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Abstract: The investigations of hidden attractors are mainly in continuous-time dynamic systems,
and there are a few investigations of hidden attractors in discrete-time dynamic systems. The classical
chaotic attractors of the Logistic map, Tent map, Henon map, Arnold’s cat map, and other
widely-known chaotic attractors are those excited from unstable fixed points. In this paper, the hidden
dynamics of a new two-dimensional map inspired by Arnold’s cat map is investigated, and the
existence of fixed points and their stabilities are studied in detail.
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1. Introduction

The investigations of the chaotic system were greatly encouraged by the discovery of the Lorenz
system [1]. The Lorenz system is one of the most wildly-studied continuous-time dynamic systems,
and other classical continuous-time dynamic systems include the Rössler system, Chua system, Chen
system, Lü system, and Sprott system [2–6]. Most attractors of those classical continuous-time dynamic
systems are excited from unstable equilibria. However, hidden attractors imply the basin of attraction
does not contain neighborhoods of equilibria [7]. For finding hidden attractors, a lot of systems
improved when classical continuous-time dynamic systems were proposed [8–19]. These investigations
of hidden attractors can be classified by the number and stability of equilibria, such as no equilibrium,
finite stable equilibria, and infinite stable equilibria. In 2010, a special analytical-numerical algorithm
of finding hidden attractors in Chua system was proposed [20]. The special algorithm can find the
accuracy initial values that lead to hidden attractors and has promoted the development of finding
hidden attractors in continuous-time dynamic systems [21–24]. However, most investigations of
hidden attractors are mainly in continuous-time dynamic systems, such as the Chen system, Sprott
system, Chua system, and Lü system [15–24]. There are only a few of investigations of hidden attractors
in discrete-time systems.

The classical chaotic maps include the Logistic map, Tent map, Henon map, and Arnold’s
cat map [25–28]. In line with continuous-time dynamic systems, these hidden attractors in the
classical chaotic maps are also excited from unstable fixed points. In 2016, Jafari et al. studied a
new one-dimensional chaotic map with no fixed point inspired by Logistic map, and its bifurcation and
period doubling were introduced [29]. At the same year, Jiang et al. performed a search to find hidden
attractors in a new two-dimensional chaotic map inspired by the Henon map and analyzed several
different cases on fixed points, such as no fixed point, single fixed point, and two fixed points [30].

In this paper, a new two-dimensional chaotic map inspired by Arnold’s cat map is proposed.
For the limitation in the form of the Arnold’s cat map, the number of fixed points in the new
two-dimensional chaotic map is not larger than two, and the fixed points are closely related to
the Lyapunov exponents. Due to the restriction of the form of the Arnold’s cat map, the new
two-dimensional chaotic attractor can only appear in the case of no fixed point. Thus, our concern
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focuses on the case of no fixed point. The paper is arranged as follows: Section 2 describes the Arnold’s
cat map and shows its chaotic attractor. Section 3 analyzes the stability of the equilibria in the new
two-dimensional map. Section 4 demonstrates the digitalization and hardware implementation of the
new two-dimensional map. The complexity of output time series is tested by approximate entropy in
Section 5, and Section 6 summarizes the conclusions of this paper.

2. Arnold’s Cat Map

Arnold’s cat map, also known as cat chaotic map, is a chaotic map of repeated folding and
stretching in a limited area and is wildly used in multimedia chaotic encryption [28]. Arnold’s cat map
is a two-dimensional chaotic map and defined as

[
x(n + 1)
y(n + 1)

]
=

[
1 1
1 2

][
x(n)

y(n)

]
(mod1) (1)

Equation (1) can be transformed into Equation (2) for calculating the fixed points.

{
x(n) = x(n) + y(n)(mod1)
y(n) = x(n) + 2y(n)(mod1)

(2)

Equation (2) always has a fixed point, because it is composed of homogeneous linear equations.

