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A New Type of Intermittency in an Electronic Circuit 
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An intermittency which has a different origin from the Pomeau-Manneville types is 

studied in a coupled nonlinear LCR circuit. This type of intermittency has a close relation to 

the multiplicative noise process. The electronic circuit is made up of inductors, resistors and 

capacitor diodes. An experimental study is done in this system. The results are compared 

with those of a phenomenological theory based on the multiplicative noise process. More· 

over, a numerical calculation is also carried out on the equations for the present circuit with 

observed nonlinear characteristics of diodes. Satisfactory agreement between the exper· 

imental and calculated results is obtained. 

§ 1. Introduction 

The intermittency mechanism has been studied as one of the routes to chaos from 

regular to periodic state.1> The alternative occurrence of long laminer phases and 

short irregular bursts characterizes the intermittency. Near the intermittency 

threshold there appears a long time scale which is proportional to the inverse of the 

largest Lyapunov exponent. Three types of intermittencies are known with respect 

to the transition from periodic to chaotic state.1l 

Recently, we have found a different type of intermittency from Pomeau and 

Manneville's.2> This type of intermittency exists in a system which shows a chaos­

chaos transition phenomena. Near the chaos-chaos transition a certain dynamical 

variable shows an intermittent behavior. Typical systems which exibit this type of 

intermittency are classified into two groups and described by the differential equa­

tions. The first type is of a modulation system: 

c;;; =F(r, x; t); F(O, x; t)=O, 

~~ =G(x; t), (1·1) 

where the dynamical variable x is assumed to behave chaotic and r shows an 

intermittency near the intermittency threshold. The second type is of a coupled 

chaos system3> which is described in the form of the following differential equations 

for the dynamical variables X1 and xz: 
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A New Type of Intermittency in an Electronic Circuit 121 

1/ =F(xz; t)+(D/2)(xl-x2), (1·2) 

where D is a coupling constant and the uncoupled system, 

~~ =F(x; t), (1·3) 

is assumed to be chaotic. In the system (1· 2) the variable, 

v=xz-xl, (1·4) 

shows the intermittent behavior near the intermittent threshold. We have the corre­

sponding mapping systems to Eqs. (1·1) and (1· 2).4> 

The present intermittency has a close relation with the multiplicative noise 

model.5> We can derive a reduced model for the systems (1·1) and (1·2). The 

reduced model has a form of the multiplicative noise model.6> A main difference of 

the present intermittency from Pomeau and Manneville's is that there appears the 

distribution of burst amplitudes. On the other hand, in the Pomeau-Manneville 

intermittencies bursts have the same order of magnitude. 

The purpose of the present paper is to study the coupled chaos system. Recently, 

a new trend in the field of chaotic dynamics is the study of spatiotemporal chaos.1l In 

a spatiotemporal chaos the system behaves chaotically in space and time. The 

coupled system (1·2) can be considered as the simplest spatiotemporal chaos system 

which consists of two chaotic oscillators. In the present paper the study of the 

coupled chaos system is carried out in a nonlinear LCR circuit. The same types of 

systems have been often experimentally studied. For instance, the sequence of the 

period doubling bifurcation was studied by Linsay.8> Type II intermittency was 

studied by Huang and Kim9> and type III intermittency has been studied by the present 

authors.10> In a coupled nonlinear electronic circuit, a measurement of /(a) spectrum 

was done to compare the results with those derived from the sine-circle map. 11> In 

these experiments a common feature is that the origin of nonlinearity comes from the 

nonlinear characteristics of diodes. 

