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Graphical password (GPW) is one of various passwords used in information communication. �e QR code, which is widely used
in the current world, is one of GPWs. Topsnut-GPWs are new-type GPWsmade by topological structures (also, called graphs) and
number theory, but the existing GPWs use pictures/images almost. We design new Topsnut-GPWs by means of a graph labelling,
called odd-elegant labelling. �e new Topsnut-GPWs will be constructed by Topsnut-GPWs having smaller vertex numbers; in
other words, they are compound Topsnut-GPWs such that they are more robust to deciphering attacks. Furthermore, the new
Topsnut-GPWs can induce some mathematical problems and conjectures.

1. Introduction and Preliminary

1.1. Researching Background. Graphical passwords (GPWs)
have been investigated for over 20 years, and many impor-
tant results can be found in three surveys [1–3]. GPW
schemes have been proposed as a possible alternative to
text-based schemes. However, the existing GPWs have (i)
no mathematical computation; (ii) more storage space; (iii)
no individuality; (iv) geometric positions; (v) slow running
speed; (vi) vulnerable to attack; and (vii) no transformation
from lower safe level to high security. However, QR code is
a successful example of GPW’ applications in mobile devices
by fast, relatively reliable and other functions [4, 5]. GPWs
may be accepted by users having mobile devices with touch
screen [6, 7].

Wang et al. show an idea of “topological structures plus
number theory” for designing new-type GPWs (abbreviated

as Topsnut-GPWs, [8–10]). All topological structures used in
Topsnut-GPWs can be stored in a computer throughordinary
algebraicmatrices. And Topsnut-GPWs have no requirement
of geometric positions for users and allow users tomake their
individual passwords rather than learningmore rules they do
not like and so on.

How to quickly build up a large scale of Topsnut-GPWs
from those Topsnut-GPWs having smaller vertex numbers?
How to construct a one-key versus more-locks (one-lock
versus more-keys) for some Topsnut-GPWs? And how to
compute Topsnut-GPWs’ space by the basic computing unit2�? Obviously, we need enough graphs and lots of graph col-
oring/labellings, and we can turn more things into Topsnut-
GPWs. Let �� be the number of graphs having � vertices.
From [11], we know

� �� bits

18 1787577725145611700547878190848 100
19 24637809253125004524383007491432768 114
20 645490122795799841856164638490742749440 129
21 32220272899808983433502244253755283616097664 145
22 3070846483094144300637568517187105410586657814272 161
23 559946939699792080597976380819462179812276348458981632 179
24 195704906302078447922174862416726256004122075267063365754368 197
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Figure 1: (a) An odd-elegant tree; (b) an odd-elegant graph; (c) a set-ordered odd-elegant tree; (d) a set-ordered odd-elegant graph.

where �� ≈ 2bits for � = 18, 19, . . . , 24. It means that adding
various graph labellings enables us to design tremendous
Topsnut-GPWs with huge topological structures and vast
of graph coloring/labellings, since there are over 150 graph

labellings introduced in [12]. As a fact, Topsnut-GPWs can
generate alphanumeric passwords with longer units. As an
example, we take a path V1V10V11V20 in Figure 6(d) to produce
an alphanumeric password

� = 1�1816141210201�10�11517211110�11�10202011�20�111579320� (1)

by selecting the neighbors of each vertex of these four vertices
V1, V10, V11, and V20. Clearly, such password � may have
longer unit in a large scale of Topsnut-GPW for meeting the
need of high level security.

In this article, we will apply a graph labelling called odd-
elegant labelling [13]. And we will de�ne some construction
operations under odd-elegant labelling for designing our
compound Topsnut-GPWs.

1.2. Preliminary. We use standard notation and terminology
of graph theory. Graphs mentioned are loopless, with no
multiple edges, undirected, connected, and �nite, unless
otherwise speci�ed. Others can be found in [14]. Here, wewill
use A (�, �)-graph�which is one with� vertices and � edges;
the symbol [�, �] stands for an integer set {�,� + 1, . . . , �}
for integers� and �with 0 ≤ � < �; [
, �]� indicating an odd-
set {
, 
 + 2, . . . , �}, where 
 and � both are odd integers with1 ≤ 
 < �; and [�, ℓ]� represents an even-set {�, � + 2, . . . , ℓ},
where � and ℓ are both even integerswith respect to 0 ≤ � < ℓ.
De	nition 1 (see [13]). Suppose that a (�, �)-graph � admits
a mapping � : �(�) → [0, 2� − 1] such that �(�) ̸= �(V) for
distinct vertices �, V ∈ �(�), and the label�(�V) of every edge�V ∈ �(�) is de�ned as �(�V) = �(�) + �(V) (mod 2�) and
the set of all edge labels is equal to [1, 2� − 1]�. One considers� to be an odd-elegant labelling and � to be an odd-elegant.

