
Received July 18, 2019, accepted July 30, 2019, date of publication August 2, 2019, date of current version August 19, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2932750

A New Unit Selection Optimisation Algorithm for
Corpus-Based TTS Systems Using the RBF-Based
Data Compression Technique

MATEJ ROJC AND IZIDOR MLAKAR
Faculty of Electrical Engineering and Computer Science, University of Maribor, 2000 Maribor, Slovenia

Corresponding author: Izidor Mlakar (izidor.mlakar@um.si)

This work was supported in part by the European Regional Development Fund and the Ministry of Education, Science and Sport of
Slovenia — project SAIAL through research core funding under Grant ESRR/MIZŠ-SAIAL, and in part by the Slovenian Research
Agency through research core funding under Grant P2-0069.

ABSTRACT Amajor drawback of corpus-based speech synthesis systems is the use of large acoustic inven-
tories, and currently one of the main challenges is the optimal representation of concatenation costs associ-
ated with units in the acoustic inventory. These concatenation costs are used to evaluate spectral mismatches
between the acoustic units to be concatenated. The combinatorics of costs grows exponentially with the size
of the acoustic inventories and can result in hundreds of millions or even billions of concatenation costs to
be processed. Therefore, in this paper, we represent a novel unit selection optimization algorithm, which
minimizes the size of concatenation costs through the vector quantization-based compression technique and
tuple structures. Furthermore, the proposed optimization algorithm is designed to be used as an objective
measure to optimize the performance of the unit selection cost function regarding the quality of the speech
output, and to evaluate the effect of the vector quantization-based compression technique on its performance.
The results obtained show that even when data compression is above 50%, the effect on the quality of the
synthesized speech is negligible.

INDEX TERMS Unit selection optimization, vector quantization, data compression, RGD algorithm,
RBF-based neural networks, unit selection cost function, concatenation costs.

I. INTRODUCTION

Nowadays, there are two mainstream approaches in text-
to-speech synthesis: the corpus-based (i.e. concatenative
speech synthesis), and statistical parametric speech synthe-
sis (SPSS). The SPSS systems, based on artificial neural
networks (ANNs), have become popular in the text-to-
speech (TTS) research field, especially since ANN-based
acoustic models offer an efficient representation of complex
dependencies between linguistic and acoustic features, while
the recurrent neural networks (RNNs) provide an elegant way
to model speech-like sequential data that embodies short-
and long-term correlations [1], [2]. However, concatenative
speech synthesis, with unit selection algorithms in particular,
generatesmore natural-sounding speech [3]. The drawback of
the approach is its dependence on a large acoustic inventory.
When audio material is of high quality and has good coverage

The associate editor coordinating the review of this manuscript and
approving it for publication was Victor Sanchez.

of the possible synthesis units’ contexts, the synthesized
speech will be of high quality and almost natural-sounding.
Moreover, rich acoustic realizations with a good coverage
of non-uniform units significantly minimize the possible
spectral mismatches (i.e. quality of speech). On the positive
side, with concatenative speech synthesis, realistic-sounding
machine-generated speech can be createdwithout any, or with
only minimal, additional signal processing. This is achieved
by analyzing the suitability of all possible combinations of
acoustic units based on the spectral mismatch defined as the
concatenation costs and calculated in each possible phoneme
context.

The idea behind the unit selection algorithm in the corpus-
based TTS system PLATTOS is to select the most spectrally
suitable sequences of acoustic units from the available acous-
tic inventory [4]. For high-quality speech, a good coverage
with diphones and triphones in many acoustic realizations
must be ensured, e.g. Figure 1. In this case, lighter circles
denote several clusters of triphones, while darker circles

VOLUME 7, 2019
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 108035

https://orcid.org/0000-0002-4910-1879


M. Rojc, I. Mlakar: New Unit Selection Optimization Algorithm for Corpus-Based TTS Systems

FIGURE 1. The acoustic inventory with diphones and triphones in the
PLATTOS acoustic inventory.

denote several clusters of diphones. The dimension of each
circle is proportional to the number of the same acoustic units
within each cluster. As outlined in Figure 1, longer units
are preferred, since longer speech units yield more natural-
sounding synthesized speech [5]. In order to achieve the best
speech quality, it is very important that spectral mismatches at
the concatenation points between acoustic units in a sentence
are minimal. These spectral mismatches are judged auto-
matically by using the aforementioned concatenation costs.
The suitability between any two acoustic units in a specific
linguistic and prosodic context is evaluated by using a unit
selection cost function in the unit selection algorithm. The
process utilizes local cost, target cost and concatenation cost
in order to select the best pairs of acoustic units with minimal
spectral mismatches between units (i.e. minimal cost). In the
PLATTOS TTS system, concatenation costs are calculated
off-line for all possible candidates and in all possible linguis-
tic contexts, based on acoustic features, such as energy and
the spectral distances around concatenation points. The ‘cost’
space calculated for an inventory represented in Figure 1 is
outlined in Figure 2. The four groups in Figure 2 separate
concatenation costs for diphone-diphone, diphone-triphone,
triphone-diphone and triphone-triphone combinations (direc-
tion inwards). Within each group, concatenation costs are
clustered into 2,000 clusters. The dimension of circles is used
to represent the number of costs within each unit’s cluster.
Therefore, acoustic inventories in corpus-based TTS systems
uses acoustic inventories with many acoustic units with sev-
eral acoustic realizations. Only in this way are we able to
minimize the required signal processing at the concatenation
points.
Such high-quality inventories generate huge costs space

that the algorithms must process. When the unit selection

FIGURE 2. Representation of the concatenation costs space between each
possible sequence of acoustic units in the PLATTOS acoustic inventory.

FIGURE 3. Unit selection algorithm - searching for the best path between
several synthesis units (diphones or triphones) with several acoustic
realizations.

algorithm utilizes off-line calculated concatenation costs,
it can run near real time, while its performance depends
primarily on the performance of the unit selection cost func-
tion. Its goal is to find the best path in a huge graph with
many acoustic units for each sentence. Thus, it operates in
a huge concatenation costs space, and has to process all the
possible pairs of acoustic units, as can be seen in Figure 3.
As already mentioned, the quality of the synthesized speech
significantly relies on how close to human judgements the
resulting sequences of acoustic units are at the end.

As a result, there has to be a compromise between the
targeted quality of the synthesized speech and the size and
quality of the acoustic inventory. To sum up, the general
issues discussed in the paper are, therefore, how to evaluate
the effect on synthesized speech quality due to compression

108036 VOLUME 7, 2019



M. Rojc, I. Mlakar: New Unit Selection Optimization Algorithm for Corpus-Based TTS Systems

of data resources and, more importantly, how tominimize and
mitigate this effect on the unit selection algorithm through
relaxed gradient descent (RGD)-based optimization and a
novel objective measure. The proposed unit selection opti-
mization algorithm could be a very good solution for these
issues in corpus-based TTS systems. It optimizes the unit
selection algorithm and unit selection cost function based
on objective measures, and in this way also gives us an
answer about the effect of the compression of data resources
regarding concatenation costs on the unit selection process.
In line with advances in artificial neural networks (ANNs),
we propose to tackle the data compression issue through
reduction of the concatenation costs space (Figure 2), while
keeping the size of the acoustic inventory (Figure 1). For
this task we deploy a VQ-based lossy data compression
method by implementing radial basis function (RBF) with
k-means clustering for the reduction of data, and a tuple
structure for time-and-space-efficient access to these data.
The proposed unit selection optimization algorithm optimizes
concatenation costs space, the unit selection algorithm and
the unit selection cost function based on an objectivemeasure.
This measure is also used to evaluate the effect of the data
compression on the effect on synthesized speech quality.
We argue, that since we maintain all possible combinations in
all possible contexts and reduce only the concatenation costs
space by means of clustering rather than elimination, the pro-
posed unit selection optimization will have a minimal impact
on the quality of the synthesized speech. Moreover, since the
data resources required to use a given acoustic inventory are
compressed to a smaller footprint, larger acoustic inventories
may be incorporated, thus enabling us to further improve the
quality of the synthesized speech.
The paper is structured as follows. Section 2 provides an

overview of related work on speech synthesis and the opti-
mization of large data resources in particular. Section 3 out-
lines the fuzzy logic formalism used to implement the unit
selection process and the proposed optimization concepts
and algorithm. Section 4 shows the results of the optimiza-
tion algorithm. Section 5 provides the discussion, and the
conclusions follow.

