 19.8 4.3

dent outputs with aircraft observations. The correlation co-

efficient for NOy is poor (∼0.3) while those for O3 and CO

are near 0.8. For O3, the variability of the T42 simulation is

closer to the variability of the observations than that of the

T21 simulation. This is not the case for CO. The T42 and

T42BL1 simulations have very close points, and agree better

with the observations than the T21 simulation.

The third plot (see Fig. 21c) presents information on ozone

in the troposphere. O3 modeled and measured mixing ratios

over various latitude bands, i.e., latitudes higher than 60 S or

60 N (high latitudes), latitudes between 30 N and 30 S (trop-

ics), and mid-latitudes, and for two pressure layers, 1000–

800 hPa and 800–400 hPa, are shown. Clearly, simulations

are further apart from observations in the tropical latitudes,

with the lowest correlation coefficient for the 800–400 hPa

layer. The closest group of points to observations is the high

latitudes 800–400, then comes the mid-latitudes 800–400,

with model variability very similar to the observed variabil-

ity and a correlation coefficient close to 0.8. The T21 simu-

lation produces slightly better statistical scores than the T42

simulation, except for the 1000–800 hPa layer in the trop-

ics. The Taylor plot does not indicate differences in biases

that we show in Table 7: again, BL1 simulations, both at

T21 and T42 resolutions are further away from observations,

with for instance a bias of 21.3 ppbv for the T21BL1 simula-

tion at mid-latitudes between 1000 and 800 hPa versus 13.5

for the T21 simulation. Biases are the smallest for the T21

simulation, except for the T42 case in the tropics between

800–400 hPa where the small bias of 0.6 ppbv is a blend of a

positive bias at the highest pressures of the layer considered

and a negative bias at the lowest ones. Overall, these scores

for O3 in the troposphere are satisfactory given the effect of

the horizontal resolution of models on ozone production ef-

ficiency. For instance, Liang and Jacobson (2000) and ref-

erences therein, point out that integrated ozone production

may be overpredicted by as much as 60% in coarse-model

grid cells exposed to different air masses.

4 Sensitivity to surface processes

A number of recent studies have outlined the response of

CTMs to surface emissions, running the models with var-

ious emission scenarios (Lamarque et al., 2005; Dentener

et al., 2006; Stevenson et al., 2006; Shindell et al., 2006).

We present in this section results related to the response in

the sink component of the surface processes, that is the dry

deposition process. Our objective is to complement with

a climatological perspective the few results already pub-

lished on the sensitivity of the boundary layer mixing ra-

tios and of the deposition fluxes to the dry deposition veloc-

ity (Ganzeveld and Lelieveld, 1995; Ganzeveld et al., 1998).

We performed an additional 6-year simulation (2000–2005)

noted T21DvClim. T21DvClim is similar to the T21 simu-

lation except that the deposition velocities are climatological

monthly deposition velocities calculated from the on-line ve-

locities of the T21 simulation. We computed hourly clima-

tologies as the diurnal cycle of the deposition velocity of a

number of species (e.g., HNO3, O3) is well defined (Michou

et al., 2004). We outline in Sect. 4.1 results about mixing ra-

tios over the whole atmosphere, and we describe in Sect. 4.2

how dry deposition fluxes have been impacted by this change

in the deposition velocities.

4.1 Mixing ratios

We synthesized the main differences between the T21 and

T21DvClim simulations with regard to mixing ratios as fol-

lows: we analysed absolute relative differences of zonal

monthly averages, and for each model level we looked at the

maximum of these relative differences. In the lines below,

the maximum (respectively the mean) presented correspond

to the maximum (respectively the mean) of these maximum

values. The highest maximum relative differences are found

for HNO3, reaching 58%, with an average value of 17%; the

largest differences appear in the troposphere: at altitudes be-

low 200 hPa, maximum relative differences are higher than

20% but are close to zero above 100 hPa. In general, for

all the species presented here, maximum relative differences

are close to zero above 100 hPa. The next species in terms of

large relative differences is NO2, linked to HNO3, up to 41%,

and a mean of 10%; in the end, total NO2 columns differ by

about 1% on average over the whole globe and the year, and

by a maximum of 35% (not shown). Then comes OH and

O3 with maxima of 25 and 21%, and means of 5 and 2% re-

spectively. For O3, the relative differences decrease rapidly
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Fig. 21. Taylor type plot of modeled mixing ratios from the T21, T21BL1, T42 and T42BL1 simulations: (a) in the stratosphere 100–1 hPa

against the Grooss and Russel (2005) and Randel et al. (1998) climatologies. (b) in the UTLS, 340–350 K layer against MOZAIC data. (c) in

the troposphere against the Logan (1999a) climatology, over various latitude bands, latitudes higher than 60 S or 60 N (H), latitudes between

