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The asymptotic behavior of the orbits in the vicinity of the networks of heteroclinic orbits is 
analyzed using an approximation. As a result of the analysis, the existence of a new type of 
asymptotic behavior in a game dynamics system is discovered. The feature of this asymptotic 
behavior is a combination of the chaotic motion and the attraction to a heteroclinic cycle; the 
trajectory visits several unstable stationary states repeatedly with an irregular order, and the typical 
length of stays near the steady states grows roughly exponentially with the number of visits. The 
dynamics underlying this irregular motion is related to the low·dimensional chaotic dynamics. The 
relation of this irregular motion with a peculiar type of instability of heteroclinic cycle attractors is 
also examined. 

§ 1. Introduction 

It is well known that heteroclinic cycles can generically exist in a certain class of 

model systems. For example, the structurally stable heteroclinic cycle is found in the 

Lotka-Volterra equation system,!) and several model systems with symmetry.2H> 

The heteroclinic orbits can form more complicated structure than a simple cycle.7l.s> 

Some interesting phenomena are reported concerning such networks,9>.s> however, the 

property of the flow in the vicinity of the network is not fully understood yet. 

In this paper, we will analyze the flow of the game dynamics systems by introduc

ing a truncated equation of motion which is valid in the neighborhood of heteroclinic 

networks. The analysis shows that the motion in the vicinity of the network has no 

characteristic time scale, and that there exist a new type of asymptotic behavior. 

The feature of the behavior is a combination of the attraction to a heteroclinic cycle 

and a chaotic motion; the orbits visit some of the saddles with an irregular order with 

geometrically expanding length of the stays. The irregularity in the sequence of the 

visited saddles is related to a deterministic chaotic dynamics and not due to the 

randomness from noise. The behavior is robust against a small variation of the 

parameters. 

§ 2. Model equation and the structure of the phase space 

The game dynamics system we will study is a kind of population dynamics, and 

is represented with a set of equations, 

(1) 

with constraints, 

*>Present address: Research Institute of Electorical Communication, Tohoku University, Sendai 980-77, 

Japan. 
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164 T. Chawanya 

(2) 

X; represents the renormalized popula

tion of species i. {g.:;} defines the inter

action between species, each gu re

presenting the score of species i in its 

battle with j. 

Such a model was proposed by 

Taylor and Jonker in the context of the 

evolution of strategy into ESS (evolu

tionary stable states);10
) it is also regard

ed as a simplified model equation for the 

molecular evolution,11
) and gives a mini

mal model for the system of interacting 

self replicators. 12
) It is also related to 

the Lotka-Volterra equation through a 

transformation of variables. 12
) 

Several types of asymptotic behav

ior are known to exist for this system. 

The simplest one is the relaxation to a 

resting state. Chaotic oscillations as 

well as regular oscillations can be obser· 

ved in some range of parameters when 4 

or more components are involved. 13
Hs) 

Attractive heteroclinic cycles are obser

ved generically for systems with 3 or 

more components.1
) In such cases, the 

orbit stays relatively long in the vicinity 

of the saddles and then move towards 

1.0r ... ····.A·/\~ 
0.0 u 

0.0 500.0 1000.0 

]liilllJJ II 
0.0 50000.0 

TIME 
100000.0 

Fig. 1. An example of the orbit being attracted to 

a heteroclinic cycle. This figure exhibits the 

behavior of the orbit observed in a game 

dynamics system with 3 components. The 

parameters are set as 

( 

0.0 -0.09 0.12) 

gil= 0.1 0.0 -0.1 ' 

-0.11 0.05 0.0 

and the initial condition i\3 set as x, =x2=xa 

=1/3. The abscissa represents the time, and 

the ordinate represents the value of x,. Two 

components are plotted with solid lines (x,) 

and with dotted lines (x2). All the three boxes 

are associated with the same orbit, but the 

scale of time is different. The length of the 

stays near the quasi stable states gets longer 

and longer, while the length of the transition 

does not change. 

another saddle. An example of temporal evolution of X; for this type of behavior is 

exhibited in Fig. 1. Our target phenomenon contains the attraction to a heteroclinic 

cycle attractor as the simplest case. 

As is easily seen from the constraint (2), the phase space of the game dynamics 

system with n components is given by an ( n -I)-dimensional simplex. The surface 

of the simplex consists of n hyper-planes represented by x;=O (i=l, ···, n), each of 

which is an (n-2)-dimensional flow-invariant simplex, surrounded by (n-1) of (n 

-3)-dimensional flow-invariant simplexes. The flow on such an invariant simplex 

can be described by a game dynamics equation of the original form but with a reduced 

number of components. 

Although there can exist many fixed points in the phase space of this system, there 

exists at most only one fixed point in the interior of the phase space in generic cases. 

