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Abstract—A new attack (called “gradient statistical”) on block ciphers is suggested and ex-
perimentally investigated. We demonstrate the possibility of applying it to ciphers for which
no attacks are known except for the exhaustive key search.

1. INTRODUCTION

Block secret-key ciphers are very widely adopted in information (transmission and storage) pro-
tection systems, and therefore some researchers call them a “workhorse” of cryptography. Because
of this wide practical use, problems of both designing reliable block ciphers and finding effective
cryptological attacks on these ciphers (i.e., methods of determining a secret key of a cipher based
on experiments with encrypted messages) become issues of the day. Researches in these fields are
made in parallel and often by the same specialists, and inventing a new attack leads as a rule to
finding new ciphers resistant to this attack. Note that of interest for cryptography are attacks
that are less time-consuming than the direct exhaustive key search. For example, if an attack
requires examination of 2200 keys instead of, say, 2250 keys necessary for the exhaustive search,
then the attack is of interest for cryptology [1]. Reviews of present-day block ciphers, methods
of their construction and analysis, and various types of attacks can be found in many works, e.g.,
in [1–5], where some tens of modern ciphers and attacks are described. Numerous national and
international programs and contests aimed at designing reliable block ciphers, held nowadays in
the USA, European Community, Japan, and Korea (see a review in [2]), give evidence of urgency
of the problem.

Most block ciphers can be described as functions defined on the set of all binary words of
length � + k and taking values in the set of binary words of length �, where � is the length of an
enciphered word (or block) and k is the length of a (secret) key. In modern ciphers, the block
length is usually either 128 or 64 bits, and the key length for different ciphers (and different modes
of using a cipher) ranges from several tens to several thousand bits. For instance, in the AES
cipher, winner of the 21st Century Block Cipher contest held in the USA in 1999–2001, the block
length � is 128 bits, and the key length may have three values: 128, 196, and 256 bits. In popular
ciphers R5 and RC6, suggested by R. Rivest, the block length can be 32, 64, or 128 bits, and the
key length in various versions varies from 64 to several thousand bits. It should be noted that RC5
and RC6 have a very simple description and, apparently, have therefore become among the most
popular cryptanalysis objects. A brief description of RC5 is given in the Appendix.

1 Supported in part by the Russian Foundation for Basic Research, project no. 03-01-00495, INTAS,
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In [1, 5–7], cryptanalysis results for RC5 and RC6 were presented, and a conclusion was made
about high resistance of these ciphers to all attacks described in the literature.

In many (or even all) modern block ciphers, encryption process is divided into a series of com-
paratively simple stages, often called rounds. In the course of each new round, data obtained in
the preceding stage is encrypted using the so-called round key. All these stages are labeled in
the RC5 cipher (see the Appendix). Here we should make a remark concerning the terminology:
traditionally, in the description of RC5, the term half-round is used; two half-rounds constitute a
round [3, 7]. Therefore, when proposing an attack, we speak about a round; when analyzing its
applicability to RC5, about a half-round (we hope this would not cause ambiguity).

In RC5, RC6, and many other ciphers, the number of rounds is a parameter, and often cryptanal-
ists study the “resistance” of a cipher as a function of the number of rounds. One of the goals of
this analysis is to find the number of rounds ensuring high reliability of the cipher.

In the decryption process, the same rounds with the same round keys are in fact repeated in the
reverse order; in the Appendix, as an example, we describe the decryption for RC5.

Thus, the encryption process for RC5, RC6, and many other ciphers can schematically be
represented as a chain of “elementary” encryption stages (or rounds)

x1 = Encr1(x0, k1), x2 = Encr2(x1, k2), . . . , xr = Encrr(xr−1, kr), (1)

where x0 is an original �-bit word to be encrypted; Encri is the encryption operation (function) in
the ith stage; ki is the key used in the ith stage; xi is an �-bit word, the “output” of the ith stage
and the “input” of the (i+ 1)st; finally, xr is the encryption result.