II. RELATED WORK

With the advances in deep learning (DL), corpus-based
TTS systems have been challenged by various parametric
speech synthesis (SPSS) approaches, incorporating hidden
Markov models (HMM), or classification and regression tree
clustering, deep neural networks and deep recurrent neu-
ral networks (DRNNs). More recently, techniques such as:
WaveNet [6], Deep Voice [7] and Tacotron [8], [9] have
been introduced. Overall the SPSS promises robust and fully
flexible speech synthesis systems with a voice building pro-
cess that may be largely automated [10]. However, the com-
putational efficiency, robustness, and quality of synthesized
speech compared with the unit selection-based techniques are
a subject of debate [11], [12]. A corpus-based TTS system
utilizing a unit selection algorithm is a speech synthesis

technique, which can synthesize speech close to natural
quality [3].

However, the main drawback of the corpus-based TTS sys-
tem is the huge speech database that is required for best per-
formance.With huge acoustic inventories a search for the best
sequence of acoustic units is computationally very expensive,
since the combinatorics of possible acoustic units to be con-
catenated results in hundreds of millions and even billions of
possible combinations. Therefore, this represents a big per-
formance issue regarding time (when calculated on-line), or
regarding memory consumption (when calculated off-line).
As a result, nowadays corpus-based TTS systems tend to limit
the size of acoustic inventories and perform on-line calcula-
tions. For instance, pruning [3], [13], [14] and compression-
based [15], [16] approaches are used tominimize the footprint
of a speech synthesis system by reduction in corpus size.
Most of the compression-based approaches are motivated by
linear prediction-based speech coding methods [17]. Sparse
representation has also been proposed to implement linear
prediction analysis. However, the minimization of acoustic
inventories may have a significant impact on the speech
quality and lead to its degradation [18]. In general, speech
codingmethods are proposed to compress unseen speech data
efficiently. The speech synthesis system, however, utilizes
speech data, which is available beforehand. Thus, the systems
will perform best when the database is large and when the
audio quality is good [3], [19]. The size of the acoustic
inventory is closely related with spectral mismatches in the
synthesized speech (i.e. spectral compatibility between two
consecutive acoustic units); the corpus-based TTS system
should thus utilize an optimal set of joint and target sub-
costs and corresponding weights. With the reduction of the
acoustic inventory, the possibility of spectral mismatches
between units only increases. Various approaches to percep-
tual evaluation, involving human listeners, have also been
proposed [20]–[22]. However, creating an optimal corpus via
‘‘listening’’ is very time-consuming, and very expensive to
conduct, especially when optimization processes have to be
repeated several times. In order to optimize acoustic inven-
tories, and the process of creating them, objective measure-
based approaches have also been proposed. These approaches
implement a human-like perception of spectral mismatches,
by quantifying the compatibility of speech units for concate-
nation [23]–[25]. The advantage is that the optimization can
be repeated far more easily and as many times as necessary,
and the results between runs retain consistency and are statis-
tically comparable [23].

In addition to the optimization of acoustic inventories and
data sets the optimization of unit selection cost function,
within a unit selection algorithm, represents an alternative
method in improving the performance of the concatenative
speech synthesis systems.

The unit selection algorithm’s task is represented as a
shortest path problem (SPP) in a huge graph of acoustic
units, where an algorithm must find the best path. Value
iteration networks, which mimic the application of value

VOLUME 7, 2019 108037



M. Rojc, I. Mlakar: New Unit Selection Optimization Algorithm for Corpus-Based TTS Systems

iteration, were shown to be capable of computing near opti-
mal paths [26], [27]. In the particular case of a unit selec-
tion algorithm, the transition network is a graph defined by
weights. The lookup for the best possible transition must
be evaluated for every di- and triphone used in the input
sequence. Thus, if we want to achieve responsiveness in
interactive time, the whole graphmust reside within themem-
ory. In order to minimize the size of this graph, researchers
adopted various approaches: for instance, a weight space
search (WSS) algorithm generates a model through a search
of a finite set of possible weights by utilizing analysis-by-
synthesis exploration [21]. The Viterbi algorithm can also be
implemented in order to find the best matching sequence of
acoustic units. Since the Viterbi algorithm does not scale well
with the number of acoustic units in an acoustic inventory, a
multi-layer Viterbi algorithm was proposed [28], [29]. The
computational requirement of both methods grows expo-
nentially with the number of weights being tuned [30].
Researchers have also investigated the use of other methods,
such as genetic algorithms (GAs) [21], [31] and the A∗

algorithm [32] andmulti-linear regression (MLR) [33]. These
methods specifically target the optimal search algorithm over
large databases. GAs are stochastic search algorithms and
require a large number of manual evaluations for each acous-
tic unit in the acoustic inventory. The MLR approaches per-
form optimization by predicting the objective distance by
weighting the sub-costs linearly. Both methodologies, how-
ever, fail to adjust the weights for acoustic units in the acous-
tic inventory, which are not accounted for in the optimization;
a large number of user evaluations is therefore required. The
main issue with GA and Viterbi-based approaches is that
none of them scales well with the number of acoustic units
in the acoustic inventory. Finally, from the perspective of the
SPP problem, the Dijkstra algorithm [34], optimized with a
relaxed gradient descent technique, has also been applied [4].
Concatenation costs must evaluate spectral mismatch

for millions of combinations and, therefore, increase data
resources exponentially with the increase in the targeted
quality of the speech. For instance, in [4] we have utilized
300 sentences in the acoustic inventory. In turn, roughly
147 million instances of concatenation costs were generated,
which amount to a 1.2 GB footprint. In order to reduce the
footprint of the TTS system further and to be aware of the
effect on the speech quality, we propose an optimization algo-
rithm of the unit selection cost function when utilizing com-
pressed concatenation costs. We apply vector quantization
(VQ)-based compression [35] and tuple structures. In partic-
ular, we exploit radial basis function (RBF) with k-means,
as clustering that has been intensively studied and widely
applied to various applications processing large datasets [36].
Artificial neural networks have been proven to be successful
in quantization approaches. The more popular of these meth-
ods are the Kohonen’s networks i.e. learning vector quan-
tization (LVQ), k-nearest-neighbors (kNN), self-organizing
maps (SOM); the multilayer perceptrons (MLP), and radial
basis function networks (RBFNs). The major drawback of

the MLP approach is that the determination of local min-
ima is required [37]. Moreover, since it is based on back
propagation (BP), the neural network’s structure (i.e. adap-
tive capability, hidden layers, number of neurons) should
be optimal to a given data set. Both processes are complex
and time-consuming. LVQs [38], [39] and RBFNs [36], [40],
on the other hand, represent a smart alternative. Namely, both
methods utilize a self-organizing network approach, which
uses the training vectors to recursively ‘‘tune’’ the placement
of competitive hidden units that represent categories of the
inputs. In the RBFN, in particular, each neuron stores a ‘‘pro-
totype’’, which is just one of the examples from the training
set. When one wants to classify a new input, each neuron
computes the Euclidean distance between the input and its
prototype. In this sense the RBF-based approaches make neu-
rons more locally sensitive; i.e. the model will generate more
clusters where the ‘‘value space’’ is denser, while in those
parts where the values are sparse and scattered significantly
less clusters will appear, Thus, the rationale behind selecting
the RBFN is its local sensitivity. We argue that since RBFN
will optimize the databases in terms of density, the lossy
compression will have minimal impact on the overall quality
of the synthesized speech. At the same time, the method will
significantly reduce the unit selection algorithm’s computa-
tional footprint and speed up its operation. Moreover, the
RBFN-based methods tend to be more data-set resilient and
outperform traditional (i.e. LVQ-based) approaches in both
speed and accuracy and can even approach the capability of
BP-based methods [41].

However, as with any lossy data compression, the
VQ-based compression of concatenation costs introduces less
precise information about acoustic mismatches in the unit
selection algorithm. Thus, in addition to a locally sensitive
compression method, it is very important to have an objective
measure in order to evaluate this effect. With such a measure,
one is also able to find the best compromise between data
compression and speech quality. Instead of using subjective
and perceptive testing on acoustic inventories, as generally
used for this purpose, in this paper a novel objective mea-
sure is proposed that can easily evaluate the effects the data
compression has on the speech quality. Using the proposed
method, the data compression may be easily and quickly set
to best targeted cut-off performance. The proposed method
achieves comparable speech quality even when the footprint
of the concatenation costs is reduced by about 50%.We show
that the effect of the compression on speech quality is still
negligible.