30 N and 30 S (T), and mid-latitudes (M), and for two pressure layers, 1000–800 hPa and 800–400 hPa.

from the surface up to about 800 hPa (lowest 10 levels of the

model); the highest differences appear in May. Finally, all

maximum relative differences are below 6% for CO through-

out the whole atmosphere. As for ClO and HCl they have

non significant relative differences in the troposphere due to

their very small mixing ratios, and relative differences lower

than 10% in the stratosphere. For N2O, relative differences

are almost nil throughout the atmosphere.

4.2 Dry deposition fluxes

We have computed deposition fluxes (moles m−2 s−1) as

the product of the gas concentration at the lowest level of

the model (moles m−3) and of its dry deposition velocity

(m s−1). Deposition fluxes may differ by region/model be-

cause of differences in the geography of the emissions, the

strength and quality of the atmospheric transport, the chem-

ical reactions involved from emission to deposition, and the

processes covered to calculate the dry deposition velocity.

Our T21 O3 deposition flux of 794 Tg(O3) yr−1 is lower

than those simulated by a number of recent models: Steven-

son et al. (2006) presented results from simulations per-

formed by 26 chemistry models; the O3 deposition flux of

the ensemble mean for 2000 was of 1003 Tg(O3) yr−1, with

a standard deviation of 200 Tg(O3) yr−1. Models included
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Fig. 21. Continued.
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Table 8. Summary of results from the T21 and T21DvClim simu-

lations related to dry deposition: annual dry deposition fluxes, and

global annual mean mixing ratios at the surface, with standard de-

viation in parentheses.

T21 T21DvClim

O3 dep. flux (Tg yr−1) 794 785

HNO3 dep. flux (Tg(N) yr−1) 13.9 11.1

NO2 dep. flux (Tg(N) yr−1) 5.6 5.5

NO dep. flux (Tg(N) yr−1) 0.01 0.01

PAN dep. flux (Tg(N) yr−1) 2.0 1.9

NOfl dep. flux (Tg(N) yr−1) 21.5 18.6

O3 mix. ratio (ppbv) 24.8 (12.1) 24.1 (11.9)

HNO3 mix. ratio (pptv) 140.3 (220.4) 108.9 (183.4)

NO2 mix. ratio (ppbv) 0.8 (2.3) 0.8 (2.2)

deposition schemes of varying levels of sophistication, but all

used resistance type formulations (Wesely, 1989) coupled to

prescribed land cover distributions, as we do in MOCAGE-

Climat. These ozone deposition fluxes are larger than those

of the IPCC TAR (Prather et al., 2001), that reported a mean

O3 flux of 770 Tg(O3) yr−1. Stevenson et al. (2006) indi-

cated that the reasons for this change were not immediately

obvious, but probably partially related to the higher total

NOx emissions used compared to earlier studies; also iso-

prene emissions were somewhat higher; and NMHC schemes

have developed in sophistication over the last five years. Our

emissions of NOx are lower than those of Stevenson et al.

(2006), by about 9%; so are our emissions of isoprene (15%

lower) and monoterpenes (60% lower). Wild (2007) indicate

also that at coarse resolution the dry deposition flux is sys-

tematically underestimated, 5–8% at the 300–600 km grid

scales investigated.

The ratio of Northern Hemisphere flux to Southern Hemi-

sphere flux is of 2.2; both the hemispheric repartition of land

and ocean, that induces higher deposition velocities in the

Northern Hemisphere, and the hemispheric repartition of in-

dustrialized regions, that generate higher surface O3 concen-

trations, contribute to this unequal partitioning of the fluxes.

Deposition over oceans amounts to only 38% of the global

deposition. Monthly fluxes are shown in Fig. 22 for the T21

simulation. The strong seasonal cycle over the continents

of the temperate latitudes of the Northern Hemisphere, with

larger deposition fluxes from May to September, is essen-

tially driven by the deposition velocity (not shown here); in

the tropical latitudes, a seasonal cycle exists with maxima

from July through September south of the Equator, linked

to higher O3 surface concentration due to emissions from

biomass burning; at high latitudes, a very small deposition

velocity prevents deposition any time of the year.