In the present paper, we describe a new attack on block ciphers of this type, which we call the
gradient statistical attack, and analyze, as an example, its applicability to the RC5 cryptanalysis.
Obtained experimental results allow us to conclude that the attack is applicable, and for some
regimes of the cipher, the complexity of this attack is significantly less than for the direct exhaustive
search. Here it should be noted that, though the proposed attack was never described before and
is new, analysis of statistical properties of block ciphers has been used in cryptanalysis (see [6,7]).

The proposed attack is described in Section 2. Section 3 examines its applicability to RC5.

2. DESCRIPTION OF THE STATISTICAL ATTACK

The described method belongs to the class of chosen plaintext attacks (see [1, 3, 5]). When
realizing this attack, a cryptanalist may apply any text to the input of the cipher and then analyze
the obtained encrypted message. The aim of the attack is to find a (secret) key; the cryptanalist is
assumed to know all characteristics of the cipher except for this key. Such attacks are of practical
interest, and up-to-date block ciphers are supposed to be resistant to them [1,3].

We consider ciphers where an encrypted binary word is a block of length �, � > 1; it is enciphered
using a key K, which is a randomly chosen |K|-bit word. (Here and in what follows, |u| is the
length of u if u is a word and the cardinality of u if u is a set.)

Most of present-day ciphers have an initialization stage, during which an initial key K is trans-
formed into so-called round keys k1, k2, . . . , kr, successively used for encryption in different stages
(see (1)). In different ciphers, this procedure goes differently; this depends not only on a particular
cipher but also on values of the block and key lengths (� and k) and on the number of rounds r,
which for many ciphers are parameters. For instance, for the RC5, the block length can be 32, 64,
or 128 bits, the number of rounds can be any integer number, and the key length must be a multiple
of 8 and can take any value starting from 8 bits. Note that the values � = 64, r = 12, and k = 128
are recommended by the designers and have been extensively studied. Also, schemes where the key

length K is the total sum of round key lengths (|K| =
r∑

i=1
|ki|) are often considered.
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Decryption is made in the order reverse to the encryption (1):

xr−1 = Decrr(xr, kr), xr−2 = Decrr−1(xr−1, kr−1), . . . , x0 = Decr1(x1, k1), (2)

where the same round keys are used, and operations Decri are inverse to encryption stages Encri.
Let us estimate the complexity of the exhaustive search attack. To make this attack, it suffices

to have one encrypted message (binary word) of length not less than the key length. Then we
have to attempt decrypting the encrypted message by successively trying all possible keys in some
order and comparing the obtained result with the initial (clear) text; coincidence would mean that
the unknown key is found. Usually, it is assumed that the key takes any value from the set of all
binary words of length |K| with probability 2−|K|, so the average number of keys searched though

equals
2|K| + 1

2
.

Present-day block ciphers must satisfy a lot of various requirements. One of the requirements
can be stated as follows: each encrypted message must “resemble” a realization of a Bernoulli
process with generating probability 1/2 for zero and one. (In what follows, we for brief call such
sequences random.) In particular, all ciphers that participated in the 21st Century Block Cipher
contest held in the USA in 1999–2001 were tested for this requirement (see [8, 9]). We shall not
dwell on a logical analysis of this requirement (which, in a sense, cannot be satisfied at all) but give
an example clarifying it. To this end, define an �-bit word αi as a binary notation for the number i,
i = 0, 1, 2, . . . , 2� − 1, where, as above, � is the block length of a cipher in question (i.e., α0 is an
�-tuple of binary zeros, α1 consists of � − 1 zeros and a unity, α2 consist of � − 2 zeros followed
by 10, etc.). The requirement on the cipher is that, for any key value, the sequence of �-bit words

Encr(α0) Encr(α1) Encr(α2) . . .

viewed as a binary sequence must be statistically indistinguishable from a random sequence. (Here
Encr(αi) means the encrypted word αi.) In particular, this requirement allows one to use a block
cipher as a pseudorandom number generator (see [3–5]).

