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A New Two-Dimensional Model for the Potential 
Distribution of Short Gate-Length MESFET’s 

and its Applications 
Shan-Ping Chin, Student Member, IEEE, and Ching-Yuan Wu, Member, IEEE 

Abstract-A new analytical technique for calculating the two- 
dimensional (2D) potential distribution of a MESFET device 
operated in the subthreshold region is proposed, in which the 
2D Poisson’s equation is solved by the Green’s function tech- 
nique. The potential and electric-field distributions of a non- 
self-aligned MESFET device are calculated exactly from dif- 
ferent types of Green’s function in different boundary regions, 
and the sidewall potential at the interface between these regions 
can be determined by the continuation of the electric field at 
the sidewall boundary. The remarkable feature of the proposed 
method is that the implanted doping profile in the active chan- 
nel can be treated. Furthermore, a simplified technique is de- 
veloped to derive a set of quasi-analytical models for the side- 
wall potential at both sides of the gate edge, the threshold 
voltage of short gate-length devices, and the drain-induced bar- 
rier lowering. Moreover, the developed quasi-analytical models 
are compared with the results of 2D numerical analysis and 
good agreements are obtained. 

B m  Fourier coefficient for the one-dimensional 
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Xmin Location of the minimum channel potential. 
\kmin Minimum channel potential. 
4 b  Channel barrier height (= \Emin  - Vgs, + VbJ. 
4; Channel barrier height for defining the 

4(x) Bottom potential with respect to the source 

eh Threshold voltage of a long-gate MESFET 

threshold voltage. 

potential (= \k(x, b)  - Vgs + VhJ.  

(= Vbj - * l d ( b )  + 4 ; ) .  

I. INTRODUCTION 

HE GaAs MESFET’s are widely used in high-speed T logic circuit and microwave amplifier. The perfor- 
mance of a GaAs MESFET can be significantly enhanced 
by scaling down the device geometry. With the improve- 
ment on the process technology, a short gate-length 
MESFET device with sub-quarter-micrometer size can be 
fabricated. However, the gate-controlling capability will 
be reduced by the penetration of the electric field from the 
sidewall at both sides of the gate, and the threshold volt- 
age of a short gate-length device will be influenced by the 
drain bias. 

The short gate-length effect can be exactly analyzed by 
numerical simulation, based on a full set of semiconduc- 
tor device equations with reasonable boundary conditions 
[ 11-[3]. However, the numerical simulation is limited by 
the computation time and is difficult to use in circuit anal- 
ysis. Furthermore, the results of numerical simulation can 
only provide discrete data points and are difficult to use 
in device optimization. The analytical model, which is 
generally limited by the mathematical treatment for dif- 
ferent device structures, becomes very difficult to develop 
when the multidimensional effect is obvious. However, a 
simple and accurate analytical model is very important for 
circuit analysis. 

In modeling the short-channel effect in a short gate- 
length MESFET, the two-dimensiona (2D) Poisson’s 
equation satisfying different surface boundary conditions 
must be solved to get the 2D potential distribution. In pre- 
vious work in [4], [ 5 ] ,  the 2D Poisson’s equation has been 
solved by a Laplace reduction technique with the 2D Pois- 
son’s equation being divided into a 2D Laplace equation 
and a one-dimensional (1D) ordinary differential equa- 
tion, and the doping profile in the active channel has been 
assumed to be uniform. Moreover, in order to avoid the 
problems resulting from different surface boundary con- 
ditions the n+ region was assumed to contact directly to 
the gate metal, and the absorption of the electric field by 
the depletion charges near the source/drain side was not 
taken into account. For a practical MESFET structure, 
the spacing between the n+ region and the gate metal can- 
not be overlooked because it can reduce the short-channel 
effects [6] and further enhance the breakdown voltage. In 
a recent paper [7], the trial function method has been used 
to solve the 2D Poisson’s equation in the ungated part of 
the channel. However, this method does not clearly take 

the surface boundary conditions in the ungate region into 
account. 

