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A NEW TRUNCATION STRATEGY FOR THE
HIGHER-ORDER SINGULAR VALUE DECOMPOSITION∗
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Abstract. We present an alternative strategy for truncating the higher-order singular value
decomposition (T-HOSVD). An error expression for an approximate Tucker decomposition with
orthogonal factor matrices is presented, leading us to propose a novel truncation strategy for the
HOSVD, which we refer to as the sequentially truncated higher-order singular value decomposi-
tion (ST-HOSVD). This decomposition retains several favorable properties of the T-HOSVD, while
reducing the number of operations required to compute the decomposition and practically always
improving the approximation error. Three applications are presented, demonstrating the effective-
ness of ST-HOSVD. In the first application, ST-HOSVD, T-HOSVD, and higher-order orthogonal
iteration (HOOI) are employed to compress a database of images of faces. On average, the ST-
HOSVD approximation was only 0.1% worse than the optimum computed by HOOI, while cutting
the execution time by a factor of 20. In the second application, classification of handwritten digits,
ST-HOSVD achieved a speedup factor of 50 over T-HOSVD during the training phase, and reduced
the classification time and storage costs, while not significantly affecting the classification error. The
third application demonstrates the effectiveness of ST-HOSVD in compressing results from a nu-
merical simulation of a partial differential equation. In such problems, ST-HOSVD inevitably can
greatly improve the running time. We present an example wherein the 2 hour 45 minute calculation
of T-HOSVD was reduced to just over one minute by ST-HOSVD, representing a speedup factor of
133, while even improving the memory consumption.
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1. Introduction. In this paper, we seek a good multilinear rank-(r1, r2, . . . , rd)
approximation to the order-d tensor A ∈ R

n1×n2×···×nd , using only numerical linear
algebra tools. Formally, we are interested in an approximate solution to

min
B
‖A− B‖2F(1.1)

with B ∈ R
n1×···×nd restricted to be of rank (r1, r2, . . . , rd) and ri ≤ ni. Here, we

deal with the multilinear rank, as defined by Hitchcock [22]. The above approximation
problem is well-posed [13, Corollary 4.5], but does not exhibit a known closed solution.
This motivated the search for reliable numerical algorithms for solving problem (1.1).
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Early approaches to this problem, as well as applications, originated in psycho-
metrics. Tucker considered a decomposition of a third-order tensor [54, 55, 56], now
known as the Tucker decomposition, into a set of three factor matrices and a third-
order core tensor. Formally, we write

ai,j,k =

n1∑
i′=1

n2∑
j′=1

n3∑
k′=1

si′,j′,k′xi,i′yj,j′zk,k′(1.2)

for a third-order tensor A = �ai,j,k� ∈ R
n1×n2×n3 . Here X = �xi,i′� ∈ R

n1×n1 ,
Y = �yj,j′� ∈ R

n2×n2 , and Z = �zk,k′� ∈ R
n3×n3 are the factor matrices, and

S = �si′,j′,k′� ∈ R
n1×n2×n3 is the core tensor. In [56], Tucker proposed algorithms

for computing a Tucker decomposition (1.2). Of particular interest is the Tucker1
algorithm [56], which was later refined by De Lathauwer, De Moor, and Vande-
walle [10]. The refined algorithm is called the higher-order singular value decom-
position (HOSVD) [10, 56], and is particularly useful for constructing an approximate
solution to problem (1.1). A rank-(r1, r2, r3) approximation can be obtained simply
by restricting the factor matrices X , Y , and Z to the first r1, r2, and r3 columns,
respectively, and by restricting the core tensor to S ′ = �si,j,k�

r1,r2,r3
i,j,k=1 . This truncated

HOSVD (T-HOSVD) has traditionally been the method of choice for obtaining a
cheap approximate solution to problem (1.1). In this paper, we investigate a new
technique for truncating the HOSVD, which is cheaper still to compute and often
improves the approximation error with respect to the T-HOSVD.

The problem we consider, in this paper, is different from the problem of deter-
mining the best approximation of a given multilinear rank to A. This problem has
been subjected to extensive research. In general, only locally optimal solutions [23]
can be computed efficiently, and there is a wide variety of algorithms to accomplish
this. Kroonenberg and de Leeuw were the first to propose such an (iterative) al-
gorithm in [30]. It is the popular alternating least squares (ALS) algorithm, called
TUCKALS3 in [30] but now more commonly known as the higher-order orthogonal
iteration (HOOI) algorithm [2, 3, 11, 30]. HOOI alternates between the modes, com-
puting the factor matrix in one mode by fixing the other factor matrices and solving
a least squares problem. A new iteration is started if all factor matrices have been
updated in this manner. This is repeated until convergence. Optimization-based algo-
rithms to tackle problem (1.1) have been investigated only very recently and include
Newton–Grassmann [15, 26], quasi–Newton–Grassmann [51], and trust-region [24, 25]
methods on manifolds.

The HOSVD has been applied in numerous application domains [29], such as
image processing [9, 32, 39, 61], pattern recognition [49, 50, 59, 60, 62], data mining
[33, 34, 52, 53], signal processing [12, 19, 36, 37, 38, 45], psychometrics [54, 55, 56],
chemometrics [5], and biomedicine [16, 40, 41]. Aside from its use in applications, the
HOSVD is also of considerable theoretical importance. For instance, the T-HOSVD
is used to initialize iterative algorithms to compute the best rank-1 approximation
[7, 28, 63] or best approximation of a specified multilinear rank [11, 15, 24, 26, 51].
It is a building block for other tensor decompositions, such as the hierarchical Tucker
decomposition [18, 21], the Tucker tree decomposition [43, 44], and the tensor-train
decomposition [42]. Another use is dimensionality reduction, in order to compute the
canonical polyadic decomposition, or CANDECOMP/PARAFAC [29], more efficiently
[6].

In this paper, we present a new truncation strategy for the HOSVD. Our inves-
tigation was spurred by an interesting remark made by Andersson and Bro in [2].
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In proposing techniques to improve the computational efficiency of the HOOI algo-
rithm, they briefly point out a different initialization scheme. Instead of initializing
the factor matrices by the T-HOSVD, they essentially propose initializing it with the
sequentially truncated HOSVD—the decomposition we study in this paper. However,
the decomposition was not formalized, nor were its properties investigated in [2].

The main contribution of this paper is a new truncation strategy for the HOSVD
which always reduces the number of floating operations to compute the decomposition,
and simultaneously improves the approximation error in many cases. Furthermore,
the approximation error can be expressed in terms of the singular values that are
computed as a byproduct of the approximation process. This allows for accurate
numerical thresholding techniques without first computing the full HOSVD.

The paper is structured as follows. In the next section, we state some basic
definitions. Special emphasis is put in section 3 on multilinear orthogonal projections.
In section 4, we briefly present the HOSVD [10]. Thereafter, in section 5, we present
an expression for the error of any approximate orthogonal Tucker decomposition.
Based on this error expression, a new truncation strategy is proposed in section 6.
The relationship between the error of the T-HOSVD and that of the ST-HOSVD is
investigated in section 7. In section 8, we illustrate numerically that the ST-HOSVD
often outperforms T-HOSVD in terms of approximation error and computation time.
Finally, in section 9, we summarize our main results.

2. Preliminaries. In this section, some necessary preliminaries are discussed.
First, some notational conventions are established. Tensors are typeset in an upper-
case calligraphic font (A,S), matrices as uppercase letters (A,U), vectors as boldface
lowercase letters (u,v), and scalars as lowercase letters (a, b). I denotes the identity
matrix of suitable dimensions. The scalar d denotes the order of the tensor. The
scalar k denotes an integer between 1 and d. A multilinear orthogonal projector that
projects along mode k is denoted as πk; see also section 3. Projectors, matrices, and
tensors which are typeset with a bar (π̄1, Ū1, Ā) are related to the T-HOSVD, with
a hat (π̂1, Û1, Â) they are related to the ST-HOSVD, and with a breve (π̆1, Ŭ1, Ă)
they are related to any orthogonal Tucker approximation (including T-HOSVD and
ST-HOSVD). A permutation vector is denoted by square brackets, p = [1, 2, 3], and
a set is denoted by curly brackets, p = {1, 2, 3}. The tensor product is denoted by �,
and the Kronecker product by ⊗.

Tensor algebra. This paragraph is based on [8, 13]; for more details, the reader
is referred to those references. A tensor is an element of the tensor product of a set
of vector spaces. We are interested in tensor products of real vector spaces. That is,

A ∈ R
n1 � R

n2 � · · ·� R
nd

is a tensor of order d over the real numbers. More practically, such an object can be
represented as a d-array of numbers with respect to a given tensor basis. That is,

A = �ai1,i2,...,id�
n1,n2,...,nd

i1,i2,...,id=1 ∈ R
n1×n2×···×nd .

In the above, A is specified with respect to the standard tensor basis of order d,

Ed = {ei1 � ei2 � · · ·� eid}n1,n2,...,nd

i1,i2,...,id=1,
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where ei is the ith standard basis vector of suitable dimension. We may thus write A
as a multilinear combination of these basis vectors, as follows:

A =

n1∑
i1=1

n2∑
i2=1

· · ·
nd∑

id=1

ai1,i2,...,idei1 � ei2 � · · ·� eid .(2.1)

In this paper, we will identify the tensor with the d-array representing its coordinates
with respect to a suitable basis. A tensor may be multiplied in each of its modes with
a (different) matrix. Let

A = �ai1,i2,...,id� ∈ R
n1×n2×···×nd and H(k) = �h(k)

p,q� ∈ R
mk×nk .