Now we pass to a description of the proposed statistical attack on block ciphers whose encryption
and decryption procedures are divided into a series of rounds (1) and (2). We start with quite an
informal preliminary consideration. We shall use absolutely inexact terms more and less random
sequences, meaning that one sequence is more random than another if the length required to
establish deviation from randomness for sure for the first sequence is larger than that for the
second. (Here it is assumed that a certain statistical test is used with the same confidence level.
Another definition of a “more” random sequence is that the size of the test statistic for this sequence
is less than for a less random one.) Assume that a cipher with an unknown key is successively fed
by words α0α1α2 . . . . Clearly, this sequence is “highly” nonrandom. The sequence

Encr1(α0, k1) Encr1(α1, k1) Encr1(α2, k1) . . .

obtained after the first encryption round, which we denote by β0β1 . . . , is “more” random than the
initial one; the sequence

Encr2(β0, k2) Encr2(β1, k2) Encr2(β2, k2) . . .

obtained after the second round is still more random, etc. Finally, the sequence ω0ω1ω2 . . . obtained
after the last round is more random than the preceding one. This informal assertion is experimen-
tally verified in data for the RC5 cipher presented below and in numerous researches (see, e.g., [6–9])
for almost all known ciphers of this type; an explanation for this fact is rather obvious: encryption
in each round leads to “hashing” and thus increases the “randomness” of encrypted data. Note also
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an obvious corollary: in decryption of the sequence ω0ω1ω2 . . . according to (2), randomness of the
obtained data successively decreases. This, of course, is valid only if “true” round keys are used in
the decryption; if, say, in the first decryption round xr−1 = Decrr(xr, kr) (which corresponds to the
last encryption round; see (1) and (2)), instead of the true key kr we use another word k∗r of the
same length, then the effect of the transformation Decrr(xr, k

∗
r ) will be the same as in encryption,

i.e., the output sequence will be more random than the input one. This observation (important
for us) in the general form is as follows: if we use a “wrong” key k∗j in the jth decryption round
(instead of the “true” key kj), then the randomness of the output sequence increases, whereas it
decreases if we use the “true” key kj .

This observation is what the proposed attack is based upon; the attack can now be described
schematically in the following way:

1. Problem setting. We are given a cipher whose encryption and decryption is made according
to schemes (1) and (2), respectively. All parameters of the cipher except for a key K are assumed
to be known. The goal of the attack is to find unknown round keys k1, k2, . . . , kr, where, as above,
r is the number of rounds (which is equivalent to finding K since this makes it possible to decrypt
any message encrypted using this key).

2. Description of the algorithm scheme. In the course of the proposed attack, as the cipher
input, we first take a “simple” sequence ofmr �-bit words (say, the above-described α0α1α2 . . . αmr ),
where mr is a parameter of the method. Denote the obtained encrypted output sequence by
ω0ω1ω2 . . . ωmr . It is assumed that we use some quantitative measure of randomness, which we
denote by γ(w), where w is a binary word. (For instance, in the sequel we use as such a measure
the statistic applied in the well-known Pearson χ2 test.)

After that, for all possible values of the rth round key kr, we successively compute a sequence
Γr(u) defined as

Γr(u) = Decrr(ω0, u)Decrr(ω1, u)Decrr(ω2, u) . . .Decrr(ωmr , u), (3)

where u ∈ {0, 1}|kr |, and evaluate its “measure” of randomness. Then we find a value of u∗ for which
the randomness γ(Γr(u∗)) of Γr(u∗) is the smallest among all values of γ(Γr(u)), u ∈ {0, 1}|kr |, and
assume u∗ to be the (unknown) key of the rth round: kr = u∗. Let us note here that the number
of decryption operations in this stage is proportional to 2|kr|mr.