Ion implantation has become a widely used process for 
doping the active channel and source/drain regions of a 
short gate-length MESFET [8]. Recently, the implanted 
channel profile has been considered in modeling the I-I/ 
characteristics of an implanted MESFET device by using 
1D analysis [9]. In general, the effects of both short gate 
length and implanted channel profile have not been well 
described in the literature. In order to treat the implanted 
doping profile in the active channel of a MESFET device, 
the Green’s function technique used in MOSFET model- 
ing [lo] is used to solve the 2D Poisson’s equation. In 
this paper, a new analytical technique is developed, in 
which different types of Green’s function are used to cal- 
culate the 2D Poisson’s equation to satisfy different sur- 
face boundary conditions. The problem resulting from dif- 
ferent surface boundary conditions can be solved by 
matching the potential and electric field distributions. In 
Section 11, the boundary conditions for a non-self-aligned 
MESFET structure and 2D potential distribution calcu- 
lated by the Green’s function technique are presented. In 
Section 111, some approximations are made for a non-self- 
aligned MESFET in order to simplify the analytical equa- 
tions derived in Section 11. In Section IV, the developed 
quasi-analytical models are compared with the results cal- 
culated by 2D numerical simulation for a wide range of 
device parameters. Furthermore, the relationship between 
the short-channel effect and the device structure is dis- 
cussed. Finally, a conclusion is given in Section V.  

11. THEORETICAL MODEL 
A simplified diagram showing the electric field distri- 

bution near the end of the gate metal for a non-self-aligned 
MESFET device operated in the subthreshold region is 
illustrated in Fig. l(a).  It is shown that some of the lateral 
field will be terminated by the edge side of the gate metal 
if the device has a long gate length, and the channel po- 
tential is slightly affected by the lateral field. However, 
this is not true for a short gate-length device or when the 
lateral field is large. For a short gate-length MESFET, the 
channel potential cannot be entirely controlled by the gate 
bias and will be shifted by the penetration of the lateral 
field. From this veiwpoint, there are two factors which 
may play important roles for the short-channel effect in a 
short gate-length MESFET: one is the lateral field distri- 
bution at the sidewall of the gate edge; the other is the 
efficiency of the gate metal in terminating the lateral field. 
It is clear that a solution technique for the 2D Poisson’s 
equation satisfying suitable boundary conditions is re- 
quired to model the short-channel effect. However, it be- 
comes very difficult for a MESFET structure due to the 
complexity of the boundary conditions. In the following 
subsections, the Green’s function solution technique is 
proposed to solve the 2D Poisson’s equation for a non- 
self-aligned MESFET structure. Some assumptions and 
approximations are made to reduce the complexity in or- 
der to get a solution analytically. 
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(b) 

Fig. 1.  The schematic diagrams for a non-self-aligned MESFET structure 
operated in the subthreshold region. (a) Penetration of the sidewall field 
into the gate-controlled region and the boundary conditions used. (b) Ap- 
proximation used to develop an analytical model for 2D potential distri- 
bution. 

A.  Boundary Conditions 
The cross-sectional view of a GaAs MESFET operated 

in the subthreshold region is shown in Fig. l(a), where 
the x coordinate represents the direction along the surface 
and the y coordinate represents the direction perpendicu- 
lar to the surface. Because the mobile carriers are negli- 
gibly small when the device is operated in the subthresh- 
old mode, the current continuity equation can be ignored. 
The charge distribution in the active channel is assumed 
to be the ionized impurity profile and the 2D Poisson’s 
equation can be written as 

It is assumed that the effect of the surface states on the 
ungated semiconductor surface is very small and the elec- 
tric flux vanishes in these regions, hence the surface 
boundary conditions can be expressed as 

for x < 0 or x > L, (2) 
and 

+(x, y ) l y=o  = 0, for 0 I x I Lg (3) 
where the gate metal is used as the reference point. 