Then, A may be transformed into a tensor B = �bj1,j2,...,jd� ∈ R
m1×m2×···×md via the

multilinear multiplication of A by H(k), k = 1, . . . , d,

bj1,j2,...,jd =

n1∑
i1=1

n2∑
i2=1

· · ·
nd∑

id=1

ai1,i2,...,idh
(1)
j1,i1

h
(2)
j2,i2
· · ·h(d)

jd,id
.

We will write this more concisely [13] as

B = (H(1), H(2), . . . , H(d)) · A.
Unfolding. Given a tensor A ∈ R

n1×n2×···×nd , a mode-k vector v is defined as
the vector that is obtained by fixing all indices of A and varying the mode-k index:
v = Ai1,...,ik−1,:,ik+1,...,id with ij a fixed value. We refer to the set of all mode-k vectors
of A as the mode-k vector space. The mode-k unfolding, or matricization [15], of A,
denoted by A(k), is an nk × Πi�=kni matrix whose columns are all possible mode-k
vectors. The specific order of the mode-k vectors within this unfolding is usually not
important, as long as it is consistent. We assume the canonical order, as presented
in [15]. The column space of A(k) is the mode-k vector space; hence its name.

Multilinear rank. The multilinear rank [22] of a tensor A ∈ R
n1×···×nd is a d-

tuple (r1, r2, . . . , rd), wherein rk is the dimension of the mode-k vector space. In
other words, rk is the column rank of A(k).

Inner product and norm. The Frobenius inner product of two tensors A,B ∈
R

n1×···×nd is defined as

〈A,B〉F :=

n1∑
i1=1

· · ·
nd∑

id=1

ai1,...,idbi1,...,id ,

and furthermore [15, Lemma 2.1], for every 1 ≤ k ≤ d,

〈A,B〉F = trace
(
BT
(k)A(k)

)
= trace

(
AT

(k)B(k)
)
= 〈B,A〉F ,(2.2)

where trace(A) :=
∑

i aii is the trace of A. The induced Frobenius norm is

‖A‖2F := 〈A,A〉F = ‖A(k)‖2F ,
for any mode-k unfolding ofA. The Frobenius norm for matrices is unitarily invariant.
That is, if A ∈ R

m×n and U ∈ R
r×m, with r ≥ m, is a matrix with orthonormal

columns, and V ∈ R
s×n, with s ≥ n, is a matrix with orthonormal columns, then

‖UAV T ‖2F = ‖A‖2F ; see, e.g., [58].
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Multilinear multiplication. In this paragraph, we assume that the dimensions of
the matrices involved in the multilinear multiplications are compatible. Multilinear
multiplication in one mode, say 1 ≤ k ≤ d, with a matrix M can be interpreted as
multiplying the mode-k vectors by M . That is, if M is at position k in the tuple,
then [(I, . . . , I,M, I, . . . , I) · A](k) = MA(k). In general, the unfolding of a multilinear

multiplication is given by (see [10, 15])

[(M1,M2, . . . ,Md) · A](k) = MkA(k) (M1 ⊗M2 ⊗ · · · ⊗Mk−1 ⊗Mk+1 ⊗ · · · ⊗Md)
T .

Two multilinear multiplications can be transformed into one, as follows [13]:

(L1, L2, . . . , Ld) · [(M1,M2, . . . ,Md) · A] = (L1M1, L2M2, . . . , LdMd) · A.

3. Multilinear orthogonal projections. Key to this paper is the use of mul-
tilinear orthogonal projections. An orthogonal projector [46, 47] is a linear transfor-
mation P that projects a vector u ∈ R

n onto a vector space U ⊆ R
n such that the

residual u − Pu is orthogonal to U . Such a projector can always be represented in
matrix form as P = UUT , assuming that the columns of U form an orthonormal
basis for the vector space U . De Silva and Lim [13] state that if φk is an orthogonal
projector from the vector space Vk ⊆ R

nk onto Uk ⊆ Vk, then Φ = (φ1, φ2, . . . , φd) is
a multilinear orthogonal projection from the tensor space V := V1�V2� · · ·�Vd onto
the tensor subspace U1 � U2 � · · · � Ud ⊆ V . In this paper, we deal with an orthog-
onal projector from R

n1 � · · ·� R
nk−1 � R

nk � R
nk+1 � · · ·� R

nd onto the subspace
R

n1 � · · ·� R
nk−1 � Uk � R

nk+1 � · · ·� R
nd exclusively. This multilinear orthogonal

projection is given by

πkA := (I, . . . , I︸ ︷︷ ︸
k−1

matrices

, UkU
T
k , I, . . . , I) · A with A ∈ R

n1×···×nd ,(3.1)

where we assume that the columns of Uk form an orthonormal basis of the vector
space Uk. The subscript of the projector πk indicates that it projects orthogonally
along mode k. The projector satisfies the following properties. Every projector πk is
idempotent, πkπkA = πkA, and any two projectors commute, πiπjA = πjπiA. The
orthogonal complement of πk can be characterized explicitly by

(1− πk)A = (I, . . . , I, I − UkU
T
k , I, . . . , I) · A,

due to the multilinearity of the multilinear multiplication [13, eq. (2.9)]. Finally, the
projector is orthogonal with respect to the Frobenius norm [13, eq. (2.20)],

‖A‖2F = ‖πkA‖2F + ‖(1− πk)A‖2F .(3.2)

The above projector is used extensively in this paper.

4. T-HOSVD. De Lathauwer, De Moor, and Vandewalle proved the following
theorem in [10, section 3].

Theorem 4.1 (HOSVD [10]). Every tensor A ∈ R
n1×···×nd admits a higher-

order singular value decomposition:

A = (U1, U2, . . . , Ud) · S,(4.1)
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where the factor matrix Uk is an orthogonal nk × nk matrix, obtained from the SVD
of the mode-k unfolding of A,

A(k) = UkΣkV
T
k ,(4.2)

and the core tensor S ∈ R
n1×···×nd can be obtained from

S = (UT
1 , UT

2 , . . . , UT
d ) · A.

The HOSVD can be employed to construct a low multilinear rank approximation
to a tensor. Suppose that we want to approximate A by a rank-(r1, r2, . . . , rd) tensor
Ā, with rk ≤ nk for all 1 ≤ k ≤ d. The factor matrix Ūk of the truncated HOSVD is
obtained from a truncated SVD of the mode-k unfolding of the tensor [10, 29],

A(k) = UkΣkV
T
k =

[
Ūk Ũk

] [Σ̄k

Σ̃k

] [
V̄ T
k

Ṽ T
k

]
, with Ūk ∈ R

nk×rk .(4.3)

The approximation is then obtained by an orthogonal projection onto the tensor basis,
represented by these factor matrices. That is,

Ā := π̄1π̄2 · · · π̄dA := (Ū1Ū
T
1 , Ū2Ū

T
2 , . . . , ŪdŪ

T
d ) · A =: (Ū1, Ū2, . . . , Ūd) · S̄ ≈ A,

wherein the truncated core tensor is defined as

(ŪT
1 , ŪT

2 , . . . , ŪT
d ) · A =: S̄ ∈ R

r1×r2×···×rd .

In the remainder, we will always denote the T-HOSVD projector onto mode k by
π̄kA := (I, . . . , I, ŪkŪ

T
k , I, . . . , I) · A.

5. Error of a truncated orthogonal Tucker decomposition. In this section,
we present an explicit formula for the error of an approximate Tucker decomposition
with orthogonal factor matrices. This formula provides insights into the structure of
the optimization problem. In the next section, we propose a new greedy optimization
algorithm, based on the error expansion presented in the next theorem.

It is well known (see, e.g., [29]) that problem (1.1) may be rewritten as

min
S̆∈R

r1×···×rd

Ŭi∈R
ni×ri

‖A− (Ŭ1, Ŭ2, . . . , Ŭd) · S̆‖F ,

with Ŭi, i = 1, 2, . . . , d, a matrix with orthonormal columns. Furthermore, if the fac-
tor matrices {Ŭk}k are fixed, then the core tensor S̆ that minimizes the approximation
error is given by S̆ = (ŬT

1 , ŬT
2 , . . . , ŬT

d ) · A, as proved in [11]. Therefore, given fixed
factor matrices, the optimal approximation to A is obtained by a multilinear orthog-
onal projection onto the tensor basis spanned by the columns of the factor matrices.
The error of this optimal approximation is investigated in the next theorem.

Theorem 5.1 (error of a truncated orthogonal Tucker decomposition). Let A ∈
R

n1×···×nd . Let A be approximated by

Ă := π̆1π̆2 · · · π̆dA := (Ŭ1Ŭ
T
1 , Ŭ2Ŭ

T
2 , . . . , ŬdŬ

T
d ) · A ≈ A,

in which the factor matrices Ŭk ∈ R
nk×rk have orthonormal columns. The approxi-

mation error is then given, for any permutation p of {1, 2, . . . , d}, by
‖A− Ă‖2F = ‖π̆⊥

p1
A‖2F + ‖π̆⊥

p2
π̆p1A‖2F + ‖π̆⊥

p3
π̆p1 π̆p2A‖2F + · · ·+ ‖π̆⊥

pd
π̆p1 · · · π̆pd−1

A‖2F ,



HIGHER-ORDER SINGULAR VALUE DECOMPOSITION A1033

3

1

2 Ă

(a)

Ă

(b)

Ă

(c)

Fig. 5.1. Theorem 5.1 states that the squared approximation error of the truncated orthogonal
Tucker decomposition is given by the sum of the squared norms of the areas shaded in grey in the
three tensor representations. This particular shading of the areas corresponds to the permutation
[3, 2, 1].

and it is bounded by

‖A− Ă‖2F ≤
d∑

k=1

‖π̆⊥
pk
A‖2F ,(5.1)

wherein π̆⊥
k := 1− π̆k.