In §2 the multiplicative noise model is derived from the coupled chaos system and 

several formulae for averaged quantities are obtained from the model. In §3 we 

describe an experiment in a coupled nonlinear LCR circuit which consists of two 

subsystems connected with an inductor. Digital data are sampled by using an A/D 

converter. We show intermittent waveforms and calculate the averaged values to 

compare with the results derived from the multiplicative noise model. Numerical 

calculation on the equations for the present nonlinear circuit with observed character­

istics of diodes is done in § 4. The final section is devoted to a summary and the 

discussion. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

s
/a

rtic
le

/d
o
i/1

0
.1

1
4
3
/P

T
P

S
.9

9
.1

2
0
/1

8
8
0
1
9
3
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



122 T. Yamada, K. Fukushima and T. Yazaki 

§ 2. Multiplicative noise model 

We start with the following equations for the coupled chaos system which has a 

slightly extended form of Eq. (1· 2): 

~~ 1 =F(x1; t)+(D/2){G(x2)- G(xl)}, 

~ 2 =F(x2; t)+(D/2){G(xl)-G(x2)}, (2·1) 

where the Dis a coupling constant and the uncoupled system, :i:=F(x; t), behaves 

chaotic. Introducing the quantity, 

(2·2) 

we obtain the following equations up to the first order of the quantity v=x2-x1, 

~~ ={F'(x; t)-DG'(x)}v, 

~; =F(x; t), (2·3) 

where F'=(iJF/ox)x=:r and G'=(iJG/ox)x=x· The formal solution of Eq. (2·3) can be 

written as 

v(t)= U(t)v(O) (2·4) 

with 

U(t)=exp+ 1t{F'(x; s)-DG'(x)}ds, (2·5) 

where exp+ means the ordered exponential function. Now we define the matrix: 

A=lim(1/t)logU(t). 
t~co 

(2·6) 

For the uncoupled case D=O, the eigenvalues of the matrix A gives the Lyapunov 

spectrum for the system, :i:=F(x; t). 

The largest eigenvalue Am of the matrix A determines the stability of the uniform 

state, v=O. Namely, for Am<O the state v=O is stable, while for Am>O the magnitude 

of v increases as time goes on and the uniform state becomes unstable. For the 

special case (1·2) where G(x)=x, the Am can be written as 

(2·7) 

where AL is the largest Lyapunov exponent for the uncoupled system. From Eq. (2·7) 

it can be seen that there exists a sharp transition point from the uniform state to the 

nonuniform state as the coupling constant D decreases. The threshold value of the 

transition is given by D=AL. 

Now we define the absolute value of v as 
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A New Type of Intermittency in an Electronic Circuit 123 

r(t)=iv(t)l. (2·8) 

If we write r(t) in the following form for sufficiently large t: 

r(t)=exp{llmt + p(t)}, (2·9) 

the quantity p(t) should satisfy the equation: 

lim(1/t)p(t)=O. 
t-oo 

(2 ·10) 

Equation (2 ·10) can be rewritten in the form: 

<.;(t)>=O, (2·11) 

where ,;(t)=dp(t)/dt and< >denotes the time average. Thus, from Eq. (2·9) we get 

d 
dt logr(t)=llm+.;(t). (2·12) 

The quantity ,;(t) is assumed to be Gaussian white noise:12> 

<.;(t).;(t')>=Qo(t-t'). (2·13) 

The characteristic correlation time of .;(t) is of the order of the characteristic time of 

the quantity x. On the other hand, the characteristic time of r near the transition 

point is of the order of Am -I and much longer than that of ,;(t). This fact is the reason 

why the ,; behaves like a white noise. The Gaussian property is an assumption at the 

present stage. The effect of deviation from the Gaussian property is discussed in Ref. 

12). When r becomes large for large t, a nonlinear term becomes important in the 

nonuniform state. By taking into account this fact, Eq. (2·12) can be written as 

(2·14) 

where we have added the nonlinear term (3rn+I. Equation (2·14) is of the same form 

as the multiplicative noise model.5> The distribution function of r has a form of 

power law for small rand llrn>O. For llrn<O the distribution function is of the form 

of a-function centered at r=0.5> 

So far we have considered the coupled system consisting of two equivalent 

oscillating subsystems. However, we sometimes meet with the case where the cou­

pled system is made up of nonequivalent subsystems. For example, the nonequivalen­

ce comes from the difference of the characteristics of diodes in the experiment of the 

coupled nonlinear LCR electronic circuit which will be considered in the next section. 