III. THE UNIT SELECTION OPTIMISATION ALGORITHM

IN A CORPUS-BASED TTS SYSTEM

A. UNIT SELECTION ALGORITHM

The text-to-speech-synthesis system PLATTOS is a corpus-
based TTS system with innovative omni-comprehensive
architecture [4]. The unit selection algorithm is based on
unit selection cost function, which evaluates mismatches
between two acoustics units. In the PLATTOS TTS system

108038 VOLUME 7, 2019



M. Rojc, I. Mlakar: New Unit Selection Optimization Algorithm for Corpus-Based TTS Systems

FIGURE 4. Partial costs that are used in unit selection cost function are
responsible for the estimation of how appropriate it is for a given
acoustic unit in a sequence to be concatenated, where Ct is target cost,
Cl local cost, and Cc concatenation cost.

the following costs are used for the evaluation of the mis-
match between two acoustic units, as shown in Figure 4:

• local cost cost lc = C l(ui, ti): a distance between unit
candidate ui and the target unit specification ti
(as defined by the prosody modules), by considering
their linguistic context.

• target cost cost tc = C t (ui, ti): a distance between unit
candidate ui and the target unit specification ti, by con-
sidering acoustic prosody information regarding unit-
duration and pitch that can be calculated, after the target
prosody is specified.

• concatenation cost costcc = Cc(ui−1, ui): describes
acoustic mismatches at the concatenation points
between successive unit candidates ui−1 and ui, by con-
sidering energy and spectrum.

The fuzzy-based unit selection cost function, which defines
the cost of selecting unit ui in the context of ui−1 is defined
as follows:

C (ui) =



(Scc (costcc))
wcc ·





3
∏

j=1

(

Stcj
(

cost tcj
))wj





wtc

· (Slc (cost lc))
wlc

)wunittype (1)

where C (ui) represents the overall cost of selecting unit ui.
The Scc represents the fuzzy-based partial cost function used
for evaluating the cost of selecting ui from the spectral
(i.e. acoustic) perspective (i.e. costcc). The Stc represents
the fuzzy-based partial cost function used for evaluating the
cost of selecting ui from the prosodic perspective. In the
case of prosodic context, the target cost cost tc is determined
by calculating distances by considering pitch, duration, and
energy. The Slc represents the fuzzy-based partial cost func-
tion used for evaluating the cost of selecting ui from linguistic
perspective. The local cost cost lc is determined by calcu-
lating distances regarding the linguistic context between the

unit candidates. Finally, since contributions from each fuzzy-
based partial cost functions are not equally important, weights
wcc,wtc,wj,wlc,wunittype are used in (1) in order to emphasise
the relative importance of each of the criteria, including the
type of the unit (i.e. diphone vs. triphone) in a given context.

In this way, the unit selection cost function IN (1) is fuzzy-
based. Its performance obviously depends on the optimiza-
tion of parameters that define its complex multidimensional
shape, when used in the SPP algorithm. The SPP algorithm
itself is based on weighted finite-state machine (WFSM)
formalism, and implements the Dijkstra algorithm [42]. Such
a unit selection algorithm represents the most computation-
ally demanding process in the concatenative speech synthe-
sis [43], since acoustic inventory is based on a large speech
database that is rich in various acoustic contexts (i.e. dura-
tion, pitch, energy and linguistic contexts), and contains
non-uniform acoustic units (i.e. diphones and triphones) in
multiple contexts. The unit selection algorithm has to perform
a SPP algorithm for each sentence in order to select the
best sequence of acoustic units with minimal discontinu-
ities (i.e. spectral mismatches). Further, the SPP algorithm
is performed on-line, thus the unit selection algorithm has
to evaluate a large number of unit candidates in order to
differentiate between many acoustic units’ contexts captured
in the acoustic inventory.

As can be seen in (1), the fuzzy-based unit selection cost
function consists of several partial cost functions through
which the unit selection algorithm can effectively differen-
tiate between acoustic units in various acoustic contexts.
Since partial cost functions are fuzzy-based, their values are
always in the interval [0.0, 1.0]. The suitability of acoustic
unit ui is thus determined through the partial cost functions’
shapes, where the best-fitted targets have value 1.0, while
other neighboring targets have values assigned as defined by
the partial cost functions’ shapes. In this way, in (1) the shape
of individual partial cost functions emphasizes significant
mismatches, while the relative importance of a particular
criterion is expressed through the shape of each partial cost
function. Additionally, the multiplication of partial cost func-
tions ensures that even small mismatches are noticeable in the
overall cost. The overall costs for the first and final acoustic
units consist of local and target cost, while for other acoustic
units they are comprised of local, target and concatenation
cost.

B. CONCATENATION COSTS

Calculation of concatenation costs costcc is very time-
consuming in corpus-based TTS systems, and can even not
be feasible to perform on-line, when interactive speed or near
real-time performance is needed. When calculated on-line,
the concatenation costs have to be calculated between all the
phonetically matched acoustic units needed in the sentence
that can be found in the acoustic inventory in several contexts.
Moreover, in order to evaluate spectral mismatches at the
concatenation points, the speech samples of all these acoustic
units have to be loaded. The off-line calculation of costcc

VOLUME 7, 2019 108039



M. Rojc, I. Mlakar: New Unit Selection Optimization Algorithm for Corpus-Based TTS Systems

FIGURE 5. Tuple structure used for compact representation of
concatenation cost, when using non-lossy data compression).

costs guarantees better run-time and real-time performance
of the unit selection algorithm.
However, in the off-line case, the acoustic unit sequences

needed for sentences are not known in advance. Thus, the unit
selection algorithm must have available concatenation costs
between any phonetically matched acoustic units in the
acoustic inventory. This results in a huge and sparse con-
catenation cost matrix consisting of floating-point numbers
(Figure 5). Additionally, an efficient representation and fast
lookup is a necessity if the unit selection process is to retain its
real-time capability. The memory footprint of concatenation
costs can be defined as:

Mf = N · N · sizeof (float), (2)

whereN represents the number of acoustic units in the acous-
tic inventory, and sizeof (float) is equal to 4 bytes. In the
PLATTOS TTS system for time-and-space efficient data rep-
resentation, tuple structures are used as proposed in [4].

A tuple structure T i,j is a finite function (W1 × . . . ×

Wi) → Z j, where (W1 × . . . ×Wi) are sets of strings, and Z
are floating numbers. This finite function maps possible pairs
of acoustic units into floats. In the TTS system, the tuple’s
word columns represent diphone IDs and triphone IDs, while
the number column represents concatenation costs, as can
be seen in Figure 5. Further, in the tuple structure, perfect
hash finite automata are used, where an automaton is used
for each finite set of acoustic units’ IDs. Thus, a word col-
umn W is represented by a minimal deterministic acyclic
finite automaton N that accepts each acoustic unit’s ID in
a word column W . Further, each transition in automaton N
is assigned an integer number j, while the sum of integers
along the accepting path in N is i. In this way, each perfect
hash automaton represents an acoustic unit’s ID in each word
column with hash-keys. If the overlap between the acoustic
units’ IDs from multiple word columns is high enough, a sin-
gle perfect hash automaton can even be used. In Figure 5,

unique pairs of acoustic units are represented by 2 perfect
hash finite automata, since for the corresponding tuple struc-
ture T the transformation T (W1 . . .Wi) =

(

z1 . . . zj
)

converts
sequences of acoustic units’ IDs into hash-keys by using per-
fect hashing. Moreover, for the minimization of the footprint,
it is important that each individual hash-key is represented
with as few bytes as are required by the largest integer number
used in each word column. Further, the number column in
tuple T (i.e. the third column in Figure 5) keeps the con-
catenation costs costcc. These costs are floating-point num-
bers and for their compact representation, each number is
decomposed into a normalized mantissa m and an exponent
t which are both stored with the minimal number of bytes.
Nevertheless, since different computer platforms represent
real numbers in a different way and increasing the precision
can increases the memory footprint for storing each number,
the tuple structure still requires significant memory resources
to be allocated when acoustic inventories are huge. Therefore,
in order to solve this issue, a VQ algorithm is proposed to
compress even more the number column with concatenation
costs, and in this way further reduce the memory footprint.
The VQ algorithm used for this purpose is outlined in the next
section.

