A New Unicity Theorem and Erdös' Problem for Polarized Semi-Abelian Varieties

J. Noguchi (with P. Corvaja)

University of Tokyo
Analytic Number Theory 2009 Kyoto

14~16 October 2009
14 October 2009

§1 Introduction

1.1 Nevanlinna's unicity theorem.

Theorem 1.1

(Unicity Theorem) Let $f, g: \mathbf{C} \rightarrow \mathbf{P}^{1}(\mathbf{C})$ be two non-constant meromorphic functions.
If $\exists a_{i} \in \mathbf{P}^{1}(\mathbf{C}), 1 \leq i \leq 5$, distinct such that Supp $f^{*} a_{i}=\operatorname{Supp} g^{*} a_{i}, 1 \leq i \leq 5$, then $f \equiv g$.

This follows from Nevanlinna's Second Main Theorem (SMT):
Theorem 1.2
(SMT) Let $f: \mathbf{C} \rightarrow \mathbf{P}^{1}(\mathbf{C})$ be a meromorphic function, and $a_{i} \in \mathbf{P}^{1}(\mathbf{C}), 1 \leq i \leq q$, be distinct q points. Then

$$
(q-2) T_{f}(r) \leq \sum_{i=1}^{q} N\left(r, \operatorname{Supp} f^{*} a_{i}\right)+\text { small-term }
$$

Proof of Theorem 1.1.
By Nevanlinna's SMT 1.2 we have

$$
(5-2=3) T_{f(\text { or } g)}(r) \leq \sum_{i=1}^{5} N\left(r, \operatorname{Supp} f^{*}\left(\text { or } g^{*}\right) a_{i}\right)+\text { small-term. }
$$

Suppose $f \not \equiv g$. Then the assumption implies that

$$
\begin{aligned}
& \sum_{i=1}^{5} N\left(r, \operatorname{Supp} f^{*} a_{i}\right) \leq N\left(r,(f-g)_{0}\right) \leq T_{f-g}(r)+O(1) \\
& \leq T_{f}(r)+T_{g}(r)+O(1) \leq \frac{2}{3} \sum_{i=1}^{5} N\left(r, \operatorname{Supp} f^{*} a_{i}\right)+\text { small-term. }
\end{aligned}
$$

Thus, $1 \leq \frac{2}{3}$; a contradiction.

Remark.

The number 5 in the above unicity theorem is optimal for the following trivial reason: Set $f(z)=e^{z}, g(z)=e^{-z} ; a_{1}=0, a_{2}=\infty, a_{3}=1, a_{4}=-1$.

Then $f^{*} a_{i}=g^{*} a_{i}, 1 \leq i \leq 4$.
Note that by setting $\sigma(w)=w^{-1}$ and $D=\sum_{1}^{4} a_{i}$ we have

$$
\sigma^{*} D=D, \quad \sigma \circ f=g ; \quad f(z), g(z) \in \mathbf{C}^{*} .
$$

Theorem 1.3
(E.M. Schmid 1971) Let E be an elliptic curve, $a_{i} \in E, 1 \leq i \leq 5$, distinct points.
Let $f, g: \mathbf{C} \rightarrow E$ be holomorphic maps.
If Supp $f^{*} a_{i}=\operatorname{Supp} g^{*} a_{i}, 1 \leq i \leq 5$, then $f \equiv g$.

Theorem 1.4

(H. Fujimoto (1975)) Let $f, g: \mathbf{C} \rightarrow \mathbf{P}^{n}(\mathbf{C})$ be holomorphic curves such that at least one of them is linearly non-degenerate; $\left\{H_{j}\right\}_{j=1}^{3 n+2}$ be hyperplanes in general position. If $f^{*} H_{j}=g^{*} H_{j}, 1 \leq j \leq 3 n+2$ (as divisors, counting multipicities), then $f \equiv g$.

Schmid's and Fujimoto's theorems are deduced from some SMT's in the corresponding cases.