The fixed point of the Arnold’s cat map is

{
x∗ = 0
y∗ = 0

. The Jacobian matrix of Arnold’s cat map is
[

1 1
1 2

]
, and the two eigenvalues are calculated as Eig1 = 3 +

√
5

2 ≈ 2.618 and Eig2 = 3 −
√

5
2 ≈

0.382. Therefore, the fixed point (0,0) is an unstable fixed point. It is a saddle point, because there is a
positive Lyapunov exponent and a negative Lyapunov exponent. For a positive Lyapunov exponent,
Arnold’s cat map is a two-dimensional chaotic map. In Arnold’s cat map, two eigenvalues of the
Jacobian matrix are associated, respectively, to an expanding and a contracting eigenspace, which
are also the stable and unstable manifolds [31]. The phase diagram of Arnold’s cat map is shown in
Figure 1.

Figure 1. When x(0) = 0.7 and y(0) = 0.6, this represents the phase diagram of Arnold’s cat map.
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The generalized Arnold’s cat map is defined as

[
x(n + 1)
y(n + 1)

]
=

[
1 a

b ab + 1

][
x(n)

y(n)

]
(mod1). (3)

The fixed point of the generalized Arnold’s cat map also is

{
x∗ = 0
y∗ = 0

. The Jacobian matrix of

the generalized Arnold’s cat map is , and two eigenvalues are λ1 = 1 + ab +
√

(ab + 2)2 − 4
2 > 1 and

λ2 = 1 + ab −
√

(ab + 2)2 − 4
2 < 1. Therefore, the fixed point (0,0) also is an addle point. The generalized

Arnold’s cat map also is chaotic map, because it has one positive Lyapunov exponent. Despite Arnold’s
cat map or the generalized Arnold’s cat map, they always have unstable saddle pint (0,0).

3. A New Two-Dimensional Chaotic Map without Fixed Points

In this paper, a new two-dimensional chaotic map inspired by Arnold’s cat map is proposed. It is
defined as

[
x(n + 1)
y(n + 1)

]
=

[
a b

c d

][
x(n)

y(n)

]
+

[
e

f

]
(mod1). (4)

in which a = kc + 1, b = k(d − 1), e 6= k f 6= 0, e ∈ (0, 1), f ∈ (0, 1), and k 6= 0. For calculating
the fixed point, Equation (4) can be transformed into two-dimensional equations.

{
x(n) = (kc + 1)x(n) + k(d − 1)y(n) + e(mod1)
y(n) = cx(n) + dy(n) + f (mod1)

(5)

Equation (5) can be transformed into nonhomogeneous linear equations by collecting the
like terms. {

kcx(n) + k(d − 1)y(n) = −e(mod1)
cx(n) + (d − 1)y(n) = − f (mod1)

(6)

There is no solution to the nonhomogeneous linear equations. Thus, the map (4) has no fixed
point. However, the coefficients should be further limited for obtaining hidden chaotic attractors. The
Jacobian matrix of the map (4) is

J1 =

[
kc + 1 kd − k

c d

]
. (7)

The characteristic equation of the matrix J1 is calculated as

det(λI − J1) = λ2 − tr(J1)λ + det(J1) = 0. (8)

in which det(J1) = d + ck is the determinant of matrix J1 and tr(J1) = kc + 1 + d is the trace
of matrix J1. The characteristic equation of the matrix J1 is a quadratic function. The roots of the
Equation (8) are

λ1,2 =
kc + 1 + d ± (kc + d − 1)

2
(9)

in which λ1 = 1 and λ2 = kc + d. The two corresponding Lyapunov exponents are LE1 = ln|λ1| = 0
and LE2 = ln|kc + d|. The non-chaos fixed point attractors have negative Lyapunov exponents.
The non-chaos periodic or limit cycle attractors have non-positive Lyapunov exponents. The chaotic
attractors have positive Lyapunov exponents. Therefore, the chaotic system exists at least a positive
Lyapunov exponent. For obtaining hidden chaotic attractors, the second eigenvalue λ2 = kc + d
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should be larger than 1. For example, the coefficients are set as c = 1, d = 2, and k = 2, and
|kc + d| = 4 > 1. Combining with the map (4), the new two-dimensional map with no fixed point is
defined as

[
x(n + 1)
y(n + 1)

]
=

[
3 2
1 2

][
x(n)

y(n)

]
+

[
0.1
0.2

]
(mod1). (10)

in which e = 0.1 and f = 0.2. The phase diagram of attractors is shown in Figure 2, and the plot of

the output time series is shown in Figure 3.

