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1. Introduction
Stochastic derivative estimation is an active research
area in simulation optimization, because it plays a cen-
tral role in both sensitivity analysis and gradient-based
optimization (see Asmussen and Glynn 2007). Three of
the most popular unbiased stochastic derivative esti-
mators are infinitesimal perturbation analysis (IPA),
the likelihood ratio (LR) method (also known as the
score function method), and the weak derivative (WD)
method; see Ho and Cao (1991), Glasserman (1991),
Rubinstein and Shapiro (1993), Pflug (1996), and Fu
(2006, 2008, 2015). In this work, we propose a new unbi-
ased stochastic derivative estimator, which generalizes
three methods in a given framework.
We consider stochastic models with discontinuous

sample performances in the presence of structural pa-
rameters (parameters appearing directly in the sample
performance). IPA requires continuity of the sample
performance, whereas LR can easily handle discontin-
uous sample performances but only deals with distri-
butional parameters (parameters appearing in the dis-
tribution of input random variables) and not structural
parameters. The proposed generalized likelihood ratio
(GLR) method allows sample performances that may

be discontinuous with respect to structural parame-
ters, where the “generalized” reflects the property that
the GLR estimator reduces to the classic LR estimator
when there are no structural parameters.

A unified IPA-LR estimator was given by L’Ecuyer
(1990) defined on a general probability space re-
quiring—expressed in our framework—continuity of
the sample performance when applied to a structural
parameter. We provide a representation for the bias of
this IPA-LR estimator because of discontinuities using
a surface integration, and the GLR estimator is an unbi-
ased modification of IPA-LR. More specifically, GLR
is basically a summation of the classic LR estimator
and an additional term because of discontinuities. The
technique used in the development of GLR can also
define a WD estimator for a distribution whose classi-
cal derivative cannot be directly defined, and thereby
extends WD estimators to a setting that covers a broad
range of applications with discontinuities.

Examples in probability constraints (Andrieu et al.
2010), control charts (Fu and Hu 1999), and financial
derivatives (Wang et al. 2012), including new problems
that cannot be easily addressedby existingmethods, for
example, compound options (see Online Appendix C),
are treated by the GLR framework. The GLR estimator
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has an analytical form, thus is computationally efficient
to implement and preserves the single-run property of
the classic IPA-LR estimator. GLR does not always give
themost statistically efficient estimator, for example, for
settings in which IPA applies, but is widely applicable
and easily implementable.
We briefly review existing methods that address dis-

continuities in various settings. Smoothed perturba-
tion analysis (SPA), an extension of IPA, is designed
to deal with discontinuous sample performances, but
finding what to condition on is generally problem
dependent, and the estimation of the resulting con-
ditional expectation may require function inversion
and additional simulation (Gong and Ho 1987, Fu and
Hu 1997). Push-out LR treats discontinuous sample
performances with structural parameters, but in gen-
eral requires an explicit function inversion to push the
structural parameters out of the sample performance
and into the density (Rubinstein and Shapiro 1993). In
Online Appendix B, we show the GLR estimator is an
extension of the push-out estimator when the struc-
tural parameters cannot be explicitly pushed out.

Early work on addressing discontinuous sample
paths in derivative estimation for discrete event sys-
tems (DES), for example, queueing, inventory, and
maintenance systems, includes Fu and Hu (1993),
Fu (1994), and Heidergott (1999). Work focused on
treating discontinuous payoffs in Greeks estimation
for financial derivatives can be found in Fu and Hu
(1995), Broadie and Glasserman (1996), Fournié et al.
(1999), Heidergott (2001), Chen andGlasserman (2007),
Liu and Hong (2011), and Wang et al. (2012). More
recent work dealing with discontinuities in quantile,
conditional value-at-risk, and distortion probabilities
includes Hong and Liu (2009), Fu et al. (2009), Hong
and Liu (2009), Cao and Wan (2014), Jiang and Fu
(2015), and Heidergott and Volk-Makarewicz (2016).

We summarize the contributions of our work as
follows:

• We derive a new stochastic derivative estimator in
a general framework that handles discontinuous sam-
ple performances with structural parameters.

• The new estimator is unbiased and single run,
involving no explicit functional inversions.

• The new method uses a single framework to treat
a broad class of applications, many of which have been
treated separately in the literature.
This work focuses on the theoretical foundations of

the GLR estimator in a general framework. Concur-
rently, we have applied GLR to quantile sensitivity, dis-
tribution sensitivity, and additional problems in Peng
et al. (2017, 2016a, b).

The rest of the paper is organized as follows. General
theory for the proposed GLR estimator is established
in Section 2. Section 3 provides some applications and
numerical performances of the new method. The last
section offers conclusions.

2. General Theory
In this section, we formulate the problem in Section 2.1
and provide a general theory for the GLR estimator of
problem (2) beginning in Section 2.2 with an overview
of the key ideas for its derivation without getting into
the technical details, followed by a representation for
the bias of IPA-LR in Section 2.3; and concluding in
Section 2.4 with the conditions justifying unbiasedness
and corresponding theoretical results.

2.1. Problem Formulation
We consider the derivative of an expectation with re-
spect to a scalar parameter θ. Taking θ scalar is without
loss of generality, since a gradient could be obtained by
taking a vector of the derivatives. Suppose the sample
performance (output random variable) is of the follow-
ing form:

ϕ(g(X;θ))�ϕ(g1(X1 , . . . ,Xn ;θ), . . . , gm(X1 , . . . ,Xn ;θ)),
m 6 n , (1)

where
• X denotes an n-dimensional real-valued random

vector, in symbols, X � (X1 , . . . ,Xn) ∈ �n , Xi , i � 1,
. . . , n, where Xi are input random variables with joint
density f (·;θ),

• g(·;θ) � (g1(·;θ), . . . , gm(·;θ)), gi(·;θ), i � 1, . . . ,m,
are functions that have sufficient differentiability with
respect to both the argument and parameter θ, and

• ϕ: �m→� is a measurable function that is contin-
uous almost everywhere (a.e.).
In practice, a.e. continuity is often satisfied. For ex-

ample, it covers the case ϕ(y)�∏m
i�1 hi(yi), where hi(yi)

has countablymany discontinuity points, which covers
all examples in Section 3 and Online Appendix C. In
Online Appendix A, the theory for general measurable
function ϕ can be found. In Section 2.4, wewill provide
sufficient conditions for our GLR estimator specifying
the setup in the above bulleted list.

Our theoretical results will focus on the problem of
estimating the derivative of the expectation of sample
performance (1), i.e.,

∂
∂θ

Ɛ[ϕ(g(X;θ))]� ∂
∂θ

∫
�n
ϕ(g(x;θ)) f (x;θ) dx , (2)

where x � (x1 , . . . , xn).

2.2. Overview of GLR
In this subsection, we provide a concise overview for
deriving the GLR estimator for problem (2). Three
ingredients for the derivation, i.e., function smoothing,
integration by parts, and taking limits, will be pre-
sented successively.