The following is a kind of unicity problem in arithmetic theory, which is sometimes called a "support problem":

Erdös' Problem (1988). Let x, y be positive integers. Is it true that

$$
\begin{aligned}
\left\{p ; \text { prime, } p \mid\left(x^{n}-1\right)\right\} & =\left\{p ; \text { prime }, p \mid\left(y^{n}-1\right)\right\}, \forall n \in \mathbf{N} \\
& \Longleftrightarrow x=y \quad ?
\end{aligned}
$$

The answer is Yes:

Theorem 1.5

(Corrales-Rodorigáñez and R. Schoof, JNT 1997)
(1) Suppose that except for finitely many prime $p \in \mathbf{Z}$

$$
y^{n} \equiv 1(\bmod p) \text { whenever } x^{n} \equiv 1(\bmod p), \forall n \in \mathbf{N}
$$

Then, $y=x^{h}$ with $\exists h \in \mathbf{N}$.
(2) Let E be an elliptic curve defined over a number field k, and let $P, Q \in E(k)$. Suppose that except for finitely many prime $p \in O(k)$

$$
n Q=0 \text { whenever } n P=0 \text { in } E\left(k_{p}\right) .
$$

Then either $Q=\sigma(P)$ with $\exists \sigma \in \operatorname{End}(E)$, or both P, Q are torsion points.

Yamanoi's unicity theorem

Yamanoi proved in Forum Math. 2004 the following striking unicity theorem:

Theorem 1.6
Let
$A_{i}, i=1,2$, be abelian varieties;
$D_{i} \subset A_{i}$ be irreducible divisors such that

$$
\operatorname{St}\left(D_{i}\right)=\left\{a \in A_{i} ; a+D_{i}=D_{i}\right\}=\{0\} ;
$$

$f_{i}: \mathbf{C} \rightarrow A_{i}$ be (algebraically) nondegenerate entire holomorphic curves.
Assume that $f_{1}^{-1} D_{1}=f_{2}^{-1} D_{2}$ as sets.
Then \exists isomorphism $\phi: A_{1} \rightarrow A_{2}$ such that

$$
f_{2}=\phi \circ f_{1}, \quad D_{1}=\phi^{*} D_{2} .
$$

N.B.

(1) The new point is that we can determine not only f, but the moduli point of a polarized abelian vareity (A, D) through the distribution of $f^{-1} D$ by a nondegenerate $f: \mathbf{C} \rightarrow A$.
(2) The assumptions for D_{i} to be irreducible and the triviality of $\operatorname{St}\left(D_{i}\right)$ are not restrictive. There is a way of reduction.
(3) For simplicity we assume them here.

§2 Main Results

We want to uniformize the results in the previous section.
Therefore we deal with semi-abelian varieties.
Let $A_{i}, i=1,2$ be semi-abelian varieties:

$$
0 \rightarrow\left(\mathbf{C}^{*}\right)^{t_{i}} \rightarrow A_{i} \rightarrow A_{0 i} \rightarrow 0
$$

Let $D_{i} \subset A_{i}, i=1,2$, be irreducible divisors such that

$$
\operatorname{St}\left(D_{i}\right)=\{0\} \quad \text { (for simplicity) }
$$

For real-valued functions $\phi(r)$ and $\psi(r)(r>1)$, we write $\phi(r) \leq \psi(r) \|_{E}$ if $E \subset[1, \infty)$, Borel, $m(E)<\infty$, and $\phi(r) \leq \psi(r), r \notin E$.

$$
\phi(r) \sim \psi(r)\left\|\Longleftrightarrow \exists E, \exists C>0, C^{-1} \phi(r) \leq \psi(r) \leq C \phi(r)\right\|_{E}
$$