C. RADIAL BASIS FUNCTION K-MEANS FOR CLUSTERING

VQ represents an efficient technique for data compres-
sion. In codebook clustering the VQ is generally imple-
mented with k-means clustering, or Linde-Buzo-Gray (LBG)
algorithm. However, in the case of large vector dimen-
sions and large codebooks, the use of these methods suf-
fers from complexity [44]. The constrained VQ methods,
such as partitioned VQ, can be used to reduce storage and
computation complexity. Nevertheless, these methods can
severely increase the coding error [45]. With the advances in
artificial neural networks (ANNs), the traditional VQ meth-
ods can also be significantly optimized for large codebooks.
Since we are dealing with a huge number of concatenation
costs, in this paper we propose to adopt the radial basis
function network (RBFN) approach. This approach, as out-
lined in Figure 6, uses a three-layered feed forward ANN
with strong approximation capability. The input vector is an
n-dimensional vector which is being classified. The hidden
layer is designed in a way that allows for direct mapping
(without additional weights) of input vector into neurons
in the layer. One neuron in the input layer corresponds to
each predictor variable. With respect to categorical variables,
n-1 neurons are used, where n is the number of categories.
Thus, the nonlinear function of hidden neurons is symmetri-
cal to the input space, and the output of each hidden neuron
depends only on the radial distance between the input vector
and the centre of the hidden neuron.
Hidden layers have a variable number of neurons. Each

neuron in a hidden layer stores a ‘‘prototype’’ vector which
is just one of the vectors from the training set. Each neuron
compares the input vector to its prototype, and outputs a value
between 0 and 1 which is a measure of similarity. h(x) is the

108040 VOLUME 7, 2019



M. Rojc, I. Mlakar: New Unit Selection Optimization Algorithm for Corpus-Based TTS Systems

FIGURE 6. RBFN used in proposed vector quantization algorithm.

Gaussian activation function defined as:

hi (x) = ϕ (xP − ci) = exp

[

−
1

2σ 2
‖xP− ci‖

2
]

, (3)

where xP is the pth sample (xP = (xP1 , xP2 , . . . , xPn )
T ); ci is

the centre or average of the Gaussian function (i.e. the input
space); and r = 1

2σ 2 is the standard deviation Gaussian
function (i.e. the width).

The output layer is a linear function implemented as
a weighted sum of the outputs of the hidden layer. It is
defined as:

f (x)=
∑m

j=1
wjhj(x)=

∑m

j=1
wj exp

[

−
1

2σ 2
‖xP− cj

∥

∥

2
]

,

(4)

where wj denotes the weights between the hidden layer and
the output layer.
Overall, there are three types of parameter to be solved;

the weight w between the hidden nodes and the output nodes,
the centre c of each neuron of the hidden layer and the
unit width r. The learning process is based on adjusting
the parameters of the network to reproduce a set of input-
output patterns. In order to determine the centers, any clus-
tering algorithm can be used. A set of clusters, each with
r-dimensional centers, is determined by the number of input
variables, or nodes, of the input layer. The cluster centers then
become the centers of the RBF units. The number of clusters
is a design parameter and determines the number of nodes in
the hidden layer.
We have selected the k-means algorithm to find the clus-

ters. This is a clustering algorithm based on distance: its goal
is to discover the natural grouping of data points in a given
set [46]. It is also a method commonly used to automat-
ically partition large data sets. Further, k-means is one of
the most widely used algorithms for clustering because of
simplicity, efficiency, and empirical success. In the training

step, a standard k-means algorithm has to find the cluster
centroids, or so-called code words, while in the coding stage,
the encoder searches for the nearest centroid for a new vector.
The encoder additionally transmits its index to the decoder in
order that the decoder can retrieve the corresponding code
word in the codebook. The distortion is defined as:

d =

∥

∥

∥
X − X̂

∥

∥

∥

2
, (5)

where X̂ = Q (X) represents the quantized vector.
In this way, the k-means clustering technique is based on

a distance matrix, using Euclidean distance as a criterion.
It starts with m initial cluster centers. For all data, Euclidean
distance from each cluster centre is then calculated, after
which the data points are assigned to the closest cluster centre.
This method is repeated until the squared error between the
empirical mean of a cluster and the points in the cluster is
minimized. The goal is to divide the entire dataset by individ-
ual m clusters, where the number of elements in each cluster
is ni, while the centre of a cluster is ci. The algorithm proceeds
until sufficient progress cannot be made, i.e. the minimal
Euclidian distance between observations and centroids had
been reached. This yields a codebook mapping centroid to
codes and vice versa.

By applying the outlined RBF network over the concate-
nation costs space, we are able to significantly reduce the
memory footprint of the tuple structure in the unit selec-
tion algorithm. Due to the lossy data compression, however,
VQ-induced errors are bound to appear. In order to evaluate
them we could, as already mentioned, perform a series of
perceptive tests. However, such a task would be highly sub-
jective, as well as cost- and labor-intensive, especially when
optimizing the size of compressed concatenation costs space
to allow for the best possible performance of the unit selection
cost function at the lowest computational cost (including
memory footprint). Therefore, we propose a novel optimiza-
tion process based on an objective measure. As outlined
in the following section, it allows us to reliably and fully
automatically estimate the impact of the VQ algorithm on the
quality of speech.

D. A RELAXED GRADIENT DESCENT-BASED

OPTIMISATION ALGORITHM

As a result of data compression of concatenation costs, it is
expected that errors will be introduced. These errors will gen-
erate spectral discontinuity and will have a negative effect on
the performance of the unit selection cost function. Namely,
the errors can distort the information about spectral mismatch
between adjacent pairs of acoustic units. In order to search for
the best performance of the unit selection algorithm operating
in maximally compressed space, it is therefore important to
measure and objectively evaluate these errors. By comparing
unit selection’s performance prior and after the compression,
via the proposed method, it is possible to a) estimate the
effect of the data compression through an objective mea-
sure, and b) search for the best compromise between unit

VOLUME 7, 2019 108041



M. Rojc, I. Mlakar: New Unit Selection Optimization Algorithm for Corpus-Based TTS Systems

FIGURE 7. An RGD-based algorithm for optimizing unit selection cost
function.

selection performance (i.e. data compression) and overall
quality achieved on some selected acoustic inventory.
For the measuring and the evaluation process, a fully auto-

matic optimization algorithm, based on the RGD technique,
is proposed. The algorithm is outlined in Figure 7.
As outlined in Figure 7, the input into the unit selec-

tion algorithm is a set of prosodically annotated utterances,
all concatenation costs (off-line calculated, compressed, and
uncompressed), and acoustic inventory consisting of diphone
and triphone acoustic units. Each utterance is represented in
the form of a heterogeneous relation graph (HRG) that con-
tains comprehensive linguistic and prosodical information,
original pitch (i.e. F0 contour), and original acoustic units
from the acoustic inventory. In this way, target unit speci-
fications for all acoustic units in the sentence are provided
in detail. The unit selection algorithm then searches for a
sequence of acoustic units from the database of utterances
by using the unit selection cost function in (1) and iterates
the RGD-based optimization process until the best set of
parameters is generated. The goal of the optimization is to
find as many original acoustic units at the same positions in
the input sentence as possible. Since prosody is available for
every sentence, the optimized algorithm should select exactly
the same sequences of acoustic units, when the optimized
parameters shape the cost function accordingly. However, the
issue of applying the RGD algorithm in TTS systems for
the optimization of (1) is, in general, that the prediction of
prosody (at symbolic and acoustic level) is utilized, before
searching for the best sequence of units of an individual sen-
tence. As a result, degradation in the speech quality, generated
by acoustic mismatches, can arise from many sources: from

the prosody module, from the acoustic inventory used (a lack
of suitable units with the necessary acoustic realizations for
synthesis units), from the shape of the unit selection cost
function, or from the unit selection algorithm itself (best path
search). Thus, it is hard to reach solid conclusions regarding
the origins of the acoustic mismatches.