1. Function smoothing. Notice that a major difference
between our setting (1) and the classic IPA-LR frame-
work is that ϕ is not necessarily continuous, sowewant
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to first “tame” it to be more tractable. For ϕ continuous
a.e., wewill show the existence of a smooth sequence of
functions that approximate a nonsmooth function in a
classic sense. To avoid imposing extra regularity condi-
tions on the smoothed sequence for interchanging limit
and integration later, we first truncate function ϕ to be
bounded and then smooth the truncated function.
The indicator function of a set S is 1S(z)� 1 if z ∈ S,

0 otherwise. We truncate ϕ to ϕL(y) � (τL ◦ ϕ)(y) ·
1SL
(y), where L is a positive number and ◦ denotes the

composition of two functions,

τL(z) � z1[−L, L](z)+ L1(L,∞)(z) − L1(−∞,−L)(z),
SL � {y ∈ �m : yi ∈ [−L, L], i � 1, . . . ,m}.

Note that τL endows ϕL with boundedness, and if ϕ
is continuous at y, so is τL ◦ ϕ because τL is continu-
ous. ϕL has bounded support SL, and the discontinuity
points of ϕL are contained by the union of the discon-
tinuous points of ϕ and the boundary of SL that has
zero Lebesgue measure. Thus, the truncated function
has the following two properties: (1) if ϕ is continuous
a.e., so is ϕL; (2) for any y ∈ �m , |ϕL(y)| 6 L, |ϕL(y)| 6
|ϕ(y)|, and

lim
L→∞

ϕL(y)→ ϕ(y).

Next, we show the existence of a “mollifier” that ap-
proximates and smooths the truncated measurable
function under a continuity condition for ϕ.
(A.0) ϕ: �m → � is a measurable function that is

continuous almost everywhere (a.e.).
Theorem 1. For any ϕ satisfying condition (A.0), there
exists a sequence of smooth functions ϕε, L such that
| |ϕε, L | |∞ � supy∈�m |ϕε, L(y)| 6 L, and

lim
ε→0

ϕε, L(y)� ϕL(y) a.e .

Remark 1. Theorem 1 can be proved by using
Lemma 1, which provides an approximation of ϕL by a
continuous function, and Lemma 2, which provides an
approximation of the continuous function by a smooth
function in Online Appendix A, where the function
approximation for any measurable function in an �p
space can also be found.
While the mollifier mappings ϕε, L(y) in Theorem 1

are only implicitly given, it is possible to provide an
explicit construction in simple cases, as we show in
the following example for the case of an indicator
mapping.
Example 1. A continuous approximation function for
an indicator function 1(−∞, 0]( · ) that has a discontinuity
point at zero is given by

χε(z)�


1 z < −ε,
1− (z + ε)/(2ε) −ε 6 z 6 ε,
0 z > ε.

(3)

Note that as ε→ 0, χε( · ) → 1(−∞, 0]( · ) a.e. Moreover,
∂χε(z)/∂z � −1/2 for −ε < z < ε, and 0 for |z | > ε,
while χε(z) fails to be differentiable at the boundary
points −ε, ε.

Suppose the support Ω ⊂ �n of the density f ( · ) is
independent of θ; otherwise, a change of variable can
be implemented to push parameter θ out of the sup-
port (see Wang et al. 2012). Then, we derive the deriva-
tive estimator for the expectation of the truncated and
smoothed sample performance. Assuming sufficient
smoothness on g and f , and that derivative and expec-
tation can be interchanged,

∂
∂θ

Ɛ[ϕε, L(g(X;θ))]� ∂
∂θ

∫
Ω

ϕε, L(g(x;θ)) f (x;θ) dx

�

∫
Ω

sε, L(x;θ) f (x;θ) dx , (4)

where

sε, L(x;θ) �
m∑

i�1

∂ϕε, L(y)
∂yi

����
y�g(x;θ)

∂gi(x;θ)
∂θ︸                                ︷︷                                ︸

IPA part

+ϕε, L(g(x;θ))
∂ ln f (x;θ)

∂θ︸                         ︷︷                         ︸
LR part

. (5)

Notice that this is a straightforward application of the
product rule of differentiation form analysis; see also
the discussion in L’Ecuyer (1990), where the above way
of organizing the derivatives is referred to as IPA-LR.

The above estimator will be biased because of the
truncation and smoothing. In general, we should not
expect that directly letting ε go to zero could elimi-
nate the bias, because the limit of the smoothed func-
tion after differentiationwouldbe ill-behavedat thedis-
continuity points being smoothed. Taking the explicit
approximation functionχε givenby (3), for example, the
smoothed function after differentiating χ′ε( · )would go
to infinity at the discontinuity point being smoothed as
ε goes to zero, thus the integrand in (4) cannot be dom-
inated by an integrable function. Actually, we know the
limit of χ′ε( · ) is zero a.e., so letting ε go to zero in (4) can-
not lead to an unbiased estimator in this specific case.
A sampleperformancewith indicator functions is a typ-
ical setting where the IPA-LR estimator fails, and how
to derive an unbiased estimator for this problem has
been studied widely in the literature (e.g., Glasserman
and Gong 1990, Fu and Hu 1997, Hong and Liu 2010,
Heidergott and Volk-Makarewicz 2016).

2. Integration by parts. The following treatment uses
integration by parts (Evans 1998), derived from the
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Gauss-Green Theorem, to deal with the bias intro-
duced by truncation and smoothing in (4). Denote the
Jacobian matrix of the vector of functions g by

Jg(x;θ) �

©«

∂g1(x;θ)
∂x1

∂g2(x;θ)
∂x1

· · ·
∂gm(x;θ)
∂x1

∂g1(x;θ)
∂x2

∂g2(x;θ)
∂x2

· · ·
∂gm(x;θ)
∂x2

...
...

. . .
...

∂g1(x;θ)
∂xn

∂g2(x;θ)
∂xn

· · ·
∂gm(x;θ)
∂xn

ª®®®®®®®®®®¬
,

assuming g is continuously differentiable. By the chain
rule,

∂ϕε, L(g(x;θ))
∂xi

�

m∑
j�1

∂ϕε, L(y)
∂y j

����
y�g(x;θ)

∂g j(x;θ)
∂xi

,

i � 1, . . . , n ,

or in a matrix form:

∇x(ϕε, L ◦ g)(x;θ)� Jg(x;θ) · ∇yϕε, L(y)|y�g(x;θ) ,

where

∇x(ϕε,L◦ g)(x;θ)�
(
∂ϕε,L(g(x;θ))

∂x1
, . . . ,

∂ϕε,L(g(x;θ))
∂xn

)T

,

∇yϕε,L(y)|y�g(x;θ)�

(
∂ϕε,L(y)
∂y1

, . . . ,
∂ϕε,L(y)
∂ym

)T ����
y�g(x;θ)

,

the superscript T denoting transpose. We assume the
following regularity condition.
(A.1) Matrix invertibility: There exists an m ×m sub-

matrix J̄g(x;θ) of the Jacobian Jg(x;θ) such that J̄g(x;θ)
is invertible a.e., i.e., ν(N )� 0, where ν is the Lebesgue
measure, and

N � {x ∈ �n : det( J̄g(x;θ))� 0}.