For a practical GaAs MESFET, the effect of the semi- 
insulating substrate is very sophisticated. In order to sim- 

plify the mathematical treatment without losing its valid- 
ity, the boundary condition in the bottom side of the ac- 
tive layer is set to the Neumann boundary condition and 
the substrate effect is neglected. The boundary condition 
in the bottom side of the active channel can be expressed 
as 

E , ( x ,  b) = -2 y, / I r b  = 0. (4) 

When the MESFET device is operated in the subthresh- 
old region, the drain current is very small and the ohmic 
drop across the ungate regions can be neglected. The po- 
tentials at both sides of the depletion-layer edge can be 
expressed as 

wx3 Y)ls = Vbr - vgs 

\k(x, Y ) l d  = vbr - vgs + Vds 

( 5 )  

and 

(6) 

where the depletion-layer edges at the source and drain 
sides are denoted by s and d ,  respectively. 

Moreover, the electric field must vanish in the deple- 
tion-layer edges at both sides of the gate, otherwise, this 
field may cause a large current flow. Therefore, we may 
write 

EEls = 0 (7) 

and 

where n’ is the outward unit vector at the depletion-layer 
edge. 

B. Green s Function Solution Technique 
The solution of the 2D Poisson’s equation in a finite 

region can be obtained by means of the Green’s function 
technique. Using Green’s theorem, the potential distri- 
bution can be expressed as [ 113 

\k(x, y )  = j j G(x, y ;  x’, y ’ )  dx’ dy’ 
V 

The Green’s function for a rectangular domain can be 
expressed in a hyperbolic-sine (hyperbolic-cosine) form. 
However, this form cannot be directly applied to a 
MESFET structure shown in Fig. l(a) because the surface 
boundary conditions are different for the gated and un- 
gated regions. In order to solve the 2D Poisson’s equation 
with these different surface boundary conditions, the 
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Green’s function is chosen as 

G(x, x’; y, y’) = 

W 

cos (k,y) COS (k,y’)F~(x; x’; k,), 

forx  I 0 (loa> 

b n = O  

2 ”  
G(x, x’; y, y’) = - c sin (k,y) sin (kmy’)FI,(x; x‘; km),  

(lob) 

b m = l  

for 0 I x I L,, 

where k, = n n / b ,  k, = (m - 1 /2) n / b ;  n and m are the 
integers; c = 1 for n = 0 and c = 2 for n z 1; F,, F,,, 
and FIrI are expressed by 

forx’  > x 
sinh (k,x’) sinh km(L, - x) 

&(x; x’; k,) = 

k, sinh (k,L,) i forx’  x 

Sinh k,(X - L,) sinh k,(L, + Wd - x ’ )  

k,  sin (k,Wd) 

forx’  > x 
Sinh k,(X‘ - L,) sinh k,(L, + w d  - X) 

k, Sinh (k,Wd) 3 

forx‘  < x. 

It is assumed that the depletion-layer edge at the source 
(drain) side is perpendicular to the surface at a position 
- W,(L, + W,), as shown in Fig. l(b). It is noted that, 
in (1 la) and (1 IC), the hyperbolic-sine function decays 
exponentially for n I 1 and the influence of the sidewall 
potential at the source (drain) side of the gate due to the 
high-order terms of the Fourier component for the charge 

distribution at the depletion edge can be estimated from 
exp (-nnW,/b) or exp (-naW,/b) for n 1 1. Since the 
depletion-layer edges at both sides of the gate are far away 
from the channel region under the gate for a non-self- 
aligned structure, it is expected that the channel potential 
is less affected by the detailed shape of the charge distri- 
bution in the depletion boundary at both sides of the gate 
because this charge distribution is described by the high- 
order terms of the Fourier series. The sidewall potential 
at both sides of the gate edge (x = 0 and x = L,) can be 
determined by using the continuation of the lateral electric 
field. The Fourier transformation for the sidewall poten- 
tial at the source/drain side of the gate edge is performed, 
and the Fourier coefficients of the sidewall potential can 
be expressed as the superposition of two parts 

W 

\k(O, y) = ( A ;  + B,) sin (kmy) (12a) 
m = l  

and 
W 

\k(L,, y) = c (Ad, + B,) sin (k,y) (12b) 

where B,  is the Fourier coefficient of the 1D potential 
distribution due to the ionized impurity profile under the 
gate and is expressed by 

m = l  

b 

B = 2 j’ *id(Y) sin (kmy) dY (13) 
b o  

in which \Eld( y) is expressed as 

Note that \ E l d (  y) in (14) is independent of bias condi- 
tions; A i  and Ad, are the unknown variables, which can 
be determined by the boundary conditions. 