It is because the stationary condition ~iguxi= C ( C is an arbitrary constant which 

does not depend on i) together with the constraint ~x;=l determines unique x=(xJ, 

···, Xn) and C, if {gu} is not degenerated. 
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A New Type of Irregular Motion in a Class of Game Dynamics Systems 165 

Consequently we can specify an arbitrary fixed point by specifying a set of 
components with non-zero value, because the fixed point should be in the interior of 
the phase space of the subsystem corresponding to the specified set of components. 
Thus we will specify a fixed point by a set of components in this paper. For example, 
{1, 2} represents a fixed point with X1 >0, X2 >0, x3=-··=xn=O, and {5} represents xs=1 
and x;=O for i=l=-5. 

It is convenient to introduce a simple nonlinear transformation of the variables 
when we analyze the flow in the vicinity of the heteroclinic orbits. We will use a 
logarithmically scaled coordinate, defined as 

(3) 

This transformation is valid only for the interior of the phase space, however, it does 
not cause a serious problem in the analysis of the asymptotic behavior of the orbits 
because the orbit will stay forever in the interior of the phase space if the initial 
condition belongs to the interior. 

The equation of motion and the constraints are transformed as 

and 

respectively. 

With this coordinate, the asymptotic 

behavior of the orbit looks like combina
tion of linearly changing segments as 

shown in Fig. 2. It should also be noted 

the r.h.s. of (4) is 0(1) due to the con

straint y;< 0. (Here we assumed that g;J 

~ 0(1). This is generic since we can 

arbitrarily rescale it by rescaling the 

time variable.) Thus the change of y; in 

a constant duration can be bound uni

formly. This is particularly useful 

property of this equation when we ana

lyze the behavior of the orbits which is 

asymptotic to the heteroclinic networks 

as will be seen in the latter part of this 

paper. 

A peculiar feature of this system is 

the existence of the heteroclinic orbits 

that are persistent against the variation 
· of the parameters. This is basically due 

to the hierarchical structure of the invar-

(4) 

(5) 

0.0~···· .. ··· .. ··· .. ···.····./····· .... ·· 

-100 f . . . . l 
-20.0 '-------~-----~-______J 

0.0 500.0 1000.0 

,. :: IL_ __ ._·" _._·v ·_.·_vv· ~··._.·_·_····_· _·· ~··_··_· '\)1_. ~-·-··~· ·· .. 

0.0 5000.0 10000.0 

::c~~ 
0.0 50000.0 100000.0 

TIME 

Fig. 2. An example of the orbit being attracted to 

a heteroclinic cycle (plotted with the transfor

med variable). This figure corresponds to the 

same orbit exhibited in Fig. 1, but the ordinate 

here represents the value of y, instead of X;. 

Note that the 3 boxes have respectively 

different scales of the ordinate (y,), which is 

rescaled in accordance with the scale of time 

for each box. 
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166 T. Chawanya 

iant set of the system described above. Suppose that two saddles A, B and a 

heteroclinic orbit from A to B exist on an invariant set which corresponds to a 

subsystem with d components. The heteroclinic orbit will be robust against a small 

variation of the parameters if 

dimA u* +dimB8 * >(d -1), (6) 

instead of the condition for the case without conserved invariant sets,16
> 

dimAu+dimB 8 >(n-1), (7) 

where Au and Au* respectively denotes the unstable manifold of saddle A and its 

restriction to the subsystem. Thus the structurally stable heteroclinic orbits can 

form a recursive structure which is impossible in a generic case without conserved 

invariant sets. 

In the following analysis, we mainly treat the saddles which are respectively an 

attractor in a certain subsystem. In this case, the heteroclinic orbit lying in this 

subsystem is persistent under the variation of the parameters, regardless of the 

stability of the fixed points related to the other directions. Nate that such robust 

heteroclinic orbits are all lying on the border of the phase space, for it must belong 

to a certain subsystem. 

§ 3. Truncation of the dynamics 

3.1. Preparation 

We will analyze the flow in the vicinity of the network of heteroclinic orbits, with 

an approximation. Before looking into the detail of the approximation, we will 

observe the assumption briefly. 

There are two basic assumptions as follows. One of them concerns the nature of 

the flow, and the other poses a restriction for the position in the phase space, 

A. All the fixed points should be hyperbolic, 

B. The time scale of the stay near the saddles and of the transition between saddles 

are completely different. 

Condition A is satisfied by the generic value for the parameters. And condition 

B is satisfied by the orbits with typical initial conditions near the heteroclinic orbits 

at least for some finite duration. 

The breakdown of condition B can be caused by two reasons. The first one is 

caused by an exceptional initial condition which will be mentioned in the analysis. 

The second comes from the structure of the heteroclinic network. If the network 

contains a heteroclinic orbit which connects a fixed point saddle and an unstable 

heteroclinic-cycle, the transition violating condition B occurs for typical initial 

conditions. However, we do not treat such heteroclinic networks here. 

Here we will define the neighborhood of saddle A as the set of points 

{xlmaxlx;-x/1< €}, (8) 
i 
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A New Type of Irregular Motion in a Class of Game Dynamics Systems 167 

where x/ denotes the value of component X; at the fixed point A. e is a small 

positive constant representing the size of the neighborhood. 