In addition to studying the O3 deposition flux, we have

also analyzed the flux of nitrogen species, as all these species

are closely linked to each other. After their emissions, NO

and NO2 undergo a series of chemical reactions and depo-

sition, either dry deposition at the surface or wet removal

by rain. MOCAGE-Climat has a reasonable description

of the chemistry relevant to nitrogen species. Our nitro-

gen flux is the flux of the so-called NOfl species, where

NOfl=HNO3 + NO2 + NO + PAN; the dry deposition flux

from other nitrogen species can be neglected, because of

very low mixing ratios or deposition velocities. The T21

run simulated a global mean NOfl dry deposition flux of

21.5 Tg(N) yr−1, that represents 52% of the nitrogen emit-

ted. This ratio is in line with recent studies: Dentener et

al. (2006), who reported results from 26 models, essentially

focussed on wet nitrogen deposition, quoting that dry de-

position was an equally important process to remove nitro-

gen species, but that use of the dry deposition measurements

which are not global was beyond the scope of their analy-

sis. The relative importance of dry deposition for removal of

NOy varied significantly among models, from 30 to 60%.

Lamarque et al. (2005) investigated nitrogen deposition

using six CTMs. The total deposition over land ranged from

25 to 40 Tg(N) yr−1 and represented about 70% of the to-

tal nitrogen emitted, the rest being oceanic deposition as

models are at steady state or close to it. Our dry deposi-

tion over land is of 34% (coherent with the 70% just cited),

while the amounts deposited over Asia 5.3 Tg(N) yr−1, Eu-

rope (3.3), and North America (3.0) are very close to those

of Lamarque et al. (2005) (∼5, ∼3, and ∼3 respectively). In

addition, our maximum deposition rates (not shown) are of

0.4–0.5 g(N) m−2 yr−1 over part of Western Europe, of the

Eastern USA and of China; these rates are consistent with

the total nitrogen deposition rates of Lamarque et al. (2005).

Rates over Africa also are similar, while those over South

America are lower than the mean model in Lamarque et al.

(2005); over the South American continent however deposi-

tion variability among models is the highest in Lamarque et

al. (2005).

The largest part of our NOfl dry deposition flux is due to

the HNO3 flux (65%); then comes the NO2 flux (26%, see

Table 8). The NO2 dry deposition flux is still very contro-

versial, in particular because of debate on the dry deposition

velocity (Holland et al., 2004; Kirkman et al., 2002), but also

on how to consider the rapid in-air reactions between NO,

NO2, and O3 that may occur between the soil and the height

at which the deposition velocity is computed. Wesely and

Hicks (2000) noted that such a task represented a significant

challenge to modelers, especially if the processes were to be

described adequately in regional and large-scale models. Fi-

nally, Trebs et al. (2006) reported that NO2 significantly ac-

counted for N dry deposition over a tropical pasture in the

Amazon Basin, based on measurements valid for the entire

year.

With regard to the dry deposition fluxes, the T21DvClim

and the T21 simulations produced very similar O3

fluxes (785 Tg yr−1 versus 794), and likewise for NO2
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Fig. 22. MOCAGE-Climat T21 O3 dry deposition fluxes (g m−2 month−1), and relative differences (100×((T21DvClim−T21)/T21)), in

January (left, 2 upper panels), March (middle, 2 upper panels), May (right, 2 upper panels), July (left, 2 bottom panels), September (middle,

2 bottom panels), and November right, 3 bottom panels).

(5.5 Tg(N) yr−1 versus 5.6) (see Table 8), with mixing ra-

tios at the surface of the model highly correlated (r>0.99).

Locally however these fluxes may differ by up to 20% (see

Fig. 22). In the case of HNO3, outputs from the two simu-

lations differ more, with a global flux for T21DvClim about

being 20% lower, and quasi-systematically lower mixing ra-

tios at the surface (not shown). The variability of the HNO3

deposition velocity is high as it is driven by the aerodynamic

resistance and thus the stability of the atmosphere. It is not

surprising that the use of climatological deposition velocities

instead of deposition velocities calculated on-line has a great

impact on HNO3 amounts. Furthermore, as HNO3 is at the

end of the oxidation chain, changes in the budgets of various

other species seem to have a cumulative effect for HNO3,

hence the large differences we see here between the T21 and

T21DvClim simulations.