The we repeat analogous computations to find a key kr−1 of the (r − 1)st round, using as an
input the sequence Γr(kr) (= Γr(u∗)); see (3). More precisely, we compute the sequence

Γr−1(u) = Decrr−1(Decrr(ω0, kr), u)Decrr−1(Decrr(ω1, kr), u) . . . , (4)

where now u ∈ {0, 1}|kr−1|, and evaluate its randomness. We assume that the number of �-bit words
in this sequence, which we denote by mr−1, is not larger than mr (if it is not the case, missing
words can be computed, though, as will be seen below, the length of Γr−1(u) [i.e., mr−1] is usually
less than the length of Γr(u) [i.e., mr] since the first sequence is “less” random than the second).
The word u∗∗ that minimizes the randomness of Γr−1(u) is taken as the value of the (r−1)st round
key. In this stage, the number of decryption operations is proportional to 2|kr−1|mr−1.

Successively repeating the above computations, we find values of the round keys kr−1, kr−2,
kr−3, . . . , k1. The total number of operations required to find all the round keys is proportional to
r∑

i=1
2|ki|mi; in the typical case where all lengths of round keys are the same (|ki| = |k|), the number

of operations is proportional to rmmax2|k|, whereas for the exhaustive search it is proportional
to 2|K| (where mmax = max

i=1,...,r
mi and K is the [aggregate] key of the cipher). This difference

in the exponents determines the domain of applicability for the proposed attack: if rmmax is less
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than 2|K|−|k|, then the number of operations for the proposed method is less than for the exhaustive
key search.

3. Modifications, parameters, and variants of the proposed method. We have de-
scribed the main idea of the method in a “pure” form, and here let us dwell on possible variants of
its implementation.

First, the randomness measure γ(·) is a parameter of the method; moreover, different measures
can be used not only for different ciphers but also for different rounds. As is pointed out above, any
statistical test applicable for testing the null hypothesis H0 that a binary sequence is generated by
a Bernoulli source with equal probabilities for zero and one against the alternative hypothesis H1,
the negation of H0, can be used for this purpose. Here γ(·) can be equal to the size of the test
statistic.

Second, unlike the variant described above, when searching for the key of the jth round, we
may choose not one “true” key but several (say, s) “suspect” values of u, i.e., s words with the
smallest measure of randomness γ(Γj(u)) (among u ∈ {0, 1}|kj |). Furthermore, when finding simple
sequences and keys, it is natural to use sequential methods similar to sequential tests in mathe-
matical statistics.

Third, an initial “highly nonrandom” sequence α0α1α2 . . . αmr can be chosen in various ways.
For example, it seems reasonable to choose sequences where neighboring words, αi and αi+1, not
merely contain many identical symbols but differ by one symbol only (such a sequence can be
constructed based on Gray codes; their description can be found, e.g., in [10]). Finally, a part of
binary symbols in words of a sequence α0α1α2 . . . αmr can be chosen randomly, the others being
set to zero (as in [6, 7]), etc.

The last modification is due to the fact that, for many present-day ciphers, for a large number
of rounds even a “highly” nonrandom sequence after encryption is almost indistinguishable from a
random one (using known statistical tests with a reasonable computation time). For example, let
a cipher have r rounds and assume that, for some “simple” initial sequence α0 = α0

