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A New Upper Bound on the Block Error Probability
After Decoding Over the Erasure Channel

Frédéric Didier

Abstract—Motivated by cryptographic applications, we derive
a new upper bound on the block error probability after decoding
over the erasure channel. The bound works for all linear codes and
is in terms of the generalized Hamming weights. It turns out to be
quite useful for Reed–Muller codes for which all the generalized
Hamming weights are known whereas the full weight distribution
is only partially known. For these codes, the error probability is
related to the cryptographic notion of algebraic immunity. We use
our bound to show that the algebraic immunity of a random bal-
anced m-variable Boolean function is of order m

2
(1 � o(1)) with

probability tending to 1 as m goes to infinity.

Index Terms—Algebraic immunity, Boolean functions, erasure
channel, generalized Hamming weights, Reed–Muller codes.

I. INTRODUCTION

I N this paper, we exploit the information given by the gen-
eralized Hamming weights of a linear code to derive the

following upper bound on the block error probability after de-
coding over the erasure channel.

Theorem 1: Let be a linear binary code of length , di-
mension and generalized Hamming weights . We
assume that transmission takes place over the erasure channel
and that exactly erasures have occurred. Then, the probability
that not all erasures are recoverable is upper bounded by

(1)

The attractive feature of this result is that it can be applied to a
rather large family of codes with unknown distance distribution,
but for which a simple lower bound on the generalized weights
is known. We call such codes “rate consistent” in what follows.
Applying the previous theorem to such codes yields

Theorem 2: Using the same notation as in Theorem 1, if the
code is rate-consistent then

(2)

where is the minimal distance of .
The rate-consistency property (see Section V) appears to be

quite general. We have proved that all cyclic codes, self-dual
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codes, Reed–Muller codes, generalized Reed–Muller codes and
geometric Goppa codes are rate-consistent.

Theorems 1 and 2 are particularly useful for Reed–Muller
codes since they give the sharpest bounds known so far on their
erasure recovering capacity. In particular, Theorem 2 shows that
Reed–Muller codes with logarithmically vanishing rate are able
to correct a constant fraction of erasures.

This result has an important cryptographic application be-
cause the decoding of Reed–Muller codes over the erasure
channel is related to the modern algebraic attacks on a cryp-
tosystem. These attacks introduced in [3] are quite powerful
and have raised a lot of interest recently. The complexity of
these attacks mainly depends on what is called the algebraic
immunity of the Boolean function involved in the ciphering
process ([14], [4], [1], [5], [6]). For a -variable Boolean func-
tion, the algebraic immunity is always smaller than .
It was proven in [14] that for a balanced Boolean function it is
greater than with probability tending to as goes
to infinity. Using Theorem 2 for the Reed–Muller codes, we
will be able to refine substantially this lower bound with the
following theorem.

Theorem 3: The algebraic immunity of a random balanced
Boolean function in variables satisfies for all

(3)

with probability tending to as goes to infinity.
In other words, we have proved that the algebraic immunity

of almost all balanced Boolean functions in variables is of
order as tends to infinity. This result was con-
jectured in [2] but this is the first theoretical proof. In addition,
Theorem 2 can be used to analyze rigorously various algorithms
for computing the algebraic immunity, see [7].

The paper is organized as follows. First, we recall some defi-
nitions and explain the relation between Reed–Muller codes and
cryptography. Then we recall known results obtained by a union
bound argument and expose the proof of our new bounds given
in Theorems 1 and 2. In both cases, we will apply these results
to Reed–Muller codes and examine what we obtain in terms of
algebraic immunity. Since we are interested in cryptographic
applications, we will not only give the asymptotic form of the
bounds but also their numerical values for Reed–Muller codes
of small length.

II. BASIC DEFINITIONS

This section is basically an enumeration of the notions and
notation that we will use throughout this article. Let be a linear
code of length , dimension and minimal distance .
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A. The Issue

Given an erasure pattern, that is a binary word of length and
Hamming weight , we are interested in the subspace of the
codewords included in the pattern. By included, we mean the
inclusion of the support

(4)

Assuming that a 1 bit in the erasure pattern corresponds to
an erased position, we can only retrieve an erased codeword
modulo . In other words, unambiguous decoding is only
possible if the dimension of is .