We will take the neighborhoods sufficiently small, as to satisfy several conditions, 

i.e., for x belonging to the neighborhood of the saddle A, the conditions 

• x;A>2e, if x/>0 

• JL:gijxj-L:L:gjkXjxkl>e, if x/=0 
j j k 

are satisfied. Note that the length of transition between the neighborhoods of two 

saddles depends on € as O(JlogeJ) for sufficiently small €. 

It is convenient to classify the components into two groups, namely, major and 

minor ones. We will call such components satisfying X; 2 e as major components and 

the rest as minor ones. Note the obvious fact that Jy;J < llogeJ for the major compo

nents. 

3.2. Derivation of the truncated dynamics 

Since we take the neighborhood small, the flow in the neighborhood of a fixed point 

is well approximated by the linearized one. The change of y; during a stay in the 

neighborhood of a saddle can be approximated by a linear function within a constant 

error which does not depend on the length of the stay. 

From the hyperbolicity of the fixed points, the deviation of each component from 

the fixed point is smaller than the sum of several monotonically and exponentially 

changing components which are respectively :'S O(e) throughout the duration. Thus 

the temporal integration of the deviation of X; from x/ is bound by a constant which 

is independent of T, and thus the integrated error of y; is also bound by a constant. 

Note that, from the definition of €, the total change of y; is smaller than a constant 

of O(llogei) for the major components and larger than eT for the minor components, 

where T denotes the length of the stay within the neighborhood. 

It should also be noted that the length of transition from a neighborhood of a 

saddle to another one can be bound by some constant which is ~ O(llogeJ). Remem

bering that the order of the change of y; is at most proportional to the corresponding 

length of time, we see that the change of y; in a transition between saddles can be 

estimated as O(llogeJ). 

Now we will concentrate on the asymptotic behavior of the orbits. We assume 

here that the typical length of the stays in the neighborhoods of the saddles is 

sufficiently longer than the length of the transition between the neighborhoods of the 

saddles. The length of the stays can be arbitrarily long. So we assume that eT';pe- 1 

;pJlogeJ with T denoting the typical length of the stays. We will consider the 

truncation of the dynamics for y;, neglecting the 0( T 0
) terms. We will use Y to 

represent the 0( T') part of y in the following arguments. 

First let us consider a stay in the neighborhood of a saddle. From the above 

arguments, Y;= Y;=O for the major components during the stay. On the other hand, 

Y; for the minor components cannot be neglected because it makes total change of 

0( T') during the stay. The deviation of y; from y / makes only the difference of 

O(T0
) during the stay, thus we will consider Y;=y/. 

The escape from a saddle occurs when one (or more) of Y; corresponding to 
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168 T. Chawanya 

the minor component(s) reaches zero. Then the transition to the next saddle will 

occur within a duration of 0( T 0
), which causes a change of 0( T 0

) and thus can be 

neglected in Y. After the transition, Y changes following the value of j;; at the next 

saddle. Note that Y; never becomes positive since it represents the leading term of 

y; which is always negative. 

The above sketched kinetics for Y is not closed in the sense that Y is not 

determined from Y. We will now look into the relation between Y and Y and 

construct a closed dynamics for Y. 

Let us consider the behavior of the orbit with an arbitrary initial condition. The 

orbit will be swiftly attracted to an attractor of subsystem which consists of the 

components with Y;=O, because the value of X; component is very small ( ~ O(e-a)) 

if Y;< 0 thus the component can be safely neglected for the duration of 0( T). There 

may be some of attractors in the subsystem specified by the initial value of Y, 

however, here we assume that the initially visited saddle is known. 

The forthcoming transition generically occurs when one of the minor components 

(i.e., negative valued component) of Y reaching at zero. Thus the transition path 

follows the flow of the subsystem with only one additional dimension. Since the 

previously visited saddle was an attractor in a hyperplane, the number of unstable 

direction in the phase space is only one. Thus the transition occurs along the unique 

orbit, thus the next saddle is determined uniquely. In this way, we can determine the 

arriving saddle from the information of the previous saddle and the value of Y, using 

the structure of the flow. Since the destination of the orbit is an attractor of the 

subsystem in general cases, we can apply the above argument recursively to obtain the 

sequence of saddles. 

The neighboring saddle at each moment can be determined from the orbit of Y 

in this way, unless two components of Y simultaneously reach zero. In such cases, 

the separation of the time scale (between stays and transitions) becomes unclear, and 

thus there are several possible types of transitions, and the information of Y is not 

sufficient to determine the final state of this transition. Anyway, it is not generic and 

we exclude such exceptional cases. 

Let us now assume that the staying saddle can be determined from the value of 

Y at the moment for simplicity. In this case, we can formally write the equation of 

motion for Y as, 

Yi= /;( Y). (9) 

This assumption concerns only the formal simplicity, and the results of the following 

analysis is also valid even if the relation between Y and staying saddle cannot be 

written as (9). 