In the proposed solution (Figure 7) this issue is solved, via
the ‘Error evaluation’ component and the RGD algorithm
optimizes unit selection cost function performance through
an objective measure. After each iteration, the evaluation
of the unit selection cost function’s performance is auto-
matically performed, by calculating the error regarding how
many correct acoustic units were selected at each position
and within each observed sentence. The proposed objective
measure is defined as:

Error =
N

M

=

(

∑S
j=1

∑length(Sentence(j)
i=1

(

SelectedUC i!=OriginalUC i

)

)

(

∑S
j=1

∑length(Sentence(j)
i=1 SelectedUC i

) ,

(6)

where N represents the number of acoustic units selected
incorrectly, while M represents the number of all acoustics
units in the given subset of sentences S used in the unit
selection optimization process.
The Error calculated then represents an input for the RGD

optimization algorithm. It is used for tuning and updating the
parameters of the unit selection cost function. The proposed
unit selection optimization algorithm stops when the Error
drops below a pre-defined threshold or a pre-defined number
of iterations is reached. Thus, the value of the Error also
indicates when the parameters have been optimized to model
the shape of the unit selection cost function to match the
optimal curve.
For the implementation of the RGD-based optimiza-

tion process in Figure 7 we propose a relaxed gradient
descent (RGD) algorithm as defined in [47]. The gradient
descent algorithms are popular approaches when searching
for optima in both statistical, as well as fuzzy-based, selection
algorithms [48]. The RGD algorithm considers the following
search for minimal value problem:

minf (x) , (7)

where f (x) represents the unit selection cost function in (1),
which is continuously differentiable. The necessary and suffi-
cient condition for a point x∗ (a vector of weights and fuzzy-
membership functions’ parameters) to be optimal for (7) is
then:

∇f
(

x∗
)

= 0, (8)

In general, this search problem is solved through itera-
tive steps, which generate the following sequence of points:
x0, x1, . . . ∈ dom f , for which f (xk) → f ∗ as k→ ∞.

108042 VOLUME 7, 2019



M. Rojc, I. Mlakar: New Unit Selection Optimization Algorithm for Corpus-Based TTS Systems

Thus, the algorithm for solving (7) generates a minimizing
sequence of parameters xk , k = 0,1, . . .. as:

xk+1=xk+θk ·tk ·dk , (9)

where tk> 0 is a step size, while the dk is the search direction.
The RGD optimization in Figure 7 for tuning the unit selec-
tion cost function in (1) performs, therefore, the following
steps:

a) Compute the search direction for k’th parameter in (1):
dk= −∇f (xk)

b) Define the step length for k’th parameter in (1) tk via
backtracking line search procedure

c) Update all parameters in (1): select random value θk ∈

(0, 1) and update the parameters by using: xk+1 = xk +

θk · tk · dk
d) Test criterion for stopping the iterations. If the test

is fulfilled, stop; otherwise consider k = k + 1 and
continue.

In this way the RGD optimization algorithm consists of
the following processing steps: during the unit selection pro-
cess, the unit cost functions’ partial derivatives are calculated
(ϑftc[], ϑflc[], ϑfcc[], ϑfoverall[]). These derivations are then
used to define directions in multi-dimensional space towards
which the parameters should be changed in order to minimize
the Error calculated in (6). After parameters are updated,
the unit selection cost function is used again in unit selec-
tion algorithm, while the Error when using a new set of
parameters is evaluated. The process repeats through several
iterations until reaching the desired minimal Error, or until
the number of iterations is exceeded.

Further, the RGD-based algorithm in Figure 7 is also pro-
posed to represent a mechanism for estimating the effect
of lossy data compression on the unit selection process,
when VQ-based compressed concatenation costs are used
instead of non-lossy compressed concatenation costs as in
the baseline step. The shape of the unit selection cost func-
tion and the perceived Error generated at the end of the
optimization process then represent objective measures. The
two measures are used to objectively evaluate the effect of
VQ-based compression on the unit selection algorithm, and
on the quality of the synthesized speech. In this way, we can
automatically obtain an estimation of the unit selection cost
function performance, for a given data compression tech-
nique. Thus, a balance between compression, quality and
performance can be reached more efficiently. Additionally,
the RGD-based algorithm (Figure 7) also optimizes the unit
selection cost function itself and partially mitigates the effect
of lossy data compression within the TTS system. Finally,
the proposed solution can be used for any speech database,
or any corpus-based TTS system.

IV. RESULTS

In order to evaluate the novel unit selection optimiza-
tion algorithm for corpus-based TTS systems using the
RBF-based data compression technique outlined in Figure 7,
several experiments were performed. We used the PLATTOS

TABLE 1. The tuple representation of non-compressed concatenation
costs.

TABLE 2. The tuple representation of RBFK-based compressed
concatenation costs.

speech database with a Slovenian female voice, with up to
1,200 database sentences. In Table 1, a memory footprint
for concatenation costs costcc for different sizes of acous-
tic inventories is outlined. From the table it is evident how
rapidly memory footprint rises, from 1.48MB to 22.2GB,
when non-lossy compression is used for concatenation costs
(full precision), andwhen concatenation costs are represented
as tuple structures. A rapid increase of entries in the tuple
structure with the number of sentences and acoustic units in
the acoustic inventory is also quite evident. Although a tuple
structure itself represents a time-and-space-efficient solution
for representing concatenation costs, and optimal lookup for
corpus-based TTS system, the sizes of tuples in Table 1 show
that memory footprint still represents a significant issue.

In order to reduce the size of tuple structures used for
representing the concatenation costs, we proposed using
RBF-based k-means clustering. In the first experiment we
have defined 2,000 clusters to be used to represent the values
of concatenation costs in the interval [0.000-2.000]. The clus-
tering process was completed after 20 epochs. The lossy data
compression targets the number column in the tuple structure
(i.e. the number column in Figure 5). The results of the new
tuple structures for the same acoustic inventories are then
outlined in Table 2. After the RBFK algorithm, the tuple
structures’ memory footprints for the same acoustic inven-
tories, as used prior to compression in Table 1, have been
reduced by around 50%. That is, from 0.74MB to 11.1GB.

The distribution of the VQ codebooks for 4 groups of
acoustic units is outlined in Figure 8 for an acoustic inventory
with 300 sentences. The groups are used for the follow-
ing acoustic unit pairs: diphone-diphone (D-D), diphone-
triphone (D-T), triphone-diphone (T-D) and triphone-triphone
(T-T). In all cases, the concatenation costs are distributed

VOLUME 7, 2019 108043



M. Rojc, I. Mlakar: New Unit Selection Optimization Algorithm for Corpus-Based TTS Systems

FIGURE 8. The distribution of VQ clusters for 4 groups of acoustic units
(a) D-D, (b) D-T, (c) T-D, (d) T-T.

across a complete interval [0.000-2.000]. Further, clusters
are denser, especially in those areas where the original
concatenation costs are very close in the non-compressed
concatenation costs’ space. Thus, we may expect that at the
lossy data compression side, the RBFK algorithm shows
good performance in minimizing errors in the precision of
concatenation costs.
The achieved data compression for concatenation costs is

significant for the corpus-based TTS systems. However, it is

TABLE 3. The lossy data compression errors, when using
2000/4000 clusters for the task on 300 sentences.

FIGURE 9. Comparing the lossy data compression errors, when using
2000 (red), or 4000 clusters (blue).

very important to consider the effect of less precise infor-
mation about acoustic mismatches introduced into the unit
selection algorithm. Since speech quality is always above
everything else, the proposed RBFK-based compression can
even be pointless, if it results in significant degradation
of speech quality. Moreover, another issue is how to esti-
mate this effect on any acoustic inventory, or any corpus-
based TTS system, easily and flexibly. Therefore, in the next
experiment we used the proposed RGD-based optimization
algorithm (in Figure 7) in order to evaluate the impact of
the RBFK-based compression on the quality of synthesized
speech (e.g. the Error parameter).

Firstly, we statistically estimated the RBFK-based com-
pression errors by considering all concatenation costs in the
acoustic inventory for 300 database sentences. Each value
was calculated as a difference between the original value
and the assigned cluster’s value. The results are outlined
in Table 3.

Table 3 also compares the compression error when the
number of clusters is doubled (i.e. for 2000 and 4000 clus-
ters). The number of selected clusters for lossy data com-
pression is a key player in searching for the best ‘‘tuple
size/precision’’ ratio that can additionally be analyzed easily
and flexibly through the proposed algorithm in Figure 7.
In Table 3, we can conclude that (not surprisingly) the sum of
VQ-based errors is significantly smaller for a double number
of clusters, while absolute differences regarding minimum or
maximum values are not noticeable. In order to evaluate pre-
cisely how much could be gained with more clusters within
a corpus-based TTS system, further experiments have to be
performed.