In order to consider this case, Eq. (2·1) is extended by replacing F(x;) and G(x;) with 

F;(x;) and G;(x;), respectively, where i=1, 2. If the strength of the nonequivalence 

is not large, we get in the lowest order approximation, 

~~ =H(x; t)v+ I(x; t), (2 ·15) 

where 
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124 T. Yamada, K. Fukushima and T. Y azaki 

H=F'(x; t)-DG'(x), 

I=L1F(x; t)- DLJG(x), (2 ·16) 

where F'=aFjax, G'=aGjax with F=(F1+F2)/2, G=(a+Gz)/2 and L1F=F2-F1, 

L1G=Gz-Gl. The second term of Eq. (2·15) represents the effect of the non­

equivalence of the subsystems. By comparing Eq. (2 ·15) with the first equation of 

(2·3), it can be seen that the effect of the nonequivalence plays a role of an external 

force in the equation of v. The external force is important when the magnitude of v, 

namely r, becomes small. Therefore, the first effect of the nonequivalence is to 

introduce a lower cutoff to the power law form of the distribution function derived in 

the case of the equivalent coupled oscillator system. The second effect of the 

nonequivalence is a role of an external additive force. Because of the existence of 

this external additive force, the distribution function or r takes a finite value even for 

llm<O. After all the distribution function P(r) can be written as 

P(r)=cr-lH (2·17) 

for ro< r< rc with r;=21!m/Q. Here the lower cutoff ro and the upper cutoff rc come 

from the effect of the nonequivalence of the subsystems and the existence of the 

nonlinear term, respectively. Namely, the distribution function for the r has the 

form of the power law in the region, ro< r< rc. The value of P(r) rapidly goes to 

zero as r becomes larger than rc. 

By using Eq. (2·17) we can calculate the following averaged values: 

<r>=rc/(1 + r;)/!(r;) 

and 

(r2)=d/(2+r;)//(r;), 

where 

with c= ro/rc. 

E(t) 

"v 

(2 ·18) 

(2·19) 

(2·20) 

§ 3. Experiment in coupled nonlinear 

LCR circuit 

L The electronic circuit in which the 

R 

present experiment is carried out is 

almost the same as used in Ref. 10) and 

shown in Fig. 1. The system consists of 

two oscillating subsystems, each of 

which is made up of an inductor L, a 

resistor R and a diode connected in 

series with a common electric source 

Fig. 1. Electronic circuit consisting of two coupled E( t) where the values are taken as, R 
oscillating subsystems. =17.5 0 and L=100 ,uH. The two diodes 
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A New Type of Intermittency in an Electronic Circuit 125 

used in the present experiment are the varicaps (NEC1SV50) and are made to have 

similar nonlinear characteristics. The external voltage has the following form: 

E(t)= Vb+ G·sin(wt) (3·1) 

with Vb=1 V,G=7 V and /=w/2;r=2.75 MHz. As shown in Ref. 10), for these 

parameters the uncoupled oscillating subsystems behave chaotic. The inductor Lo 

connects the two subsystems and the value of Lo is varied by preparing nine coils 

with different turns. The basic equations for the present circuit is given as follows: 10> 

L · ~; + K( V1 + Ri1- Vz- Riz) + Ri1 + V1 = E( t) , 

L· ~; +K(vz+Riz-vi-Rii)+Riz+vz=E(t), (3· 2) 

where ik and Vk (k=1, 2) denote the currents through the resistors Rand the voltages 

across the diodes, respectively, where the subscripts 1, 2 distinguish the two subsys­

tems. Equation (3·2) can be considered as a special case of Eq. (2·1). The coupling 

AV I!= 
---~---~ ........... --.....,.__ ........... ___ 25.38 

t 

____ ......._..f--o-o____..,~------~-~- 16.23 

·I~ ' •I• · ' · ,, I• · , · , o • , • ·, " • •41 1 1 nil 1 1 1 • 12.94 

I I ljj 'I·~ I" tl~·l ' '" 1!1 I ·~'I I' tl I' "f. '·~.'' ·til- I' t' II • ' 11.76 

~~ji·• .. l• ·H·•II •H~· ,,.,. ,,,., 9.73 

~·~•H•·~ i· +1~'"'"~ .. ~ ~·~··+· '""'. ~ ~ .. 8.59 

Fig. 2. The voltage difference LIV between two diodes in the experiment. The horizontal axis t 

denotes the time. 
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126 T. Yamada, K. Fukushima and T. Yazaki 

constant K is 

K=L/Lo. (3·3) 

In Fig. 2 the voltage difference L1 V = V2- V1 between two diodes are displayed for 

different coupling constants K. The data are sampled by the A/D converter (HIT A­

CHI VC-6165). In each figure the total time interval is 50 f.l.S. The waveforms in Fig. 