Proof. Assume w.l.o.g. that p = [1, 2, . . . , d]. We introduce a telescoping sum:

A− Ă = (A− π̆1A) + (π̆1A− π̆2π̆1A) + · · ·+ (π̆d−1 · · · π̆1A− π̆d · · · π̆1A)
= π̆⊥

1 A+ π̆⊥
2 π̆1A+ π̆⊥

3 π̆1π̆2A+ · · ·+ π̆⊥
d π̆1 · · · π̆d−1A.(5.2)

Consider any two distinct terms in the above. Let, for i < j,

B̆(i) := (I − ŬiŬ
T
i )A(i)(Ŭ1Ŭ

T
1 ⊗ · · · ⊗ Ŭi−1Ŭ

T
i−1 ⊗ I ⊗ · · · ⊗ I),

C̆(i) := ŬiŬ
T
i A(i)(Ŭ1Ŭ

T
1 ⊗ · · · ⊗ Ŭi−1Ŭ

T
i−1 ⊗ Ŭi+1Ŭ

T
i+1 ⊗ · · · ⊗ Ŭj−1Ŭ

T
j−1

⊗ I − ŬjŬ
T
j ⊗ I ⊗ · · · ⊗ I);

then we notice that C̆T(i)B̆(i) = 0, because ŬiŬ
T
i is a projector. From (2.2),

trace
(
C̆T(i)B̆(i)

)
= 〈π̆⊥

i π̆1 · · · π̆i−1A, π̆⊥
j π̆1 · · · π̆i · · · π̆j−1A〉F = 0.

This entails that π̆⊥
i π̆1 · · · π̆i−1A ⊥ π̆⊥

j π̆1 · · · π̆i · · · π̆j−1A; i.e., these projected tensors
are orthogonal with respect to the Frobenius norm. As the above holds for any i < j
and orthogonality is reflexive, all the terms in (5.2) are orthogonal with respect to
one another, in the Frobenius norm. That completes the first part of the proof. The
second part follows readily from the observation that an orthogonal projection onto
a subspace can only decrease the Frobenius norm, due to (3.2).

In Figure 5.1 we visualize the above theorem for a third-order tensor and for the
permutation p = [3, 2, 1]. The cube is partitioned into octants. The shaded area in
Figure 5.1(a) corresponds to π⊥

3 A, in Figure 5.1(b) it corresponds to π⊥
2 π3A, and

in Figure 5.1(c) to π⊥
1 π3π2A. Other permutations result in different octants to be

summed, but the resulting error is clearly the same.
The following error bounds of the T-HOSVD are an immediate corollary of The-

orem 5.1. The upper bound was already stated in [10, Property 10]. Here, a new
elegant proof based on the previous theorem is presented.1

1The proof in [10] unfortunately contains an error, as its second equality does not hold.
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Corollary 5.2 (T-HOSVD error bounds). Let A ∈ R
n1×···×nd , and let Ā be

the rank-(r1, . . . , rd) T-HOSVD of A. Let the SVD of A(k) be as in (4.3). The error
of the T-HOSVD approximation Ā to A is then bounded by

max
k
‖Σ̃k‖2F ≤ ‖A− Ā‖2F ≤

d∑
k=1

‖Σ̃k‖2F .(5.3)

Proof. The lower bound is proved by noticing that Theorem 5.1 holds for any
permutation p of {1, 2, . . . d}, the independence of the error on the permutation p,
and the positivity of the terms. The upper bound follows readily from (5.1) and the
definition of the T-HOSVD factor matrices in (4.3).

The T-HOSVD can be interpreted as an algorithm that minimizes the upper
bound in Theorem 5.1, providing a strong rationale for the T-HOSVD approximation.
Indeed, minimizing the upper bound yields

min
π1,...,πd

‖A − π1 · · ·πdA‖2F ≤ min
π1,...,πd

d∑
k=1

‖π⊥
k A‖2F =

d∑
k=1

min
πk

‖π⊥
k A‖2F ,(5.4)

where the last equality follows from noticing that every term is minimized over a
different projector, and that the T-HOSVD projectors are determined independently
from one another. The solution to this minimization problem is given by choosing
πk to project onto the dominant subspace of the mode-k vector space, as in the T-
HOSVD. Coincidentally, this also minimizes the lower bound in Corollary 5.2.

6. Sequentially truncated HOSVD. In this section, we propose an alterna-
tive truncation strategy for the HOSVD. Contrary to the T-HOSVD, the order in
which the modes are processed is relevant and leads to different approximations. The
order in which modes are processed is denoted by a sequence p. Throughout this
section, we present our results only for the processing order p = [1, 2, . . . , d], as this
significantly simplifies the notation. It should be stressed, however, that many of the
results depend on the permutation p. For instance, the approximation error of our
algorithm depends on the order in which the modes are processed.

6.1. Definition. Optimization problem (1.1) can be expressed as

min
π1,...,πd

‖A − π1π2 · · ·πdA‖2F
= min

π1,...,πd

(‖π⊥
1 A‖2F + ‖π⊥

2 π1A‖2F + · · ·+ ‖π⊥
d π1 · · ·πd−1A‖2F

)
= min

π1

[
‖π⊥

1 A‖2F +min
π2

[
‖π⊥

2 π1A‖2F +min
π3

[
· · ·+min

πd

‖π⊥
d π1 · · ·πd−1A‖2F

]]]
,

by applying Theorem 5.1. Consider the minimization over π1. It is not unreasonable
to assume that the final error depends more strongly on the term ‖π⊥

1 A‖2F than on the
other terms. The subsequent terms will be minimized over other projectors, thereby
diminishing the importance of a single projector. Therefore, π̂1 := argminπ1 ‖π⊥

1 A‖2F
might be a good approximation to the optimal projector. By repeating the above
argument for the projector π2, and then π3, and so on, we arrive at

min
π1,...,πd

‖A− π1π2 · · ·πdA‖2F ≤ ‖π̂⊥
1 A‖2F + ‖π̂⊥

2 π̂1A‖2F + · · ·+ ‖π̂⊥
d π̂1 · · · π̂d−1A‖2F

= ‖A− π̂1 · · · π̂dA‖2F .(6.1)
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Herein, the hat-projectors are defined recursively by

π̂k := argmin
πk

‖π⊥
k π̂1 · · · π̂k−1A‖2F = argmax

Uk∈R
nk×rk

‖UkU
T
k [π̂1 · · · π̂k−1A](k) ‖2F .(6.2)

Every processing order p of the modes yields a different optimization problem, and
solution, of the above form. The truncation strategy that we propose consists of
computing the solution to optimization problem (6.2). The solution can be obtained,
for some 1 ≤ k ≤ d, from a truncated SVD of the mode-k unfolding of π̂1 · · · π̂k−1A.
It is a tensor of the same size as A, namely n1 × n2 × · · · × nd. However,

Ûk = argmax
Uk∈R

nk×rk

‖UkU
T
k A(k)(Û1Û

T
1 ⊗ Û2Û

T
2 ⊗ · · · ⊗ Ûk−1Û

T
k−1 ⊗ I ⊗ · · · ⊗ I)T ‖2F

= argmax
Uk∈R

nk×rk

‖UkU
T
k A(k)(Û1 ⊗ Û2 ⊗ · · · ⊗ Ûk−1 ⊗ I ⊗ · · · ⊗ I)‖2F .

Consequently, it is possible to compute the optimal projector by means of a truncated
SVD of (ÛT

1 , . . . , ÛT
k−1, I, . . . , I) · A, which is a tensor of size r1 × r2 × · · · × rk−1 ×

nk × · · · × nd. Whenever the tensor is strongly truncated, ri is much smaller than
ni, thereby significantly improving the computational performance. The above is
summarized in Algorithm 1, which computes the solution of optimization problem
(6.2).2

Algorithm 1. Computing the sequentially truncated HOSVD.

input : Tensor A, truncation rank (r1, r2, . . . , rd), and processing order p.
output: Truncated core tensor Ŝ and factor matrices {Ûk}k.
Ŝ ←A
for k ← p1, p2, . . . , pd do

% Compute the compact singular value decomposition of Ŝ(k)
Ŝ(k) =

[
U1 U2

] [Σ1

Σ2

] [
V T
1

V T
2

]
, with U1 ∈ R

nk×rk

Ûk ← U1

Ŝ(k) ← Σ1V
T
1

end

Note that, in Algorithm 1, we compute the compact3 SVD, not the full SVD.
The compact SVD is then truncated to the appropriate rank. Clearly, it is possible to
replace this with an iterative algorithm that computes the desired singular triplets. In
practice, the latter approach can be more efficient if the multilinear rank with which
to approximate the tensor is very small.