Main Theorem

Main Theorem 2.1

Let $f_{i}: \mathbf{C} \rightarrow A_{i}(i=1,2)$ be non-degenerate holomorphic curves.
Assume that

$$
\begin{equation*}
\frac{\operatorname{Supp} f_{1}^{*} D_{1}}{N_{1}\left(r, f_{1}^{*} D_{1}\right)} \sim \frac{\operatorname{Supp} f_{2}^{*} D_{2}}{N_{1}\left(r, f_{2}^{*} D_{2}\right) \| .}(\text { germs at } \infty) \tag{2.2}
\end{equation*}
$$

Here $\left.N_{1}\left(r, f_{1}^{*} D_{1}\right)=N\left(r, \operatorname{Supp} f_{1}^{*} D_{1}\right)\right)$.
Then there is a finite étale morphism $\phi: A_{1} \rightarrow A_{2}$ such that

$$
\phi \circ f_{1}=f_{2}, \quad D_{1} \subset \phi^{*} D_{2} .
$$

If equality holds in (2.2), then ϕ is an isomorphism and $D_{1}=\phi^{*} D_{2}$.
N.B. Assumption (2.3) is necessary by example.

The following corollary follows immediately from the Main Theorem 2.1. Corollary 2.4
(1) Let $f: \mathbf{C} \rightarrow \mathbf{C}^{*}$ and $g: \mathbf{C} \rightarrow E$ with an elliptic curve E be holomorphic and non-constant. Then

$$
\underline{f}^{-1}\{1\}_{\infty} \neq \underline{g}^{-1}\{0\}
$$

(2) If $\operatorname{dim} A_{1} \neq \operatorname{dim} A_{2}$ in the Main Theorem 2.1, then

$$
\underline{f}_{f_{1}^{-1} D_{1}}^{\infty} \neq \underline{f}^{-1} D_{2} .
$$

N.B.

(1) The first statement means that the difference of the value distribution property caused by the quotient $\mathbf{C}^{*} \rightarrow \mathbf{C}^{*} /\langle\tau\rangle=E$ cannot be recovered by any later choice of f and g, even though they are allowed to be arbitrarily transcendental.

(2) The second statement implies that the distribution of $f_{i}^{-1} D_{i}$ about ∞ contains the topological informations such as $\operatorname{dim} A_{i}$ and the compactness or non-compactness of A_{i}.

Example.

Set $A_{1}=\mathbf{C} / \mathbf{Z}\left(\cong \mathbf{G}_{\mathrm{m}}\right)$ and let $D_{1}=1$ be the unit element of A_{1}. Let
$f_{1}: \mathbf{C} \rightarrow A_{1}$ be the covering map.
Take a number $\tau \in \mathbf{C}$ with $\Im \tau \neq 0$.
Set $A_{2}=\mathbf{C} /(\mathbf{Z}+\mathbf{Z} \tau)$, which is an elliptic curve.
Let $D_{2}=0 \in A_{2}$ and $f_{2}: \mathbf{C} \rightarrow A_{2}$ be the covering map.
Then $f_{1}^{-1} D_{1}=\mathbf{Z} \subset \mathbf{Z}+\tau \mathbf{Z}=f_{2}^{-1} D_{2}$: assumption (2.2) of the Main Theorem 2.1 is satisfied.
There is, however, no non-constant morphism $\phi: A_{1} \rightarrow A_{2}$. Note that

$$
N_{1}\left(r, f_{1}^{*} D_{1}\right) \sim r, \quad N_{1}\left(r, f_{2}^{*} D_{2}\right) \sim r^{2}
$$

Thus, $N_{1}\left(r, f_{1}^{*} D_{1}\right) \nsim N_{1}\left(r, f_{2}^{*} D_{2}\right) \|$: assumption (2.3) fails.

§3 SMT for semi-abelian varieties.