3.3. Further reduction 

Since the function f( Y) depends only on whether each component of Y is zero or 

not, it can be formally expressed as a function of 7J= Y/1 Yl. Thus, by using the 

notations 
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A New Type of Irregular Motion in a Class of Game Dynamics Systems 169 

- y 
7}=m· c1o) 

U=l Yl, (11) 

g(7})= f(7})-(7J• f(7J))7}' (12) 

h(7})=7J· f(7})' (13) 

a set of equations, 

d _ u-1 c ) dt7}- g 7} ' (14) 

(15) 

is obtained. It should be noted that, there are two constraints on 7}, such that, 

li7JI=1, 
mfx7J;=O. 

We now introduce a dynamically rescaled time variable r defined as 

Jk_=u-1 
dt 

Then Eqs. (14) and (15) can be rewritten as 

d 
dr 7J = g( 7J) ' 

fr (log U)= h( 7J). 

(16) 

(17) 

(18) 

(19) 

Thus we obtain an autonomous equation for 7}. The value of 7J specifies the set 

of nonzero X; component at the neighboring saddle. Thus the orbit of 7J determines 

the sequence of the saddles visited. On the other hand, U determines the time scale 

of the motion which is associated with the length of the stay near saddles through (17). 

As can be seen from (17)~(19), the motion in !·coordinate has no characteristic time 

scale. Steady motion of 7}( r) will generically cause a drift of (log U) with some 

average velocity measured with r, which corresponds to a geometrical change of the 

time scale of the motion in t. Thus a limit cycle solution of (18) corresponds to the 

sequential visit to several saddles with geometrically changing time scale, that is, an 

orbit being attracted to (or escaping from) a heteroclinic cycle in the original 

dynamics. 

Since 7J has two constraints (16), the dynamics of 7J corresponds to a semi-flow on 

an n-2 dimensional spherical surface (n is the number of components). Therefore 

the asymptotic behavior of 7J cannot be irregular if n is smaller than 5. For the 

system with n ~ 5, the dynamics of 7J may be chaotic, as is confirmed in the following 

analysis. 
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170 T. Chawanya 

§ 4. Stability of the heteroclinic cycles 

4.1. Assumptions 

From the argument in the previous section, we see that a chaotic motion of '1}, 

which corresponds to the irregular sequence of saddles, possibly occur in the game 

dynamics system with 5 or more components. The emergence of such behavior is 

closely related with the de-stabilization of a heteroclinic cycle attractor. Thus we 

will analyze the stability and attractivity of heteroclinic cycles in this section. The 

discussion here is based on the analysis in the previous section, thus we should 

remember that we are restricting ourselves to the heteroclinic cycles satisfying 

several conditions, namely, 

• Each heteroclinic orbit lies within an invariant hyperplane which corresponds 

to some subsystem, and the destination of each heteroclinic orbit is an attractor 

in the subsystem. 

From this assumption, an unstable direction is associated with an excitation of a 

minor component. 

• The saddles involved may have two or more unstable directions, however, the 

heteroclinic orbits which are associated with the excitation of only one of the 

minor components are considered. 

The heteroclinic orbits satisfying the above conditions are common in the game 

dynamics system. Such orbits always exist, and the recurrent structure like a cycle 

also exist with fairly large probability. On the other hand, not all of the heteroclinic 

orbits in the game dynamics system satisfy the conditions. For example, heteroclinic 

orbits which connects an unstable node in a subsystem and another saddle in the 

subsystem may exist in the system as likely as the orbits satisfying the conditions. 

The reason why we will concentrate on the orbits satisfying the conditions is that 

those heteroclinic orbits are exclusively relevant for behavior of the orbits in t---> + oo 

limit for typical initial conditions as discussed in the previous section. It should be 

noted that not all the heteroclinic cycles/networks satisfying the conditions are 

directly related with the asymptotic behavior of the typical orbits, since in many cases 

the cycles/networks are not attractive. It should be also noted that here we restrict 

ourselves to the heteroclinic orbits which connects two fixed point saddles. A 

qualitatively different structure can be observed in the vicinity of the heteroclinic 

network with a heteroclinic orbit which connects a fixed point and a heteroclinic 

cycle. 

4.2. Return map 

Here we will analyze the dynamics with a return map on a Poincare section. Let 

us consider a surface of section which corresponds to an exit of a saddle, i.e., a surface 

which intersect with a heteroclinic orbit starting from the saddle. The section 

corresponds to the moment that the value of a certain minor component X1 reaches E 
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A New Type of Irregular Motion in a Class of Game Dynamics Systems 171 

after the stay in the saddle, i.e., the 

moment that Yi reaches zero. 

From the property of the dynamics 

of Y, we can neglect the variation of Y 

during the transition between the neigh· 

borhoods of the saddles, and thus the 

return map for Y on the surface of 

section can be expressed as a product of 

1-saddle maps that respectively repre

sent the change of Y in the neighbor

hood of a saddle. 

Since the change of Y during a stay 

in the neighborhood of a saddle can be 

regarded as linear, the total change of Y 

in a stay can be calculated easily. Let 

us use Y1
n, yout for the value of Y at the 

T T2 

---~-----.,;·~-- time 
:''· ...... 
' -~ 

-~>·( 
__ . .--··· 

\ .... ·· 
_______________ ,.---------~· 

' ' ' ' ' / ' / ':/ 
' 

Fig. 3. Schematic illustration for 1-saddle map. 