Definition 6.1 (ST-HOSVD). A rank-(r1, . . . , rd) sequentially truncated higher-
order singular value decomposition (ST-HOSVD) of a tensor A ∈ R

n1×···×nd , corre-
sponding to the processing order p = [1, 2, . . . , d], is an approximation of the form

A ≈ (Û1, Û2, . . . , Ûd) · Ŝ =: Âp ∈ R
n1×n2×···×nd ,

whose truncated core tensor is defined as

(ÛT
1 , ÛT

2 , . . . , ÛT
d ) · A =: Ŝ ∈ R

r1×r2×···×rd ,

2A MATLAB implementation using the Tensor Toolbox [4] can be found in [58].
3The compact SVD of A ∈ R

n×m is a decomposition such that A = USV T and U ∈ R
n×r ,

S ∈ R
r×r, and V ∈ R

m×r , with r the rank of A.
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Fig. 6.1. A graphical depiction of the sequential truncation of a third-order tensor, correspond-
ing to the processing order [3, 2, 1] of the modes.

and where every factor matrix Ûk ∈ R
nk×rk has orthonormal columns. In terms of

orthogonal multilinear projectors, one writes

Âp := π̂1π̂2 · · · π̂dA := (Û1Û
T
1 , Û2Û

T
2 , . . . , ÛdÛ

T
d ) · A.

The kth partially truncated core tensor is defined as

(ÛT
1 , ÛT

2 , . . . , ÛT
k , I, . . . , I) · A =: Ŝk ∈ R

r1×···×rk×nk+1×···×nd ,(6.3)

with Ŝ0 := A and Ŝd = Ŝ. The rank-(r1, . . . , rk, nk+1, . . . , nd) partial approximation
to A is defined as

(Û1, Û2, . . . , Ûk, I, . . . , I) · Ŝk =: Âk ∈ R
n1×n2×···×nd ,

with Â0 := A and Âd = Â.
The factor matrix Ûk, 1 ≤ k ≤ d, is the matrix of the rk dominant left singular

vectors of the mode-k vector space of Ŝk−1. It is obtained from the rank rk trun-
cated singular value decomposition of the (k − 1)th partially truncated core tensor, as
follows:

Ŝk−1
(k) = UkΣkV

T
k =

[
Ûk Ũk

] [Σ̂k

Σ̃k

][
V̂ T
k

Ṽ T
k

]
,(6.4)

wherein Σ̂k = diag(σ̂k,1, σ̂k,2, . . . , σ̂k,rk) and Σ̃k = diag(σ̃k,rk+1, σ̃k,rk+2, . . . , σ̃k,nk
).

The ST-HOSVD computes a sequence of approximations, Â0, Â1, . . . , Âd, such
that the multilinear rank of Âk equals, in the first k modes, the desired dimension of
the corresponding vector space. We term our approach “sequential” in that the mode-
k projector depends on the previously computed projectors. In the remainder, we
denote the ST-HOSVD projector onto mode k by π̂kA := (I, . . . , I, ÛkÛ

T
k , I, . . . , I)·A.

In Figure 6.1, we illustrate the operation of Algorithm 1. It represents the trun-
cation of a third-order tensor A = Ŝ0 to the ST-HOSVD core tensor Ŝ = Ŝ3, whereby
the modes are processed in the order p = [3, 2, 1]. First, the truncated SVD of the
mode-3 vector space is computed. By projecting onto the span of the matrix of left
singular vectors Û3, the “energy” in the tensors is reordered. The Frobenius norm of
the area shaded in gray is ‖Σ̃3‖2F , whereas the white area has a Frobenius norm equal

to ‖Σ̂3‖2F . By projecting onto the dominant subspace of the mode-3 vector space,

we retain only the nonshaded area of Ŝ0, resulting in the approximation Ŝ1. In the
next step, mode 2 is processed. The SVD is computed, and by projecting onto the
space spanned by the left singular vectors, the energy is reordered. To obtain the
next approximation, the shaded area of Ŝ1 is set to zero. The procedure proceeds
analogously in the last step. In the end, the ST-HOSVD core tensor is obtained.
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By comparing (6.1) and (6.2) with (5.4), we arrive at an interesting relationship
between the minimization problem solved by T-HOSVD and ST-HOSVD:

min
π1,...,πd

‖A− π1π2 · · ·πdA‖2F ≤
d∑

i=1

min
πi

‖π⊥
i π̂1 · · · π̂i−1A‖2F ≤

d∑
i=1

min
πi

‖π⊥
i A‖2F .

The last inequality holds because multilinear orthogonal projections only decrease
the Frobenius norm. The optimization problem that is actually solved by the T-
HOSVD can thus be considered as a simplification of optimization problem (6.2).
This provides a strong rationale for the ST-HOSVD approximation. Furthermore,
without truncating in every mode, the ST-HOSVD and HOSVD result in the same
decomposition.

Theorem 6.2 (an alternative HOSVD algorithm). A rank-(n1, n2, . . . , nd) ST-
HOSVD of A ∈ R

n1×n2×···×nd coincides with the HOSVD in Theorem 4.1.
Proof. Consider any 1 ≤ k ≤ d. From (6.3), (6.4), and from the observation that,

in (6.4), Ûk = Uk in the absence of truncation, we derive that

Sk−1
(k) = IA(k)(U1 ⊗ · · · ⊗ Uk−1 ⊗ I ⊗ · · · ⊗ I) = UkΣkV

T
k ,

and, because the Kronecker product preserves orthogonality [57],

A(k) = UkΣkV
T
k (U1 ⊗ · · · ⊗ Uk−1 ⊗ I ⊗ · · · ⊗ I)T .

We note that the above is the singular value decomposition of A(k). The left singular
vectors, and thus the entire decomposition, must coincide with the HOSVD. Theorem
2 in [10] can then be applied to complete the proof.

Consequently, the ST-HOSVD inherits the properties of the HOSVD in the ab-
sence of truncation. In particular, the ST-HOSVD of an order-2 tensor reduces to the
matrix SVD, even in presence of truncation, which is not hard to prove.

6.2. Operation count. One of the main advantages of the ST-HOSVD over the
T-HOSVD algorithm is that it requires fewer floating point operations to compute
the approximation. We restrict our estimates to cubic tensors. The generalization to
arbitrary ranks and mode lengths is straightforward.

Property 6.3. Let A be an order-d cubic tensor of size n×n×· · ·×n. Let A be
truncated to rank (r, r, . . . , r) by the ST-HOSVD (respectively, T-HOSVD). Assume
an O(m2n) algorithm to compute the SVD of an m × n matrix, m ≤ n. Then, the
ST-HOSVD (respectively, T-HOSVD) requires

O

(
d∑

k=1

rk−1nd−k+2 +

d∑
k=1

rknd−k

)
and O

(
dnd+1 +

d∑
k=1

rknd−k+1

)

operations to compute the approximation.
Proof. In the case of the ST-HOSVD, the SVD of an n× rk−1nd−k matrix should

be computed in every mode, leading to the first sum. The next partially truncated
core tensor can be obtained simply by scaling the right singular vectors with the
corresponding singular values. This explains the last sum in the operation count.

The first term in the T-HOSVD estimate is due to the SVD, in every mode, of
an n× nd−1 matrix to compute the factor matrices. The sum is required to compute
the core tensor, by means of d matrix multiplications.
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Fig. 6.2. Speedup of ST-HOSVD over T-HOSVD for an order-d tensor of size 30×30×· · ·×30
which is truncated to rank (r, r, . . . , r).

Computing the T-HOSVD can be much more expensive than an ST-HOSVD if
r  n. For instance, if r = O(1), then T-HOSVD requires O(dnd+1) operations,
versus O(nd+1) for the ST-HOSVD. The speedup of ST-HOSVD over T-HOSVD can
then be close to the order, d, of the tensor. This is illustrated in Figure 6.2. Herein,
we truncate an order-d cubic 30× 30× · · · × 30 tensor to multilinear rank (r, r, . . . , r)
for different values of the order 3 ≤ d ≤ 5 and rank 1 ≤ r ≤ 30. We computed
the T-HOSVD and ST-HOSVD approximation of this tensor and repeated this five
times. Of these five runs, the minimum execution time was selected to determine the
speedup of ST-HOSVD over T-HOSVD.

If the tensor is of size n1×n2×· · ·×nd and is approximated by rank (r1, r2, . . . , rd),
then the processing order p is very relevant and may lead to large differences in the
total number of operations. In fact, the speedup of ST-HOSVD over T-HOSVD may
then exceed the order of the tensor, as we illustrate in section 8. A heuristic for
the selection of the processing order is suggested in section 6.4. However, the ST-
HOSVD algorithm always requires fewer operations than the T-HOSVD, regardless
of the processing order and the requested truncation rank.

6.3. Approximation error. Several properties concerning the approximation
error of the ST-HOSVD are investigated. First, we stress that it depends on the
processing order of the modes, p.

Example. Consider, for instance, the third-order tensor A ∈ R
3×3×3:

A:,:,1 =

⎡
⎣2 4 7
5 6 3
9 3 5

⎤
⎦ , A:,:,2 =

⎡
⎣7 5 3
9 2 8
9 2 3

⎤
⎦ , A:,:,3 =

⎡
⎣8 4 6
3 2 5
9 3 4

⎤
⎦ .

If we approximate this tensor by a rank-(2, 2, 2) ST-HOSVD decomposition, the fol-
lowing errors are obtained for the different permutations of {1, 2, 3}:

‖A− Â[1,2,3]‖F = 8.1912, ‖A− Â[1,3,2]‖F = 8.1932, ‖A− Â[2,1,3]‖F = 7.4799,

‖A− Â[2,3,1]‖F = 7.4497, ‖A− Â[3,1,2]‖F = 7.5001, ‖A− Â[1,2,3]‖F = 7.4835.

The error of the rank-(2, 2, 2) T-HOSVD approximation is 8.8188, which is worse than
every ST-HOSVD approximation.