To simplify the notation, we assume m � n through-
out Section 2.2, so J̄g(x;θ) � Jg(x;θ). Let J−1

g be the
inverse of Jg . For m < n, J̄−1

g is a generalized inverse
of Jg , which will be discussed in Section 2.4. With the
notation and assumption (A.1), we have (a.e.)

∇yϕε, L(y)|y�g(x;θ) � J−1
g (x;θ)∇x(ϕε, L ◦ g)(x;θ). (6)

Equation (6) transforms the gradient operation with
respect to y to a gradient operation with respect to x,
which is pivotal for applying integration by parts, so
we call (6) the transformational equation. With the trans-
formational equation,∫
Ω

sε, L(x;θ) f (x;θ) dx �

∫
Ω

ϕε, L(g(x;θ)) ∂
∂θ

f (x;θ) dx

+

∫
Ω

(∂θg(x;θ))T J−1
g (x;θ)∇x(ϕε, L ◦ g)(x;θ) f (x;θ) dx ,

(7)

where ∂θg(x;θ) � (∂g1(x;θ)/∂θ, . . . , ∂gm(x;θ)/∂θ)T .
By integration by parts, the second term on the right-
hand side of (7) is equal to∫
∂Ω

(ϕε, L ◦ g) f (∂θg)T J−1
g v̂ ds

−
∫
Ω

ϕε, L(g(x;θ))div((∂θg(x;θ))T J−1
g (x;θ) f (x;θ)) dx ,

(8)

where the first term in (8) is a surface integration along
the boundary ∂Ω with the unit norm vector v̂ point-
ing outward, ds is the surface measure on ∂Ω, and for
a vector of functions h(x) � (h1(x), . . . , hn(x)), its diver-
gence is

div(h(x))�
n∑

i�1

∂hi(x)
∂xn

.

We will provide sufficient condition for the surface
integral to be zero, so that by introducing appropriate
likelihood ratios, we obtain∫
Ω

sε, L(x;θ) f (x;θ) dx

�

∫
Ω

ϕε, L(g(x;θ))
∂ ln f (x;θ)

∂θ
f (x;θ) dx

−
∫
Ω

ϕε, L(g(x;θ))div((∂θg(x;θ))T J−1
g (x;θ) f (x;θ)) dx.

In obtaining the estimator, we could alternatively split
∂ f (x;θ)/∂θ into a difference of two densities obtained
from normalizing the positive and negative part of
∂ f (x;θ)/∂θ; see Pflug (1996) or Heidergott and Leahu
(2010) for details. In this paper, we keep the classic LR
term.

3. Taking limits. Notice that there is no differentia-
tion operation on the truncated smoothed function ϕε, L
in (8) after applying integration by parts to move the
differentiation to the other terms. Under appropriate
regularity conditions that will be formalized in Sec-
tion 2.4, we can take limits in (7) to obtain an unbi-
ased estimator. Specifically, by letting ε→ 0 and L→∞
in (4), (7), and (8), assuming suitable smoothness, and
that limit, derivative, integration can be interchanged,

∂
∂θ

Ɛ[ϕ(g(X;θ))]

�

∫
Ω

ϕ(g(x;θ))
(
∂ ln f (x;θ)

∂θ
+ d(x;θ)

)
f (x;θ) dx , (9)

where

d(x;θ) � −div((∂θg(x;θ))T J−1
g (x;θ) f (x;θ))/ f (x;θ).

Notice that the smoothing function sequence is not
in (9) anymore after taking limits.



Peng et al.: Generalized Likelihood Ratio Method
Operations Research, 2018, vol. 66, no. 2, pp. 487–499, ©2018 INFORMS 491

The additional term d( · ) to the classic LR score function in the
GLR estimator is because of the presence of structural parame-
ters. An analytical expression for d( · ) given by (11) is derived
in Section 2.4, yielding a single-run unbiased estimator.

If we assume the density f goes to zero as x ap-
proaches the boundary ∂Ω, the surface integration
in (9) could be zero under an appropriate integrabil-
ity condition (see Online Appendix A). We also pro-
vide here a high-level view to understand taking the
limit to achieve unbiasedness when the surface inte-
gration part is zero. For two measurable functions ψ1
and ψ2 under an appropriate integrability condition,
we denote the linear operation in the �p (inner product
in �2) space by Rudin (1987)

〈ψ1 , ψ2〉 �
∫
�n
ψ1(y)ψ2(y) dy.

For simplicity of illustration, we assume that g is
invertible in this section. By the change of variables
y � g(x;θ), the right-hand side of (9) can be written as

〈ϕ, ψ · 1S 〉,

where ψ(y;θ)�ω(g−1(y;θ);θ)|det(Jg(g−1(y;θ);θ))|−1 ·
f (g−1(y;θ);θ),

ω(x;θ) �
∂ ln f (x;θ)

∂θ
+ d(x;θ),

and
S (θ) � {y ∈ �m : y � g(x;θ), x ∈ �n}, (10)

with dependence on θ suppressed in 1S . Similarly,
〈ϕε, L , ψ · 1S 〉 is the right-hand side of (7) subtracting
the surface integration term in (8). If ϕ is continuous
a.e., the limit can be taken in a classic sense and unbi-
asedness of GLR is obtained by interchanging limit and
integration, justified by the dominated convergence
theorem (Rudin 1987), i.e.,

lim
ε→0
〈ϕε, L , ψ · 1S 〉 � 〈lim

ε→0
ϕε, L , ψ · 1S 〉 � 〈ϕL , ψ · 1S 〉.

In Online Appendix A, we show that for anymeasur-
able function ϕ, the limits can be taken in an �p space
with integrability of an order higher than that of the
function ψ · 1S , which is stronger than the first-order
integrability condition required when ϕ is continuous
a.e. Therefore, an interesting insight on how to deal
with discontinuous sample performances is that less
smoothness in the sample performance can be compen-
sated by stronger integrability conditions.

By a change of variables,

Ɛ[ϕ(g(X;θ))]� 〈ϕ, φ · 1S 〉,

where

φ(y;θ) � |det(Jg(g−1(y;θ);θ))|−1 f (g−1(y;θ);θ),

Figure 1. Expanding the Unbiasedness of the GLR
Estimator from Smoothed and Truncated ϕε, L to the
General ϕ That Is Not Necessarily Smooth and Bounded

�
��

〈��, L, � · 1S〉 = 〈��, L, � · 1S〉

Objective
�
��

〈�, � · 1S〉 〈�, � · 1S〉=

and φ · 1S is the density of a distribution supported on
the image space S (θ). Figure 1 illustrates expanding
the unbiasedness of the GLR estimator from smoothed
and truncated ϕε, L to the general ϕ that is not necessar-
ily smooth and bounded through the three ingredients
of the derivation. Notice that through the three ingre-
dients, a WD ψ · 1S is defined for a distribution φ · 1S

whose classical derivative cannot be directly defined
in general, because the image S (θ) may be dependent
on the parameter. GLR extends the classical setting of
WD (see Pflug 1996 and Heidergott and Leahu 2010)
by allowing the existence of structural parameters.