2 show strong intermittency as K is decreased. The peculiar feature of the present 

intermittency is that the amplitudes of bursts are distributed. In Fig. 3 the distribu­

tion function of the r=IL1VI is illustrated for K=11.76, where 40000 data points 

digitized in units of 20/255 V are used. The log-log plots of the data points are on a 

single straight line in the intermediate range of r. This feature agrees with the 

multiplicative noise model explained in § 2. The exponent 7J for the distribution 

function P(r) is defined through P(r)cx.r-1+~. The values 7J for different K can be 

obtained and are shown in Fig. 4. The full line denotes the following straight line: 

P(r) 

Cl 
<JI) 

1~----J~~~~--~-----L-
0.1 10 r 1000 

Fig. 3. The distribution function P(r) of the quan· 

tity r=IL1VI for K=l1.76 obtained in the exper· 

iment. 

0.2,..------.~------~----~------~--, 

(r) 

0.1 

10 20 I! 25 

Fig. 5. The averaged value <r> in the experiment. 

The circles denote the experimental data and 

the full line is of the theoretical curve. 

- 4 ~~8-~~-~12~-~--~--~~ 
16 }(; 

Fig. 4. The exponent r; for the distribution func· 

tion P(r) obtained in the experiment. 

0.2,---,.-r-----r-----r---....,.---, 

(r') 

0.1 

10 15 20 I! 25 

Fig. 6. The averaged value < r 2) in the experiment. 

The meanings of the circles and the full line are 

the same as in Fig. 5. 
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A New Type of Intermittency in an Electronic Circuit 127 

(3·4) 

with the fitting parameters A=0.3 and Ko=7.0. The definition of the absolute value 

r in this section is slightly different from that in § 2. However, similar discussion as 

in § 2 can be done for the present r and the conclusion obtained in the previous section 

does not alter. 

The averaged values <r> and <r2) are displayed in Figs. 5 and 6, respectively. In 

order to obtain the averaged values 40000 data points are used with the sampling time 

interval 20/400 f.J.S for K=9.75 and 8.59, and 5/400 f.J.S for K=11.76~25.38. For small K 

long-sampling data are necessary because of strong intermittent behavior. The 

curves in Figs. 5 and 6 are the theoretical ones given in (2 ·18) and (2 ·19), respectively, 

with the fitting parameters, rc=5.0 V and .:=0.003, where the form of the exponent 

(3·4) is used, since near the intermittent threshold which is defined through Am=O the 

linear dependence of the 7J on the value (K- Ko) may be reasonable. 

Consequently, the present intermittency is well understood in terms of the 

multiplicative noise model presented in § 2. As the exponent 7J which is proportional 

to the Am approaches zero, the intermittent behavior becomes strong. In the present 

experiment the region of the positive Am or the positive TJ cannot be found. The 

positive Am region may exist below the lowest value of K where the experiment has 

been done. 

§ 4. Numerical calculation 

In the present section we study the electronic circuit by numerically calculating 

the basic equations (3·1) with the observed nonlinear characteristics of diodes. The 

detailed method is given in Ref. 10) and is not described here again. In the real 

electronic circuit considered in the last section the two diodes have slightly different 

characteristics. In order to take into account this difference, the nonlinear character­

istics of diodes for the forward direction are slightly modified. The voltages across 

the diodes are written as 

(k=1, 2) (4 ·1) 

where qk are the reduced quantities corresponding to the charges in diodes. In the 

present calculation the constants V01 and Voz are taken as 0.7551 and 0.7549, re­

spectively. The parameters in the external field E(t) are put to Vb=1 V, G=5.0 V 

and /=w/27C=2.75 MHz. The values of the other parameters are the same as in Ref. 