De	nition 2 (see [15]). Suppose that a bipartite graph �
receives a labelling � such that max{�(�) : � ∈ �} <
min{�(�) : � ∈ �}, where (�, �) is the bipartition of vertex
set �(�) of �. We call � a set-ordered labelling (So-labelling
for short).

As shown in Figure 1, there are four di�erent examples of
De�nitions 1 and 2.

De	nition 3. Let �� be a (��, ��)-graph with � = 1, 2. A
graph � obtained by identifying each vertex ��,1 of �1 with
a vertex ��,2 of �2 into one vertex �� = ��,1 ∘ ��,2 with

� ∈ [1, �] is called an �-identi	cation graph and denoted as� = ⨀	⟨�1, �2⟩; the vertices �1, �2, . . . , �	 are called the
identi	cation-vertices.

Moreover, the �-identi�cation graph � = ⨀	⟨�1, �2⟩
de�ned in De�nition 3 has �1 + �2 − � vertices and �1 + �2
edges. One can split each identi�cation-vertex �� = ��,1 ∘ ��,2
into two vertices ��,1 and ��,2 (called the splitting-vertices) for� ∈ [1, �], such that� is split into two parts�1 and�2. For the
purpose of convenience, the above procedure of producing
am �-identi�cation graph � = ⨀	⟨�1, �2⟩ is called an �-
identi	cation operation; conversely, the procedure of splitting� = ⨀	⟨�1, �2⟩ into two parts �1 and �2 is named as the
m-splitting operation.

De	nition 4. Let�� be a connected (��, �)-graphwith � = 1, 2,
and let � = �1 + �2 − 2. If the 2-identi�cation (�, �)-graph� = ⨀2⟨�1, �2⟩ has amapping� : �(�) → [0, �−1] holding
the following: (i) �(�) ̸= �(�) for each pair of vertices �, � ∈�(�), (ii)� is an odd-elegant labelling of�� with � = 1, 2, and
(iii) |�(�(�1)) ∩ �(�(�2))| = 2 and �(�(�1)) ∪ �(�(�2)) ⊆[0, � − 1], then one calls � a twin odd-elegant graph (a TOE-
graph), � a TOE-labelling, �1 a TOE-source graph, �2 a TOE-
associated graph, and (�1, �2) a TOE-matching pair.

We illustrate De�nition 4 with Figure 2. In other words, a
twin odd-elegant graph� = ⨀2⟨�1, �2⟩with its TOE-source
graph �1 and TOE-associated graph �2, where (�1, �2) is a
TOE-matching pair.

Furthermore, if each �� with � = 1, 2 is a connected
graph in De�nition 4, and the TOE-source �1 is a bipartite
connected graph having its own bipartition (�1, �1) and a
labelling � satisfying De�nition 2, we call the 2-identi�cation
graph � = ⨀2⟨�1, �2⟩ a set-ordered twin odd-elegant
graph (So-TOE-graph) and � a set-ordered twin odd-elegant
labelling (So-TOE-labelling). Notice that the source graph�1
is a set-ordered odd-elegant graph by De�nitions 1 and 2.
In vivid speaking, a source graph and its associated graph
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Figure 2: �e formation process of De�nition 4.
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Figure 3: A scheme of the edge-series operation.

de�ned in De�nition 4 can be called a TOE-lock-model and
a TOE-key-model ([10]), respectively.

1.3. Techniques for Constructing 2-Identi	cation Graphs. �e
following three operations, CA-operation, edge-series opera-
tion, and base-pasted operation, will be used in this article.

(O-1) CA-Operation. Suppose each graph �
 has an odd-

elegant labelling �
 and �(�
) = {�
� : " = 1, 2, . . . , |�(�
)|}
with � ∈ [1,�]. Clearly, for # ̸= $ with #, $ ∈ [1,�],
there are vertices ��� ∈ �(��) and �� ∈ �(�) such that

��(��� ) = �(��). For example, some �
 has a vertex �
� such
that the label �
(�
� ) = 0 with � ∈ [1,�]. We can combine
those vertices that have the same labels into one vertex, which
gives us a new graph, denoted by � = ⨀�⟨�1, �2, . . . , �	⟩.
�is process is called a CA-operation on �1, �2, . . . , �	.
(O-2) Edge-Series Operation. Given two groups of disjoint
trees ��1, ��2, . . . , ��	 with % = 1, 2 there are vertices ��
, ��
 ∈�(��
) with � ∈ [1,�]. Joining the vertex ��� with the vertex���+1 by an edge for � ∈ [1,�−1] produces a tree&� (denoted
by &� = ⊖	
=1��
) with % = 1, 2; next we let one vertex �1� ∈�(&1) coincide with one vertex V2� ∈ �(&2) into one vertex#� = �1� ∘ V2� with 
 = 1, 2. �e resulting graph⨀2⟨&1, &2⟩ is
just a 2-identi�cation graph.