We want to find, for a given , an upper bound on the propor-
tion of the erasure patterns that give a subspace of dimension
different from 0. We will call this proportion the error proba-
bility and denote it by .

Our channel model is slightly different from the classic era-
sure channel because we assume a fixed number of erasures.
However, our results can be used to derive bounds for a given
erasure probability using the formula

(5)

B. Generalized Hamming Weights

The generalized Hamming weights of a code are by def-
inition, for

(6)

where is the set of all -dimensional subspaces of . The
support of a subspace corresponds to the set of not-always-
zero bit positions in , that is

(7)

corresponds to the minimal distance of the code. is the
cardinality of the code support and we will assume that it is
equal to .

C. Boolean Functions

An -variable Boolean function is a mapping from
to . It is well known that such a function can be written
in an unique way as an -variable polynomial over where
the degree in each variable is at most one using the Algebraic
Normal Form (ANF). The degree of is by definition the degree
of this polynomial.

By listing the images of over all possible values of the vari-
ables, we can also view it as a binary word of length .
Using this representation, we define the Hamming weight of
as the Hamming weight of the associated binary word.

A balanced Boolean function is a function with Hamming
weight equal to half its length, that is . In cryptography, the
most commonly used Boolean functions are balanced, which is
why we focus on such functions in our experiments.

D. Reed–Muller Codes

The Reed–Muller code RM of order is the linear
subspace composed by -variable Boolean functions of degree
smaller than or equal to viewed as binary words of length .
The minimal distance of the code is (see, e.g., [13])

(8)

The monomials of degree smaller than or equal to form a basis
of RM . It follows that the code dimension is given by

(9)

We do not know the weight distribution of Reed–Muller codes in
general (see Section III-B for more details), but the generalized
Hamming weights are known and are detailed in Appendix.

E. Algebraic Immunity of Boolean Functions

We give here an interpretation of the decoding problem of
a Reed–Muller code RM over the erasure channel. The
interpretation is in terms of the algebraic immunity of a certain
Boolean function associated with the erasure pattern.

More precisely, we view an erasure pattern of length
as the image list of a Boolean function in variables.

If we have another -variable Boolean function such that
then we have

where (10)

In other words, the subspace of RM codewords included
in the erasure pattern may be viewed as the subspace formed by
the functions of degree less than or equal to invariant by .

This means that a bound on the error probability becomes a
bound on the probability that a random function of weight
admits a nontrivial invariant. The smallest for which or its
complement admit a nontrivial invariant is by definition
the algebraic immunity of .

As mentioned in the introduction, this notion quantifies the
immunity of a cryptosystem to some recent algebraic attacks.
These attacks try to break a cryptosystem by solving an al-
gebraic system involving the key bits. The equations involved
often depend on a Boolean function used in the ciphering
process. The idea is that or can be replaced by their in-
variants to obtain a system of lower degree. The complexity of
the attack depends on the degree of the system which is nothing
but the algebraic immunity of .

III. A SIMPLE UNION BOUND

We address here the following issues:
• How do the Reed–Muller codes behave experimentally on

the erasure channel with constant number of erasures?
• What do the standard bounds in coding theory give in this

case?

A. Experimental Results

We recall that given an erasure pattern there are non-
erased positions, so when unambiguous decoding
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is not possible. For the limit case the proportion of
decodable patterns corresponds to the proportion of information
sets in the code.

It is well known that the error probability of a random
linear code is given by

(11)

From this expression we see that for , the proportion of
noninformation sets becomes roughly (see, e.g., [9]) and
the error probability decreases exponentially fast in .