0α
0
1α

0
2 . . . α

0
m,

the sequences

α1 = Encr1(α0
0, k1) Encr1(α

0
1, k1) Encr1(α

0
2, k1) . . .Encr1(α

0
m, k1),

α2 = Encr2(α1
0, k2) Encr2(α

1
1, k2) Encr2(α

1
2, k2) . . .Encr2(α

1
m, k2),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,
αd = Encrd(αd−1

0 , kd) Encrd(αd−1
1 , kd) Encrd(αd−1

2 , kd) . . .Encrd(αd−1
m , kd)

are nonrandom for all round keys k1, . . . , kd, d < r. Then the above-described attack can be
modified as follows: for any set of keys kd+1, . . . , kr of rounds d + 1, . . . , r, we repeat the above-
described procedure of finding unknown keys k1, . . . , kd of rounds 1, . . . , d. In other words, the keys
kd+1, . . . , kr are found using exhaustive search, and the keys k1, . . . , kd, using the above method.
For this combined attack, we need

m · 2

r∑
j=d+1

|kj | d∑

j=1

2|kj |

operations, which for some parameters may be less than the number of operations required for the
exhaustive search of all keys.

3. EXPERIMENTS WITH RC5

We start the description with an experimental analysis of the “measure of randomness” of
encrypted messages depending on the number of rounds (more precisely, of half-rounds, as was
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Table 1. The number of sequences (out of 100) for which the randomness hypothesis was rejected

Rounds 1 1.5 2 2.5 3
Key number t 218 218 218 220 220

1 100 63 64 51 52
2 100 100 100 74 70
3 100 61 61 17 17
4 100 81 78 62 64
5 100 100 100 65 6
6 100 85 86 12 9
7 100 100 100 11 8
8 100 98 99 99 99
9 100 80 79 14 14
10 100 100 100 7 5

mentioned above). We use terms like 3.5 rounds instead of, say, the 7th half-round. Unfortunately,
this terminology is commonly used in papers concerning RC5, RC6, and a number of other ciphers.

The first question that we studied experimantally2 concerned the possibility to distinguish “sim-
ple” and evidently nonrandom sequences encrypted by RC5 for various number of (half-)rounds. To
do this, we used as an initial “nonrandom” sequence the above-mentioned sequence αi, i = 0, 1, . . . ,
where αi is the binary notation of length 64 bits for a number i. (Recall that we consider RC5
with block length 64 bits.) In all cases, the sequence was encrypted using this cipher with a given
number of half-rounds, and the obtained sequence was used to test the hypothesis H0 that a binary
sequence is generated by a Bernoulli source with equal probabilities of zero and one against the
alternative hypothesis H1, the negation of H0. In the sequel, to avoid repetitions, we call this
problem the “randomness hypothesis.”

Clearly, the choice of a statistical test for hypotheses testing plays an important role in the
described attack, so let us briefly discuss this question. Presently, there are quite a lot of works
devoted to designing and analyzing tests for the randomness hypothesis testing; apparently, this is
due to the importance of this problem for cryptography, numerical methods, and other numerous
applications. Thus, the US National Institute of Standards and Technology (NIST) has recently
analyzed known test for the randomness hypothesis testing and recommended 16 methods for
practical application in cryptography (see [11]). In [12] it is shown that the tests described in
[13, 14] surpass the methods from [11], which was also justified by our preliminary estimates for
RC5. Therefore, for our analysis, we used the “book stack” and “adaptive χ2” tests from [13,14],
respectively. It was found that the strength of the “book stack” test is on the average higher than
that of the adaptive χ2 test, whereas the latter has a much higher rate and is more convenient to
realize on a multiprocessor computer. Therefore, we gave preference to the adaptive χ2 test; all
data given below were obtained for this test.

Table 1 contains data on the randomness hypothesis testing using the adaptive χ2 test for RC5
with various number of rounds. All computations were made for 10 randomly chosen keys and were
repeated 100 times for encrypting the following 100 sequences of words of length t:

α0α1 . . . αt−1, αtαt+1 . . . α2t−1, . . . , α99tα99t+1 . . . α100t−1, (5)

where t is the length of one subsequence. The table gives the number of cases where the randomness
hypothesis was rejected with confidence level 0.0001. For example, it is seen from the table that
the randomness hypothesis was rejected 100 times (out of 100) when using the first (randomly