(O-3) Base-Pasted Operation. Given two disjoint trees *�
(called base-trees) having vertices ��1, ��2, . . . , ��	 and two
groups of disjoint trees ��1, ��2, . . . , ��	 with % = 1, 2, we let
a vertex ��
 ∈ �(��
) coincide with the vertex ��
 ∈ �(*�)
into one vertex ��
 ∘ ��
 for � ∈ [1,�] such that the resulting
tree -� (i.e., -� = *�⨀	
=1��
) has �(-�) = ⋃	
=1 �(��
),�(-�) = (⋃	
=1 �(��
)) ∪ �(*�) for % = 1, 2. We overlap one

vertex;1� ∈ �(-1)with one vertex >2� ∈ �(-2) into one vertex

$� = ;1� ∘ >2� with 
 = 1, 2 to build up a 2-identi�cation
graph - = ⨀2⟨-1, -2⟩ holding �(-1) ∩ �(-2) = {#1, #2} and�(-) = �(-1) ∪ �(-2).

In the following, we give the diagrams with � = 2 for
edge-series operation and base-pasted operation, shown in
Figures 3 and 4, respectively.

2. Main Results and Their Proofs

Lemma 5. Each star ?1,� is a TOE-source tree of a So-TOE-
tree.

Proof of Lemma 5 is shown in Figure 5. It describes the
construction process of the So-TOE-tree ⨀⟨?1,�, ?1,�⟩ by
any TOE-source tree?1,�.
�eorem 6. Every set-ordered odd-elegant graph being not a
star is a So-TOE-source graph of at least two So-TOE graphs.

Proof. Suppose that (�1, �)-graph �1 having vertex biparti-
tion is (�, �), where � = {�� : � ∈ [1, 
]}, � = {�� : � ∈[1, �]}, 
 + � = �1, and min{
, �} ≥ 2. By the hypothesis of
the theorem, �1 has a set-ordered odd-elegant labelling �1
de�ned by �1(��) + 2 ≤ �1(��+1), � ∈ [1, 
 − 1]; �1(�1) =�1(��) + 1, �1(��) + 2 ≤ �1(��+1), � ∈ [1, � − 1]; �1(��) ≤ 2�−1.
Hence, �1(�(�1)) = {�1(��) = �1(�) + �1(�) (mod 2�) :�� ∈ �(�1)} = [1, 2� − 1]�. It is not di�cult to observe
that �1(�(�1)) ⊂ {0, 2, . . . , �1(��), �1(�1), . . . , 2� − 1}; that is,�1(�)/2 ⊂ N and (�1(�) + 1)/2 ⊂ N.

Case 1.We construct a labelling�2 of a new tree*2 having �+1
vertices by the labelling �1 such that �2(�(*2)) = [1, �1(��) +1]� ∪ [�1(�1) − 1, 2� − 2]�, such that �2(�(*2)) = {�2(�V) =�2(�) + �2(V) (mod 2�) : �V ∈ �(*2)} = [1, 2� − 1]�, where�2(�) ̸= �2(V) for �, V ∈ �(*2). �is tree *2 can be built up
in the following way: a bipartition (C1, �1) with C1 = {�� :
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� ∈ [1, 
1]} and �1 = {V� : � ∈ [1, �1]}, where 
1 + �1 = � + 1,
such that �2(��) = 2� − 1, � ∈ [1, 
1]; �2(V�) = 2(
1 − 2 + �),� ∈ [1, �1]. Any edge ��V� ∈ �(*2) satis�es �2(��V�) = �2(��) +�2(V�) (mod 2�) with � ∈ [1, 
1] and � ∈ [1, �1]. We construct
the edge set of *2 as {�1V�, ��V�1 : � ∈ [1, 
1], � ∈ [1, �1 − 1]}
such that the edge labels are �2(��V�1) = 2� − 3, �2(�1V�) =2�+2
1−3 (mod 2�) for � ∈ [1, 
1] and � ∈ [1, �1−1]. Observe
that �2(�(*2)) = [1, 2� − 1]�, �1(�1) = �2(��1), and �1(��) =�2(V1).