Performing simulations for some small self-dual
Reed–Muller codes with a balanced erasure pattern
we obtain for , as shown in the first table
at the bottom of the page. The sample number is for in

, for in , for and for .
For the first Reed–Muller codes with
we get with the same number of samples, as shown in the
second table at the bottom of the page. These results seem to
indicate, as pointed out in [2], that Reed–Muller codes behave
as random codes. In other words, concerning their erasures
recovering capacity, the Reed–Muller codes seem to be good
codes. However, giving a tight theoretical bound is still an
open problem.

B. Union Bound

For an erasure pattern of Hamming weight we can get an
error probability upper bound using the classical union bound
on the erasure channel (cf. [8]):

(12)

In this expression is the number of codewords of Hamming
weight in the code.

This bound is good for random codes (see [12]), but we do
not always know the value of the ’s. For the Reed–Muller
codes for example, we only know the weight distribution for the
code of order or , the codes for , RM ,
RM and their duals. So, when the are unknown, we
have no other choice than going for the worst and suppose that
all the codewords are of minimal weight . We obtain what we
denote by the minimal distance union bound:

(13)

Here are the first Reed–Muller codes for which this bound is
smaller than on a balanced erasure pattern as shown in the third
table at the bottom of the page. It is possible for the Reed–Muller
codes to get a slightly tighter bound because the weight distri-
bution is known for weights smaller than (cf. [10], [11]).
Using the weight distribution up to , we obtain the fourth table
at the bottom of the page. However, performing the same com-
putation as in the next subsection, we can see that these bounds
are equivalent from the asymptotic point of view.

C. Application to Reed–Muller Codes

We will perform the computation in the case of a
Reed–Muller code with a balanced function .
The calculations are of course similar if we take for an

in . Let with in .
We are looking for a such that the error probability bound

(13) tends to when goes to infinity. For this upper bound to
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tend to , it is necessary that . For such , we can write
for the code rate

(14)

where is the entropy function

(15)

Moreover, we have for the binomial part of (13)

(16)

and since

(17)

a necessary and sufficient condition for the minimal distance
upper bound to vanish is given by the following inequation:

(18)

Solving this inequation for we get

(19)

and we retrieve the result of [14] on the algebraic immunity of a
random balanced function. Note that this bound does not seem
very tight because we get a rate that goes exponentially
fast to 0 whereas for random code we get a vanishing error prob-
ability for a constant rate. We will see in the following that we
can obtain a much better result.

IV. NEW BOUND

This section is devoted to the proof of our first main theorem
presented in the introduction. Analyzing the behavior of a de-
coding algorithm in the first subsection, we will obtain an upper
bound on the block error probability over the erasure channel. It
is a simplified version of this bound, presented in Section IV-B,
that corresponds to Theorem 1.

A. Basic Idea

Given a linear code of dimension and an erasure pattern
of weight , we recall that is the subspace of the codewords
included in the erasure pattern. A simple algorithm to compute

can be described as follows.
We pick up the nonerased positions in a random order.

We compute incrementally , the subspace of codewords of
which are zero on the first positions which have been picked
up. We say that we are in state if after considering non-
erased positions, is of dimension . By definition we have

and an erasure pattern is decodable if and only if at
the end of the algorithm we are in state .

Let be the probability to be in state over all erasure
patterns of weight and positions orders. Notice that the proba-
bility of unambiguous decoding is nothing but . The idea
behind our bound is to get information on the ’s by investi-
gating the transition probabilities between the states .

For that, assume that we are in state and that we pick up
a new nonerased position. There are only two possibilities:

• ;
• .

Let be the probability of the first event. The other event will
then happen with probability .

Now, let us investigate these transition probabilities. Actually,
given positions and an associated space , the dimension of
the next subspace depends only on whether or not the next posi-
tion is in . If it is in the support then the new constraint
will exclude some codewords and the dimension will decrease.
If it is outside the support then the subspace will be the same.
Hence, using the generalized Hamming weights, it is easy to ob-
tain a lower bound on

(20)

Here is the number of positions we can choose from and
the -th generalized Hamming weight is a lower bound on an
-dimensional subcode support size. Remark that all the first

positions are outside the support by definition of , hence the
bound on . Notice also that for the same reason, it is impos-
sible to be in a state where .