2 Computations were made using supercomputers of the Institute of Computational Technologies, Siberian
Branch of the RAS, and the Novosibirsk State University.
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Table 2. Testing the randomness hypothesis for a larger number of rounds, with confidence level 0.01

Round Length, t Number of tests
Number of cases for which

the randomness hypothesis was rejected

5 228 30 30
5.5 229 22 10
6 231 6 6
6.5 232 6 6
7 232 6 5
7.5 233 3 3
8 237 3 2

Table 3. The number of “nonrandom” sequences (out of 100) in decryption with the true key and 10
random half-round keys

2.5 rounds The length, t, of one sequence (out of 100) is 28

Series Key True 1 2 3 4 5 6 7 8 9 10

1 54 9 10 10 15 13 13 8 10 19 12
2 69 34 34 35 34 36 33 34 36 39 33
3 87 44 37 36 38 38 37 41 42 42 41

3 rounds The length, t, of one sequence (out of 100) is 216

Series Key True 1 2 3 4 5 6 7 8 9 10

1 97 81 84 84 81 84 83 84 82 83 83
2 73 35 39 36 32 36 32 33 40 39 42
3 94 0 1 2 0 1 1 0 4 0 1

3.5 rounds The length, t, of one sequence (out of 100) is 219

Series Key True 1 2 3 4 5 6 7 8 9 10

1 100 28 16 23 9 15 26 18 17 22 22
2 48 9 10 9 11 10 8 9 10 10 11
3 65 20 21 18 20 19 20 19 19 18 17

chosen) key, with sequence length t = 218. Thus, it is seen that encrypted sequences are evidently
nonrandom; otherwise, the hypotheses would be rejected in approximately 0.0001 · 100 = 0.1 cases
out of 100.

For a larger number of rounds, we made computations with a smaller number of variants (or
repetitions) since this case requires sequences of larger lengths and, accordingly, larger computation
time. We again tested the randomness hypothesis H0 for the same encrypted sequence α0α1 . . . αt−1

with various (randomly chosen) keys and various number of rounds; results are presented in Table 2.
It is seen that an encrypted sequence α0α1 . . . αt−1 can reliably be distinguished from a random
sequence up to round 8.

As is said in the description of the test, the main assumption (unless it is satisfied, the attack
is impossible) is as follows: if we use a “wrong” key k∗ for decryption in any round (instead of
the “true” key k), the randomness of an output sequence increases, whereas it decreases if we
use the “true” key k. This assumption was experimentally verified according to the following
scheme: for three randomly chosen keys, the above-described 100 sequences (5) were encrypted
using RC5 up to the jth half-round. Then one decryption half-round was made using the “true”
half-round key and 10 randomly chosen “wrong” keys, and for all the 11 sequences we evaluated
the randomness of the data obtained after these transformations. Note that, according to our
hypothesis, the difference between the randomness of a sequence decrypted using the “true” key
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Table 4. Difference in complexity of sequences decrypted
with the “true” half-round key and 5 random keys

Key
Round

True 1 2 3 4 5
4 10 4 4 4 3 3
4.5 5 0 0 0 0 0

and of the 10 others, decrypted with random keys, should correspond to the difference in randomness
obtained in one extra encryption round. (Indeed, the true key decreases the randomness by one
half-round, and a wrong key increases it by one half-round.)

Table 3 contains experimental data for various number of rounds, with confidence level 0.0001.
Values of test parameters and the sequence length t were chosen in preliminary experiments with
independent data obtained using other random keys.

It turned out that 54 out of 100 sequences decrypted with the true half-round key were recognized
as nonrandom (with confidence level 0.0001), whereas only 9 out of 100 sequences “decrypted” with
the first wrong key were recognized as nonrandom, 10 out of 100 with the second key, 10 with the
third, etc.; so sequences decrypted using the true key are less random than those “decrypted” using
wrong keys.