The following theorem demonstrates that the error can be expressed exactly in
terms of the singular values that are obtained from an execution of Algorithm 1.

Theorem 6.4 (error of the ST-HOSVD). Let A ∈ R
n1×···×nd , and let Â be the



HIGHER-ORDER SINGULAR VALUE DECOMPOSITION A1039

rank-(r1, . . . , rd) ST-HOSVD of A as in Definition 6.1. Then

‖A− Â‖2F =

d∑
k=1

nk∑
ik=rk+1

σ̃2
k,ik

=

d∑
k=1

(
‖Âk−1‖2F − ‖Âk‖2F

)
;(6.5)

i.e., the squared error is the sum of the squares of the discarded singular values.
Proof. We derive an explicit formula for the error of two successive approximations

Âk−1 and Âk, as they are defined in Definition 6.1, with 1 ≤ k ≤ d. That is,

ε2k := ‖Âk−1 − Âk‖2F
= ‖(Û1, . . . , Ûk−1, I, . . . , I) · Ŝk−1 − (Û1, . . . , Ûk, I, . . . , I) · Ŝk‖2F
=
∥∥∥(Ŝk−1

(k) − ÛkŜk(k)
)
(Û1 ⊗ · · · ⊗ Ûk−1 ⊗ I ⊗ · · · ⊗ I)T

∥∥∥2
F

=
∥∥∥Ŝk−1

(k) − ÛkŜk(k)
∥∥∥2
F
.(6.6)

From the definition of the partially truncated core tensor in (6.3), we note that

ÛT
k Ŝk−1

(k) =
[
(ÛT

1 , . . . , ÛT
k , I, . . . , I) · A

]
(k)

= Ŝk(k).

However, from (6.4) it is also clear that

ÛkŜk(k) = ÛkÛ
T
k Ŝk−1

(k) = ÛkΣ̂kV̂
T
k .

Substituting the above into (6.6) and using (6.4) again, we obtain

ε2k =
∥∥∥ŨkΣ̃kṼ

T
k

∥∥∥2
F
= ‖Σ̃k‖2F = ‖Âk−1‖2F − ‖Σ̂k‖2F = ‖Âk−1‖2F − ‖Âk‖2F .(6.7)

Finally, Âk−1−Âk = π̂⊥
k π̂1 · · · π̂k−1A, so that Theorem 5.1 concludes the proof.

This theorem is useful in establishing a truncation strategy based on a numerical
threshold, rather than some predefined approximation rank. Typically, in dimension-
ality reduction, we are interested in the tensor of the lowest multilinear rank that
attains a certain error bound. It is therefore of practical importance to truncate the
HOSVD such that the actual error matches as closely as possible with the desired
error. For the ST-HOSVD we can rely on the above exact expression of the error,
whereas for the T-HOSVD only an upper bound is known. Consequently, a straight-
forward truncation of the T-HOSVD can result in an actual error that is much4 smaller
than the threshold, implying unnecessary computations and storage costs.

In the T-HOSVD algorithm, a numerical truncation strategy can be based on the
upper bound in Corollary 5.2. The T-HOSVD error will be smaller than ε if the SVD
in mode k is truncated to yield an error smaller than εk, provided that the sum of the
squares of these εk adds up to ε2. We set ε2k = ε2/d in our experiments. We pursue a
different strategy with the ST-HOSVD. In mode k, there can be a discrepancy between
the desired error εk and the actual error ε′k, which is the sum of the discarded singular
values in that mode. This discrepancy can be taken into account, as follows. In mode
k, we truncate the SVD to yield an error smaller than ((ε2−∑k−1

j=1 ε
′2
j )/(d−k+1))1/2.

In this manner, the final approximation error is still bounded by ε.

4The difference between the actual error and the threshold increases with the order of the tensor.
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It is not required that we compute a compact SVD in Algorithm 1 in order to
enable the above numerical thresholding technique. Noting ‖Âk‖2F = ‖Σ̂k‖2F in (6.7)
allows us to efficiently update the error expansion in (6.5) during the execution of
Algorithm 1, provided that the norm of A is computed beforehand.5 We can then
compute ε2k = ‖Âk−1‖2F − ‖Σ̂k‖2F , which involves only quantities obtained from the
truncated SVD.

Numerical example. Due to Theorem 6.4, the ST-HOSVD can compress the data
more than the T-HOSVD while satisfying some relative error bound. Our purpose is to
compress the 784×5421×10 tensor, described in section 8.2, as much as possible, while
obtaining a relative error no larger than 7 · 10−2. The ST-HOSVD, with p = [3, 1, 2],
resulted in a rank-(214, 810, 10) approximation with a relative error of 6.9977 · 10−2.
The T-HOSVD produced a rank-(261, 1456, 10) approximation whose relative error is
4.9841 · 10−2. The T-HOSVD yields an error that is clearly better than requested.
However, this comes at the cost of increased approximation rank and storage demands.
The ST-HOSVD stores 15.34% of the original data, whereas the T-HOSVD stores
28.00%, nearly twice as much. Furthermore, the T-HOSVD algorithm is much slower.
It completed in 50 minutes, whereas ST-HOSVD required only 3 minutes and 14
seconds. This represents a speedup factor of 15.4.

To the best of our knowledge, there is no closed formula for the error of the
T-HOSVD in terms of the singular values that are computed by its algorithm. There-
fore, no technique is available to truncate the T-HOSVD to yield an error close to a
target error using only the information provided by the singular values in every mode
and without first computing a more accurate HOSVD with a higher-than-required
multilinear rank. The above example illustrates that the ST-HOSVD sometimes pro-
duces approximations whose error is much closer to the target error than that of the
T-HOSVD.

Theorem 6.4 provides an expression for the error of an ST-HOSVD in terms of
the singular values computed by its algorithm. Furthermore, ST-HOSVD also satisfies
the upper bound on the error of the T-HOSVD, in Corollary 5.2, regardless of the
processing order p. That is, when truncating the T-HOSVD and ST-HOSVD to a
given multilinear rank, both approximation errors are bounded by the same quantity.

Theorem 6.5 (error bound of the ST-HOSVD). Let A ∈ R
n1×···×nd , and let Â

be the rank-(r1, . . . , rd) ST-HOSVD of A, as defined in Definition 6.1. Let the SVD
of A(k) be given as in (4.3). Then

min
k
‖Σ̃k‖2F ≤ ‖A− Â‖2F ≤

d∑
k=1

‖Σ̃k‖2F

are bounds on the error of the ST-HOSVD.
Proof. The upper bound follows from

‖π̂⊥
k π̂1 · · · π̂k−1A‖2F ≤ ‖π̄⊥

k π̂1 · · · π̂k−1A‖2F ≤ ‖π̄⊥
k A‖2F = ‖Σ̃k‖2F

for all 1 ≤ k ≤ d. Herein, π̄k is the T-HOSVD projector in mode k. The first
inequality in the above formula is due to the fact that the π̂k projector is optimal, as
it is derived from a truncated SVD. The second inequality is due to (3.2).

The lower bound follows from combining Theorem 5.1 and the fact that the ST-
HOSVD error depends on the order in which it is computed.

5Computing this norm does not affect the asymptotic time complexity.
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6.4. A heuristic for the processing order. ST-HOSVD requires an addi-
tional parameter, the processing order p, when compared to the T-HOSVD. The
processing order affects the approximation error and the number of operations to
compute the approximation. Selecting a good processing order is thus of importance.
Problems of this type, which are combinatorial in nature, occur in other tensor de-
compositions as well, such as in the selection of the tree in hierarchical Tucker [18]
and the processing order in the tensor-train decomposition [42]. Unfortunately, this
problem has not yet been resolved in the context of the above decompositions.

Here, we propose a heuristic to choose the processing order if no other information
is known about the tensor besides its size. If more information is available, such
as dependencies between the modes or the multilinear rank of the approximation,
other heuristics may be advisable. We suggest choosing an ordering that attempts to
minimize the number of operations required to compute the dominant subspaces. A
simple greedy algorithm6 is proposed: select the mode that minimizes the operation
count to compute the first SVD, then select the mode that minimizes the cost of the
next SVD, and so on. If the compact SVD is employed to compute the dominant
subspace, the greedy minimization is accomplished simply by processing the modes
in order of increasing mode length. We thus propose

p = [p1, p2, . . . , pd] such that np1 ≤ np2 ≤ · · · ≤ npd
.

The heuristic was applied to the experiments presented in section 8. In several nu-
merical experiments we conducted, it was confirmed that this heuristic leads to an
efficient construction of the ST-HOSVD when compared to other processing orders.
We also observed, experimentally, that this heuristic often leads to a good approxi-
mation error. We believe that this is related to the observation that compression in
the short modes, which are processed first, can affect the rank of the longer modes.
From Definition 6.1, it is clear that with this heuristic the rank of mode pi is

rank
(A(pi)

)
= min

⎧⎨
⎩npi ,

∏
j<i

rpj

∏
j>i

npj

⎫⎬
⎭ ≤ min

⎧⎨
⎩npi ,

∏
j �=i

npj

⎫⎬
⎭ .

Consequently, if the compression ranks in the first few modes are such that the in-
equality becomes strict in the above formulation, it entails that the rank of mode pi
has actually decreased due to truncations in the previous modes. This could force
more “energy” into the fewer terms that remain, leading, possibly, to a smaller trun-
cation error. On the other hand, if this mode were processed first, the energy would
be spread out over more terms. This could result in a larger truncation error. Choos-
ing a good processing order that minimizes the approximation error is still an open
question.