For a closed subscheme $Z \subset X$ (compact complex space) and holomorphic $f: \mathbf{C} \rightarrow X, f(\mathbf{C}) \not \subset \operatorname{Supp} Z$, we write

$$
\begin{align*}
T_{f}\left(r, \omega_{Z}\right) & =\int_{1}^{r} \frac{d t}{t} \int_{\Delta(t)} f^{*} \omega_{Z} \\
f^{*} Z_{k, a} & =\min \left\{\operatorname{deg}_{a} f^{*} Z, k\right\}(k \leq \infty) \\
N_{k}\left(r, f^{*} Z\right) & =\int_{1}^{r} \frac{d t}{t}\left(\sum_{a \in \Delta(t)} \underline{\left.f^{*} Z_{k, a}\right)}\right. \\
N\left(r, f^{*} Z\right) & =N_{\infty}\left(r, f^{*} Z\right)<T_{f}\left(r, \omega_{Z}\right)+O(1) \tag{FMT}
\end{align*}
$$

Let
A be a semi-abelian variety,
$f: \mathbf{C} \rightarrow A$ be a holomorphic curve.
Set

- $J_{k}(A) \cong A \times \mathbf{C}^{n k}$: the k-jet bundle over A;
- $J_{k}(f): \mathbf{C} \rightarrow J_{k}(A)$: the k-jet lift of f;
- $X_{k}(f)$: the Zariski closure of the image $J_{k}(f)(\mathbf{C})$ in $J_{k}(A)$.

Theorem 3.1

(N.-Winkelmann-Yamanoi, Acta 2002 \& Forum Math. 2008,

Yamanoi Forum Math. 2004)
Let $f: \mathbf{C} \rightarrow A$ be algebraically non-degenerate.
(i) Let Z be an algebraic reduced subvariety of $X_{k}(f)(k \geqq 0)$. Then $\exists \bar{X}_{k}(f)$, compactification of $X_{k}(f)$ such that

$$
\begin{equation*}
T_{J_{k}(f)}\left(r ; \omega_{\bar{Z}}\right)=N_{1}\left(r ; J_{k}(f)^{*} Z\right)+o\left(T_{f}(r)\right) \| \tag{3.2}
\end{equation*}
$$

(ii) Moreover, if $\operatorname{codim}_{X_{k}(f)} Z \geqq 2$, then

$$
\begin{equation*}
T_{J_{k}(f)}\left(r ; \omega_{\bar{Z}}\right)=o\left(T_{f}(r)\right) \| . \tag{3.3}
\end{equation*}
$$

(iii) If $k=0$ and Z is an effective divisor D on A, then \bar{A} is smooth, equivariant, and independent of f; furthermore, (3.2) takes the form

$$
\begin{equation*}
T_{f}(r ; L(\bar{D}))=N_{1}\left(r ; f^{*} D\right)+o\left(T_{f}(r ; L(\bar{D}))\right) \| . \tag{3.4}
\end{equation*}
$$

§4 Proof of the Main Theorem 2.1.

Let me first recall
Theorem 4.1
(Log Bloch-Ochiai, Nog. 1977 Hiroshima Math.J./81 Nagoya Math.J.) Let $f: \mathbf{C} \rightarrow A$ be a holomoprhic curve into a semi-abelian variety A. Then $\overline{f(\mathbf{C})}^{\mathrm{Zar}}$ is a translate of a subgroup.

Proof of Main Theorem 2.1. With the given $f_{i}: \mathbf{C} \rightarrow A_{i}(i=1,2)$ we set $g=\left(f_{1}, f_{2}\right): \mathbf{C} \rightarrow A_{1} \times A_{2}$;
$A_{0}=\overline{g(\mathbf{C})}^{\text {Zar }}$ (semi-abelian variety by Log Bloch-Ochiai);
$p_{i}: A_{0} \rightarrow A_{i}$ be the projections;
$E_{i}=p_{i}^{*} D_{i}$.

It follows that

$$
T_{f_{1}}(r) \sim T_{f_{2}}(r) \sim T_{g}(r)=T(r) .
$$

By N. Math. Z. (1998) and a translation we may assume $g(0)=0 \in E_{1}$. Let $E_{i}=\sum_{\nu}\left(F_{i}+a_{i \nu}\right)$ be the irred. decomp. and $F_{i} \ni 0$.