Secondly, as outlined in Figure 9 and Table 3, the errors
generated by the RBFK-based data compression are in the
case of 2,000 clusters roughly 4%, and in the case of
4,000 clusters, 3%. In both cases the memory footprint of

108044 VOLUME 7, 2019



M. Rojc, I. Mlakar: New Unit Selection Optimization Algorithm for Corpus-Based TTS Systems

the corresponding tuple structures is reduced up to 50%.
The error rate on its own, however, does not clarify how the
errors will degrade the quality of speech. It only shows that
in original sentence another acoustic unit was selected. As a
result, the RGD-based unit selection optimization algorithm,
with objective measure, is also carried out in the evaluation
phase. It is performed in the following steps:

1. the unit selection algorithm on the subset of 10 database
sentences is performed by utilizing the unit selection
cost function in (1), and by using an acoustic inventory
for 300 sentences,

2. for each sentence in the subset partial derivations over
all parameters utilized in the unit selection cost function
are calculated, in order to compute a proper search
direction in the multi-dimensional search space as
follows:

dk= −∇f (xk)

3. step tk via backtracking line search procedure for each
parameter k is then defined,

4. parameters are updated, where θk ∈ (0, 1) is randomly
defined, as follows:

xk+1 = xk + θk · tk · dk

5. a test is performed for stopping the optimization pro-
cess, where Error is calculated between the num-
ber of correctly selected acoustic units (diphones/
triphones) N , and the number of all selected acoustic
units M in the subset of database sentences.

The algorithm was first performed with an acoustic inven-
tory for 300 sentences, when utilizing non-lossy data com-
pression on concatenation costs (see Figure 10 (a)). Next,
the algorithm was performed on the same acoustic inven-
tory, but utilizing lossy data compression with 2,000 clus-
ters on concatenation costs (see Figure 10 (b)). And thirdly,
the algorithm was performed on the same acoustic inven-
tory, but utilizing lossy data compression with 4,000 clusters
on concatenation costs (see Figure 10 (c)). Further, in all
three cases, the unit selection optimization algorithm started
with the unit selection cost function using a set of the same
baseline pre-defined parameters (i.e. with the same shape).
The objective measure, after performing an RGD-based unit
selection optimization algorithm in each case, can tell us
about the performance in selecting the most perceptually
suitable acoustic units in a given subset of sentences. The
results are outlined in Figure 10. The x-axis represents the
number of iterations, while the y-axis represents the objective
measure, i.e. Error in (6) that represents the ratio of correctly
selected acoustic in the subset of sentences being evaluated.
Figure 10 shows that the unit selection algorithm’s per-

formance is gradually improving at each iteration in all
cases. Thus, the Error for the subset of sentences in (a)-(c)
decreases and, after 320 iterations, stabilizes at 11.901% for
non-lossy compressed set, while at 12.921% for both lossy
compressed sets. From these experiments we can conclude
that the proposed lossy data compression of concatenation

FIGURE 10. Error used as objective measure in selecting acoustic units by
unit selection algorithm during optimization, (a) – utilization of non-lossy
data compression, (b) utilization of lossy data compression
(2,000 clusters), (c) utilization of lossy data compression (4,000 clusters).

costs is not without degradation of the speech quality, since
final results are a bit worse than in experiment (a). However,
since the Error is higher for only around 1%, we can say that
the degradation is only negligible, if noticeable at all. There-
fore, when using non-lossy data compression, or the proposed
lossy data compression of concatenation costs costcc, we can
conclude that the proposed RBFK-based lossy data compres-
sion has negligible impact on the unit selection cost function
performance. Secondly, we also observed that there is no
noticeable effect on theErrorwhenwe use double the clusters
for VQ-based lossy data compression. Therefore, 2,000 clus-
ters can be used in the tuple structure for the same results.
Further, although the statistical analysis above showed that
double the clusters reduces VQ errors, the unit selection
algorithm after performing RGD-based optimization proves
the same performance. From this we can conclude that the
proposed RGD-based optimization also minimizes the effect
of VQ errors incorporated into the TTS system, when using
lossy data compression of concatenation costs. This is also a
beneficial conclusion, since we can use fewer clusters for the
same unit selection algorithm performance.

VOLUME 7, 2019 108045



M. Rojc, I. Mlakar: New Unit Selection Optimization Algorithm for Corpus-Based TTS Systems

FIGURE 11. Error, when using baseline non-/optimized unit selection
cost function without lossy compression (a), non-/optimized unit
selection cost function with RBFK compression with 2,000 clusters (b),
non-/optimized unit selection cost function with RBFK compression with
4,000 clusters (c).

In the next experiment, we have conducted a performance
analysis of the unit selection algorithm on a larger set, with
300 sentences that were not included in the RGD-based
optimization process. The goal in this case has been, firstly,
to see how the optimized unit selection cost function is
performed on a set of sentences not included in the sub-
set for optimization, and to estimate the unit selection per-
formance on the same task for all three cases in previous
experiments in Figure 10. The results are outlined in detail in
Figure 11 (a)-(c), Figure 12 (a)-(c), and Table 4. By analyzing
the results, we can conclude that in the proposed unit selection
optimization algorithm the VQ errors also have negligible
impact on the unit selection cost function performance on
unseen sentences. We can conclude, firstly, that the perfor-
mance of the RBFK algorithm is very good, since comparable
unit selection cost function performance results are obtained
for all cases (a)-(c). Further, as outlined in Table 4 and
Figure 11, for all cases (a)-(c) the Error rate is reduced from
36% to roughly 11% after the proposed optimization. When
comparing these results, therefore, whether we are using

FIGURE 12. Error, when using non-/optimized unit selection cost function
without lossy data compression (a), RBFK compression with
2,000 clusters (b), and RBFK compression with compression with
4,000 clusters (c).

TABLE 4. The tuple representation of RBFK-based compressed
concatenation costs.

non-lossy or VQ-based lossy data compression (2,000 or
4,000 clusters) on concatenation costs costcc, we can con-
clude that in the unit selection algorithm VQ errors have neg-
ligible impact on the unit selection cost function performance.
Therefore, advanced RBFK clustering using 2,000 clusters
guarantees very good representations for the concatenation
costs, and on the other hand significant reduction in the size
of the tuple structure.

Moreover, as outlined in Figure 12 (a)-(c), the Error in
selecting acoustic units per sentence in the set of 300 sen-
tences without lossy compression ranges from [20-60%]
for non-optimized unit selection cost function, while after
RGD-based optimization this Error drops into the interval
[0-20%]. Further, the boxplot in Figure 12 (a) shows that
the median value for Error is 35.59% for the baseline unit
selection cost function, and 10.41% after RGD-based opti-
mization. The boxplots in Figure 12 (b) and (c) then show that
the median value for Error is 35.7143% in the non-optimized
case, and around 11.7% after RGD-based optimization, when
the RBFK-based compression has been used. Again, devi-
ations in Error between non-lossy compressed, and lossy
compressed spaces, is minimal, roughly 1%.

V. CONCLUSION

The main drawback of the corpus-based TTS systems is
that its speech quality and performance greatly depend on

108046 VOLUME 7, 2019



M. Rojc, I. Mlakar: New Unit Selection Optimization Algorithm for Corpus-Based TTS Systems

the acoustic inventory. That is to say, when the inventory
is of high-quality, and covers lots of possible contexts, the
synthesized speech will also be of high quality and close
to natural-sounding. But, on the other hand, large acoustic
inventories have huge memory footprints. For instance, in the
case of the TTS system PLATTOS, storage for concatenation
costs for 1,200 sentences requires 22.2 GB. Further, any
significant reduction in the diversity of acoustic realizations
will increase the presence of spectral discontinuities in the
synthesized speech, which results in less natural-sounding
speech. Thus, in this paper we have proposed a new algo-
rithm designed to optimize unit selection cost function in
corpus-based TTS systems. We have also provided an objec-
tive measure to estimate automatically the degradation in
speech quality due to lossy compression and, even more
importantly, to minimize and mitigate the effects of the
optimization. In particular, rather than targeting the acoustic
inventory, we proposed to further compress the concatenation
costs’ space. We specifically aimed to compress the floating-
point space used to represent the costs. For this purpose,
we deployed a VQ-based compression implemented via an
RBF network, with a k-means algorithm used for clustering.
The comprehensive experiments show that tuple structures’
footprints, for the same acoustic inventories as used prior to
compression, were reduced by up to 50%, and the Error rates
introduced by the compression were insignificant, roughly
a 1% increase. The distribution of clusters generated by
the RBFK algorithm implies that the actual impact of the
errors, however, is not noticeable. Thus, the clusters obtained
are more compact in those areas where the concatenation
costs are very close in the non-compressed concatenation
costs’ space.
Further, we also investigated the effect of the proposed

RGD-based optimization algorithm when using lossy data
compression on concatenation costs. It showed that the Error
for the selected subset of sentences decreases, and after
320 iterations stabilizes at 11.901% for the non-lossy com-
pressed set, and at 12.921% for the lossy compressed sets.
Thus, the impact of the RBFK-based compression is success-
fully mitigated to 1%. From this we can conclude that the
proposed RGD-based optimization minimizes the degrading
effect of VQ errors introduced by the lossy compression
of concatenation cost space. Additionally, when comparing
results between concatenation cost space with 2,000 and
4,000 clusters, we observed that the difference in perfor-
mance of the unit selection cost function is only minimal.
This is highly beneficial, since we can use fewer clusters for
the same unit selection algorithm performance. The outlined
trends were also confirmed on large sets with 300 sentences
not involved in the proposed optimization. After the optimiza-
tion, the proposed lossy compression introduces a minimal,
roughly 1%, increase in Error.