7. Error with respect to the T-HOSVD. Recall that the optimization prob-
lem solved by the T-HOSVD can be considered an approximation to the problem that
ST-HOSVD solves. Both approximate the solution of the actual problem (1.1) and
satisfy the same upper bound on their approximation error. Given these observa-
tions, we wonder whether the ST-HOSVD approximation is always better than the
T-HOSVD.

6This does not always lead to the globally minimum number of operations for computing the
ST-HOSVD, but generally it is quite good.



A1042 N. VANNIEUWENHOVEN, R. VANDEBRIL, AND K. MEERBERGEN

Hypothesis 7.1. Let A ∈ R
n1×···×nd , Âp∗ ∈ R

n1×···×nd be the rank-(r1, . . . , rd)
ST-HOSVD of A with optimal permutation order p∗, and let Ā ∈ R

n1×···×nd be the
rank-(r1, . . . , rd) T-HOSVD of A. Then

‖A− Âp∗‖2F
?≤ ‖A− Ā‖2F .

The above hypothesis is false, in general, as the next counterexample shows.

7.1. A counterexample. Consider the following fourth-order tensor:

A:,:,1,1 =

[
0.5 −1.7
−1.3 −0.6

]
, A:,:,2,1 =

[−2.4 −0.1
−0.7 1.4

]
,

A:,:,1,2 =

[
0.1 0.1
2.2 −0.8

]
, A:,:,2,2 =

[−0.3 −2.5
0.0 0.3

]
.

The rank-(1, 1, 1, 1) T-HOSVD approximation is given by

Ā =

([−0.97325
−0.22975

]
,

[−0.78940
0.61388

]
,

[−0.31546
0.94894

]
,

[−0.88167
0.47186

])
· [2.57934] .

The best ST-HOSVD approximation corresponds to the order p∗ = [1, 3, 2, 4]:

Âp∗ =

([−0.97325
−0.22975

]
,

[−0.97310
0.23037

]
,

[−0.09956
0.99503

]
,

[−0.99692
0.07841

])
· [2.53595] .

The approximation errors are given respectively by

‖Ā − A‖2F = 18.68700 and ‖Âp∗ −A‖2F = 18.90896,

which demonstrates that the T-HOSVD is better than the ST-HOSVD approximation.
This counterexample was found by randomly sampling the fourth-order tensors of size
2× 2× 2× 2, whose entries were drawn from a gamma distribution with mean 1, and
truncating them to rank (1, 1, 1, 1). Our experiments yielded seven counterexamples
in ten million samples. The presented counterexample is the one that resulted in the
largest difference in error, but even then the difference is only 0.59%.

While counterexamples to Hypothesis 7.1 may exist, our Monte Carlo experi-
ments indicate that they are extremely thinly spread for third-order tensors whose
entries are drawn from a normal, gamma, or uniform distribution. For instance, our
experiments did not reveal counterexamples within 107 samples for 3 × 3 × 3 ten-
sors whose entries are drawn from a standard normal distribution and were truncated
to a (uniformly) randomly chosen rank. In general, we noted that the probability
of encountering a counterexample decreases as the multilinear rank to truncate to
decreases.

7.2. A sufficient condition. While Hypothesis 7.1 does not hold in general,
sufficient conditions can be derived under which it does hold [58], again providing a
strong rationale for the sequential truncation strategy. We present one such condition
here. It states that a third-order tensor which is truncated to rank 1 in at least one
mode will be approximated better by the ST-HOSVD.

Theorem 7.2. Let A ∈ R
n1×n2×n3 . Let Âp be the rank-(1, r1, r2) ST-HOSVD

of A corresponding to the processing order p, and let Ā be the T-HOSVD of A of the
same multilinear rank. Then, Hypothesis 7.1 holds.
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Proof. Consider p = [1, 2, 3]. Let π̂1 be the ST-HOSVD projector along the first
mode and π̄1 the T-HOSVD projector. Clearly, π̂1 = π̄1, and A = π̂1A = π̄1A is
a matrix. From the Eckart–Young theorem, we know that the truncated SVD of A
yields the best low-rank approximation [14, 17]. The ST-HOSVD computes precisely
that. It will select the r1 left singular vectors, which define the projector π̂2, project
onto them, and then compute the r2 left singular vectors of the projected matrix,
which comprise the projector π̂3. However, these r2 left singular vectors correspond
to the r2 dominant right singular vectors of A. Thus, the combined projector π̂2π̂3A
results in the best rank-min{r1, r2} approximation of A. The T-HOSVD, on the other
hand, does not compute the projectors in this manner. Hence, neither π̄2 and π̄3, nor
their combined projector, are optimal in general. That entails

‖π̂⊥
1 A‖2F + ‖π̂1A− π̂2π̂3π̂1A‖2F ≤ ‖π̂⊥

1 A‖2F + ‖π̂1A− π̄2π̄3π̄1A‖2F .
The first term can be brought into the norm on both sides of the inequality. Theorem
5.1 completes the proof.

The above theorem applies to any third-order tensor that is truncated to rank
1 in at least one mode. The order of the components in the rank (1, r1, r2) that we
assumed in Theorem 7.2 does not limit the generality. That is because the modes can
be renumbered such that the theorem applies. Note in particular that the rank-(1, 1, 1)
ST-HOSVD approximation is better than the T-HOSVD approximation. It might
thus yield a more interesting starting point for iterative algorithms that approximate
the optimal rank-1 approximation to a tensor; see, e.g., [7, 11, 63].

The proof of the above theorem cannot be extended to higher orders, as the
counterexample in section 7.1 already demonstrated.

8. Numerical experiments. In this section, we compare and analyze the per-
formance of ST-HOSVD and T-HOSVD. Some additional Monte Carlo experiments
with third-order tensors are presented in [58]. The main conclusions from these exper-
iments [58] are: (1) the difference in approximation error between HOOI, T-HOSVD,
and ST-HOSVD is small; (2) the difference is largest when truncating the tensor
to a low multilinear rank; (3) the ST-HOSVD approximation error is always better
than T-HOSVD, regardless of the processing order of the modes; (4) ST-HOSVD
ranks between T-HOSVD and HOOI with respect to the approximation error; and
(5) ST-HOSVD is the fastest algorithm. However, in practice, the tensors are much
more structured than the models studied in [58], and the conclusions from those ex-
periments may or may not be accurate in the applications of interest to researchers.
Therefore, we limit our attention to three real applications in this paper.

The first example serves to demonstrate that ST-HOSVD nearly invariably im-
proves upon T-HOSVD, while reducing the computational cost, if both are truncated
to the same rank. It also reveals that the processing order of ST-HOSVD can some-
times be cleverly chosen for the application at hand; see also [58, section 7.5]. The
second example investigates ST-HOSVD and T-HOSVD when a numerical threshold
is used to truncate the approximation. It illustrates that an ST-HOSVD approxima-
tion can be constructed much faster than the T-HOSVD. Concurrently, it shows that
ST-HOSVD results in an approximation whose error is much closer to the desired
tolerance than T-HOSVD, resulting in lower storage costs. In the third example, we
illustrate the difficulties that can arise when using the less accurate eigenvalue-based
implementation of nvecs (see next paragraph). It reveals a class of problems wherein
ST-HOSVD is always expected to be significantly faster than T-HOSVD. We also
present results of an iterative algorithm to compute the projectors.
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All experiments were conducted on a laptop comprising an Intel Core2Duo P7350
processing unit (2.0GHz) and 4GB main memory. The algorithms were implemented7

in MATLAB 7.9.0, using the Tensor Toolbox v.2.4 [4]. However, we modified the
nvecs implementation, which computes the dominant subspace in mode k, to use an
SVD-based algorithm,8 rather than computing the eigenvalues of the Gram matrix
A(k)A

T
(k). While the original implementation is faster, it is well known that computing

the SVD is more accurate. We illustrate this problem in section 8.3.

8.1. Dimensionality reduction for images. We investigate the use of ST-
HOSVD, T-HOSVD, and HOOI for the compression of a set of images to a fixed
multilinear rank (resulting in a fixed memory consumption). Applications of such a
compressed representation are described in [59, 60, 61], where similar data sets are
used.

HOOI is an iterative alternating least-squares algorithm for estimating the opti-
mal orthogonal Tucker model of a specified multilinear rank [11]. Initializing HOOI
with the T-HOSVD often results in an approximation whose error is close to the ap-
proximation error of the global optimum [11]. In this section, we assume that the
HOOI solution represents the best approximation that can be achieved, and we com-
pare ST-HOSVD and T-HOSVD relative to this alleged optimal solution. We used
the tucker als implementation [3] from the Tensor Toolbox v.2.4 [4]. The HOOI
iterations were halted if the approximation error did not improve by more than 10−7

between two successive iterations, with the maximum number of iterations set to 50.
That was sufficient to ensure convergence of HOOI.

The data set9 consists of the Olivetti Research Laboratory face database [48].
This data set contains 10 different images of each of the 40 subjects. The 92 × 112
grayscale images of a subject differ in the lighting, facial expressions and facial details.
We organized the images into a 10304×40×10 tensor. The first mode corresponds to
both pixel dimensions, which is referred to as a texel mode in the computer graphics
literature. That is, every 92× 112 image was vectorized into a vector of length 10304.
The second mode corresponds to the subjects and the final to the different expressions.

We compressed the above data set to a fixed multilinear rank, and compared the
three methods. In the texel mode we compressed to rank 1, 11, . . . , 401. The subject
mode was compressed to rank 1, 2, . . . , 40, and the expression mode to 6 through 9.
The approximation error for every combination of those mode ranks was computed.