Figure 2. When x(0) = 0.7 and y(0) = 0.6, the phase diagram of the new 2-D map with a = 3,
b = 2, c = 1, d = 2, e = 0.1, and f = 0.2.

Figure 3. The plot of the output time series (a) x(n), (b) y(n).

The new two-dimensional map (10) is a chaotic map, because it has a positive Lyapunov exponent.
From Equation (9), the chaotic behavior in the map (4) is dependent only on the coefficients c, d,

and k, and the second eigenvalue of the Jacobian matrix J1 is the simple combination of c, d, and k. The
Lyapunov exponent can be changed with different parameters c, d, and k. When c = 1.1, d = 2,
k = 2, and t = 4.2 > 1. Combining with the map (4), a new two-dimensional map without fixed
points is defined as
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[
x(n + 1)
y(n + 1)

]
=

[
3.2 2
1.1 2

][
x(n)

y(n)

]
+

[
0.1
0.2

]
(mod1). (11)

in which e = 0.1 and f = 0.2. The phase diagram of the chaotic attractors is shown in Figure 4, and
the plot of the output time series is shown in Figure 5.

Figure 4. When x(0) = 0.7 and y(0) = 0.6, the phase diagram of the new 2-D map with a = 3.2,
b = 2, c = 1.1, d = 2, e = 0.1, and f = 0.2.

Figure 5. The plot of the output time series (a) x(n), (b) y(n).

As can be observed from the plots of the time series, it is obvious that the map (11) has initial
value sensitivity, randomness, and so on. For no fixed point in the map (11), the map (11) is a chaotic
map and has a hidden chaotic attractor. As can be seen from Figure 1, the chaotic attractor of the
map (11) is not similar to that of Arnold’s cat map. When c = −0.25, d = 2, k = 2, and t = 1.5 > 1.
Combining with the map (4), a new two-dimensional map is defined as

[
x(n + 1)
y(n + 1)

]
=

[
0.5 2

−0.25 2

][
x(n)

y(n)

]
+

[
0.1
0.2

]
(mod1). (12)

in which e = 0.1 and f = 0.2. The phase diagram of the chaotic attractors is shown in Figure 6, and
the plot of the output time series is shown in Figure 7.
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Figure 6. When x(0) = 0.7 and y(0) = 0.6, the phase diagram of the new 2-D map with a = 0.5,
b = 2, c = −0.25, d = 2, e = 0.1, and f = 0.2.

Figure 7. The plot of the output time series (a) x(n), (b) y(n).

Compared with Figure 1, the phase diagram of the map (12) is dissimilar to the Figures 2 and 4.
When initial value is changed, x(n) has the same output time series in the first 20 iterations, and y(n)

has the same output time series in the first 10 iterations.

4. Digitalization and Hardware Implementation

For the digitalization of information, chaotic systems need to be digitized before they are
used [32,33]. The new two-dimensional chaotic map can be digitalized in two ways: one is the
floating-point representation, the other is fixed-point representation. According to IEEE 754-2008 [34],
floating-point is divided into single precision and double precision. The form of floating-point is
shown in Table 1.

Table 1. Floating-point representation.

Floating-Point Sign Exponent Fraction

Single precision 1 bit 8 bits 23 bits
Double precision 1 bit 11 bits 52 bits
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The hardware consumptions of the fixed-point representation are not very high, because it includes
sign bit and fraction bits. However, there is no standard form in fixed-point representation. Compared
with floating-point computing, fixed-point computing is faster, and hardware implementation is
smaller [35]. For a better performance in hardware implementation, the new two-dimensional map
is represented by fixed-point in this paper. Since x(n) and y(n) are decimal numbers, they are more easily
represented by fixed-point. Therefore, x(n) and y(n) are changed from decimals to integers. The digitized
N bits of decimal β can be represented as

β̃ =
⌊

2N β
⌋

2−N . (13)

in which β̃ is an N bits approximation of β. The digitized N bits of map ϕ(β) = λβmod1 can be

written as ϕ̃(β̃) =
⌊

2N λβ̃mod2N
⌋

2−N , and the digitized N bits of map (4) can be written as

{
x̃(n + 1) =

⌊
2N ax̃(n) + 2N bỹ(n) + 2N emod2N

⌋
2−N

ỹ(n + 1) =
⌊
2N cx̃(n) + 2N dỹ(n) + 2N f mod2N

⌋
2−N . (14)

