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Abstract 

It is proved that the cardinality of a 2-distance set S in Euclidean 

d-dimensional space satisfies 

card(S) ~ !(d + I)(d + 2) . 

Introduction 

A set S in Euclidean d-space Ed is called a 2-distance set if the distance 

between distinct points of S assumes only two values. 

The maximum size of such a set is 5 in E2 (Kelly), and 6 in E3 (Croft). 

Delsarte, Goethals and Seidel [IJ treated the case where the points of 

S lie on a sphere. Their argument can be modified to obtain the bound 

card(S) ~ !(d + I)(d + 4) for general 2-distance sets as was established 

by Larman, Rogers and Seidel [2J • E. and E. Bannai [3] showed that equality 

doesn't occur in this case. The proof of Larman, Rogers and Seidel can be 

modified again to obtain card(S) ~ !(d + I) d + 2). 

Theorem. 

Let S be a 2-distance set in Ed, then 

card(S) ~ !(d + I)(d + 2) • 

Proof. 

Let a and b the distances in S. For each point s in S and x € Ed we define 

(x) 
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These functions form an independent set of functions since F (t) = 0 t s s, 
for all s,t S. They are linear combinations of the following functions: 

4 "x 1/ ; 
2 IIxll x. 

1. 
x.x. 

l. J 
x. 

1. 
where 1 sis j s d • 

Hence the total number of functions F cannot exceed 
s 

I + d + ~d(d + I) + d + I = ~(d + I)(d + 4) • 

We proceed to show that in fact the set 

{F (x) , x. , I 
S l. 

S E S , lsi s d} 

is linearly independent, which implies 

card(S) + d + 1 s ~(d + l)(d + 4) 

and hence 

card(S) s !(d + I)(d + 2) • 

Now suppose we have 

(I) 

d 

c F (x) + L 
s s 

i=1 

c.x. + C = 0 . 
l. 1. 

Inserting s in relation (I) we get 

(2) c + I C.s. + c = 0 . 
S 1. l. 

i 

Inserting ke. in (1), where 
1. 

(3) 

S 

+ kc. + ca. 
1. 

is the i-th column of the unit matrix, we get 
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Comparing the coefficients of k4 and of k3 we obtain 

(4) I c s 
o and I c s. 

S 1. 
o 

s s 

for i I , ••• , d 

Multiply relation (2) by C s and sum over all s E S: 

(5) c s. + C 
S 1. 

I c 
s 

o . 
s 

Now (4) and (5) yield c = 0 for all s E S, whence also c = c. = 0 for 
s 1. 

1. = l, ... ,d. This completes the proof of the theorem. 
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