We selected p = [3, 2, 1] as the processing order of the ST-HOSVD. This corre-
sponds to the heuristic discussed in section 6.4.

In Figure 8.1, we present the results for truncating the expression mode to rank
six.10 We visualized the relative distance of the ST-HOSVD and T-HOSVD to the
solution computed by HOOI. Clearly, the ST-HOSVD approximation is much closer
to the (local) optimum, in terms of approximation error, than that of the T-HOSVD.
In fact, the error of the ST-HOSVD was at most 1.012% worse than HOOI, whereas
the T-HOSVD’s maximum error was significantly higher, at 6.340%. On average11 the
ST-HOSVD error was 0.0985% higher than that of HOOI, and the error of T-HOSVD

7The code can be found at http://people.cs.kuleuven.be/∼nick.vannieuwenhoven/.
8By using the compact SVD everywhere, we can be sure the timings are indicative of the actual

performance, as the aforementioned SVD in MATLAB calls the corresponding LAPACK [1] routine.
9It can be found at http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html.

10The results for truncating the expression mode to other ranks are very similar.
11The average was taken over the relative approximation errors for every multilinear rank we

tested. Similar results are obtained when comparing the relative difference of the total approximation
error over all multilinear ranks between the three methods.
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(a) T-HOSVD.
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Fig. 8.1. The relative approximation error (errHOSVD − errHOOI)/errHOOI (expressed in %)
in function of the multilinear approximation rank, with respect to the local optimum found by the
HOOI algorithm, for the T-HOSVD (a) and ST-HOSVD (b) algorithms. A darker shade represents
a larger (relative) error of the approximation. Note the different scales.

was 2.115% higher than that of HOOI. This implies that, on average, T-HOSVD’s
distance to the optimum was 21.5 times the distance of ST-HOSVD to the optimum.

In Figure 8.1(a), there appears to be a sharp boundary line between large and
small approximation errors relative to HOOI. Since the subject and expression modes
are very short compared to the texel mode, the latter’s rank cannot be higher than
the product of the ranks of the aforementioned modes. Indeed, if the subject and
expression modes are truncated to rank r2 and r3, respectively, the unfolding in
the texel mode results in a 10304 × r2r3 matrix, whose rank is bounded by r2r3.
The compression in the subject and expression mode thus strongly affects and limits
the rank in the texel mode. The remaining energy after these two projections is
spread out over only r2r3 singular vectors, instead of over the 400 singular vectors
one obtains by simply computing the dominant subspace of the texel mode (without
first projecting in the other modes). This potentially concentrates more energy into
fewer vectors, which could result in a smaller truncation error in that mode. It is
precisely this information that we try to exploit by our choice of processing order
for the ST-HOSVD. By processing the texel mode last, we ensure that its rank is
already maximally reduced. The T-HOSVD, on the other hand, truncates all modes
independently and consequently does not detect that, due to the truncations in other
modes, the rank in the texel mode is, in fact, r2r3 < 400. T-HOSVD is unable to
exploit this information to construct a more accurate approximation. It is interesting
to note that if the texel mode is not processed last, the sharp boundary is also present
in the ST-HOSVD, and the approximation error is worse than the presented processing
order.

Figure 8.1(b) features horizontal lines where the approximation error is constant.
Because of the processing order, the rank in the texel mode is r2r3, as explained in the
previous paragraph. Consequently, “truncating” the texel mode to mode r1 > r2r3
results in the same approximation as truncating it to rank r2r3, hence resulting in
those horizontal lines. Any variations of the error on a horizontal line is due to the
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HOOI algorithm, which finds different local optima.
Finally, we report the total execution time to compute all low-rank approxima-

tions. The ST-HOSVD required 91 minutes to compute the 6560 approximations,
T-HOSVD computed for 207 minutes, and HOOI took 1841 minutes (an average of
20 iterations to reach convergence). The ST-HOSVD thus attains a speedup of 20.23
over HOOI and 2.27 over T-HOSVD. The ST-HOSVD solution may thus be more
favorable in some applications, as it is, on average, within 0.1% of the optimum while
cutting the execution time by a factor of 20 with respect to HOOI.

8.2. Handwritten digit classification. We revisit the classification of hand-
written digits using the HOSVD, which was investigated by Savas and Eldén in [50].
The problem they consider consists of automatically classifying a set of grayscale im-
ages, representing handwritten digits, into ten classes, in order to predict the digit
(or label) that is represented by the image. Algorithms for such a problem construct
a (low-parameter) model from a set of training images for which the actual label is
known. That model is employed to classify a disjoint set of test images. In [50, Al-
gorithm 2], a HOSVD-based algorithm is presented. We demonstrate that using the
ST-HOSVD instead of the T-HOSVD in this algorithm can significantly reduce the
execution time of the training phase.

We compare the performance of the T-HOSVD and ST-HOSVD algorithms on
the MNIST database,12 which contains 60,000 training images and 10,000 test images.
The 28×28 images are 8-bit grayscale. The training images are unequally distributed
over the ten classes. Therefore, we restricted the number of training images in every
class to 5421. The training images are grouped into a third-order tensor A of size
786× 5421× 10. The first mode is the texel mode. The second mode corresponds to
the training images. The third mode corresponds to the different classes. The vector
A:,5,8 thus corresponds to the fifth image representing an eight.

To construct the model from the training images, Savas and Eldén [50] use the
T-HOSVD to compress the data to a specified multilinear rank. The digit mode is not
compressed. This results in an approximation A ≈ (U, V, I) · S. Thereafter, one basis
matrix Bμ, constituting the first κ left singular vectors of S:,:,μ, is computed for every
class 1 ≤ μ ≤ 10, as in [50]. To classify a test image D, they vectorize the image,
d := vec(D). The coordinates of the orthogonal projection of d onto the basis U ,
which corresponds to the texel mode, are determined: dp = UTd. This low-parameter
approximation of d is projected orthogonally onto the space spanned by the basis
matrix Bμ. Its residual is r(dp, μ) := ‖dp−BμB

T
μ dp‖F . The image d is then classified

as argminμ r(dp, μ).
In this paper, we repeat the experiment of Savas and Eldén [50] and compare

the relative performance of T-HOSVD and ST-HOSVD in compressing the data. We
choose to truncate the T-HOSVD and ST-HOSVD to yield a relative approximation
error of no more than 15%, using the technique described below Theorem 6.4, rather
than selecting a multilinear rank beforehand. For the sake of comparison, an ST-
HOSVD model of the same rank as the T-HOSVD is also presented (rST-HOSVD).
In our experiments, we set κ = 15, which is a good choice judging from the data
in [50].

The processing order of the ST-HOSVD was p = [1, 2], as the digit mode is
skipped. This corresponds to the heuristic in section 6.4, ignoring the digit mode.
ST-HOSVD thus first compresses the images (texel mode) simultaneously, and then

12The database can be obtained from http://yann.lecun.com/exdb/mnist/.
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Table 8.1

A comparison between T-HOSVD and ST-HOSVD in classifying handwritten digits by an al-
gorithm due to Savas and Eldén [50, Algorithm 2].

T-HOSVD ST-HOSVD rST-HOSVD

Relative model error 9.895 · 10−2 14.997 · 10−2 9.678 · 10−2

Model rank (94, 511, 10) (65, 142, 10) (94, 511, 10)
Training time (s) 2966.0 59.3 68.7
Classification time (s) 14.7 11.8 14.8
Classification error (%) 4.940 4.960 4.940
Storage (# of values) 87984 60840 87984

constructs a compressed representation over all training images. It is well known, in
the context of classification, that classifiers constructed from the main features of the
training images [31] actually perform better than classifiers constructed from the raw
image data [50]. ST-HOSVD, with this processing order, can be interpreted as provid-
ing such a feature-extraction step, originating from the projection onto the dominant
features—as determined by the SVD—in the first mode. In this case, knowledge of
the application domain also suggests the use of the processing order p = [1, 2].

The results of our experiments are summarized in Table 8.1. First, we note that
the ST-HOSVD model results in a relative error that is much closer to the target error
than that of the T-HOSVD, while not significantly affecting the classification error.
Because of this, the multilinear rank of the ST-HOSVD model is lower, which has
several additional benefits in this application. ST-HOSVD classifies the test images
20% faster than T-HOSVD. Furthermore, the memory requirements are down by 31%
from the T-HOSVD. ST-HOSVD stores a 786×65 U matrix and ten 65×15 matrices
{Bμ}10μ=1, whereas T-HOSVD requires a 786× 94 U matrix and ten 94× 15 matrices.

The major advantage of the ST-HOSVD over T-HOSVD concerns its processing
time. T-HOSVD computes the SVD of A(1), a 786 × 54210 matrix, and A(2), a
5421 × 7860 matrix. ST-HOSVD also requires the SVD of A(1), but due to the
projection step, it computes only the SVD of A(2)(U ⊗ I), which is a 5421 × 650
matrix. Consequently, the ST-HOSVD algorithm achieves a speedup factor of nearly
50 over the T-HOSVD in constructing the low-parameter third-order tensor model.

Comparing the rST-HOSVD and T-HOSVD, which have the same rank, we note
that the relative approximation error of rST-HOSVD is better than that of the T-
HOSVD. The training time is significantly shorter, while the classification error and
time are equal.