2.3. Bias Representation of IPA-LR
In this subsection, we offer a representation of the bias
for IPA-LR because of discontinuities in the sample per-
formance. To illustrate in a simplified setting, if θ is the
parameter of interest and ϑ(X;θ) is the output sample
performancewritten as a function of the vector of input
random variables X following joint density f , then IPA
treats integrals of the form∫

Ω

ϑ(x;θ) f (x) dx ,

for ϑ continuous, whereas LR treats integral of the
form ∫

Ω

ϑ(x) f (x;θ) dx ,

where ϑ can be discontinuous. A natural generaliza-
tion (L’Ecuyer 1990) is∫

Ω

ϑ(x;θ) f (x;θ) dx ,

but again ϑ must be continuous with respect to θ,
so that IPA can be applied. Differentiating and inter-
changing with integration then yields an IPA-LR
estimator.

In our framework, the bias of the IPA-LR estimator
because of the discontinuity in the sample performance
can be understood by using integration by parts. Let Ξ
be the set of discontinuity points of ϕ, and the inverse
image of g on Ξ is denoted by

Γ � {x ∈ �n : g(x;θ) ∈ Ξ}.
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Suppose ϕ ◦ g is continuously differentiable outside
of Γ, and Γ is a smooth surface on �n with zero
Lebesgue measure. We can construct an open set Γε ⊃ Γ
with Lebesgue measure ε (see the proof of Lemma 1 in
Online Appendix A). Assuming the surface integration
is zero on the boundary ∂Ω, similarly as the procedure
to derive (9), we can use integration by parts to obtain∫

Ω\Γε
s(x;θ) f (x;θ) dx �

∫
∂Γε

(ϕ ◦ g) f (∂θg)T J−1
g v̂ ds

+

∫
Ω\Γε

ϕ(g(x;θ))ω(x;θ) f (x;θ) dx ,

where

s(x;θ) � (∂θg(x;θ))T∇yϕ(y;θ)|y�g(x;θ)

+ϕ(g(x;θ))
∂ ln f (x;θ)

∂θ
.

With an appropriate integrability condition, we can
shrink Γε to Γ such that∫

Ω\Γ
s(x;θ) f (x;θ) dx �I± + 〈ϕ, ψ · 1S 〉,

where

I± �

∫
Γ+∪Γ−
(ϕ ◦ g) f (∂θg)T J−1

g v̂ ds ,

Γ+ and Γ− are two directed surfaces with opposite ori-
entations, corresponding to the undirected surface Γ,
and I± is a surface integration along the two surfaces
with opposite orientations. Fortunately, if ϕ ◦ g is con-
tinuous on Γ, then I± � 0. For the case where ϕ ◦ g is
discontinuous on Γ, I± is a representation of the bias
of the IPA-LR estimator s(x;θ). Introducing an appro-
priate measure on the surfaces, the difference I± could
be estimated as a difference of two (usually rather com-
plex) simulation experiments; see Pflug (1996). In our
framework with discontinuities and structural param-
eters, the GLR estimator can be viewed as an unbiased
modification of IPA-LR through the three ingredients
presented in Section 2.2.

2.4. Technical Details for GLR
In this subsection, we provide rigorous conditions to
justify the unbiasedness of the GLR estimator, and
derive an analytical form for the GLR estimator that
achieves single-run efficiency in simulation.
The boundary of Ω is given by ∂Ω� Ω̄\Ω0, where Ω̄

is the closure ofΩ andΩ0 is the interior ofΩ. We intro-
duce a smoothness condition for the function vector
g(x;θ) and density f (x;θ).
(A.2) Smoothness conditions: g(x;θ) is twice contin-

uously differentiable with respect to (x , θ) ∈ Ω × Θ,
where Θ is an open neighborhood for the parameter
of interest, and f (x;θ) is continuously differentiable
with respect to (x , θ) ∈ �n ×Θ and goes to zero as x
approaches infinity.

Remark 2. If the support of the density is not all
of �n , the density f is zero ∀ x ∈ ∂Ω under condi-
tion (A.2); otherwise, the density will be strictly posi-
tive at x0 ∈ ∂Ω, thus is discontinuous at x0, because it
is a cluster of points where the density is zero, which
violates condition (A.2). Many distributions not sup-
ported on the whole space are not continuous on the
whole space, for example, the exponential distribution,
which is discontinuous at zero. However, in practice,
we can implement a change of variables first to trans-
form the support of the density to the whole space to
satisfy condition (A.2), for example, for the exponential
distribution, we can use transformation z � ln x. When
Xi , i � 1, . . . , n, are independent, a systematic way to
carry out the change of variables is provided in Online
Appendix A. An example of a change of variables in
the dependent case can be found in the maintenance
systems example in Online Appendix C.

For m < n, suppose condition (A.1) holds. Without
loss of generality, we can assume the submatrix com-
prising the first m rows of Jg has rank m a.e.; otherwise,
we can reorder the indices of gi , i � 1, . . . , n, appropri-
ately. By the chain rule,

∇x̄(ϕε, L ◦ g)(x;θ)� J̄g(x;θ) · ∇yϕε, L(y;θ)|y�g(x;θ) ,

where x̄ � (x1 , . . . , xm), J̄g is the submatrix comprising
of the first m rows of Jg , and

∇x̄(ϕε,L◦ g)(x;θ)�
(
∂ϕε,L(g(x;θ))

∂x1
, . . . ,

∂ϕε,L(g(x;θ))
∂xm

)T

,

∇yϕε,L(y;θ)|y�g(x;θ)�

(
∂ϕε,L(y)
∂y1

, . . . ,
∂ϕε,L(y)
∂ym

)T ����
y�g(x;θ)

,

so transformational Equation (6) is adjusted to be

∇yϕε, L(y;θ)|y�g(x;θ) � J̄−1
g (x;θ)∇x̄(ϕε, L ◦ g)(x;θ).

We only need to replace J−1
g (x;θ) and ∇x(ϕε, L ◦ g)(x;θ)

in (7) with J̄−1
g (x;θ) and ∇x̄(ϕε, L ◦ g)(x;θ), respectively,

to make the corresponding equation hold for m < n.
Let ȳ � y if m � n and ȳ � (y , xm+1:n) if m < n, and
ḡ(x;θ) � g(x;θ) if m � n and ḡ(x;θ) � (g(x;θ), xm+1:n)
if m < n. We introduce the following function invert-
ibility condition.

(A.3) Function invertibility: There exist sets Ωi , i �
1, . . . , l, such that Ω\N �

⋃
i�1,...,lΩi and ḡ(·;θ): Ωi →

S̄ i(θ) is invertible.

Remark 3. Under conditions (A.1) and (A.2), for any
x ∈ Ω\N , there exists a neighborhood Ox × O ḡ(x) of
(x , ḡ(x;θ)) and a unique differentiable inverse function
ḡ−1(·;θ): O ḡ(x)→ Ox , by the implicit function theorem
(Lang 2013). IfΩ is compact and N ��, condition (A.1)
implies (A.3) by the Heine-Borel theorem (Lang 2013).