This figure shows the change of Y schemati-

cally. T, represents the time when the orbit 

arrives at the saddle in question, and T2 is the 

time to leave from the saddle. Y'" and yout in 

the text correspond to Y( T,) and Y( T2) in this 

figure. 

entrance and exit of the saddle and ). for the value of Y at this saddle (see illustration 

in Fig. 3)._ Then the relation between Y'n and yout can be written as 

Y..out= _.d.£_ Y.'n+ y;.tn 
~ ill I t ' 

(20) 

where I denotes the component which is associated with the escaping direction in 

consideration. Since Y/ut must not be positive, Y'n must satisfy a condition in order 

for (20) to be valid if the considering saddle has 2 or more of the unstable directions. 

The condition is expressed as a set of inequalities between relative ratios of the 

components of Y'n. It should be noted that the map can be calculated from gu; the 

value of X; at a fixed point as well as the growth rate at the point can be determined 

from the matrix. 

As we have seen above, the return map can be expressed as a sequential product 

of 1-saddle maps, which is respectively a linear map. Thus the return map for Y is 

a linear map, which is defined on a restricted region if the cycle contains saddles with 

two or more unstable directions. The defined region of the return map may vanish, 

if the specified sequence of the saddles is not realized by typical initial conditions. 

4.3. Stability of the heteroclinic cycle, and the properties of the return map 

The 'stability' condition of the heteroclinic cycle can be expressed with the 

eigenvalues and eigenvectors of the matrix representing the return map. The analy

sis of this return map does not say anything concerning the orbits which do not belong 

to the defined region of the map. Therefore it should be noted that the argument 

presented below concerns the stability in a weak sense (relative asymptotic stability 

introduced by Ura17>.7>). 

The condition that the orbit does not run away by the iteration of the return map 

can be expressed as follows. 

1. an eigenvector of the matrix must exist in the defined region of the return map. 
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2. the corresponding eigenvalue should have the largest amplitude among the 

eigenvalues of the matrix. 

For the heteroclinic cycle to be attractive, an additional condition is required, i.e., 

3. the eigenvalue should be larger than 1. 

Since if the eigenvalue is smaller than 1, the iteration makes the I Yl smaller, that is, 

the orbit diverges gradually from the heteroclinic cycle. (Note that the eigenvector 

always corresponds to a positive eigenvalue if it is in the well-defined region of the 

map, since the return map never changes the sign of Y.·.) 

If the heteroclinic cycle contains saddles with two or more unstable directions, the 

defined region of the return map is restricted, indicating that there exists a set of 

initial conditions in the arbitrary small neighborhood of the heteroclinic orbit which 

escapes from the cycle. Thus the heteroclinic cycle is not asymptotic stable, 

although it can be an attractor if conditions 1 ~3 are satisfied.9
> 

Another strange phenomenon occurs when condition 2 alone is broken. In this 

case, though the heteroclinic cycle no longer is an attractor, there still exists a set of 

initial conditions with zero measure which will be attracted to the heteroclinic cycle. 

If Y has a value outside of the region of definition of the return map, the orbit will 

get apart from the cycle at some saddle with two (or more) unstable directions. The 

destination of the orbit which escapes from the cycle depends on the global structure 

of the flow, however, the sequence of saddle can be determined as a function of the 

initial value of Y anyway. In some cases, the orbit returns to the surface of section 

again. In such cases we can extend the return map for the value outside of the region 

of definition of the return map along the cycle. In this way, the return map on this 

surface of section is obtained as a patchwork of linear maps. We will investigate an 

example of the extended return map in the next section. Note that there might exist 

some runaway regions, i.e., the set of Y corresponding to the orbits which never 

return to this surface of section. 

§ 5. Analysis on an example system 

5.1. Parameters of the system 

In this section, we will apply the above-mentioned analysis on a specific example 

system, and also present the corresponding results of numerical simulations. 

The example system is a game dynamics system with 5 components and parame-

ter values are set as 

-1.0 -20.0 -0.4 -1.0 1.0 

1.5 0.0 -0.7 -7.3 0.5 

gij= X 1.0 0.0 0.0 -0.1 (21) 

-0.9 0.8 1.0 -1.0 -0.1 

0.0 -8.0 0.7 1.3 0.0 

where X(~I) is set as several different values in the following analysis to observe the 
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Table I. Examples of the recursive paths to the Poincare section. 

sequence of the saddles 

C1 {3, 4}--.{5}--.{1, 5}->{2}-->{3}--.{5}--.{2}--.{3}-+{3, 4} 

C2 {3, 4}--.{5}--.{1, 5}--.{2}--.{3}--.{3, 4} 

C3 {3, 4}--.{5}--.{2}--.{3}--.{3, 4} 

bifurcation concerning the stability of the heteroclinic cycles and the emergence of the 

chaotic rambling orbits. 

5.2. Return map for Y 

First we will concentrate on the stability of heteroclinic cycle C2, illustrated in 

Table I. The Poincare surface of section is taken at the transition between {3, 4}-+ 

{5}. 