Unfortunately, for a larger number of rounds, computations according to this scheme become
practically impossible due to a drastic increase in computation time. (Indeed, using this scheme,
we have to make computations for 330 files of the same length: 3 series, 11 half-round keys, and 100
subsequences.) Table 4 shows results for 4 and 4.5 rounds with a sequence (5) of length 224 bits.
The sequence was encrypted with a randomly chosen key, and then a decryption half-round was
made, once with the “true” half-round key and 5 times with wrong (randomly chosen) keys. These
computations were repeated 10 times; all other conditions were the same as in the above-described
experiments. It is seen that, for 4 encryption rounds, sequences decrypted with the true key are
recognized as nonrandom in 10 cases out of 10, whereas those “decrypted” with a wrong key, only
in 4 or 3 cases out of 10. Similarly, for 4.5 rounds, sequences decrypted with the true key were
recognized as nonrandom in 5 cases out of 10, and all sequences “decrypted” with wrong keys were
recognized as random.

We see that the data given in Tables 1–4 justify the assumptions necessary for the proposed
attack to be possible in principle: first, “randomness” of an encrypted sequence grows with the
number of half-rounds; second, “randomness” of a sequence “decrypted” with a wrong half-round
key is greater than that of a sequence decrypted with the true key.

Thus, the presented experimental results demonstrate that the conditions required for the gra-
dient statistical attack on the RC5 cipher are satisfied. This, in turn, allows us to conclude that
this attack on RC5 is possible in principle. Furthermore, the obtained data allow us to suggest
that the gradient statistical attack can be applied to other ciphers of the considered type.

APPENDIX: DESCRIPTION OF THE RC5 CIPHER

Algorithm 1 (encryption).
Input: 2w-bit plaintext M = (A,B); r; key K = K[0] . . . K[b− 1].
Output: 2w-bit ciphertext C.
The encoding uses the operations of addition modulo 2w (�), XOR (⊕), and cyclic (left)

shift (←↩).
1. Compute 2r + 2 (half-)round keys K0, . . . ,K2r+1 by Algorithm 2, using K and r.
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Table 5. The table used for generating half-round keys in RC5

w 16 32 64
Pw B7E1 B7E15163 B7E15162 8AED2A6B
Qw 9E37 9E3779B9 9E3779B9 7F4A7C15

2. A← A�K0, B ← B �K0.
3. Cycle: For i from 0 to r do:
A← ((A ⊕B)←↩ B)�K2i (comment: half-round 2i),
B ← ((B ⊕A)←↩ A) �K2i+1 (comment: half-round 2i+ 1).

4. Output C ← (A,B).

Remark. For the decryption, we apply the encryption algorithm using the ciphertext C = (A,B)
as follows (� denotes subtraction modulo 2w, and ↪→ is the cyclic right shift):

For i from r down to 1 do: B ← ((B �K2i+1) ↪→ B)⊕A, A← ((A�K2i) ↪→ B)⊕B.
Finally, we obtain M ← (A�K0, B �K1).

Algorithm 2 (key initialization).
Input: word length w; number of rounds r; b-byte key K[0] . . . K[b− 1].
Output: subkey K0, . . . ,K2r+1 (where Ki are w-bit words).
1. Set u = w/8 (the number of bytes in a word) and c = �b/u�.
2. Next, let K[j]← 0 for all b ≤ j ≤ c · u− 1.

Cycle: For i from 0 to c− 1 do: Li ←
u−1∑
j=0

28jK[i · u+ j].

3. K0 ← Pw; for i from 1 to 2r + 1 do: Ki ← Ki−1 �Qw (see Table 5).
4. i← 0, j ← 0, A← 0, B ← 0, t← max(c, 2r + 2). For s from 1 to 3t do:

(a) Ki ← (Ki �A�B)←↩ 3, A← Ki, i← i+ 1 mod (2r + 2).
(b) Li ← (Li �A�B)←↩ (A�B), B ← Li, j ← j + 1 mod c.
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