5 Conclusions

We have presented the global troposphere and stratosphere

configuration of the Météo-France Chemistry and Transport

Model MOCAGE-Climat. The model, which includes 82

chemical species and 242 thermal reactions, simulates the

global 3-D distribution of ozone and its precursors, both

in the troposphere and the stratosphere, up to the mid-

mesosphere (∼70 km). The version of MOCAGE-Climat
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discussed in this paper has been driven by the ECMWF op-

erational analyses, on T21 and T42 horizontal grids and 60

hybrid vertical levels. At the surface, emissions and dry

deposition are taken into account: these emissions consist

of monthly or yearly inventories, representative of the year

2000, and include both anthropogenic and biogenic sources;

dry deposition is calculated on-line using the 6-hourly me-

teorology of the ECMWF. The model can run with or with-

out a procedure that considers the model’s lowest levels as

one layer for chemistry; this procedure significantly reduces

computing cost.

Several 6-year simulations have been performed with the

meteorology of the years 2000–2005, at two horizontal res-

olutions, with and without the reduced boundary layer, and

with on-line or climatological deposition velocities. Model

outputs have been compared thoroughly to observations,

both from satellite and in-situ measurements at climatolog-

ical timescales. This comparison exercise highlighted the

strong non-linear linkages between the chemical species of

MOCAGE-Climat.

A number of the discrepancies between the model and the

observations are likely related to the meteorological forc-

ing in the stratosphere. Indeed, age of air simulations con-

firmed that the Brewer-Dobson circulation of the ECMWF

analyses is at least two times too fast, and that this discrep-

ancy increases with the horizontal resolution. This results

in too much ozone being accumulated in the lower to mid-

stratosphere in our model as shown by the comparisons to the

NIWA/TOMS total columns, to the UARS measurements, or

to the ozone sondes. At the same time, ozone mixing ratios

are too low in the tropical lower stratosphere. Experiments to

simulate age of air driving the CTM with another meteoro-

logical model, i.e., the ARPEGE-Climat GCM, revealed that

much older age of air could be obtained. This is promising

for long-term chemistry-climate interactions as further steps

will be to drive the full CTM with ARPEGE-Climat.

In the stratosphere, setting aside shortcomings linked to

the meteorology, N2O is in fair agreement with observations

(UARS and ODIN satellites); CH4 variability, both spatially

and seasonally, is satisfactory, though modelled mixing ra-

tios slightly underestimate observations; consequently H2O

mixing ratios are also too low throughout the stratosphere.

HNO3 is also quite accurately simulated, but sedimentation

of nitric acid included in Polar Stratospheric Clouds appears

too weak. Finally, the model evaluation revealed that the

reservoir form HCl is somewhat too abundant, while NOx

is correctly simulated.

Ozone in the UTLS does not show any systematic bias;

differences with observations, either MOZAIC or ozone son-

des, vary depending on the season, but also on the latitude

and on the year. These results confirm the conclusions of

Law et al. (2000) that the stratosphere and the troposphere are

together mandatory to simulate correctly ozone in the UTLS.

In the troposphere, better agreement is obtained at mid and

high latitudes than in the tropics; at equatorial stations, the

model underestimates observations over the entire free tro-

posphere while mixing ratios are too high in the boundary

layer. This reflects weaknesses both in the dry deposition

over these regions, where very few measurements enable val-

idation, and in the convective transport that does not seem

strong enough. Though the model seems to capture some of

the seasonal variability of the tropospheric ozone, agreement

with observations is better in summer.

NO2 total colums are in general overestimated, as re-

vealed by comparisons to SCIAMACHY NO2 columns. This

overestimation is more important in the winter months over

the Northern Hemisphere. Parallel to this positive bias and

linked to it, HNO3 is also overestimated in the first 3–4 km of

the troposphere when compared with aircraft measurements,

while it matches well with the observations above 4 km. This

bias of HNO3 may also reflect insufficient loss via the wet de-

position process. Overall, as OH is biased high in the lower

troposphere, this would tend to generate too much oxidation

in the model. This in turn would lead to a positive bias in

HNO3, then in NOx and finally in tropospheric O3.

A general feature for CO is that the model underestimates

observations in the Northern Hemisphere and overestimates

them in the Southern Hemisphere. A similar underestimation

exists in many current CTMs and seems to be related to the

emissions of CO (Shindell et al., 2006).

Simulations with the simplification of the boundary layer

lead to model outputs being less similar to observations from

ozone sondes, not only at the lowest levels of the model,

but also up to the mid-troposphere. The impact of the bulk

boundary layer is negligible in the rest of the atmosphere, so

it appears that this simplified boundary layer is an interesting

option for long-term integrations of the model. Comparisons

of the T21 and T42 resolution outputs lead to the conclusion

that the T21 outputs are closer to observations in the strato-

sphere, and also, more surprisingly, in the troposphere. In

the UTLS however the T42 simulation obtains better scores.