Substituting (3, ( l l a ) ,  and (12a) into (9), the 
x-component electric field in the ungated region at the 
source side can be expressed as 

where E:,,(x, y) is the electric field due to the sidewall 
potential at the source side and is expressed by 

W - 
vs 

W, , = I  sinh (k,W,) 
k, cosh k,(Ws + x) 

E:,,(x, y) = -- - c 

E:,,(x, y) is the electric field due to the potential at the 
depletion-layer edge at the source side and is expressed 
by 

I 
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E:,,@, y )  is the electric field due to the depletion charge 
in the ungated region at the source side and is given by 

- sinh k,(W, + x )  dx . (18) 1 
The boundary condition in (7) is used to determine the 

unknown parameter W,. Integrating (15) over the active 
channel at x = - W,,  we can obtain the following equa- 
tion: 

The average lateral electric field at the depletion-layer 
edge at the source side can be eliminated by using (19). 
Note that the high-order terms in (1 8) do not exactly van- 
ish due to the assumption of the perpendicular relation 
between the depletion-layer edge and the surface. How- 
ever, the sidewall potential at the source side is not 
strongly affected by this approximation because these 
terms decay exponentially. 

Similarly, the lateral electric field under the gate can be 
expressed as 

cosh km(Lg - X) 
sin (kmy) 

sinh (kmLg) 

m 
cosh (kmx) 

E! ,L , (~ ,  Y )  = C - k m ( A i  + B,) sin (kmy) . 
(kmLg) m = l  

[cosh ( k , ~ )  - cosh km(L, - x)]. (23) 

Note that the doping profile Nd(x,  y) under the gate is 
assumed to be only dependent on the y direction, thus Nd 
is independent of x under the gate. The lateral electric 
field must be continuous at x = 0, so we obtain 

Substituting (15) and (20) into (24) and performing the 
Fourier transformation, i.e., 

5 s: 
we obtain 

kmBm - 

(AS, cosh (kmL,) - A i )  k m  + 
sinh (kmL,) 

m 

- Vbj + Vgs + v, + c Tm,k, coth (k,  W,) 1 n = l  

m m m 

- Ws s slvb.<x> sinh k,(W, + x )  dx = 0, 

form = 1, 2, 3, - . 9 -  (26) 

where the first term in (26) can be eliminated because 

A similar treatment can be performed for the drain side 
to obtain another system of equations, and the results are 
expressed as 

Bmki = qNd,n/€ .  

- 
vbi + vds - v g s  Vd - + -  

wd wd 

and 

( A i  cosh (kmL,) - AS,) km 
sinh (kmL,) 

- sinh k,(L, + wd - x )  dx = 0, 

form = 1, 2, 3, * - , 00. (28) 

In order to accurately model the 2D effects, one must 
obtain self-consistent solution from (19) and (26)-(28). 
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However, since these equations are too complicated from 
the viewpoint of an analytical model, some approxima- 
tions will be made in the following section in order to get 
a simple expression. 

111. A SIMPLIFIED TECHNIQUE FOR A 

NON-SELF-ALIGNED MESFET 
With the help of a numerical simulation, some approx- 

imations can be made for a non-self-aligned structure. 
First, it is shown that the Fourier coefficients (Ah and 
A i )  of the excess sidewall potential decrease rapidly with 
respect to the integer m and the first term is almost five 
times larger than the second term. Secondly, the hyper- 
bolic-sine function decreases exponentially with respect 
to the integer m. Therefore, it is expected that the first 
term is sufficient to predict the channel potential under the 
gate, especially for the region near the middle of the gate. 
As a result, the potential distribution under the gate can 
be approximated by the following equation: 

where kl  (= a/2b) is the eigenvalue for the first term of 
the Fourier series in the channel region under the gate. 