To sum up, the size of tuples used for concatenation costs
directly affects the efficiency and the performance of the
unit selection algorithm in the corpus-based TTS system
PLATTOS; thus, increasing the speech quality with more

acoustic units and with more acoustic realizations can be very
costly for unit selection algorithm performance and available
memory resources. The algorithm proposed in this paper
significantly reduces the memory footprint with a proven
minimal degrade in the quality of the synthesized speech.
In contrast to similar optimization approaches (e.g. those
involving clustering), the decrease in accuracy is negligible.
However, the size of the part in the tuple structure used for
storing hash numbers still represents a significant computa-
tional problem, especially if the algorithm is to be used on
embedded solutions. The tuple structure for 1,200 sentences
after using RBFK lossy compression still consumes 11.2 GB.
Thus, in the future we plan to investigate using DNNs archi-
tectures and multi-layered long short-term memory recur-
rent neural networks, in order to optimize even further the
representation of the concatenation costs.

REFERENCES

[1] S. Desai, A. W. Black, B. Yegnanarayana, and K. Prahallad, ‘‘Spectral
mapping using artificial neural networks for voice conversion,’’ IEEE/ACM
Trans. Audio, Speech, Language Process., vol. 18, no. 5, pp. 954–964,
Jul. 2010.

[2] X. Miao, X. Zhang, M. Sun, C. Zheng, and T. Cao, ‘‘A BLSTM and
wavenet based voice conversion method with waveform collapse sup-
pression by post-processing,’’ IEEE Access, vol. 7, pp. 54321–54329,
2019.

[3] T. Capes, P. Coles, A. Conkie, L. Golipour, A. Hadjitarkhani, Q. Hu,
N. Huddleston, M. Hunt, J. Li, M. Neeracher, and K. Prahallad, ‘‘Siri on-
device deep learning-guided unit selection text-to-speech system,’’ inProc.
INTERSPEECH, Aug. 2017, pp. 4011–4015.

[4] M. Rojc, I. Mlakar, and Z. Kačič, ‘‘The TTS-driven affective embodied
conversational agent EVA, based on a novel conversational-behavior gen-
eration algorithm,’’ Eng. Appl. Artif. Intell., vol. 57, pp. 80–104, Jan. 2017.

[5] M. Chu, H. Peng, H.-Y. Yang, and E. Chang, ‘‘Selecting non-uniform
units from a very large corpus for concatenative speech synthesizer,’’ in
Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., vol. 2, May 2001,
pp. 785–788.

[6] Y. Zhao, S. Takaki, H.-T. Luong, J. Yamagishi, D. Saito, andN.Minematsu,
‘‘Wasserstein GAN and waveform loss-based acoustic model training for
multi-speaker text-to-speech synthesis systems using a wavenet vocoder,’’
IEEE Access, vol. 6, pp. 60478–60488, 2018.

[7] A. Gibiansky, S. Arik, G. Diamos, J. Miller, K. Peng, W. Ping, J. Raiman,
andY. Zhou, ‘‘Deep voice 2:Multi-speaker neural text-to-speech,’’ inProc.
Adv. Neural Inf. Process. Syst., 2017, pp. 2962–2970.

[8] Y. Wang, R. J. Skerry-Ryan, D. Stanton, Y. Wu, R. J. Weiss, N. Jaitly,
Z. Yang, Y. Xiao, Z. Chen, S. Bengio, Q. Le, Y. Agiomyrgiannakis,
R. Clark, and R. A. Saurous, ‘‘Tacotron: Towards end-to-end speech
synthesis,’’ in Proc. Annu. Conf. Int. Speech Commun. Assoc. (INTER-

SPEECH), 2017, pp. 4006–4010.
[9] Y. Yasuda, X. Wang, S. Takaki, and J. Yamagishi, ‘‘Investigation of

enhanced Tacotron text-to-speech synthesis systems with self-attention for
pitch accent language,’’ in Proc. IEEE Int. Conf. Acoust., Speech Signal

Process. (ICASSP), May 2019, pp. 6905–6909.
[10] X. Zhu, Y. Zhang, S. Yang, L. Xue, and L. Xie, ‘‘Pre-alignment guided

attention for improving training efficiency and model stability in end-to-
end speech synthesis,’’ IEEE Access, vol. 7, pp. 65955–65964, 2019.

[11] R. Barra-Chicote, J. Yamagishi, S. King, J. M. Montero, and
J. Macias-Guarasa, ‘‘Analysis of statistical parametric and unit selection
speech synthesis systems applied to emotional speech,’’ Speech Commun.,
vol. 52, no. 5, pp. 394–404, May 2010.

[12] A. Rosenberg and B. Ramabhadran, ‘‘Bias and statistical significance in
evaluating speech synthesis with mean opinion scores,’’ in Proc. INTER-
SPEECH, 2017, pp. 3976–3980,.

[13] M.Gruber, J.Matousek, D. Tihelka, and Z. Hanzlicek, ‘‘Reducing footprint
of unit selection TTS system by removing linguistic segments with rarely
selected units,’’ in Proc. 12th Int. Conf. Signal Process. (ICSP), Oct. 2014,
pp. 494–499.

VOLUME 7, 2019 108047



M. Rojc, I. Mlakar: New Unit Selection Optimization Algorithm for Corpus-Based TTS Systems

[14] H. Lu, W. Zhang, X. Shao, Q. Zhou, W. Lei, H. Zhou, and A. Breen,
‘‘Pruning redundant synthesis units based on static and delta unit appear-
ance frequency,’’ in Proc. 16th Annu. Conf. Int. Speech Commun. Assoc.,
Sep. 2015, pp. 269–273.

[15] J. Nurminen, H. Silén, and M. Gabbouj, ‘‘Speaker-specific retraining
for enhanced compression of unit selection text-to-speech databases,’’ in
Proc. Annu. Conf. Int. Speech Commun. Assoc. (INTERSPEECH), 2013,
pp. 388–391.

[16] P. Sharma, V. Abrol, and A. K. Sao, ‘‘Reducing footprint of unit selection
based text-to-speech system using compressed sensing and sparse repre-
sentation,’’ Comput. Speech Lang., vol. 52, pp. 191–208, Nov. 2018.

[17] M. K. Jayesh and C. S. Ramalingam, ‘‘A one-dimensional search method
with stable 1-norm solution for linear prediction,’’ J. Acoust. Soc. Amer.,
vol. 142, no. 2, pp. 170–176, Aug. 2017.

[18] D. Giacobello, M. G. Christensen, T. L. Jensen,M. N.Murthi, S. H. Jensen,
and M. Moonen, ‘‘Stable 1-norm error minimization based linear predic-
tors for speech modeling,’’ IEEE/ACM Trans. Audio, Speech, Language

Process., vol. 22, no. 5, pp. 912–922, May 2014.
[19] F. Hinterleitner, B.Weiss, and S.Möller, ‘‘Influence of corpus size and con-

tent on the perceptual quality of a unit selection MaryTTS voice,’’ in Proc.
IEEE Spoken Lang. Technol. Workshop (SLT), Dec. 2016, pp. 680–685.

[20] H. Peng, Y. Zhao, and M. Chu, ‘‘Perpetually optimizing the cost function
for unit selection in a TTS system with one single run of MOS evaluation,’’
in Proc. 7th Int. Conf. Spoken Lang. Process., 2002, pp. 2613–2616.