Now, we can combine the vertex �1 and �� of �1 with the
vertex ��1 and V1 of *2 into one (two identi�cation-vertices);1 and ;2, respectively, so we obtain the desired graph � =⨀2⟨�1, *2⟩. And � has a labelling � de�ned as �(��) =�1(��), � ∈ [1, 
 − 1]; �(��) = �1(��), � ∈ [2, �]; �(�
) = �2(�
),� ∈ [1, 
1 − 1], �(V1) = �2(V�), " ∈ [2, �1], �(;1) = �1(�1),
and �(;2) = �1(��). Clearly, any pair of two vertices of � are
assigned di�erent numbers. According to De�nition 4, � is
an So-TOE-graph having the source graph �1. Examples that
illustrate Case 1 of�eorem 6 are shown by Figures 6(a), 6(b),
and 6(d).

Case 2. Similarly to Case 1, we can get the following results:
let �2(�(*�2)) = [1, �1(��) − 1]� ∪ [�1(�1) − 1, 2� − 2]� ∪ {0},�2(�(*�2)) = [1, 2� − 1]�, and furthermore �2(�) ̸= �2(V) for�, V ∈ �(*�2). �is tree *�2 can be built up in the following
way: a bipartition (C2, �2) with C2 = {�� : � ∈ [1, 
1 − 1]}
and �2 = {V� : � ∈ [1, �1 + 1]}, such that �2(��) = 2� − 1,� ∈ [1, 
1−1];�2(V�) = 2(
−2+�), � ∈ [1, �1],�2(V�1+1) = 0. Any
edge ��V� ∈ �(*�2) satis�es�2(��V�) = �2(��)+�2(V�) (mod 2�)
with � ∈ [1, 
1 − 1] and � ∈ [1, �1 + 1]. We construct the edge
set of *�2 as {�1V�, ��V�+1 : � ∈ [2, 
1 − 1], � ∈ [1, �1]} such that

the edge labels are �2(��V�+1) = 2� − 1, for � ∈ [1, 
1 − 1], and�2(�1V�) = 2(
+�)−3, for � ∈ [1, �1]. Observe that�2(�(*�2)) =[1, 2� − 1]�, �1(�1) = �2(V�1+1), and �1(��) = �2(V1).
Now, we can combine the vertex �1 and �� of *1 with the

vertex V�1+1 and V1 of *�2 into one (the identi�ed vertex) ;1
and ;2, so we obtain the desired tree �� = ⨀2⟨�1, *�2⟩. And�� has a labelling � de�ned as �(��) = �1(��), � ∈ [2, 
 − 1];�(��) = �1(��), � ∈ [1, �]; �(�
) = �2(�
), � ∈ [1, 
1 − 1],�(V�) = �2(V�), " ∈ [2, �1], �(;1) = 0, and �(;2) = �1(��).
Clearly, any pair of two vertices of �� are assigned di�erent
numbers. According to De�nition 4, �� is a So-TOE-graph
having the source graph �1. An example for illustrating Case
2 of �eorem 6 is given by Figures 6(a), 6(c), and 6(e).

�eorem 7. Suppose that �
 = ⨀2⟨�1
, �2
⟩ is a So-TOE-

graph, where each �1
 is a source tree for � ∈ [1,�]. �en� = ⨀2⟨&1, &2⟩ obtained by the edge-series operation has
a So-TOE-labelling.

Proof. By the hypothesis of the theorem, every (�1
 + �2
 −2, 2�
)-graph �
 has a set-ordered odd-elegant source-(�1
, �
)-graph�1
 and an associated-(�2
, �
)-graph�2
 for � ∈[1,�]. Let �(�1
) ∩ �(�2
) = {;1
, ;2
}; the vertex set of each
graph��
 can be partitioned into (��
, ��
)with % = 1, 2, where��
 = {��
,� : � ∈ [1, 
�
]}, ��
 = {��
,� : � ∈ [1, ��
]}, and
�
 + ��
 = ��
 for � ∈ [1,�] and % = 1, 2. By De�nition 4,
every �
 has a So-TOE-labelling D
 with � ∈ [1,�] such thatD
(��
,1) ≥ % − 1; D
(��
,�) + 2 ≤ D
(��
,�+1) with � ∈ [1, 
�
];D
(��
,1) = D
(��
,���) − (−1)�; D
(��
,�) + 2 ≤ D
(��
,�+1) for� ∈ [1, ��
]; and D
(�����) ≤ 2�
 − %.
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Figure 6: Examples of �eorem 6.

�erefore, D
(�(��
)) = {D
(��) = D
(�) +��
 (�) (mod 2�
) : �� ∈ �(��
)} = [1, 2�
 − 1]�,
where D
(�) ̸= D
(�) for distinct vertices �, � ∈ �(�
),
which means D
(�1
,��) = D
(�2
,1) = D
(;1
) and D
(�1
,1)= D
(�2
,��) = D
(;2
). Clearly, the labels of other vertices of�1
 ∪ �2
 di�er from each other.