The idea is now to compute new probabilities just using
the transition probabilities . For that, we will fill an array

in a dynamic programming manner. We start with all the
probabilities equal to except , and we fill the cells of
the array column by column using the relations:

(21)

Notice that the associated with impossible states are irrele-
vant since these states are unreachable and their probability will
remain to .

The process is illustrated in the next figure for the code
RM of dimension and generalized Hamming weights

and .

Starting from the bottom-left corner, each cell gives his mass
to its neighbors according to the black arrows in the figure.
When we are in state of the form then the next picked
up position will always fall in the support of . In this case, we
are sure that the space dimension will decrease. So, all the states
in row with a column index strictly greater than are un-
reachable. The unreachable states correspond to white cells on
the figure.

Now, the issue is: how are the ’s related to the ’s? In
fact, if we consider the partial sums column by column

and (22)

we can show that
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Lemma 1: for all in and for all in we have

(23)

Proof: We will prove the lemma by considering what hap-
pens to the state probabilities if we decrease the one by one.
When we replace one by , the probability de-
creases whereas the probability increases. However, all
the partial sums of the column will be smaller than or equal
to the previous ones. Using the same probabilities as before to
compute the other columns, since we can write

(24)

we get

(25)

and all the other partial sums are smaller than or equal to the
previous ones. Finally, we finish the proof by changing one by
one all the transition probabilities.

In the end, we get an upper bound on the error probability for
an erasure pattern of weight since

(26)

We can compute this bound by filling the array given that the
generalized Hamming weights are computable. This is the case
for Reed–Muller codes as explained in Appendix. Here are the
first Reed–Muller codes for which this bound gives small values
on balanced functions: see the table at the bottom of the page.
We can see with this table that this bound is much better than
the bound (13). However, more analysis is needed to apply it for
large codes or to get an asymptotic behavior. This is the topic of
Section IV-B.

B. Further Analysis

It appears difficult to derive a simple closed form expression
of the ’s. However, using some linear algebra we will see here
that we are able to derive enough information on them for our
purpose.

We can extend the relation (21) to a linear relation between
two columns of the dynamic programming array. Let be
column , that is

... (27)

We can write

(28)

where is the following bidiagonal matrix:

. . .

. . .

(29)

Let us look at a left eigenvector of associated with the
eigenvalue . Solving the system of equations that the
coefficients of such eigenvector have to satisfy, we can take for

(30)

where the first 1 is in position . Notice that by using the formula
(20) for the ’s these eigenvalues do not depend on Hence,
we will simply write in the future where

(31)

The idea is now to track down the evolution of from one
column to another. We have

(32)

that is, written with the generalized Hamming weights

(33)

Moreover, since the only nonzero coefficient of is the last
one and is equal to , using (31) we get

(34)

This gives us for all and the value of a weighted sum of the
last coefficients of the column . The point is that all the
weights in this summation are greater than , hence we have

(35)
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This yields an upper bound on the probability that the dimension
of is greater than or equal to a given value . Applying it for

we get our first theorem:

(36)

Considering the way we obtained this bound, one may think
that this bound is very loose because the last coefficients of
are very large. But actually, in the columns we consider, al-
most all the probability mass is concentrated in the first coeffi-
cients and these are precisely the ones for which the summation
weights are the closest to one.

To confirm that our simplified bound is close to ,
let us compare the numerical results of the previous subsection
(method A) and the ones obtained with formula (36) (method
B), as shown in the table at the bottom of the page. The values
appear to be almost the same up to degree (the first degrees are
not displayed). After that, computing the ’s using dynamic
programming becomes too long, but the new bound (36) can still
be computed.

V. ERROR BOUND FOR RATE-CONSISTENT CODES

We apply here bound (36) to investigate the behavior of a
class of linear codes that we call “rate-consistent.” We says that
a linear code of rate is rate-consistent if it does not admit any
subcode of rate greater than . This class is fairly general and we
will see below that self-dual codes, cyclic codes, Reed–Muller
codes, generalized Reed–Muller codes and geometric Goppa
codes are all rate-consistent.