Dry deposition fluxes of O3 and nitrogen species are

within the range of values reported by recent inter-

comparison model exercises (Stevenson et al., 2006), though

at the low end. The use of climatological deposition veloc-

ities versus on-line ones had the greatest impact on HNO3

and NO2 in the troposphere; O3 was impacted up to 800 hPa.

Deposition fluxes differed locally up to 20%. However, given

the uncertainties not only on this deposition process but also

on the model chemistry and dynamics, the climatological de-

position velocity option appears reasonable for the study of

chemistry and climate interactions. The benefit will be a re-

duction in computer time.

The future, besides the on-going evolution of the opera-

tional, air quality version of the CTM that has repercussions

on all versions of the model, will be to make simulations

over decades or centuries with MOCAGE-Climat coupled to

the GCM ARPEGE-Climat. Ultimately, both models will be

part of the global Earth modelling system of CNRM.
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Appendix A

Observations used for the evaluation

A1 NIWA-TOMS

The assimilated NIWA data base combines satellite-based

ozone measurements from four Total Ozone Mapping Spec-

trometer (TOMS) instruments, three different retrievals from

the Global Ozone Monitoring Experiment (GOME) instru-

ments, and data from four Solar Backscatter Ultra-Violet

(SBUV) instruments. Comparisons with the global ground-

based World Ozone and Ultraviolet Data Center (WOUDC)

Dobson spectrophotometer network have been used to re-

move offsets and drifts between the different datasets to

produce a global homogeneous total ozone column dataset

that combines the advantages of good spatial coverage of

satellite data with good long-term stability of ground-based

measurements. Updated versions of the TOMS (version 8),

GOME (version 3.1) and SBUV (version 8) retrieval soft-

ware, together with assimilated total column ozone fields

from Royal Netherlands Meteorological Institute (KNMI),

have been used to compute this climatological dataset which

comprises global monthly fields from 1978 to 2005 at 1.25◦

(longitude) by 1◦ (latitude) resolution. Trends in the satel-

lite data, particularly Earth Probe TOMS data from 2002 on-

wards, have been corrected. For further details on the NIWA

dataset see Bodeker et al. (2005).

Total ozone columns derived from the TOMS measure-

ments (WMO, 1988) represent the primary source of in-

formation of the NIWA dataset. Since the first launch in

1978, the TOMS measures radiances of the solar UV radi-

ation backscattered by the atmosphere, at six different wave-

lengths, and the ozone amount is determined by the ratio of

measurements in different channels from the Beer-Lambert

equation with a typical resolution of 60 to 38 km. A daily to-

tal ozone column dataset is generated, except over polar night

regions due to the instrument characteristics. Accuracy is of

about 1%, but decreases at large zenithal angles (McPeters et

al., 1996). Because of the length of its measurement record,

TOMS data are very useful for ozone model validation.

A2 HALOE-MLS-CLAES/UARS

We worked with two climatologies of a number of strato-

spheric compounds derived from measurements made on-

board the Upper Atmosphere Research Satellite (UARS) on

an asynchronous orbit. Both climatologies use the results of

the version 19 retrieval software for the Halogen Occultation

Experiment (HALOE) that utilises the solar occultation tech-

nique, making daily observations of up to 15 sunrise and 15

sunset profiles. HALOE has been validated against a variety

of measurements; generally, the accuracy of the retrievals de-

creases near the tropopause (see Table 6 for typical values for

the various trace gases).

The Grooss and Russel (2005) climatology has been built

from the instrument data of HALOE that observed mixing

ratios of important trace species in the stratosphere for more

than ten years, starting in 1991. A zonal climatology has

been compiled for O3, H2O, CH4, NOx, and HCl. In this ar-

ticle we used data on 5 degree latitude bins and 22 pressure

levels from 316 to 0.1 hPa. Seasonal dependence is taken

into account with monthly data derived from 1991–2002 ob-

servations. The most recent data since September 2002 have

not been included in this climatology, since in 2002 a very

unusual major warming occurred in Antarctica, and as ob-

servations have been less frequent after 2002.