From the property of the truncated dynamics, Y has three zero-components at the 

surface of section, namely, Y3, ~ and Ys. Also from the discussion on the return map 

associated with a heteroclinic cycles, we know that the return map is linear. Thus 

the return map on the surface of section can be represented with a 2 X 2 matrix. 

The matrix is calculated as a product of several 1-saddle maps with form of (20) 

and thus can be determined from {g,:;}. As a result we obtain a representation for the 

return map as 

( 
Yi)-+(1.9389+6.418X 1.2386-12.836X)( Y1) 
Y2 2.841 +8.42X 0.634 -16.84X Y2 

(22) 

with an restriction on the initial value of Y, 

4.28X -0.078 <_1:1_< 2 O 
2.14X +0.747 Y2 .. (23) 

Since the original flow has 4 degrees of freedom, the return map should be 3-

dimensional in general. Thus it is surprising that we have 2-dimensional map here. 

The extra reduction comes from the strong dynamical contraction. 

The contraction/ expansion of the deviation of y; is very slow except while y; is 

a major component. (It is because oy/oy; ~ O(expy;).) Thus the contraction at sad

dles {3, 4} and {1, 5}, which makes the strong contraction of order O(e-•T) for one 

direction perpendicular to the orbit, is the only change which has exponential depen

dence on T. The contraction/expansion in the rest of the directions is much slower 

than this contraction; it is multiplied by some factor for each turn of the cycle. Thus 

we can drop one extraneous dimension by the dynamical contraction in the large T 

limit. 

As is discussed previously, the heteroclinic cycle becomes an attractor if some 

conditions on the eigenvalues and eigenvectors of the matrix representing the return 

map are satisfied. In the considered range of the parameter value, the two 

eigenvalues are respectively positive ( > 1) and negative, and the eigenvector corre

sponding to the positive eigenvector stay within the region (23). Thus conditions 1 

and 3 are satisfied. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/9

4
/2

/1
6
3
/1

8
5
1
0
0
5
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



174 T. Chawanya 

The critical value of X for the condition 2 is given by 

Trace(Mc2)=2.5729-10.422X=O, (24) 

where Mc2 represents the matrix in (22). This condition gives the critical value Xc 

=0.247 .. ·. If X exceeds Xc, the absolute value of the negative eigenvalue exceeds the 

positive one, and thus the typical orbit will escape from the cycle C2. 

5.3. Reduced return map 

Before considering the behavior of the orbits which escape from the cycle, we will 

consider the reduction of the return map (22). 

As is given in the previous section, the dynamics of Y can be separated into two 

components, namely, the dynamics of the direction and the dynamics of the amplitude. 

The latter does not affect the former except for the speed of the motion. Thus we can 

reduce the return map by separating the amplitude part. 

Here we analyze the return map with projection to Y2=1 instead of I YI=L 

Thus the return map for the direction of Y can be reduced to a one-dimensional map, 

using 

Z= "Yi/Y2. (25) 

The concrete form of the map is, 

(6.418X + 1.9389)Z -12.836X + 1.2386 
(8.42X +2.841)Z -16.84X +0.634 

(26) 

and it is defined for a range of Z satisfying 

4.28X- 0.078 
2.14X +0.747 <Z < 2·0 . 

From the nature of the return map 

for Y, we can confirm that the attractor 

vanishes from this region when the fixed 

point becomes unstable; Since the map 

for Y is linear, it is obvious that there 

are no non-linear terms which suppress 

the growth of the deviation from the 

eigenvector. Thus, if X is slightly lar

ger than Xc, the orbit which is initially in 

the region of C2 eventually escapes from 

this cycle. The escaping orbit, how

ever, eventually returns to the surface of 

section through the path indicated as C3 

in Table I. The return map for Z corre

sponding to the path C3 becomes 

Z+3.1164 

6.316 
(28) 

(27) 

z ... ZMl 

,., 
2.0 2.0 

1.5 1.5 

1.0 1.0 

z. 1.0 1.5 2.0 z. 

Fig. 4. Return maps for Z with X slightly above 

and below the bifurcation point X=Xc. (a) 

and (b) exhibit respectively the first· and 

second-return map on the surface of section 

described in the text. Each curve in the figures 

represents the return map for Z calculated 

from the truncated dynamics. The solid lines 

correspond to X =0.25 which is slightly above 

Xc (chaotic), and the dotted lines correspond to 

X=0.24 below Xc (regular). The bifurcation 

at X= Xc is similar to the bifurcation in the 

tent map, as is seen from (b). 
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The range of Z corresponding to this path is 

Z>2.0. (29) 

The first- and second-return map corresponding to the parameter X slightly 

larger than and smaller than Xc is displayed in Fig. 4. The second return map 

exhibits the de-stabilization of the fixed point clearly. As is obvious from the shape 

of the return map, the orbit of this map will be attracted to a chaotic attractor when 

X is slightly larger than Xc, and then the chaotic sequence of the mixture of C2 and 

C3 will be created. 