Multiplying both sides by 2N , map (14) can be represented as

{
2N x̃(n + 1) =

⌊
2N ax̃(n) + 2N bỹ(n) + 2N emod2N

⌋

2N ỹ(n + 1) =
⌊
2N cx̃(n) + 2N dỹ(n) + 2N f mod2N

⌋ . (15)

Denote 2N x̃(n), 2N ỹ(n), 2Ne, and 2N f by x(n), y(n), e, and f , respectively. The digitized N bits of map
(15) can be written as

[
x(n + 1)
y(n + 1)

]
=

⌊[
a b

c d

][
x(n)

y(n)

]
+

[
e

f

]⌋
(mod2N), (16)

in which x(n) and y(n) is in the interval [0, 2N − 1], N presents the length of finite precision, x(n) and
y(n) is represented by N bits. When N = 32, the hardware implementation by FPGA is shown in
Figure 8.

Figure 8. The block diagram of the hardware implementation by FPGA.

5. The Analysis of Complexity

The approximate entropy algorithm is proposed from the angle of measuring the complexity of
time series [36–39]. The main idea of the approximate entropy algorithm is using a non-negative value
to quantify the complexity and irregularity of the time series, and the value increases with the increase
of sequence complexity. The calculation process of the approximate entropy is shown as follows:
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1 Suppose the initial data is the sequence x(1), x(2), . . . x(N), and then divide them into
m-dimensional vectors

X(i) = [x(i), x(i + 1), ..., x(i + m − 1)], (17)

in which i = 1, 2, 3...N − m + 1.

2 The distance between x(i) and x(j) is defined as

d(i, j) = max
k=1−m−1

[|x(i + k) − x(j + k)|]. (18)

3 Setting a threshold value r(r > 0), for each i, we can obtain the statistics of d(i, j).

Ci
m(r) =

1
N − m + 1

Sum{d(i, j) < r} (19)

4 The mean of logarithm of Ci
m(r) is written as φm(r) and can be calculated by

φm(r) =
1

N − m + 1

N−m+1

∑
i=1

ln Ci
m(r) (20)

5 Changing dimension and repeating step 1 to step 4, we can obtain the approximate entropy

ApEn(m, r) = lim
N→∞

[φm(r) − φm+1(r)] (21)

However, in practical terms, the length of the data sequence is bounded. Therefore, the approximate
entropy algorithm is changed into

ApEn(m, r, N) = φm(r) − φm+1(r)] (22)

Pincus found that there exists a minimal dependency between ApEn and N when m = 2 and
r ∈ [0.1SD(x), 0.2SD(x)] [36]. SD(x) is the standard deviation of x. The complexity of the output
time series of Arnold’s cat map and new two-dimensional chaotic maps are tested by approximate
entropy algorithm, and the consequence show that the output time series of Equation (11) has a higher
complexity. The specific results are shown in Table 2.

Table 2. Approximate entropy test.

Chaotic Map Time Series m r = 0.15SD N ApEn

Equation (1)
x(n) 2 0.0435 2000 0.9787
y(n) 2 0.0436 2000 0.9963

Equation (10)
x(n) 2 0.0426 2000 0.7591
y(n) 2 0.0437 2000 0.8841

Equation (11)
x(n) 2 0.0436 2000 1.4171
y(n) 2 0.0434 2000 1.2831

Equation (12)
x(n) 2 0.0438 2000 0.5433
y(n) 2 0.0428 2000 0.8429

6. Conclusions

In this paper, the hidden attractors for the two-dimensional chaotic map are studied, and the
existence of fixed points and their stability are considered. Due to the restriction of the form of
the Arnold’s cat map, the new two-dimensional chaotic attractor can only appear in the case of
no fixed point. The selection of coefficients directly affects whether the two-dimensional map has
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chaotic behavior, because the eigenvalue of the Jacobian matrix of the new two-dimensional chaotic
map is a simple combination of the coefficients. Three concrete examples are given to illustrate the
relationship between the coefficients and the chaotic behavior. The different coefficients can not only
determine the chaotic behavior of the new two-dimensional chaotic map but also affect the shape of
the chaotic attractor.
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