[21] F. Alías, L. Formiga, and X. Llorá, ‘‘Efficient and reliable perceptual
weight tuning for unit-selection text-to-speech synthesis based on active
interactive genetic algorithms: A proof-of-concept,’’ Speech Commun.,
vol. 53, no. 5, pp. 786–800, May/Jun. 2011.

[22] N. P. Narendra and K. S. Rao, ‘‘Optimal weight tuning method for unit
selection cost functions in syllable based text-to-speech synthesis,’’ Appl.
Soft Comput., vol. 13, no. 2, pp. 773–781, Feb. 2013.

[23] M. Pobar, S. Martincic-Ipsic, and I. Ipsic, ‘‘Optimization of cost function
weights for unit selection speech synthesis using speech recognition,’’
Neural Netw. World, vol. 22, no. 5, pp. 429–441, Sep. 2012.

[24] S. K. Gill and P. Singh, ‘‘Discontinuity removal in concatenative synthe-
sised speech,’’ Int. J. Eng. Technol. Sci. Res., vol. 4, no. 4, pp. 415–419,
2017.

[25] D. Lolive, P. Alain, N. Barbot, J. Chevelu, G. Lecorvé, C. Simon, and
M. Tahon, ‘‘The IRISA text-to-speech system for the blizzard challenge
2017,’’ in Proc. Blizzard Challenge, Stockholm, Sweden, Aug. 2017,
pp. 1–7.

[26] A. Tamar, Y. Wu, G. Thomas, S. Levine, and P. Abbeel, ‘‘Value itera-
tion networks,’’ in Proc. Adv. Neural Inf. Process. Syst., vol. 29, 2016,
pp. 2154–2162.

[27] L. Lee, E. Parisotto, D. S. Chaplot, and R. Salakhutdinov, ‘‘LSTM iteration
networks: An exploration of differentiable path finding,’’ in Proc. ICLR,
2018, pp. 1–9.

[28] M. L. Padmesh and P. S. Kumar, ‘‘Implementation of Viterbi coder for text
to speech synthesis,’’ in Proc. IEEE Int. Conf. Comput. Intell. Comput. Res.
(ICCIC), Dec. 2015, pp. 1–5.

[29] V. Wan, Y. Agiomyrgiannakis, H. Silen, and J. Vit, ‘‘Google’s next-
generation real-time unit-selection synthesizer usingsequence-to-sequence
LSTM-based autoencoders,’’ in Proc. Annu. Conf. Int. Speech Commun.
Assoc. (INTERSPEECH), Aug. 2017, pp. 1143–1147.

[30] Z. Jin, A. Finkelstein, S. DiVerdi, J. Lu, and G. J. Mysore, ‘‘Cute: A con-
catenative method for voice conversion using exemplar-based unit selec-
tion,’’ in Proc. IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP),
Mar. 2016, pp. 5660–5664.

[31] Y. C. Lim, T. S. Tan, S. H. S. Salleh, and D. K. Ling, ‘‘Application of
genetic algorithm in unit selection for malay speech synthesis system,’’
Expert Syst. Appl., vol. 39, no. 5, pp. 5376–5383, Apr. 2012.

[32] D. Guennec and D. Lolive, ‘‘Unit selection cost function exploration
using an a based text-to-speech system,’’ in Proc. Int. Conf. Text, Speech,
Dialogue (TSD), 2014, pp. 432–440.

[33] S. Taylor, T. Kim, Y. Yue, M. Mahler, J. Krahe, A. G. Rodriguez,
J. Hodgins, and I. Matthews, ‘‘A deep learning approach for general-
ized speech animation,’’ ACM Trans. Graph., vol. 36, no. 4, Jul. 2017,
Art. no. 93.

[34] P. Venkataram, S. Ghosal, and B. P. V. Kumar, ‘‘Neural network based
optimal routing algorithm for communication networks,’’ Neural Netw.,
vol. 15, no. 10, pp. 1289–1298, Dec. 2002.

[35] M. T. Martín-Valdivia, L. A. Ureña-López, and M. García-Vega,
‘‘The learning vector quantization algorithm applied to automatic text
classification tasks,’’ Neural Netw., vol. 20, no. 6, pp. 748–756, Aug. 2007.

[36] M. Capó, A. Pérez, and J. A. Lozano, ‘‘An efficient approximation to
the K-means clustering for massive data,’’ Knowl. Based Syst., vol. 117,
pp. 56–69, Feb. 2017.

[37] X. Driancourt, L. Bottou, and P. Gallinari, ‘‘Learning vector quantization,
multi layer perceptron and dynamic programming: Comparison and coop-
eration,’’ in Proc. Seattle Int. Joint Conf. Neural Netw., vol. 2, Jul. 1991,
pp. 815–819.

[38] T. Kohonen, ‘‘Learning vector quantization,’’ in The Handbook of Brain
Theory and Neural Networks, M. A. Arbib, Ed. Cambridge, MA, USA:
MIT Press, 1995, pp. 537–540.

[39] T. Villmann, A. Bohnsack, and M. Kaden, ‘‘Can learning vector quan-
tization be an alternative to SVM and deep learning?-Recent trends and
advanced variants of learning vector quantization for classification learn-
ing,’’ J. Artif. Intell. Soft Comput. Res., vol. 7, no. 1, pp. 65–81, Jan. 2017.

[40] F. Schwenker, H. A. Kestler, and G. Palm, ‘‘Three learning
phases for radial-basis-function networks,’’ Neural Netw., vol. 14,
nos. 4–5, pp. 439–458, 2001.

[41] Z.Wang, Y. He, andM. Jiang, ‘‘A comparison among three neural networks
for text classification,’’ in Proc. 8th Int. Conf. Signal Process., vol. 3,
Nov. 2006, pp. 1–4.

[42] M. Mohri, P. J. Moreno, and E. Weinstein, ‘‘Efficient and robust music
identification with weighted finite-state transducers,’’ IEEE Trans. Audio,
Speech, Language Process., vol. 18, no. 1, pp. 197–207, Jan. 2010.

[43] M. Rojc and Z. Kačič, ‘‘Gradient-descent based unit-selection optimization
algorithm used for corpus-based text-to-speech synthesis,’’ Appl. Artif.
Intell., vol. 25, no. 7, pp. 635–668, Aug. 2011.

[44] W. Jiang, P. Liu, and F. Wen, ‘‘An improved vector quantization method
using deep neural network,’’ AEU-Int. J. Electron. Commun., vol. 72,
pp. 178–183, 2017.

[45] A. Vasuki and P. T. Vanathi, ‘‘A review of vector quantization techniques,’’
IEEE Potentials, vol. 25, no. 4, pp. 39–47, Jul./Aug. 2006.

[46] A. K. Jain, ‘‘Data clustering: 50 years beyond K-means,’’ Pattern Recognit.
Lett., vol. 31, no. 8, pp. 651–666, 2010.

[47] N. Andrei, ‘‘A new gradient descent method for unconstrained
optimization,’’ ICI Tech. Rep., Apr. 2004. [Online]. Available:
https://camo.ici.ro/neculai/newstep.pdf

[48] C.-Y. Lin, L.-C.Wang, and K.-H. Tsai, ‘‘Hybrid real-time matrix factoriza-
tion for implicit feedback recommendation systems,’’ IEEE Access, vol. 6,
pp. 21369–21380, 2018.

MATEJ ROJC is currently an Associate Professor
with the Faculty of Electrical Engineering
and Computer Science, University of Maribor.
His research interests include text-to-speech
synthesis, automatic speech recognition, speech-
to-speech translation, non-verbal speech process-
ing, prosodic information modelling, finite-state
machines, machine learning algorithms, coverbal
synchrony, and advanced multimodal interfaces.
He is a Co-editor of the book Coverbal Synchrony

in Human-Machine Interaction, and coauthor of the book An Expressive

Conversational-BehaviorGenerationModel for Advanced Interaction within

Multimodal User Interfaces.

IZIDOR MLAKAR is currently a Researcher
with the Faculty of Electrical Engineering and
Computer Science, University of Maribor. He is
involving in and leading a research project in
conversational models for assisted environments,
funded by the EU and the Ministry of Edu-
cation, Science, and Sport of Slovenia, entitled
SAIAL. His research interests include embodied
conversational agents, natural language processing
and generation, multimodal conversational intelli-

gence, kinesics and sentics, machine learning, advanced multimodal inter-
faces, the Internet of Things, and smart homes and ambient assisted living.

108048 VOLUME 7, 2019