The information of the amplitude part of Y is omitted in this return map. We 

can calculate the average magnification rate of Y per one cycle by taking the average 

on the natural invariant measure of the return map. Although the exact calculation 

is complicated, we can easily confirm that it is larger than 1. Therefore the ampli

tude of Y eventually grows with some average growth rate. It implies that the 

corresponding orbit of the original system (1) eventually approaches the heteroclinic 

network and the typical length of stays will grow exponentially on average. 

5.4. Results of numerical simulations 

Here we will exhibit the results of numerical simulations on the system with X 

=0.24, 0.25 and 0.32. The specific fea-

tures of the algorithm used in the simula

tion is briefly summarized in Appendix 

A. 

First the sequence of saddles is ex

hibited in Fig. 5. The abscissa repre

sents the logarithm of the time and the 

ordinate shows the visiting saddle. In 

box (a) the orbit being attracted to a 

stable heteroclinic cycle is exhibited. In 

box (b), a subharmonic like oscillation is 

apparent, however, from the close 

inspection, we can observe the orbit 

fluctuating chaotically as is predicted by 

the analysis. In box (c), the oscillation 

becomes much more disordered, and the 

period 2 like structure observed in (b) is 

broken. 

Figure 6 shows the variation of the 

length of stays. The logarithm of the 

length of stays is plotted in sequentially 

order of the visit. The logarithm of the 

length of the stay grows approximately 

linearly with the number of visited sad

dles. For all of these three cases, the 

dots roughly ride on a straight line, in· 

''T --•. --: -; -; --·:- Tl ~· 
{5) -----------------

{3,4) •••••••••••••• --~ 

{3) ••••••••••••••••• 

:; {2) • • • • • • • • • • • • • • 

~"t -~~ -~~ -~·- -:"-: ~l ~ w ------------------
-~{3,4)·- ·- ·- ·- ·- ·- -- ·- ·-e {3) • • -. -. -. -. -. -. • • -. 

j {2) • • • • • • • • • • • • • • • • • 

~,.;r: .:~·- :· T: -·~·- ~ -·~·- :·T Q,) (CJ 

:z {5) ---------------------

{3,4) .. ·- .. ~- •• .. ·- ·- .. ·- .... 

{3) - ••• - ••• -· - ••• -· - ••• - ••• 

{2) •• • • •• • • -· - •• -· • • •• •• • • 

190.0 192.0 194.0 196.0 198.0 200.0 

TIME in log scale 

Fig. 5. Three examples of the sequence of saddles. 

These figures exhibit the sequence of saddles 

which corresponds to the numerically obtained 

orbits of the game dynamics system with 5 

components with parameters given by (21). 

The value of X is set as 0.24 for (a), 0.25 for (b) 

and 0.32 for (c). The abscissa represents the 

logarithm of the time, and the ordinate shows 

the neighboring saddle. The initial condition 

is set ·as X1 =x2= ... =0.2 for all cases. (a) 

exhibits the regular oscillation with 

geometrically expanding period. (b) seems 

regular too, however, it is not completely regu· 

Jar as can be seen from the irregular visits to 

saddle {1, 5}. The irregularity is more obvious 

in (c). 
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60.0 

50.0 

400.0 450.0 500.0 550.0 
90.0 

80.0 

70.0 

600.0 650.0 700.0 750.0 
60.0 

55.0 

50.0 

600.0 650.0 700.0 750.0 

Step# 

Fig. 6. Variation of the lengths of the stay near saddles. The dots are sorted from left to right 

according to the sequential order of the visit, and the ordinate represents the logarithm of the 

length of the stay in the neighborhood of saddles with radius E = 10-•. Each pair of boxes ( (al) and 

(a2), etc.) correspond to an orbit in Fig. 5 and thus plotted from the same data. 

dicating that the variation of the length 

of the stays is geometric, at least on 

average. However the detail of the 

sequence has qualitative difference. In 

Fig. 6 (a), the sequence of the length of 

the stays has a regular structure. On 

the other hand, in Figs. (b) and (c), we 

can see an irregular fluctuation. Since 

the dynamics itself is completely deter

ministic, the irregular fluctuation is natu

rally associated with intrinsic chaotic 

dynamics. Note that the geometric var

iation of the length of stays is fairly 

universal and is observed even if the 

heteroclinic cycle/network is repulsive. 

In this case, the length of stays decreases 

in a geometrical manner until it diverges 

away from the heteroclinic cycle/net-

work. 

z... z... z... 

"'0"· ·''0" ~:0" 1.10 ~ ~ 

. " • 1~ 

1.10 1.20 z. 1.0 2.0 z. 1.0 2.0 3.0 z. 

Fig. 7. Numerically obtained return maps. The 

marks in the figures show the value of y,/y2 for 

two successive intersections of an orbit and a 

surface of section. (a)~(c) correspond to the 

three orbits in Fig. 5. The surface of section is 

taken as xs= E with restriction to xa > E, x, > €, :i:s 

>0 (E= 10-8). The solid curves represent the 

analytically calculated return map for Z for the 

corresponding parameter values. The marks and 

the solid lines match well except for initial tran-

sients corresponding to the early stage before the 

orbit approaches the heteroclinic orbits enough. 