Firstly, we split�
 into two parts�1
 and�2
, that is, doing
a 2-splitting operation on every �
 with � ∈ [1,�]. Secondly,
our discussion focuses on �1
 and �2
 with � ∈ [1,�]. We
construct a graph by joining the vertex ��
,�� with the vertex��
+1,1 by an edge, where � ∈ [1,� − 1] and % = 1, 2,
called &�. For the purpose of convenience, we set E(#, $) =∑�=� D�(�1�,�1� ) + 2, G(1, �) = 2∑��=1(�� + 1), G	 = 2∑	�=1(�� +� − 1), E(1, 0) = 0, and G(1, 0) = 0. For % = 1, 2, � ∈ [1, 
�
],
and � ∈ [1, ��
], we de�ne a new labelling � as follows:

(T-1) �(��
,�) = D
(��
,�) + E(1, � − 1);
(T-2) �(��
,�) = D
(��
,�) + G(1, � − 1) + E(� + 1,�);
(T-3) �(��
,���
,�) = �(��
,�) + �(��
,�) (modG	);
(T-4) �(��
,����
+1,1) = �(��
+1,1) + �(��
,��) (modG	).
By the labelling forms (T-1) and (T-2) above, we can verify�(�1
,�) ∈ [0, �(�1	,��)]� = [0, E(1, �)−2]� with � ∈ [1,�] and

have the following properties: (i) �(�2
,�) ∈ [1, �(�2	,��)]� =[1, E(1, �)−1]�; (ii)�(�1
,�) ∈ [�(�11,1), �(�1	,��)]� = [E(1,�)−1, G	−1]�; and (iii)�(�2
,�) ∈ [�(�21,1), �(�2	,��)]� = [E(1,�)−2, G	 − 2]�.
Computing the labelling forms (T-3) and (T-4) enables

us to obtain �(�(&�)) = [1, G	 − 1]� for % = 1, 2. Now,
we combine the vertex �1	,�� with the vertex �21,1 into one

vertex and then combine the vertex �11,1 with the vertex �2	,��
into one vertex. (i.e., do the 2-identi�cation operation). �us
the labelling � is a So-TOE-labelling of � = ⨀2⟨&1, &2⟩;
therefore, � is a So-TOE-graph too.

See Figures 7, 8 and 9 for understanding�eorem 7.

In experiments, for each arrangement��
1 , ��
2 , . . . , ��
� of��1, ��2, . . . , ��	, there are many possible constructions of � =⨀2⟨&1, &2⟩ for holding�eorem 7 (as shown in Figure 9).

�eorem 8. Suppose that �
 = ⨀2⟨�1
, �2
⟩ is a So-TOE-

graph, where each �1
 is a source graph for � ∈ [1, �]. �en� = ⨀2⟨E1, E2⟩ obtained by the base-pasted operation has a
So-TOE-labelling if two base-trees *1 and *2 are set-ordered.
Proof. By the hypothesis of the theorem, every (�1
 + �2
 −2, 2�)-graph�
 = ⨀2⟨�1
, �2
⟩ has a set-ordered odd-elegant
source-(�1
, �)-graph �1
 and an associated-(�2
, �)-graph �2

for � ∈ [1, �]. Let �1
 ∩ �2
 = {;1
, ;2
}; the vertex set of
each graph ��
 can be partitioned into (��
, ��
) with % = 1, 2,
where ��
 = {��
,� : � ∈ [1, 
�
]}, ��
 = {��
,� : � ∈ [1, ��
]},
�
 ≤ ��
, and 
�
 + ��
 = ��
 for � ∈ [1, �] and % = 1, 2.
Every �
, by De�nition 4, has a So-TOE-labelling H
 with� ∈ [1, �], and H
 has the following properties: H
(��
,1) =% − 1; H
(��
,�) + 2 ≤ H
(��
,�+1) for � ∈ [1, 
�
]; H
(��
,��) =I − 1 + %; H
(��
,1) = H
(��
,���) − (−1)� = I − 1 + % − (−1)�;
H
(��
,�) + 2 ≤ H
(��
,�+1) with � ∈ [1, ��
]; H
(�����) = 2� − %; andH
(��
,���
,�) = H
(��
,�) + H
(��
,�) (mod 2�).