It is clearly seen that the potential distribution under the 
gate in (29) is expressed in terms of only two variables 
(A;  and A!) which can be solved from (19) and (26)-(28). 
Similarly, since the doping profile at both sides of the gate 
is assumed to be independent of x, (26) with m = 1 can 
be rewritten as 

( A ;  cosh (kIL,) - AY) kl 
sinh (k,L,) 

1 + -- (-@!b wf - v,; + I/,, + v, 4 1  
a w, 2E 

m m 

m 
qNi,n 1 - cosh (kn W,) + C TI,, - 

n = l  E kn sinh (k, W,) 

m m 

+ c Tlnkn coth (knW,) c B m , T m l , n  = 0 
n = l  m l  = I 

where W, can be obtained from (19) and is expressed by 

(31) 
2E 

Note that the most complicate term in (30) is the third 
term, which is a coupling term between these Fourier coef- 

ficients and can be rewritten as 
OD m 

1933 

However, the solution of (30) is insensitive to this term 
and the ratio ( A h / A i )  is almost constant for wide ranges 
of device parameter and bias conditions. Therefore, this 
term can be simplified by the numerical analysis and is 
expressed as 

1.4 C Tl,,k,, coth (knW,) C ALIT,, , ,  z -/I;. (33) 
n = l  ml = I K b  

Moreover, the average potential can be approximated by 

(34) 

m m 

- 2 
V, VI + - A ; .  a 

Using (31), (33), and (34), (30) can be rewritten in a 
simple form 

+ T(WJ (35) 

where a, 0, VI,  and Vp are the structure parameters, which 
are independent of bias conditions and are expressed as 

a 1.4 
2 K 

= - coth (kIL,) + - 
a 1  
2 sinh (k,L,)  

p = -  

m 
B m  v, = c 

m = ~  (2m - 1)a 

(37) 

Equation (35) is very similar to the result of the 1D case 
with uniformly doped substrate. The second term on the 
left-hand side of (35) is related to the electric field pro- 
duced by the boundary condition at the drain side, VI is 
the average potential for the 1D potential distribution due 
to the depletion charges, Vp is the effective pinch-off po- 
tential and is equal to the pinch-off voltage when the ac- 

I 
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tive channel is uniformly doped. The relation between the 
the nonuniformly doped profile and the 2D effect is clearly 
described in (40), in which is contributed by two terms: 
the first term is the 1D sidewall potential due to the ion- 
ized impurities under the gate, and the second term is the 
nonuniformly distributed depletion charges at the source 
side of the gate. However, from another viewpoint, v(W,) 
can be treated as the unmatching part of the lateral field 
between different regions and must be offset by the side- 
wall potential. If we assume that W, is sufficiently larger 
than b, then coth ( k ,  W,) G 1, and v(  W,) can be approxi- 
mated by 

It should be noted that 17 is independent of W,  from this 
approximation. This means that the variable W, is elimi- 
nated in (35) and the unknown variables are only As and 
A?. In general, this approximation is valid for different 
Gaussian profiles, however, the iteration must be per- 
formed to get a self-consistent solution for heavy doping 
in the ungated region. 

The same treatment can be performed for the drain side. 
Similarly, we can obtain 

where the parameters used are same as those in (35) if the 
structure parameters are symmetrical for both the source 
and the drain, i.e., 

1V. APPLICATIONS AND VERIFICATIONS 
It is known that 2D effects in a short gate-length 

MESFET can be easily demonstrated by measuring the 
threshold voltage and the subthreshold current of the fab- 
ricated short gate-length MESFET’s. These two electrical 
parameter/characteristics are strongly dependent of gate 
length and applied drain bias. Therefore, the derived 
equations in Section I11 will be used to develop the thresh- 
old-voltage model and the drain-induced barrier lowering 
of a short gate-length MESFET in the following subsec- 
tions. Moreover, a new 2D device simulator [12] based 
on conventional semiconductor device equations is used 
to verify the accuracy of the developed analytical models. 