Peng et al.: Generalized Likelihood Ratio Method
Operations Research, 2018, vol. 66, no. 2, pp. 487–499, ©2018 INFORMS 493

Next, we introduce the remaining regularity condi-
tions required to establish the unbiasedness of the GLR
estimator for problem (2).

(A.4) Integrability conditions:
(i) For any ε, L > 0,∫

Ω

sup
θ∈Θ
|sε, L(x;θ) f (x;θ)| dx <∞,

where sε, L is defined by (5).
(ii) d( · ) is absolutely integrable:

Ɛ[|d(X;θ)|]�
∫
Ω

|d(x;θ)| f (x;θ) dx <∞.

(iii) If {Ωε} is a sequence of bounded open sets
such that Ωε ⊂ Ωε′ if ε′ < ε and Ω �

⋃
εΩε, then there

exists 0 < c < 1 such that

lim
ε→0

∫
∂Ωε

|(∂θg)T J̄−1
g v̂ | | f |c ds <∞.

(iv) For i � 1, . . . , l,∫
�n
|ϕ(y) ∨ 1| |φ( ȳ;θ) · 1S̄ i (θ)( ȳ)| d ȳ <∞,∫

�n
|ϕ(y) ∨ 1 | sup

θ∈Θ
|ψ( ȳ;θ) · 1S̄ i (θ)( ȳ)| d ȳ <∞,

where z1 ∨ z2 � max{z1 , z2}, and φ and ψ equal zero
outside of S̄ i .

Remark 4. Condition (i) justifies the interchange of
derivative and integration in (4). Conditions (i)–(iii)
together with condition (A.2) justify the use of integra-
tion by parts in (8). Condition (iii) together with condi-
tion (A.2) also guarantee the surface integration I ∂Ω is
zero. Condition (iv) together with condition (A.4) jus-
tifies the unbiasedness of the GLR estimator by inter-
changing limits with respect to ε and L and derivative
with respect to θ, which requires a certain uniform
convergence. Under (A.2), the inverse image of f at
zero, i.e., {x: f (x)� 0}, is a closed set; thus the support
Ω is an open set and the monotone expansion from
bounded open sets {Ωε} to Ω in (iii) is always feasible.

Remark 5. The generality of GLR comes at the price
that only the existence of ϕε, L and ḡ−1 is provided,
thus the integrability condition (A.4) cannot generally
be checked in practice. An exception is the case that
ϕε, L and ḡ−1 can be explicitly given.

Theorem 2. Under continuity condition (A.0), the matrix
invertibility condition (A.1), smoothness condition (A.2),
function invertibility condition (A.3), and integrability con-
dition (A.4),

∂
∂θ

Ɛ[ϕ(g(X;θ))]� Ɛ[ϕ(g(X;θ))ω(X;θ)],

where ω(x;θ)� ∂ ln f (x;θ)/∂θ+ d(x;θ), and

d(x;θ)�
m∑

i�1
( J̄−1

g (x;θ)∂xi
J̄g(x;θ) J̄−1

g (x;θ)ei)T∂θg(x;θ)

− trace( J̄−1
g (x;θ)∂θ J̄g(x;θ))

− (∂θg(x;θ))T J̄−1
g (x;θ)∇x̄ ln f (x;θ), (11)

where ∂z J̄g means differentiating every element in the matrix
J̄g with respect to z, and

∇x̄ ln f (x;θ)� (∂ ln f (x;θ)/∂x1 , . . . , ∂ ln f (x;θ)/∂xm)T .

Remark 6. The proof of the Theorem 2 can be found in
Online Appendix A, where an alternative justification
of the unbiasedness for any measurable function ϕ can
also be found. The GLR estimator for problem (2) is
given by ϕ(g(X;θ))ω(X;θ), and has an analytical form
that can be calculated by differentiation, matrix inver-
sion, and elementary operations. If the sample perfor-
mance contains no structural parameters, the GLR esti-
mator simplifies to the classic LR estimator, because all
the ∂θ terms would be zero, and hence d(x;θ) would
be zero. For general measurable ϕ discussed in Online
Appendix A, it requires a stronger condition, i.e., con-
dition (A.5), which is more difficult to verify than con-
dition (A.4), to justify the unbiasedness of GLR.

We offer a more tractable version of condi-
tions (A.1)–(A.4) for the special case that (a) the deriva-
tives of ϕε, L(y) exist a.e. for each ε and are uniformly
bounded in y and ε on all points of differentiability;
(b) the input random variables are independent and
supported on thewhole space; (c) g: �n→�n is a linear
(affine) transformation:

g(x;θ)� A(θ)x + B(θ),

where A(θ) is a parameterized n × n matrix and B(θ)
is a parameterized n×1 vector, with sufficient smooth-
ness. Push-out LR applies to this linear transformation
and would lead to the same formula as GLR in this
case (see Online Appendix B), but GLR applies more
generally to nonlinear g where the structural parame-
ter is not easy to be explicitly pushed out (see Online
Appendix C).

Condition (a) is satisfied by the indicator function
in Example 1 and all applications presented in Sec-
tion 3; condition (c) applies to most cases where SPA
and push-out LR are easily implementable. Thus, this
special set of conditions applies to a rich class of prob-
lems that are of importance in applications. It is easy
to show that conditions (A.1) and (A.2) are satisfied
if A(θ) is invertible, and f satisfies the smoothness in
condition (A.2). We can easily calculate

Jg(x;θ)� A(θ), g−1(y;θ)� A−1(θ)(y − B(θ)),
d(x;θ)�− trace(A−1(θ) ∂θA(θ))

− (∂θA(θ)x + ∂θB(θ))TA−1(θ)∇x ln f (x;θ).
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Since g is invertible, condition (A.3) is satisfied. Inte-
grability conditions (i)–(iii) in (A.4) can be simplified
as follows:

(i’) Suppose∫
�n

sup
θ∈Θ
|∂θ f (x;θ)| dx <∞,

max
i�1,...,n

∫
�n

sup
θ∈Θ
|eT

i (∂θA(θ)x + ∂θB(θ)) f (x;θ)| dx <∞.

(ii’) For i � 1, . . . , n,∫
�

|∂xi
fi(xi ;θ)| dxi <∞,

∫
�

|xi∂xi
fi(xi ;θ)| dxi <∞,

where fi is the marginal density of Xi .
(iii’) For i � 1, . . . , n,

lim
xi→∞
|xi | fi(xi ;θ)� 0,

∫
�

|xi | fi(xi ;θ) dxi <∞.