�us, the properties of each So-TOE-labelling H
 induceH
(�(��
)) = {H
(��) = H
(�) + ��
 (�) (mod 2�) : �� ∈�(��
)}, and also
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Figure 7: Four So-TOE-graphs �
 with � ∈ [1, 4] described in the proof of �eorem 7.
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Figure 8: A So-TOE-graph made by the graphs shown in Figure 7 for illustrating�eorem 7.

H
 (� (��
))
= [H
 (��
,1) + H
 (��
,1) , H
 (��
,���) + H
 (��
,���)]
⋅ (mod 2�) = [1, 2� − 1]� ,

(2)

where H
(�) ̸= H
(�) if � ̸= � and �, � ∈ �(�
). In other

words, we have H
(�1
,��) = H
(�2
,1) = H
(;1
) and H
(�1
,1) =H
(�2
,��) = H
(;2
). �e labels of other vertices of �1
 ∪ �2

di�er from each other.

Let �(*�) = {>�1, >�2, . . . , >��}, such that there exists a

set-ordered odd-elegant labelling ����� , satisfying ����� (>�� ) <����� (>��+1) with � ∈ [1, � − 1], and the bipartition (C�, ��) of
vertex set of *� satis�es |C�| ≤ |��| for |C�| = " and % = 1, 2.

Next, we discuss all graphs �1
 and �2
 with � ∈ [1, �] by
the parity of positive integer � in the following two cases.

Case 1. For considering the case � = 2U + 1 and % = 1, 2, we
de�ne a new labelling � with � ∈ [1, 
�
] and � ∈ [1, ��
] in the
following way:

(C-1) �(��2
−1,�) = H2
−1(��2
−1,�) + 2(� + 1)(� − 1) with � ∈[1, U + 1];
(C-2) �(��2
,�) = H2
(��2
,�) + 2(� + 1)(U + �) − 2 − (−1)� with� ∈ [1, U];
(C-3) �(��2
−1,�) = H2
−1(��2
−1,�) + 2(� + 1)(U + � − 1) with� ∈ [1, U + 1];
(C-4) �(��2
,�) = H2
(��2
,�) + 2(� + 1)(� − 1) + 2 + (−1)� with� ∈ [1, U];
(C-5) �(��
,���
,�) = �(��
,�) + �(��
,�) (mod 2�(� + 1) − 2).
Based upon the labelling forms (C-1)–(C-4), we compute

(�+1⋃

=1
� (�12
−1)) ∪ ( �⋃


=1
� (�12
))

= [0, 2 (� + 1) U +I]� ;
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Figure 9: Another So-TOE-graph made by the graphs shown in Figure 7 for illustrating�eorem 7.

(�+1⋃

=1
� (�12
−1)) ∪ ( �⋃


=1
� (�12
))

= [2 (� + 1) U +I + 1, 2� (� + 1) − 3]� ,
% = 1,

(�+1⋃

=1
� (�22
−1)) ∪ ( �⋃


=1
� (�22
))

= [1, 2 (� + 1) U +I + 1]� ;
(�+1⋃

=1
� (�22
−1)) ∪ ( �⋃


=1
� (�22
))

= [2 (� + 1) U +I, 2� (� + 1) − 4]� ,
% = 2.

(3)

�ereby, we have shown that ⋃2�=1⋃�
=1 �(�(��
)) ⊂ [0,2�(� + 1) − 3] and
( 2⋃
�=1

�⋃

=1
� (� (��
))) ∪ ( 2⋃

�=1
� (� (*�)))

= [1, 2� (� + 1) − 3]� ,
(4)

and furthermore the labels of vertices, except �(�1�,�) =
�(�21,1) and �(�2�,�) = �(�11,1), di�er from each other, and the

labels of edges di�er from each other.
Next, a�er computing the labelling forms (C-5) with � ∈[1, �], we obtain

� (� (��2
−1)) = [Z (2) , \ (1)]� , � ∈ [1, U + 1] ;
� (� (��2
)) = [Z (1) , \ (0)]� , � ∈ [1, U] .

(mod 2� (� + 1) − 2) ,
(5)

where Z(�) = I + 1 + 2(� + 1)(U + 2� − �) and \(�) =I− 3 + 2(� + 1)(U + 2� − �). By the above deduction, we can
know that

�⋃

=1

� (� (��
)) = [1, 2� (� + 1) − 3]� \ -, (6)

where - = {I − 1 + 2(� + 1)(U + 1 + �),I + 1 + 2(� + 1)� :� = 0, 1, 2, . . . , U − 1}. Next, for each vertex >�
 ∈ �(*�) with� ∈ [1, �] and % = 1, 2, we set
� (>1
) = � (�12
−1,�12�−1) ,
� (>2
) = � (�22(�+
−�)+1,1) ,

� ∈ [1, "] ;
� (>1�+
) = � (�12
,1) ,

� (>2�+1+
) = � (�22
,�22�) ,
� ∈ [1, U] ;

� (>1�+�+
) = � (�22
−1,1) ,
� (>2�+
) = � (�12(�+
)−1,�22(�+�)−1) ,

� ∈ [1, U + 1 − "] .