8.3. Compression of simulation results. Lorente, Vega, and Velazquez [35]
recently employed the HOSVD to compress an aerodynamics database consisting of
numerical results of a multiparameter computational fluid dynamics simulation of the
flow around an airfoil. We apply this idea to the solution of the much simpler 2D heat
equation using a finite difference discretization. We seek the solution u(x, y, t) of

∂u/∂t = ∂2u/∂x2 + ∂2u/∂y2

on the unit square [0, 1]2, with boundary condition 0.25 − |0.5 − x| · |0.5 − y|. The
initial heat distribution u(x, y, 0) is also given by the last equation. We simulate
this PDE up to t = 0.25. The PDE was discretized with a uniform mesh with cell
size (Δs,Δs,Δt) and solved using the explicit Euler method. The time step should
be 0.25Δs2, in order to make the numerical scheme stable. We set Δs = 10−2 and
Δt = 0.25 · 10−4, resulting in a tensor of size 101× 101× 10001.
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Table 8.2

A comparison of three implementations of T-HOSVD and ST-HOSVD in compressing the re-
sults from a numerical simulation of the 2D heat equation.

Type Rank Error Time (s) Compression

T-HOSVD SVD (22, 22, 20) 8.510754 · 10−5 9942.51 476.41
EIG (22, 22, 20) 39.411250 · 10−5 2371.64 476.41
EIGS (22, 22, 20) 38.938427 · 10−5 110.79 476.41

ST-HOSVD SVD (22, 21, 19) 9.586941 · 10−5 74.73 502.22
EIG (22, 21, 19) 34.478420 · 10−5 7.47 502.22
EIGS (22, 21, 19) 34.480534 · 10−5 5.42 502.22

The solution tensor was compressed to an absolute error of Δs2 = 10−4, the dis-
cretization accuracy, using the ST-HOSVD and T-HOSVD. We compare three imple-
mentations of the dominant subspace estimation algorithm: the SVD-based algorithm
as used in this paper (svd(A,’econ’)), the algorithm which computes the full eigen-
decomposition of the Gram matrix A(k)A

T
(k) or AT

(k)A(k) depending on whichever is

smaller (eig(A)), and an iterative algorithm which computes only the required domi-
nant eigenvectors of the Gram matrix (eigs(A,r)). The latter is the default algorithm
in the Tensor Toolbox v.2.4. In Table 8.2, we refer to these algorithms as “SVD,”
“EIG,” and “EIGS,” respectively. ST-HOSVD’s processing order p = [1, 2, 3].

The results of our experiments are summarized in Table 8.2. The column “Type”
indicates the implementation of the subspace estimation, and “Compression” shows
the ratio between the number of floating point values used to store the solution tensor
(1012 · 10001) and the number used to store the multilinear approximation.

We note the very high compression factors in Table 8.2. The smallest possi-
ble rank of approximations that attain the discretization accuracy was determined
experimentally to be rank (21, 21, 19). Both SVD-based implementations of the nu-
merically thresholded ST-HOSVD and T-HOSVD find an approximation whose rank
is very close to this optimum. Its rank is small compared to the size of the ten-
sor. That is because the values in the tensor represent an approximation to the
C0-continuous analytical solution of the PDE. Such function-related tensors can be
compressed greatly [20, 27].

The table indicates that the approximation errors of the EIG and EIGS-based
algorithms are worse than that of the SVD-based algorithm for a given multilinear
rank. The error is at least 3.5 times higher than the error of the SVD-based imple-
mentations. Clearly, the discretization accuracy is not satisfied by a rank-(22, 22, 20)
tensor. In order to attain the discretization accuracy, the multilinear rank of the
approximation has to be increased to (86, 86, 50), which negatively affects the storage
costs and compression time. The SVD-based implementations of ST-HOSVD and T-
HOSVD compressed the data more than the EIG and EIGS-based implementations
by a factor of 4.36 and 4.14, respectively, while attaining the requested error bound.

Again note that the ST-HOSVD yields a smaller rank and better compression
factor than the T-HOSVD at a fixed error bound. At a fixed rank, on the other hand,
the error of ST-HOSVD is better than that of T-HOSVD, regardless of the algorithm
that implements the computation of the dominant subspaces.

The EIG-based implementations are indeed faster than the SVD-based implemen-
tations. The EIGS-based implementations are even faster. Clearly, the ST-HOSVD
is both more accurate and faster than the T-HOSVD, regardless of the algorithm that
implements the computation of the dominant subspace. The SVD, EIG, and EIGS
implementations of ST-HOSVD attain a speedup of, respectively, 133.05, 317.49, and
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20.44 over the corresponding implementation of the T-HOSVD.
The higher execution time of the T-HOSVD cannot be circumvented in this prob-

lem, wherein, for reasons of numerical stability of the discretization scheme, at least
one unfolding results in a matrix that is approximately square. ST-HOSVD avoids the
problem by first processing the short modes, as suggested by our heuristic. Because,
in these applications, the modes are greatly compressible, the unfolding in the last
mode(s) will result in a rectangular matrix with more rows than columns, rather than
an approximately square matrix. Thus, the cost of computing the dominant subspace,
regardless of implementation, is greatly reduced, resulting in significant speedups over
the T-HOSVD.

9. Conclusions. An error expression for a truncated orthogonal Tucker decom-
position was presented. Based on this expression, we proposed an improved trunca-
tion strategy for the higher-order singular value decomposition. A truncation strategy
based on a numerical threshold was presented that allows more accurate control over
the final approximation error, using only the singular values computed during the
construction of the ST-HOSVD model.

Numerical experiments indicate that the ST-HOSVD may be a suitable alter-
native to the T-HOSVD, as it can significantly reduce the number of floating point
operations used to construct the model. In many cases, it also reduces the approxima-
tion error. In one application, ST-HOSVD resulted, on average, in an approximation
whose error was only 0.1% higher than the (local) optimum computed by HOOI, while
the execution time was cut by a factor of 20. In other applications, speedups of 50
and 133 in execution time were obtained over the T-HOSVD.

Despite its benefits, the ST-HOSVD also introduces a number of difficulties. For
instance, the sequential approach destroys most of the structure in the original tensor.
Therefore, straightforwardly applying the sequential truncation to sparse or otherwise
structured tensors may be inadvisable. The ST-HOSVD is also serial in nature,
whereas the T-HOSVD is parallel. In the latter, the SVDs in the different modes can
be computed independently. Future research should investigate the degree to which
these issues can be overcome. A final concern of the ST-HOSVD algorithm is related
to the selection of the processing order. Although the heuristic we propose appears to
be utile in the applications considered, we recognize that the knowledge on this topic
is very incomplete and warrants further research.
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Sweden, 2003.

[50] B. Savas and L. Eldén, Handwritten digit classification using higher order singular value
decomposition, Pattern Recognition, 40 (2007), pp. 993–1003.

[51] B. Savas and L.-H. Lim, Quasi-Newton methods on Grassmannians and multilinear approxi-
mations of tensors, SIAM J. Sci. Comput., 32 (2010), pp. 3352–3393.

[52] J.-T. Sun, H.-J. Zeng, H. Liu, Y. Lu, and Z. Chen, CubeSVD: A novel approach to person-
alized web search, in Proceedings of the 14th international conference on World Wide Web
(WWW ’05), ACM, New York, 2005, pp. 382–390.

[53] P. Symeonidis, A. Nanopoulos, and Y. Manolopoulos, Tag recommendations based on
tensor dimensionality reduction, in Proceedings of the 2008 ACM Conference on Recom-
mender Systems, New York, 2008, ACM, New York, 2008, pp. 43–50.

[54] L. Tucker, Implications of factor analysis of three-way matrices for measurement of change,
in Problems in Measuring Change, C. Harris, ed., University of Wisconsin Press, Madison,
WI, 1963, pp. 122–137.

[55] L. Tucker, The extension of factor analysis to three-dimensional matrices, in Contributions
to Mathematical Psychology, H. Gulliksen and N. Frederiksen, eds., Holt, Rinehardt, &
Winston, New York, 1964, pp. 110–127.



A1052 N. VANNIEUWENHOVEN, R. VANDEBRIL, AND K. MEERBERGEN

[56] L. Tucker, Some mathematical notes on three-mode factor analysis, Psychometrika, 31 (1966),
pp. 279–311.

[57] C. Van Loan, The ubiquitous Kronecker product, J. Comput. Appl. Math., 123 (2000), pp. 85–
100.

[58] N. Vannieuwenhoven, R. Vandebril, and K. Meerbergen, On the Truncated Multilinear
Singular Value Decomposition, Technical Report TW589, Department of Computer Sci-
ence, Katholieke Universiteit Leuven, Leuven, Belgium, 2011.

[59] M. Vasilescu and D. Terzopoulos, Multilinear image analysis for facial recognition, in Pro-
ceedings of the 16th International Conference on Pattern Recognition, IEEE Computer
Society, Los Alamitos, CA, 2002, Vol. 2, pp. 511–514.

[60] M. Vasilescu and D. Terzopoulos, Multilinear subspace analysis of image ensembles, IEEE
Computer Soc. Conf. Computer Vision and Pattern Recognition, 2 (2003), pp. 93–99.

[61] M. Vasilescu and D. Terzopoulos, TensorTextures: Multilinear image-based rendering,
ACM Trans. Graph., 23 (2004), pp. 336–342.

[62] H. Wang and N. Ahuja, Facial expression decomposition, in Proceedings of the Ninth IEEE
International Conference on Computer Vision., 2003, Vol. 2, pp. 958–965.

[63] T. Zhang and G. H. Golub, Rank-one approximation to high order tensors, SIAM J. Matrix
Anal. Appl., 23 (2001), pp. 534–550.