10). The amplitude G in the numerical calculation is chosen so as to get a good 

qualitative coincidence with the experiment. If one takes the same Vn for both 

diodes, a uniform state L1V=O is realized for the coupling constant K larger than a 

certain threshold value. 

In Fig. 7 the voltage differences L1 V for different coupling constants are shown. 

The total time interval for each figure includes 512 periods of the external field ( ~ 186 

f.J.S). The strong intermittent behavior is observed as K is decreased. The power law 

of the r is also found in the present numerical calculation as is shown in Fig. 8, where 

K=11. In the calculation of the distribution function 4096 data points including 512 
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128 T. Yamada, K. Fukushima and T. Yazaki 

~16 

... , I ' 11 I ~j,l "t+~'l-1 "41f,, , .. II •I. , ' I •h~rl'~ ,, r~~ •l··l 1 0 

1~~~~9 
~ j~a 

Fig. 7. The same as in Fig. 2 for the numerical calculation. 

Cl Cl 

" ""' CJ<Illllll> 

1~-~~~--~~~~ 
0.01 r 100 

0.2.--"T"""r---,-------,,------.-----.-----, 

T/ 

0 

-0.2 

Fig. 8. The same as in Fig. 3 for the numerical Fig. 9. The same as in Fig. 4 for the numerical 

calculation. calculation. 
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A New Type of Intermittency in an Electronic Circuit 129 

O.Br-r--......------...--------.--, periods of the external fields are used by 

digitizing their values in units of 0.02 V. 

The exponent TJ is displayed in Fig. 9. 

The straight line obeys the equation, 7J 

=-A(K- ~UJ) with A =0.15 and ~UJ=9.0. 

The exponent TJ changes the sign near K 

~9. The calculated averaged value <r> 
is illustrated in Fig. 10. The numerical 

values are fitted with the theoretical 

curve where the exponent TJ is assumed 

to be written in the form of the straight 

(r) 

0.4 

10 15 IC 20 

Fig. 10. The same as in Fig. 5 for the numerical 

calculation. 
line in Fig. 9, where the parameters rc 

and c: are taken as 4.0 and 0.0001, respectively. 

Both in the experiment and the numerical calculation the voltages across diodes 

are much larger than the voltage difference LlV shown in Figs. 2 and 7. The voltage 

difference is sensitive to the choice of the nonlinear characteristics of diodes. Thus, 

more appropriate set of parameters of the nonlinear characteristics of diodes can 

exist to fit the results of the numerical calculation with those of the experiment. The 

present set of the parameters for the numerical calculation is the best among which 

we have examined. 

§ 5. Summary and discussion 

We have studied the coupled chaos system in the electronic circuit both exper­

imentally and numerically. The system is realized by connecting two nonlinear LCR 

circuits with an inductor. Each uncoupled LCR circuit shows chaotic behavior 

without the coupling through the inductor Loin Fig. 1. By decreasing the strength of 

the coupling constant K the intermittent behavior can be observed. The present 

intermittency occurs due to the breaking of the synchronized motion between the 

chaotic LCR subsystems. The general situation is the same as in the case of type III 

intermittency.10' 

In the ideal case where two diodes have completely the same characteristics a 

sharp threshold exists for the transition from the uniform state LlV=O to the nonuni­

form one. However, a small difference of the nonlinear characteristics of two diodes 

is inevitable in the realistic system. Therefore, in the present work the sharp transi­

tion does not appear. This circumstance is analogous to the case of the spontaneous 

magnetization under external magnetic field in ferromagnetic system. In the present 

electronic circuit system the difference of the characteristics of two diodes plays the 

role of the external magnetic field. 

The present system consists of two subsystems each of which behaves chaotically. 

The study of the present system is considered as the first step to the experimental 

investigation of the spatiotemporal chaos. A technical difficulty exists to make a 

system with more than two subsystems: Namely, (1) many diodes with similar charac­

teristics should be prepared, (2) a high power supply is necessary. We hope to make 

a further progress in the experimental study of the spatiotemporal chaos along the 
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130 T. Yamada, K. Fukushima and T. Yazaki 

line of the present research. 
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