(7)

According to formula (7), we obtain �(>�� >��) = �(>�� ) +�(>��) ∈ - with � ∈ [1, "], � ∈ [" + 1, �], and % = 1, 2, which
means

� (� (*�)) = -. (8)

Doing a CA-operation on ��
 and *� having labelling �
for � ∈ [1, �] produces a new graph E� with % = 1, 2. Now, we
combine the vertex �1�,�1� with the vertex �21,1 into one vertex

;1 = �1�,�1� ∘ �21,1 and moreover identify the vertex �11,1 with
the vertex �2�,�2� into one vertex ;2 = �11,1 ∘ �2�,�2� (i.e., do a

2-identi�cation operation).
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Figure 10: Seven So-TOE-graphs �
 with � ∈ [1, 7] and two base-trees *1 and *2 described in the proof of Case 1 of �eorem 8.

By De�nitions 2 and 4 and formulae (3)–(8), the labelling� is a So-TOE-labelling of � = ⨀2⟨E1, E2⟩. Hence, � is a So-
TOE-graph. Here, we have proven Case 1. For understanding
Case 1, see Figures 10 and 11.

Case 2. We, for the case � = 2U and % = 1, 2, de�ne a new
labelling � for � ∈ [1, 
�
] and � ∈ [1, ��
] in the following way:

(L-1) �(��2
−1,�) = H2
−1(��2
−1,�) + 2(� + 1)(� − 1) with � ∈[1, U];
(L-2) �(��2
,�) = H2
(��2
,�) + 2(� + 1)(U + �) −I− 4 − (−1)�

with � ∈ [1, U];
(L-3) �(��2
−1,�) = H2
−1(��2
−1,�)+2(�+1)(U+�−1)−I−2

with � ∈ [1, U];
(L-4) �(��2
,�) = H2
(��2
,�) + 2(� + 1)(� − 1) + 2 + (−1)� with� ∈ [1, U];
(L-5) �(��
,���
,�) = �(��
,�) + �(��
,�) (mod 2�(� + 1) − 2).

From the above labelling forms (L-1)–(L-4), we can
compute

( �⋃

=1
� (�12
−1)) ∪ ( �⋃


=1
� (�12
))

= [0, 2 (� + 1) U − 2]� ;
( �⋃

=1
� (�12
−1)) ∪ ( �⋃


=1
� (�12
))

= [2 (� + 1) U − 1, 2� (� + 1) − 3]� ,
% = 1,

( �⋃

=1
� (�22
−1)) ∪ ( �⋃


=1
� (�22
))

= [1, 2 (� + 1) U − 1]� ;
( �⋃

=1
� (�22
−1)) ∪ ( �⋃


=1
� (�22
))
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Figure 11: A So-TOE-graph⨀2⟨E1, E2⟩made by the graphs shown in Figure 10 for understanding the proof of Case 1 of �eorem 8.

= [2 (� + 1) U − 2, 2� (� + 1) − 4]� ,
% = 2.

(9)

�ereby, we conclude that ⋃2�=1⋃�
=1 �(�(��
)) = [0,2�(� + 1) − 3] and
[ 2⋃
�=1

�⋃

=1
� (� (��
))] ∪ [

2⋃
�=1
� (� (*�))]

= [1, 2� (� + 1) − 3]� ,
(10)

in which the labels of vertices and edges, except �(�1�,�1�) =�(�21,1) and �(�2�,�2�) = �(�11,1), di�er from each other,

respectively.
Again, by computing the labelling form (L-5) for each � ∈[1, �], we obtain

� (� (��2
−1)) = [a (2) , U (1)]� ;
� (� (��2
)) = [a (1) , U (0)]� ,

(mod 2� (� + 1) − 2) , � ∈ [1, U] ,
(11)

where a(�) = 2(�+1)(U+2�−�)−1 and U(�) = 2(�+1)(U+2� − �) − 5.
Synthesizing the above argument, we get ⋃�
=1 �(�(��
))= [1, 2�(� + 1) − 3]� \ -�, where the set -� = {2(� + 1)(U +

�) − 3 (mod 2�(� + 1) − 2) : � ∈ [1, 2U − 1]}. For each vertex>�
 ∈ *� with ∈ [1, �] and % = 1, 2, we set
� (>1
) = � (�12
−1,1) ,
� (>2
) = � (�22(�+
−�),�22(�+�−�)) ,

� ∈ [1, "] ;
� (>1�+
) = � (�12
,�12�) ,
� (>2�+
) = � (�22
−1,1) ,

� ∈ [1, U] ;
� (>1�+�+
) = � (�22
,�22�) ,
� (>2�+
) = � (�12(�+
)−1,1) ,

� ∈ [1, U − "] .