Notice that for this special case, the integrability con-
dition (A.4) involves no implicitly constructed func-
tions. Uniform integrability is often used to justify the
unbiasedness of classic IPA and LR by applying the
mean value theorem and dominated convergence the-
orem (Glasserman 1991). Thus, checking the integra-
bility condition required to justify the unbiasedness of
the GLR estimator for this special case is no more dif-
ficult than that of IPA and LR in principle. For f and A
independent of θ,

ω(x;θ)�−(∂θB(θ))TA−1∇x ln f (x),

integrability condition (i’) and the second inequality
in (ii’) are automatically satisfied, and integrability
conditions (iv) can be further simplified as follows:
(iv’) For i � 1, . . . , n,∫

�n
|ϕ(y) ∨ 1| | f (A−1(y − B(θ)))| dy <∞,∫

�n
|ϕ(y) ∨ 1| sup

θ∈Θ

��∂θbi(θ)∂xi
f (x)|x�A−1(y−B(θ))

�� dy <∞,

where B(θ)� (b1(θ), . . . , bn(θ))T .

3. Applications
In this section, we consider three applications previ-
ously analyzed by three different methods in the liter-
ature. Applications in maintenance systems and com-
pound options can be found in Online Appendix C.

3.1. Probability Constraints (Andrieu et al. 2010)
We consider an investment problem where the capital
is borrowed at interest rate r. Let θ1 be the proportion
of capital invested in a bondwith fixed rate b, and θ2 be
the proportion of capital invested in a risky asset with a
random rate X, where Ɛ[X]> r, whichmeans that there

is a positive risk premium. The remaining proportion
of capital 1− θ1 − θ2 is for consumption. Andrieu et al.
(2010) aim to maximize the sum of consumption satis-
faction and the expected final capital subject to proba-
bility constraint

P((1+ b)θ1 + (1+X)θ2 > 1+ r) > π,

which means that the probability of repayment is at
least as high as π. Since the parameters of interest θ1
and θ2 appear in the probability, which is the expecta-
tion of an indicator function that is discontinuous, IPA
and LR do not apply. Andrieu et al. (2010) construct an
explicit mollifier with a tuning parameter to address
the discontinuity, similar to the ε-approximation in
Example 1, which leads to a biased derivative estima-
tor. For the actual optimization algorithm, they let the
tuning parameter go to zero as the number of iteration
steps in stochastic approximation (SA) goes to infinity.
For such a Kiefer-Wolfowitz type algorithm (Kushner
and Yin 2003), the step size and the tuning parameter
in the mollifier needs to be well tuned at proper rates
as the step goes to infinity in SA, which is a nontriv-
ial task even in simple examples. Fortunately, as we
will show in the following, applying GLR we obtain
an unbiased derivative estimator, which allows for a
Robbins-Monro type algorithm (Kushner andYin 2003)
and thereby overcomes the difficulty of reducing the
bias induced by the mollifiers at the correct rate.

We estimate
∂P((1+ b)θ1 + (1+X)θ2 > 1+ r)

∂θ
,

for θ � θ1 � 0.4, θ2 � 0.4, r � 0.05, b � 0.1, X a normal
random variable with mean µ � 0.2 and variance σ2 �

0.04. Since this example falls into the special case at the
end of Section 2, conditions (A.1)–(A.4) can be easily
checked for this example. The GLR estimator is

1{(1+ b)θ1 + (1+X)θ2 > 1+ r}
(1+ b)(X − µ)

θ2σ2 .

Andrieu et al. (2010) provide an approximation by con-
volution (AC) method and propose

1
δ

h
(

1+ r − (1+ b)θ1 − (1+X)θ2

δ

)
(1+ b),

where h(x) � 3(1− x2)I(x)/4, I(x) � 1 if −1 6 x 6 1 and
I(x) � 0 otherwise. We compare GLR with AC and
finite difference method with common random num-
bers (FDC). AC(δ) and FDC(δ) denote AC with tuning
parameter δ and FDC with perturbation size δ, respec-
tively. The standard error is defined by the estimated
standard deviation divided by the square root of the
number of samples.

From Table 1, we see that both AC and FDC suf-
fer from large bias when δ � 0.1 and large variance
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Table 1. Derivatives Estimates of the Probability Constraint
with Respect to θ, Based on 106 Independent Replications
(Mean± Standard Error)

GLR AC(0.1) AC(0.01) FDC(0.1) FDC(0.01)

1.46± 0.006 1.77± 0.003 1.47± 0.010 3.49± 0.005 1.62± 0.009

when δ � 0.01. FDC(0.001) outputs 1.46± 0.003 (mean
± standard error) based on 108 independent replica-
tions, which substantiates the unbiasedness of GLR. In
addition, the performance of AC heavily relies on the
choice of themollifier h, and Andrieu et al. (2010) show
that some choices perform very poorly, for example,
h(x) � I(x). In contrast, GLR is an unbiased derivative
estimator without any mollifier and tuning parameter
appearing in the final estimator.

3.2. Control Charts (Fu and Hu 1999)
In statistical process control, control charts are used to
determine if a manufacturing or business process is in
a state of statistical control. A performance of interest
is the average run length

ARL(θ)� Ɛ[N]�
∞∑

n�1
nP(N � n),

where N is the time when the system declares out-of-
control, i.e.,

N � min{i: Yi < [θ1, i , θ2, i]},

and
Yi � ψi(Xi ,Yi−1;θ), i > 1, Y1 � X1 ,

where θ is a generic parameter that can be θ1, i and θ2, i
in this example, Xi is the output of the ith sample, Yi is
the (observable) test statistic after the ith sample, ψi is
the transition function of a Markov chain {Yi}, θ1, i and
θ2, i are the lower control limit and upper control limit
for the ith test statistic, respectively.
We want to estimate the sensitivity of the average

run length with respect to parameter θ. To treat this
problem in our framework, we can rewrite the sample
performance as

Vn(X1 , . . . ,Xn ;θ)
� 1{N � n}

�

( n−1∏
i�1

1{0 < g(n)i (X1 , . . . ,Xi ;θ) < 1}
)

× (1− 1{0 < g(n)n (X1 , . . . ,Xn ;θ) < 1}),

g(n)i (X1 , . . . ,Xi ;θ)�
Yi − θ1, i

θ2, i − θ1, i
,

(12)

where ∏0
i�1 � 1. The system will output samples of dif-

ferent statistical behaviors when it is in control and out
of control. Conditional on {Z � z}, where Z � R/∆, R is

a (unobservable) random duration for the system to go
out of control and follows a distribution with density
q0( · ), and ∆ is the sampling interval (duration between
two monitoring epochs), the conditional density of Xi
is given by

fi(xi | z)� 1{i < z}q1(xi)+ 1{i > z}q2(xi),
where q1( · ) and q2( · ) are the densities of the distribu-
tions of the sampling process when in control and out
of control, respectively. Conditional on Z, (X1 , . . . ,Xn)
are independent, and their conditional joint density is
given by

f (n)(x1:n ; z)�
n∏

i�1
f (xi | z),

where x1:n � (x1 , . . . , xn).
The derivative estimators in Fu and Hu (1999) re-

quire extra simulation to estimate a conditional expec-
tation term and an explicit inverse for ψi , for example,
for Shewhart chart, Yi � Xi , and for EWMA chart, Yi �

αXi +(1−α)Yi−1, whereas our framework does not have
these requirements.