The primary data analyzed in the Randel et al. (1998) cli-

matology are HALOE vertical profile measurements cover-

ing the period 1991–1997. Data have been combined as

monthly zonal averages, on 4 degree bins equivalent latitudes

(i.e., the latitude of an equivalent potential vorticity distri-

bution arranged symmetrically about the pole), and on 16

pressure levels spanning 100–0.32 hPa (approximately 16-56

km), with a vertical spacing of about 2.5 km. HALOE data

have been complemented with Microwave Limb Sounder

(MLS) (version 4) and Cryogenic Limb Array Etalon Spec-

trometer (CLAES) (final retrieval version) instrument data,

both with measurements of additional chemical species and

measurements in winter polar latitudes where HALOE ob-

servations are unavailable. The period of observations for

CLAES is much shorter however, that is October 1991–May

1993. We analyse in this article simulations of HNO3, N2O

and ClO against CLAES HNO3, N2O, and MLS ClO obser-

vations.

A3 SMR/ODIN

The Odin mini-satellite is a Swedish-led project funded

jointly by Sweden, Canada, France, and Finland (Murtagh

et al., 2002). It was launched in February 2001, and is still

operational. Odin includes two instruments that measure var-

ious compounds: the Optical Spectrograph and Infrared Im-

ager System (OSIRIS) and the Sub-Millimeter Radiometer

(SMR) (Frisk et al., 2003). In this study we used retrievals

of the 502.296-GHz N2O line obtained from the SMR data

(see a description of the retrieval method in (Rodgers, 2000)).

Measurements have been analyzed using version V222 up to

July 2005 (Urban et al., 2005) and version V225 after Octo-

ber 2005. N2O can then be retrieved from about 100 hPa to

pressures below 1 hPa with a vertical resolution of about 2–

3 km. The total systematic error covers 3–35 ppbv for mixing

ratios from 0 to ∼150 ppbv, respectively. Validation of the

N2O observations appears in Urban et al. (2005).

For the present study, we restricted our evaluation to N2O

data with a measurement response greater than 0.75, i.e.,

where a priori information is in minority. Measurements

have been monthly averaged into 10◦ latitude boxes from Au-

gust 2001 to Dec 2005 in the vertical domain 100–1 hPa.
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5854 H. Teyssèdre et al.: MOCAGE-Climat: a full tropospheric-stratospheric CTM

A4 MOPITT/TERRA

The Measurements Of Pollution In The Troposphere (MO-

PITT) instrument, on-board the NASA satellite Terra, has

been making nadir observations since March 2000. MOPITT

views the Earth over all latitudes with a pixel size of 22 km

by 22 km and a cross-track swath that gives a near-global

distribution of CO every 3 days, providing the first continu-

ous global measurements of CO in the troposphere (Drum-

mond and Mand, 1996). MOPITT measures the infrared ra-

diance upwelling from the Earth’s surface and atmosphere;

retrievals cannot therefore be performed over cloudy regions.

CO mixing ratio profiles and total column amounts are re-

trieved, although there is considerable correlation between

levels with about 1.5–2 independent pieces of information.

Since the inversion of the measured radiances is an ill-posed

problem, meaning there is not a unique solution, it is nec-

essary to constrain the retrievals with a priori information.

In polar regions, MOPITT CO retrievals are weighted by

the a priori profile much more heavily than in other regions,

and therefore contain less information. Similarly, night-time

MOPITT retrievals often contain less information than day-

time retrievals, especially over land. A summary of the re-

trieval technique appears in Deeter et al. (2003). Generally

the accuracy is better than 10%; validation results are pro-

vided in Emmons et al. (2004, 2007).

In this study we used level 3 version 3 monthly pro-

files available from the ftp site ftp://l0dps01u.ecs.nasa.gov/

MOPITT/MOP03M.003/, which consist of averages gridded

on a global 1◦×1◦ grid. Mixing ratios on 7 vertical levels

(surface, 850, 700, 500, 350, 250, and 150 hPa) are provided

together with the averaging kernels.

A5 SCIAMACHY/ENVISAT

SCIAMACHY (SCanning Imaging Absorption spectroMe-

ter for Atmospheric CartograpHY) is an instrument on-board

ESA’s environmental satellite Envisat launched in March

2002, having an equator crossing time at 10.00 a.m. on de-

scending mode. SCIAMACHY observes earthshine radiance

in limb and nadir viewing geometry, and solar and lunar light

transmitted through the atmosphere in occultation viewing

geometry. Vertical profiles and columns of a variety of at-

mospheric constituents are inferred, but we considered here

NO2 columns only. The typical size of the nadir ground-

pixel for NO2 is 30 km×60 km, and SCIMACHY provides

a global coverage at the equator within 6 days. A complete

description of SCIAMACHY and its mission can be found

in Bovensmann et al. (1999) and references therein. Piters

et al. (2006) present an overview of SCIAMACHY valida-

tion. For the NO2 columns, the largest uncertainties are due

to clouds, but other large errors come from surface albedo,

and a priori profile shape. Generally, the accuracy is better

than 1015 molec cm−2, but the discrepancy with other mea-

surements can be as high as 3.5 1015 molec cm−2 at polluted

sites of the Northern Hemisphere. Several comparisons of

the NO2 columns with ground-based and other satellite ob-

servations have recently been published (Schaub et al., 2007;

Blond et al., 2007; Boersma et al., 20071).