(12)

�e above formula (12) enables us to obtain �(>�� >��) =
�(>�� ) + �(>��) ∈ -� with � ∈ [1, "], � ∈ [" + 1, �], and % = 1, 2.
�ereby, we have shown

� (� (*�)) = -�. (13)

A�er performing a CA-operation on ��
 and *� having
labelling � for � ∈ [1, �], then we obtain a new graph E� with
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Figure 12: Six So-TOE-graphs �
 with � ∈ [1, 6] and two base-trees *1 and *2 described in the proof of Case 2 of �eorem 8.

% = 1, 2. Now, we overlap the vertex �1�,�1� with the vertex �21,1
into one vertex;�1 = �1�,�1�∘�21,1 and overlap the vertex�11,1with
the vertex �2�,�2� into one vertex ;�2 = �11,1 ∘ �2�,�2� (i.e., do a 2-

identi�cation operation) in order to obtain �� = ⨀2⟨E1, E2⟩.
Furthermore, by De�nitions 2 and 4 and formulae (9)–(13),
the labelling� is a So-TOE-labelling of��, which implies that�� is a So-TOE-graph.

Hence, the proof of Case 2 is �nished, and illustrating this
case is given in Figures 12 and 13.

�e proof of the theorem is complete.

3. Conclusion and Further Research

�ere are new Topsnut-GPWs having twin odd-elegant
labellings introduced here. We de�ne the twin odd-elegant
labelling and investigate the 2-identi�cation graph � =⨀2⟨�1, �2⟩, called twin odd-elegant graph. We think that
�nding all possible TOE-matching pairs (�,&) de�ned in
De�nition 4may be interesting for a given TOE-graph�with
an odd-elegant labelling b. Let

ITOE (�, b)
= {& : (�,&) is a TOE-matching pair} (14)

be the set of all TOE-associated graphs&, so, we have a TOE-
book \(�, b) = ⋃�∈�TOE(�,�)⨀2⟨�,&⟩ with book-back �
and book-pages& ∈ ITOE(�, b).

We should pay attention to the following problems:
(i) Since � = ⨀2⟨�,&⟩ ∩ ⨀2⟨�,&�⟩ for any

pair of book-pages &,&� ∈ ITOE(�, b), does �(�) =⋃�∈�TOE(�,�)(�(�) ∩ �(&))?
(ii) Suppose that � has � pairwise di�erent odd-elegant

labellings b1, b2, . . . , b	. Find some possible relationships
among TOE-books \(�, b�) with � ∈ [1, �].

For the future researching work on Topsnut-GPWs, we
propose the following.

Conjecture 9. Let each⨀2⟨�1
, �2
⟩ be a TOE-graph for � ∈[1,�] with � ≥ 2. �e 2-identi	cation graph � = ⨀2⟨&1,&2⟩ obtained by the edge-series operation (resp., the base-
pasted operation) admits a TOE-labelling. r

Conjecture 10. Every simple and connected TOE-graph
admits an odd-elegant labelling.

Conjecture 11. Each connected graph is the TOE-source graph
of a certain TOE-graph.

A more interesting problem is to design super Topsnut-
GPWs such that each super Topsnut-GPW will not be
deciphered by attacks of nonquantum computers, since (i)
our methods introduced here can construct quickly large
scale of Topsnut-GPWs having hundreds vertices; (ii) the
space of the Topsnut-GPWs given in �eorem 8 is quite
tremendous; (iii) the 2-identi�cation graphs⨀2⟨&1, &2⟩ of
�eorem 7 and⨀2⟨E1, E2⟩ of �eorem 8 are the compound
type of Topsnut-GPWs based on smaller scale of Topsnut-

GPWs �
 = ⨀2⟨�1
, �2
⟩ with � ∈ [1,�], and they
induce the TOE-books \(&1, �) and \(E1, b); it may be
guessed that there is no polynomial algorithm for deter-
mining the TOE-books; and (iv) no polynomial algorithm
was reported for �nding all odd-elegant labellings of a given
graph.

�ereby, we hope to discover such super Topsnut-GPWs
which can be used in the era of quantum information.

Data Availability
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Figure 13: A So-TOE-graph⨀2⟨E1, E2⟩made by the graphs shown in Figure 12 for understanding the proof of Case 2 of �eorem 8.
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