In the numerical experiment, we let θ1, i � θ1 and
θ2, i � θ2 and test the sensitivity with respect to θ �

θ2, where classical IPA and LR do not apply. Suppose
the time to go out of control follows an exponential
distribution, in-control sample output follows a normal
distribution with mean µ0 and variance σ2, and out-
of-control sample output follows a normal distribution
with mean µ1 and variance σ2. The GLR estimator for
the EWMA control chart is given by

∇x1:n
f (n)(x1:n ; z)�−

(
xi −(µ01{i < z}+µ11{i > z})

σ2

)T

i�1,...,n
,

∂θg(n)(x;θ)

�− 1
θ2−θ1

(g(n)1 (x1;θ), . . . , g(n)n (x1 , . . . , xn , ;θ))T ,

and

J(n)g �
1

θ2−θ1

·

©«

1 1−α (1−α)2 · ·· (1−α)n−2 (1−α)n−1

0 α α(1−α) ··· α(1−α)n−3 α(1−α)n−2

0 0 α · ·· α(1−α)n−4 α(1−α)n−3

...
...

...
. . .

...
...

0 0 · ·· · ·· α α(1−α)
0 0 · ·· · ·· 0 α

ª®®®®®®®¬n×n

.

It is easy to verify the conditions (A.1)–(A.4) for the
unbiasedness of the GLR estimator for ∂θP(N � n)/∂θ,
which falls into the special case at the end of Section 2.
The GLR estimator for ∂ARL/∂θ is given by

N
[

N
θ2 − θ1

− (∂θg(N)(X1 , . . . ,XN ;θ))T

· (J(N)g )−1∇x1:n
f (n)(x1:n ; Z)|n�N, x1:n�X1:n

]
,
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Table 2. Derivative of Shewhart Control Chart with Respect
to Upper Control Limit θ2 (Mean± Standard Error)

µ1 � 1.0 µ1 � 3.0

10,000 reps
FDC(0.1) 70.9± 2.2 3.63± 0.34
FDC(0.01) 67.5± 7.0 3.96± 1.3
PAL 59.5± 1.3 3.64± 0.06
PAR 61.8± 0.6 3.91± 0.18
GLR 61.0± 4.0 3.32± 1.1

1,000,000 reps
FDC(0.1) 71.2± 0.2 3.54± 0.03
FDC(0.01) 63.1± 0.6 3.80± 0.1
GLR 62.8± 0.4 3.77± 0.1

True value 63.0 3.73

where X1:n � (X1 , . . . ,Xn). The unbiasedness for the es-
timator of ∂ARL/∂θ can be justified by imposing addi-
tional integrability condition

∞∑
n�1

n sup
θ∈Θ

����∂θP(N � n)
∂θ

���� <∞,

which justifies interchange of summation and differen-
tiation by mean value theorem and dominated conver-
gence theorem.
We test the performance for the Shewhart chart, be-

cause the analytical form of the derivative can be used
to access the accuracy of the estimates. We compare
GLR with the PAL and PAR estimators in Fu and Hu
(1999), and FDC under the same setting as in Fu and
Hu (1999): α � 1, sampling frequency ∆ � 1, time to
go out of control following an exponential distribution
withmean 20, sample output following a normal distri-
bution with in-control mean µ0 � 0 and out-of-control
mean µ1 � 1.0 and 3.0, and variance σ � 1, lower and
upper control limits θ1 � −2.81 and θ2 � 2.81, respec-
tively, for all i ∈ �.
The results of PAL and PAR are taken from Fu andHu

(1999). From Table 2, we can see FDC suffers from large
bias when δ � 0.1 and large variance when δ � 0.01.
Although the variances of PAL and PAR are smaller
than that of GLR, they achieve this by running extra
simulation, so it is not clear which is superior after
taking the extra simulation into account.

3.3. Barrier Options (Wang et al. 2012)
To cover more applications, we consider a sample per-
formance more general than (1) as follows:

Q(X;θ)� ϑ(V(X;θ);θ), (13)

where ϑ(v;θ), v � (v1 , . . . , vk), is differentiable with
respect to θ and v, V(x;θ) � (V1(x;θ), . . . ,Vk(x;θ)),

Vi(x;θ) � ϕi(g1(x;θ), . . . , gmi
(x;θ)),

and ϕi( · ) is a measurable function with mi 6 n, i �
1, . . . , k. With additional mild regularity conditions,
the GLR estimator for sample performance (13) is

∂ϑ(v;θ)
∂θ

����
v�V(X;θ)

+Q(X;θ)ω(X;θ),

where ω is defined by (11) with g(x;θ) � (g1(x;θ),
. . . , gm(x;θ)), where m � maxi�1,...,k mi and J̄g being an
m ×m submatrix of the Jacobian of g. The only major
differences in the derivation are as follows: the IPA-LR
sε, L(x;θ) after truncation and smoothing in (4) needs
to be changed to

(∂θg(x;θ))TΣ(x;θ)∇vϑ(v;θ)|v�V(x;θ) ,

where

Σ(x;θ) � ((∇y ϕ̂1(y;θ))T , . . . , (∇y ϕ̂k(y;θ))T)T |y�g(x;θ) ,

∇y ϕ̂i(y;θ)�
(
∂ϕ̂i(y)
∂y1

, . . . ,
∂ϕ̂i(y)
∂ymi

, 0, . . . , 0
)T

1×m

,

i � 1, . . . , k ,

ϕ̂i , i � 1, . . . , k, denote the truncated and smoothed
functions, and by the chain rule,

∇x̄(ϑ ◦V)(x;θ)� J̄g(x;θ)Σ(x;θ)∇vϑ(v;θ)|v�V(x;θ) ,

so the transformational Equation (6) is changed to

(∂θg(x;θ))TΣ(x;θ)∇vϑ(v;θ)|v�V(x;θ)

� (∂θg(x;θ))T J̄−1
g (x;θ) ∇x̄(ϑ ◦V)(x;θ).

A similar analysis in Section 2 follows, and the unbi-
asedness of the GLR estimator for sample perfor-
mance (1) can be straightforwardly extended to the
more general case (13).