A .  Excess Sidewall Potentials and Potential 
Distribution 

In order to calculate the potential distribution under the 
gate, the sidewall potential and the width of the depletion 
layer at both sides of the gate must be calculated first. The 

first term of the Fourier coefficient for the excess sidewall 
potential at the source end of the gate can be solved from 
(31) and ( 3 9 ,  and the results are 

and 

where a l  = [&If + q(W,)]/(aV,) - 64/(7r3a2), bl = 
8/(7ra), and c ,  = 2al/7r - 64/(7r4a2). 

Similarly, the results for the drain side are 

(45) 

and 

(46) 

where a2 = [PAS + 7 ( W d ) ] / ( a V p )  - 64/(7r3a2), b2 = 
8/(7ra), and c2 = 2a2/7r - 64/(7r4a2). 

Note that the above equations seem to be similar to the 
1D results; however, the 2D effects are properly consid- 
ered. It should be noted that the magnitude of A ” , A f )  is 
proportional to the lateral electric field at the gate edge 
and is strongly affected by the total amount of the deple- 
tion charges that can terminate the electric field. It is ex- 
pected that the self-aligned structure will have a larger 
sidewall potential than the non-self-aligned structure if the 
depletion edges at both sides of the gate touch the n+ re- 
gion. 

Comparisons between the first term of the Fourier coef- 
ficient in the excess sidewall potential at the source side 
in (43) and the 2D numerical analysis are shown in Fig. 
2 ,  in which the active channel thickness is 0.2 pm, Rp is 
the projected range with the reference point at the semi- 
conductor surface, AR, is the standard deviation or the 
projected straggle, and the doses of ion implantation are 
chosen to keep the pinch-off voltage of a long gate-length 
device at 1.5 V. Fig. 3(a) shows the bottom potential ver- 
sus the normalized distance along the channel ( x / L g )  for 
various gate lengths. It is clearly seen that the central por- 
tion of the bottom potential distribution increases with de- 
creasing gate length, and good agreements between the 
analytical model and the 2D numerical analysis are ob- 
tained for this portion which is important for accurately 
modeling the threshold voltage as described in the next 
subsection. Note that there are some discrepancies be- 
tween comparisons at the gate edges, especially for the 
case of a shorter gate-length device. These discrepancies 
are mainly due to the fact that A ;  in (43) and A;‘ in (45) 
only keep the first term of the Fourier series. The varia- 
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tance ( x / L , )  between the analytical model and the 2D numerical analysis 
for a Gaussian profile. (a) Various gate lengths with V,, = 0 V and V,, = 
-2.15 V. (b) Various V,, and Vxa = -2.15 V for gate length of 0.5 pm. 

tion of the bottom potential with the drain bias is shown 
in Fig. 3(b). It is noted that the potential barrier is low- 
ered by the drain bias, and satisfactory agreements be- 
tween the analytical model and the 2D numerical simu- 
lation are obtained. 

B. Threshold Voltage 
Threshold voltage is a key device parameter in circuit 

design. A usual definition for the threshold voltage of a 
MESFET implies an abrupt transition between the tum- 
off and tum-on regions. The drain current, however, does 
not immediately decrease to zero for the gate bias below 
the threshold voltage. Instead, the drain current varies al- 
most exponentially with the gate bias in the subthreshold 
region due to the formation of the channel barrier. From 
this viewpoint, we use the formation of the channel bar- 
rier to define the threshold voltage. The criterion for the 
threshold voltage is defined by the condition that the 
channel barrier height ( 4 b )  is equal to 4;, i.e., 

If the device structure is symmetrical in the source and 
drain regions and V,, = 0, we obtain 

A ?  = A : .  (48) 

Substituting (48) into (35), Ai  can be written as 

where a3 = 77 (w,>/[(a - PI vpl - 64/[n3(a - P)*I, b3 
= 8 / [n (a  - p ) ] ,  and c3 = 2 a 3 / a  - 64/[n4(a - p)2].  