We obtained the data from the Tropospheric Emission

Monitoring Internet Service (TEMIS) web site http://www.

temis.nl/airpollution/no2col/data/. They consist of global,

monthly, total and tropospheric columns at 0.25◦×0.25◦ hor-

izontal resolution. We chose to evaluate our model results

against SCIAMACHY retrievals rather than GOME ones, as

the GOME data were available until June 2003 only. The

slant columns from SCIAMACHY observations are derived

by the Belgian Institute for Space Aeronomy (see Eskes and

Boersma, 2003, for details on the method). The retrieval

technique of TEMIS includes a data assimilation technique

to estimate the stratospheric part of the NO2 column (KNMI,

TM4 model), which is an essential step in determining quan-

titatively accurate tropospheric NO2 and total columns (see

Boersma et al., 2004, for details).

A6 MOZAIC

The European Measurement of OZone and water vapor by

AIrbus in-service airCraft program (MOZAIC) aims to doc-

ument the global distribution of some chemical species in

the troposphere and the lower stratosphere using instruments

on-board regular long-range aircraft (Marenco et al., 1998).

This project results from the collaboration of the aeronau-

tics industry, airline companies, and research laboratories for

the development and operation of specific instruments, the

distribution of observations, and their use for the validation

of models (Law et al., 1998, 2000). Five long-range aircraft

were equipped for the regular measurements of meteorolog-

ical and chemical parameters during whole flights. Flight

parameters (time, geographical coordinates, pressure, and

aircraft speed) are measured every 4 s, together with ther-

modynamical (temperature, wind speed) and chemical (O3,

H2O, CO, and NOy) parameters in the vicinity of the air-

craft. During phase I of MOZAIC (from 1993 to 1996), O3

and H2O were the only chemical compounds measured. New

instruments were developed during phase II (from 1997 to

1999) for sampling CO (Nédélec et al., 2003) and NOy (Volz-

Thomas et al., 2005), while O3 and H2O measurements were

on-going. Since the installation of these new instruments

(phase III), CO and NOy measurements complement O3 and

H2O observations. Almost 20 000 flights have been docu-

mented between the beginning of MOZAIC in 1994 and May

2006. The spatial coverage of the MOZAIC measurements

is interesting, as aircraft fly over most of the Northern Hemi-

sphere. However, the main air corridors, between Europe and

North America, represent almost half of the sampled flights;

1Boersma, K. F., Jacob, D. J., Eskes, H. J., Pinder, R., Wang, J.,

van der A. R. J.: Intercomparison of SCIAMACHY and OMI tropo-

spheric NO2 columns: observing the diurnal evolution of chemistry

and emissions from space, J. Geophys. Res., submitted, 2007.
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some flights cross the Equator. About 90% of the MOZAIC

measurements are made during the cruise, between 9 and

12 km. The remaining measurements are performed during

ascent and descent phases, providing information on the ver-

tical structure of the tropospheric chemistry.

We chose to use data from the MOZAIC database (http://

mozaic.aero.obs-mip.fr/web/) evaluated in the literature that

are averaged data every 1 minute and/or every 150 m along

the vertical axis for the period extending from 1 January 2000

to 30 April 2004. For NOy measurements, only the reliable

data have been retained excluding values below the detection

limit (Volz-Thomas et al., 2005). No comparison was con-

ducted for water vapour measurements because MOCAGE-

Climat H2O mixing ratios in the UTLS are those of the

ECMWF analyses already evaluated in Oikonomou and

O’Neill (2006). We averaged data in 3D boxes, 2.8◦×2.8◦

along the horizontal, and in the vertical the layer between

the 340 and 350 K isentropic levels, where most of the ob-

servations are performed. We further made averages over

3-month periods to study the seasonal variability; monthly

periods included too few data. In addition to this climatolog-

ical analysis, we computed histogram distributions that take

into account all the 1 minute data available in six regions of

the world, to distinguish among mid and tropical latitudes,

oceans and continents. These regions cover North Amer-

ica (130–90 W , 30–70 N), South America (80–40 W, 45 S–

10 N), the northern Atlantic ocean (60–15 W, 10–60 N), Eu-

rope (10 W–30 E, 30–70 N), Africa (15 W–45 E, 35 S–30 N),

and Siberia/Asia (45–155 E, 10–60 N).