If $F_{1} \neq F_{2}$, then $\operatorname{codim}_{A_{0}} F_{1} \cap F_{2} \geq 2$. It follows from SMT Theorem 3.1 that

$$
T(r) \sim N_{1}\left(r, f_{1}^{*} D_{1}\right) \sim N_{1}\left(r, g^{*}\left(F_{1} \cap F_{2}\right)\right)=o(T(r)) \| .
$$

This is a contradiction. Therefore we see that $F_{1}=F_{2}$. Moreover, we deduce that
(1) $E_{1} \subset E_{2}$,
(2) $\operatorname{St}\left(E_{1}\right) \subset \operatorname{St}\left(E_{2}\right)$, and are finite,
(3) p_{i} are isogenies,
(1) $A_{1} \cong A_{0} / \operatorname{St}\left(E_{1}\right) \xrightarrow{\phi} A_{0} / \operatorname{St}\left(E_{2}\right) \cong A_{2}$.

§5 Arithmetic Recurrence.

Due to the well-known correspondence between Number Theory and Nevanlinna Theory, it is tempting to give a number-theoretic analogue of Theorem 2.1 as Pál Erdös Problem-Corrales-Rodorigáñez\&Schoof Theorem.

A related problem asks to classify the cases where $x^{n}-1$ divides $y^{n}-1$ for infinitely many positive integers n.

We would like to deal with the case of a semi-abelian variety with a given divisor, i.e., a polarized semi-abelian variety.

In the present situation, We can prove an analogue of the Main Theorem 2.1 only in the linear toric case, but not in the general case of semi-abelian varieties, that is left to be a Conjecture.

Here is our result in the arithmetic case.

Theorem 5.1

Let
\mathcal{O}_{S} be a ring of S-integers in a number field k;
$\mathbf{G}_{1}, \mathbf{G}_{2}$ be linear tori;
$g_{i} \in \mathbf{G}_{i}\left(\mathcal{O}_{S}\right)$ be elements generating Zariski-dense subgroups.
D_{i} be reduced divisors defined over k, with defining ideals $\mathcal{I}\left(D_{i}\right)$, such that each irreducible component has a finite stabilizer and $\operatorname{St}\left(D_{2}\right)=\{0\}$. Suppose that for infinitely many $n \in \mathbf{N}$,

$$
\begin{equation*}
\left(g_{1}^{n}\right)^{*} \mathcal{I}\left(D_{1}\right) \supset\left(g_{2}^{n}\right)^{*} \mathcal{I}\left(D_{2}\right) \tag{5.2}
\end{equation*}
$$

Then \exists étale morphism $\phi: \mathbf{G}_{1} \rightarrow \mathbf{G}_{2}$, defined over k, and $\exists h \in \mathbf{N}$ such that $\phi\left(g_{1}^{h}\right)=g_{2}^{h}$ and $D_{1} \subset \phi^{*}\left(D_{2}\right)$.

N.B.

(1) Theorem 5.1 is deduced from the main results of Corvaja-Zannier, Invent. Math. 2002.
(2) By an example we cannot take $h=1$ in general.

- By an example, the condition on the stabilzers of D_{1} and D_{2} cannot be omitted.
- Note that inequality (inclusion) (5.2) of ideals is assumed only for an infinite sequence of n, not necessarily for all large n. On the contrary, we need the inequality of ideals, not only of their supports, i.e. of the primes containing the corresponding ideals.
- One might ask for a similar conclusion assuming only the inequality of supports. There is some answer for it, but it is of a weaker form.

§6 1-parameter analytic subgroups

In S. Lang's "Introduction to Transcendental Numbers", Addison-Wesley, 1966, he wrote at the last paragraph of Chap. 3
"Independently of transcendental problem one can raise an interesting question of algebraic-analytic nature, namely given a 1-parameter subgroup of an abelian variety (say Zariski dense), is its intersection with a hyperplane section necessarily non-empty, and infinite unless this subgroup is algebraic?"