Substituting (48) and (29) into (47), the threshold volt- 
age must satisfy the following equation: 

v t h  = v p h  - 2 a i  (50) 

where K = sech (k,L,/2)/2. 

as 
From (49) and (50), v t h  can be analytically expressed 

+ 2Ka3 + 2b: K 2  - c3 )”*]. (51) 

From (51), the K factor is a key parameter used to de- 
scribe the short gate-length effect. Comparisons between 
the analytical model and the 2D numerical simulation for 
various Gaussian profiles in the active channel are shown 
in Fig. 4,  in which the dose of ion implantation is chosen 
to keep the pinch-off voltage of a long gate-length device 
at 1.5 V for various profiles. It is shown that the devel- 
oped analytic threshold-voltage model is valid for gate 
length down to 0.15 pm and different Gaussian profiles in 
the active channel. It is noted that the 2D effect on the 
threshold voltage is not obviously influenced by the non- 
uniform doping profile under the gate. This phenomenon 
is due to the fact that most of the doping impurities in the 
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device is operated in near turn-on. The 2D numerical - 
analysis of the threshold voltage for a self-aligned 3 
MESFET structure with different sidewall spacings be- .? 
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Fig.  4 .  Comparisons o f  the threshold voltage versus gate length between 
the analytical model and the 2D numerical analysis for different Gaussian 
profiles in the active channel. 

Fig.  5 .  The simulated variations o f  the threshold voltage with respect to 
the gate length for various spacings in self-aligned and non-self-aligned 
MESFET's .  

of the subthreshold current curve. Therefore, it is impor- 
tant to include the DIBL effect for designing the cutoff 
characteristics of a short gate-length MESFET. 

Equation (29) can be used to model the DIBL effect, in 

cated nearly at the middle of the gate if the device is sym- 
metrical in the source and drain regions and V,, is small. 
The channel barrier can be written as 

which A ;  and A ;  can be obtained from (43)-(46), and the 4,, = 'k,,, - Vbj + V,, 
minimum of the channel potential can be obtained by 

= \ k l d ( b )  - Vb, + V , ,  + [2AS,Af cosh (klL,) 

(52) - (A?)* - ( A d 2  1) I 1/2 /sinh (W,). (54) 
Comparisons between the analytical model and the 2D 

of 0.5 pm and an active layer thickness of 0.2 pm. It is 
Using (29) and ( 5 2 )  9 the location Of the minimum channel numerical simulations are shown in Fig. 6 for a gate length 
potential can be solved as 

clearly seen that the effect of a nonuniform channel pro- 
file can be well predicted by the developed analytical 
model. It is noted that the shift of the channel barrier for 
the heavily doped case will be larger than for the lightly 
doped case. 

. (53)  kl sinh (k,L,) 

Note that x,,, is L,/2 when A i  = A ? .  This means that the 
turn-on point in a non-self-aligned MESFET device is lo- 

1 1 [cosh (klL,) - AS,/A;' 
x,,, = - tanh-I 
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V. CONCLUSION 
A new 2D analytical model for the 2D potential and 

electric field distributions of a non-self-aligned MESFET 
is presented, in which the effects of implanted profile and 
surface boundary conditions are properly considered in the 
proposed model. The problem resulting from different 
types of surface boundary conditions is treated by match- 
ing the sidewall boundary conditions, and the potential 
distribution is obtained by the Green’s function tech- 
nique. There are no trial solution and fitting parameters 
used in the developed models. Based on the derived ana- 
lytical potential distribution, the simplified formula for the 
sidewall potential, the threshold voltage, and the drain- 
induced barrier lowering can be obtained. From compar- 
isons between the developed analytical models and the 2D 
numerical simulation, the short-channel effects in non- 
self-aligned MESFET’s can be clearly described by the 
simplified models. 
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