In a particular probability space where simula-
tion can be naturally implemented, sample perfor-
mance (13) covers the IPA-LR framework if we view
ϑ(v;θ) as a simulation model with structural param-
eter θ and a vector of input random variables v �

V(X;θ), where X is the vector of uniform random
numbers. Our framework also coversmany discontinu-
ous settings previously studied in literature, for exam-
ple, the setting ϕ(g1(x;θ), g2(x;θ)), where ϕ(y1 , y2) �
y11{y2 6 0}, in a kernel-based method (Liu and Hong
2011) and support independent unified likelihood
ratio and infinitesimal perturbation analysis (SLRIPA)
(Wang et al. 2012).
Framework (13) can easily handle sensitivity esti-

mates of barrier options, which were first addressed
in Wang et al. (2012) using SLRIPA. In this exam-
ple, we assume the underlying asset process fol-
lows a geometric Brownian motion process, i.e., St �

S0e (r−σ2/2)t+σBt , where St and Bt are the asset price
and standard Brownian motion at time t, respectively.
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The numerical results for the underlying asset follow-
ing a jump-diffusion process can be found in Online
Appendix C.
An up-and-out barrier option is a financial derivative

that becomes worthless if the path of the underlying
asset exceeds the barrier H. For a European up-and-out
barrier option, the payoff in the discrete-time setting is
given by

e−n∆(Sn∆ −K)1
{

max
i�1,...,n−1

Si∆ < H
}
1{K < Sn∆ < H},

where T � n∆ is the time to maturity and K is the strike
price (K < H). We have that for i � 1, . . . , n − 1,

Si∆/H � exp(gi(X1 , . . . ,Xi ;θ)),
Sn∆/K � exp{log(H/K)gn(X1 , . . . ,Xn ;θ)},

and by taking log and simple algebra,

1{Si∆ < H} � 1{gi(X1 , . . . ,Xi ;θ) < 0},
1{K < Sn∆ < H} � 1{1 < Sn∆/K < H/K}

� 1{0 < gn(X1 , . . . ,Xi ;θ) < 1},

where for i � 1, . . . , n − 1,

gi(X1 , . . . ,Xi ;θ)� log(S0/H)+ σ
√
∆

i∑
j�1

X j + i
(
r− σ

2

2

)
∆,

gn(X1 , . . . ,Xn ;θ)

�
1

log(H/K)

(
log(S0/K)+ σ

√
∆

n∑
j�1

X j + n(r− σ
2

2 )∆
)
.

Thus, the sample performance of the payoff for Euro-
pean up-and-out barrier option can be rewritten by

Q(X1 , . . . ,Xn ;θ)
� e−rn∆K{exp[log(H/K)V1(X1 , . . . ,Xn ;θ)] − 1}
·V2(X1 , . . . ,Xn ;θ),

where θ is a generic parameter that can be r, ∆, K, H,
S0, and σ in this example, ∆ is the discrete step size,
Xi � (Bi∆ − B(i−1)∆)/

√
∆, i � 1, . . . , n, which is standard

normally distributed if the underlying asset follows
geometric Brownian motion,

V1(X1 , . . . ,Xn ;θ)� gn(X1 , . . . ,Xn ;θ),
V2(X1 , . . . ,Xn ;θ)� ϕ(g(X1 , . . . ,Xn ;θ)),

where

ϕ(y1 , . . . , yn)�
n−1∏
i�1

1{yi < 0}1{0 < yn < 1}.

Then we test the performance of GLR for the Euro-
pean barrier options, and compare it with the SLRIPA,
SPA, and FDC, which are tested in Wang et al. (2012)
using the following parameter values: σ � 0.1, r � 0.05,

H � 110, S0 � K � 100, n∆ � 1. For FDC, we perturb
θ to θ + δ with δ � 0.2. As in Wang et al. (2012), we
test sensitivity with respect to parameter θ � H, where
classical IPA and LR do not apply. GLR can also be
applied straightforwardly to estimate the sensitivity
with respect to other parameters.

In this example, we have ∇x ln f (x;θ)�−(x1 , . . . , xn),
where f is the joint density of n i.i.d. standard normal
random variables, ∂θg(x;θ) � −(1/H)(1, . . . , 1, gn(x1 ,
. . . , xn , ;θ)/log(H/K)),

Jg � σ
√
∆

©«
1 1 · · · 1 (log(H/K))−1

0 1 · · · 1 (log(H/K))−1

...
...

. . .
...

...
0 0 · · · 1 (log(H/K))−1

0 0 · · · 0 (log(H/K))−1

ª®®®®®¬
,

J−1
g �

1
σ
√
∆

©«
1 −1 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 −1
0 0 · · · 0 log(H/K)

ª®®®®®¬
.

We can construct a continuous and piecewise smooth
function as

ϕε(y1 , . . . , yn)�
n−1∏
i�1
χε(yi)(χε(yn − 1) − χε(yn)).

Notice that this example falls into the special case dis-
cussed at the end of Section 2. Conditions (A.1)–(A.3),
and (i)–(iii) in (A.4) are obviously satisfied. Since the
input random variables follow normal distributions,
integrability condition (iv) in (A.4) can justified simi-
larly as in the proof of Lemma 2 in Online Appendix A.
Thus, the GLR estimator is guaranteed to be unbiased
and has the following form:

e−rT K
H

1
{

max
i�1,...,n−1

gi(X1 , . . . ,Xi ;θ) < 0
}

· 1{0 < gn(X1 , . . . ,Xn ;θ) < 1}

×
{{

exp
[
log

(
H
K

)
gn(X1 , . . . ,Xn ;θ)

]
− 1

}
·
[ (1− gn(X1 , . . . ,Xn ;θ))Xn −X1

σ
√
∆

+
1

log(H/K)

]
+ exp

[
log

(
H
K

)
gn(X1 , . . . ,Xn ;θ)

]
gn(X1 , . . . ,Xn ;θ)

}
.

The SLRIPA and SPA estimators for this example can
be found in Online Appendix C. The GLR and SLRIPA
estimators have analytical forms and are single-run,
while the SPA estimator includes a conditional expec-
tation term that is not in analytical form and requires
extra simulation to estimate.

The numerical results are shown in Table 3, where
the results for SLRIPA, SPA, and FDC are taken from
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Table 3. Sensitivity of European Barrier Option with
Respect to Parameter H, Based on 2,000 Independent
Replications (Mean± Standard Error)

n � 10 n � 20 n � 30

FDC 0.329± 0.084 0.310± 0.077 0.271± 0.071
SPA 0.286± 0.011 0.262± 0.013 0.254± 0.015
SLRIPA 0.276± 0.018 0.251± 0.024 0.266± 0.028
GLR 0.278± 0.020 0.263± 0.025 0.255± 0.029

Wang et al. (2012). Note that the SPA estimator requires
additional simulation to estimate some conditional
expectation terms (see Online Appendix C), and the
variances of these estimator are not reflected in the
reported standard errors in Table 3. All results are
obtained from 2000 independent replications for each
estimator. GLR and SLRIPA have comparable vari-
ances and superior computational efficiency. SPA has
the lowest variance but requires a substantially higher
amount of computation because of the additional sim-
ulations. FDC has the largest variances in this example,
and is generally biased. The convergence rate of FDC in
terms of mean-squared error can be found in L’Ecuyer
and Perron (1994).

4. Conclusions
In this paper, we propose a systematic procedure using
function smoothing and integration by parts for deriv-
ing an unbiased derivative estimator for discontinuous
sample performances with structural parameters. For
the particular model specified in Section 2.1, the GLR
estimator extends IPA, LR, and WD to a setting where
they did not previously apply. Applications in proba-
bility constraints, statistical process control, and finan-
cial derivatives can be treated in our general frame-
work. Although GLR is not always the best alternative,
numerical experiments substantiate its overall single-
run efficiency. The proposed GLR estimator is compat-
ible with variance reduction techniques such as split-
ting in the WD method, conditional Monte Carlo in
SPA, and renewal theory in steady-state simulation.
How to further reduce the variance of GLR is an impor-
tant direction for future research.
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