In 6 years later, J. Ax (Amer. J. Math. (1972)) took this problem:

Theorem 6.1

Let θ be a reduced theta function on \mathbf{C}^{m}. Let L be a 1-dimensional affine subspace of \mathbf{C}^{m}. Then either $(\theta \mid L)$ is constant or has an infinite number of zeros; $|\{(\theta \mid L)=0\} \cap \Delta(r)| \sim r^{2}$. .
N.B. It seems to be still open that $|\{(\theta \mid L)=0\} / \Gamma|=\infty$ unless $f(\mathbf{C})$ is algebraic.

Theorem 6.2

Let $f: \mathbf{C} \rightarrow A$ be a 1-parameter analytic subgroup in a semi-abelian variety A with $v=f^{\prime}(0)$.
Let D be a reduced divisor on A.
(1) If A is abelian and $H(\cdot, \cdot)$ denotes the Riemann form associated with D, then we have

$$
\begin{aligned}
N\left(r ; f^{*} D\right) & =H(v, v) \pi r^{2}+O(\log r), \\
& =(1+o(1)) N_{1}\left(r ; f^{*} D\right) .
\end{aligned}
$$

(2) Assume that $\operatorname{dim} A \geq 2$. If f is algebraically non-degenerate and if $\operatorname{St}(D)$ is finite, there is an irreducuble component D^{\prime} of D such that then $f(\mathbf{C}) \cap D^{\prime}$ is Zariski dense in D^{\prime}; in particular, $|f(\mathbf{C}) \cap D|=\infty$.
N.B. In fact, the second statement holds for an arbitrary algebraically non-degenerate holomorphic curve $f: \mathbf{C} \rightarrow A$.

Proof.

(i) Note that the first Chern class $c_{1}(L(D))$ is represented by $i \partial \bar{\partial} H(w, w)$. It follows from our SMT Theorem 3.1 that

$$
\begin{aligned}
N\left(r ; f^{*} D\right) & =T_{f}(r ; L(D))+O(\log r) \\
& =\int_{0}^{r} \frac{d t}{t} \int_{\Delta(t)} i H(v, v) d z \wedge d \bar{z}+O(\log r) \\
& =H(v, v) \pi r^{2}+O(\log r) \\
& =(1+o(1)) N_{1}\left(r, f^{*} D\right)
\end{aligned}
$$

(ii) If the claim does not hold, \exists an algebraic subset E such that $f(\mathbf{C}) \cap D \subset E \subsetneq D$ and $\operatorname{codim}_{A} E \geq 2$. Then our SMT Theorem 3.1 yields that

$$
N\left(r, f^{*} E\right)=o\left(r^{2}\right)=N\left(r, f^{*} D\right) \sim r^{2} \| \text { (contradiction) }
$$

References

[1] Ax, J., Some topics in differential algebraic geometry II, Amer. J. Math. 94 (1972), 1205-1213.
[2] Corrales-Rodorigáñez, C. and Schoof, R., The support problem and its elliptic analogue, J. Number Theory 64 (1997), 276-290.
[3] Corvaja, P. and Zannier, U., Finiteness of integral values for the ratio of two linear recurrences, Invent. Math. 149 (2002), 431-451.
[4] Corvaja, P. and Noguchi, J., A new unicity theorem and Erdös' problem for polarized semi-abelian varieties, preprint 2009.
[5] Lang, S., Introduction to Transcendental Numbers, Addison-Wesley, Reading, 1966.
[6] Noguchi, J., Holomorphic curves in algebraic varieties, Hiroshima Math. J. 7 (1977), 833-853.
[7] - , On holomorphic curves in semi-Abelian varieties, Math. Z. 228 (1998), 713-721.
[8] -, J., Winkelmann, J. and Yamanoi, K., The second main theorem for holomorphic curves into semi-Abelian varieties II, Forum Math. 20 (2008), 469-503.
[9] Yamanoi, K., Holomorphic curves in abelian varieties and intersection with higher codimensional subvarieties, Forum Math. 16 (2004), 749-788.