Finally, we will examine the behavior of the orbit with a return map by observing 

the quantity corresponding to Z. Here we will take the surface of section as xs=e, 

x3>€, x4>~:, Xt<€, x2<~:, with ~:=10- 8 , and plot the value of Y1IY2 for the successive 
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two visits to this surface of section. Figure 7 shows the results. The solid lines in 

the figure shows the return map for Z obtained from the analytical calculation, and 

the marks show the numerical results. 

As can be seen from (b), the orbit moves along the path C2 for relatively many 

turns before it escapes from C2. This relatively long transient motion can also be 

observed in Figs. 6 (bl) and (b2), before about 650th saddle. The orbit is eventually 

attracted to the chaotic attractor and visits two bands, 1.89··· < YdY2< 2.09··· and 

0.81···<yi/Y2<0.825···, in tern. In case (c), the attractor becomes much more larger 

and the marks spread over 0.8l···<yi/Y2<3.1···. The attractor contains three pos

sible recurrent paths listed in Table I. 

In any case, the marks are distributed well along the lines except for a relatively 

small number of initial transients corresponding to the early stage. Thus we confirm 

that the truncation gives good approximation for these cases. 

§ 6. Summary and discussion 

We have analyzed the dynamics in the vicinity of a heteroclinic network with a 

simple approximation, which is valid if the stay near the saddle is sufficiently long in 

relative to the transition between saddles. The analysis shows that the typical 

motion in the neighborhood of the heteroclinic network has no characteristic time 

scale. The analysis also implies the existence of the new type of asymptotic behav

ior. In this case, typical orbits are attracted to a heteroclinic network with a 

branching structure, repeatedly visiting several saddles with irregular order. The 

irregularity of the motion is associated with a deterministic chaos. Thus the orbit 

rambles over several saddles with a chaotic order, and with irregular but on average 

exponentially expanding length of the stays. The existence of such orbits is also 

observed in the numerical simulation. 

The analysis presented in this paper is based on the structure of the network of 

heteroclinic orbits, and the specific form of the interaction is not essential. The 

existence of such structure is enabled by the hierarchical structure of the invariant set, 

which comes from the form of the equation as 

i;;=xJ;(x). (30) 

Thus the essential part of the analysis is expected to be valid for the flow in the 

vicinity of the networks of heteroclinic orbits in the systems expressed by the equation 

of the above form. Many of the systems with symmetry can be represented in such 

form, and consequently we can expect that the chaotic sequence of quasi stable states 

can be observed in the behavior of the model systems with adequate symmetry. 

We have been restricted ourselves to the heteroclinic networks with relatively 

simple geometry. The structure of the network can be more complicated, and 

correspondingly more complicated dynamical behavior occurs in the vicinity of such 

heteroclinic networks as will be reported in a forthcoming paper. 
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Appendix 

--Algorithm for the Numerical Simulation--

Although the form of Eq. (1) is quite simple, there are some difficulties in tracing 

the orbit of this system numerically because of the limited precision of the calculation, 

especially when the orbits are in the vicinity of the heteroclinic orbits. Thus the 

algorithm used for the simulation has several specific features as listed below. 

1. The calculation is carried out using the transformed variables, i.e., we used (4) 

instead of (1). 

2. The step size of the calculation is controlled adaptively. 

3. Constraint (2) is realized dynamically. 

The transformed variables are used in order to avoid the loss of very small 

deviation from the heteroclinic orbits which may be caused by the underflow. Since 

the heteroclinic orbits considered in this paper are lying on the border of the phase 

space (x.-=0 for some components), the trace of the very small deviation is enabled by 

the transformation concerning the minor components. On the other hand, the small 

deviation in the direction of major components is not saved by this transformation, 

thus we still lose the information about the small deviation of those components. 

Fortunately enough, however, because of the strong dynamical contraction in the 

direction of the major components at related saddles, the deviation in those compo

nents does not cause considerable effects on the behavior of orbits. In this way, we 

can calculate the behavior of the orbits with a fairly good precision by using this 

transformation. 

As is discussed in the main part of this paper, the target behavior consists of a 

long stay near the saddles and transitions between saddles which are relatively swift. 

Thus the adaptive control of the step size is indispensable for the simulation of the 

orbit in a realistic length of calculation. The used algorithm is the Runge-Kutta 

method and we kept the precision of the calculation as 10-8 in the growth rate }>;.
18

> 

We will then observe on the algorithm for the realization of the constraint (2). 

Taking the sum of (1) over i, we obtain 

(A1) 
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Therefore, if ~ ... jgijX;Xj >O is satisfied, then ~ .. x,. will converge to 1. 

On the other hand, the flow on the surface ~x,-=1 is not changed by the transfor

mation of adding constant to all components of {gij}, i.e., 

(A2) 

where C is an arbitrary real number which is independent of i and j. 

Therefore we can control the value of ~gijX;Xj by the adaptive control of the 

value of C. We thus realize the constraint (2) by controlling C dynamically. 
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