A7 Other non-satellite observations

We used part of the climatology of Logan (1999a) which in-

cludes observations from a number of ozonesonde stations,

mainly from the WOUDC. We analyzed data from 23 sta-

tions that we retained, which represent about two thirds of

the stations in the Logan (1999a) dataset, namely those that

included observations after 1980, and with a climatology for

all the months of the year. Only five of these stations are lo-

cated in the 30 S–30 N band; the others are situated at higher

latitudes, in polluted as well as pristine areas. The monthly

profiles include data on 22 pressure levels, both in the tropo-

sphere and in the stratosphere, from the surface up to 10 hPa

(10 levels up to 200 hPa).

We also made comparisons with the three-dimensional cli-

matology distribution of tropospheric OH by Spivakovsky et

al. (2000). Although advances have been made in measuring

concentrations of OH, one has to rely on models to provide

an integrated measure of the oxidative capacity of the atmo-

sphere because of the extreme variability of OH in time and

space. The monthly distribution of Spivakovsky et al. (2000)

has been computed using observations of a number of pre-

cursors for OH, including for instance O3, H2O, and various

nitrogen species, over the period 1978–1996. The distribu-

tion of OH was then derived as a function of these precursors,

temperature and cloud cover on a 8◦ lat×10◦ lon grid, from

the surface up to 100 hPa in the tropics (200 elsewhere).

Finally, we completed our reference set with the data com-

piled by Emmons et al. (2000) that consist of tropospheric

measurements of ozone and its precursors from a number of

aircraft campaigns. Although these are not climatologies in

the sense of a long term average, they provide a unique pic-

ture of the global distribution of these species. We used av-

eraged profiles over a number of regions of the world with a

1 km vertical resolution.
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5856 H. Teyssèdre et al.: MOCAGE-Climat: a full tropospheric-stratospheric CTM

ICARTT/ITOP experiment, J. Geophys. Res., 112, D10S42,

doi:10.1029/2006JD007595, 2007.

Bouwman, A. F., Van der Hoek, K. W., and Olivier, J. G. J.: Un-

certainties in the global source distribution of nitrous oxide, J.

Geophys. Res., 100, 2785–2800, 1995.

Bovensmann, H., Burrows, J. P., Buchwitz, M., Frerick, J., Noel,

S., Rozanov, V. V., Chance, K. V., and Goede, A. P. H.: SCIA-

MACHY: Mission objectives and measurement modes, J. Atmos.

Sci., 56, 127–150, 1999.

Brasseur, G. P. and Solomon, S.: Aeoronomy of the middle atmo-

sphere, D. Reidel Publishing Company, 452 pp., 1986.

Brasseur, G. P., Hauglustaine, D. A., Walters, S., Rasch, P. J.,

Müller, J.-F., Granier, C., and Tie, X. X.: MOZART, a global

chemical transport model for ozone and related chemical trac-

ers. 1. Model description, J. Geophys. Res., 103, 28 265–28 289,

1998.

Bregman, A., Meijer, E., and Scheele, R.: Key aspects of strato-

spheric tracer modeling using assimilated winds, Atmos. Chem.

Phys., 6, 4529–4543, 2006,

http://www.atmos-chem-phys.net/6/4529/2006/.

Brewer, A. W.: Evidence for a world circulation provided by the

measurements of helium and water vapour distribution in the

stratosphere, Q. J. Roy. Meteor. Soc., 75, 351–363, 1949.
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Semane, N., Teyssèdre, H., Cariolle, D., and Karcher, F.: Ozone

loss in the 2002/2003 Arctic vortex deduced from the assimila-

tion of Odin/SMR O3 and N2O measurements: H2O as dynami-

cal tracer, Q. J. Roy. Meteor. Soc., in press, 2007.

Emmons, L. K., Hauglustaine, D. A., Muller, J.-F., Carroll, M.

Atmos. Chem. Phys., 7, 5815–5860, 2007 www.atmos-chem-phys.net/7/5815/2007/

http://www.atmos-chem-phys.net/6/4529/2006/
http://www.atmos-chem-phys.net/7/2183/2007/
http://www.atmos-chem-phys.net/4/8471/2004/
http://www.atmos-chem-phys.net/5/1557/2005/
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