A. Rate-Consistent Codes

The rate of a linear code is defined by its dimension divided
by its length. Following this statement, we can define the rate of
a subcode by its dimension over its support size. Now, since the
th Hamming weight is the minimal support size of a -dimen-

sional subcode, the fraction corresponds to the maximum
rate of an -dimensional subcode.

We say that a linear code of rate is rate-consistent if it does
not admit any subcode of rate greater than . That is, if the code
satisfy

(37)

where the are its general Hamming weights.
This property is actually a lower bound on the generalized

Hamming weights and as we will see with the following lemmas
it is verified by a lot of codes.

Lemma 2: All linear self-dual codes and all linear cyclic
codes are rate-consistent.

Proof: Let be a linear code of dimension and length .
Let be an information set of . Let be a linear subcode of
dimension . The key point here is that we have

(38)

In order to prove the lemma for self-dual codes, remark that
positions form an information set of iff there is no nonzero

word in the dual of with a support included in these positions.
Therefore, the complementary of is always an information set
for the dual of . When the code is self-dual, we get two disjoint
information sets and by (38) we have . Finally,
since a self-dual code is always of rate , we obtain Property
(37).

In the case of a cyclic code, looking at the generator ma-
trix spawned by the minimal polynomial (see [13]) one can
show that any consecutive positions (even those that wrap
around the code block) form an information set. For each of
these information sets, we have Property (38). Moreover, each
point in can contribute to only such information sets.
Counting this contribution, we get

(39)

This concludes the proof.
Lemma 3: The dual of a linear rate-consistent code is also

rate-consistent.
Proof: We use the same notation as in the previous lemma

and we denote the generalized Hamming weights
of the dual of . The result comes from a relation between the
Hamming weights of a code and those of its dual discovered by
Wei [16]:

(40)

We can rewrite the rate-consistency property (37) by

(41)

This is clearly true when is equal to one of the ’s and so it
is true for all . Now, using the dual relation (40) we get

(42)

and for of the form , we retrieve the rate consistency
property for the dual.

Lemma 4: Reed–Muller codes are rate-consistent.
Proof: See Appendix.

We also know or have sharp bound on the generalized Ham-
ming weights for other code families. For instance, using the
results in [15], we have checked the rate-consistency of general-
ized Reed–Muller codes and geometric Goppa codes. The proof
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for each code is straightforward but require a precise description
for the generalized Hamming weights. Describing these results
is too long and beyond the scope of this paper.

B. Error Bound for Rate-Consistent Codes

We will now derive the behavior of bound (1) for rate-consis-
tent codes. Taking the logarithm of this bound, we obtain

(43)

The first sum is upper-bounded by

(44)

For the second sum, notice that for all the fraction is
smaller than . Applying the Griesmer bound (see, e.g.,
[16]), a lower bound on the generalized Hamming weights for
all linear codes of minimal distance , we always have

. So, there exists a positive constant such that

(45)

and the asymptotic behavior of the second logarithm sum de-
pends on the sum of the inverse generalized Hamming weights.
Lower bounding the first generalized Hamming
weights by and using the rate-consistency property (37) for
the other, we obtain

(46)

The right hand term can be upper bounded by

(47)

In the same way, we have for the sum of squares

(48)
Together with inequality (45) we get

(49)

Finally, we obtain the following upper bound on the error prob-
ability

(50)

which is our Theorem 2.

C. Application to Reed–Muller Codes

Since Reed–Muller codes are rate-consistent, we will just
apply here the results of the previous subsection. One might
wonder why we just use the rate-consistency lower bound where
we could have used the exact generalized Hamming weights dis-
tribution. Actually, it appears that this lower bound is quite sharp
for Reed–Muller codes of rate one half.

For Reed–Muller codes and balanced erasure pattern, we can
assume that , so that is greater than . In this
case, using formula (50), we get for all constant a van-
ishing error probability when

(51)

What is the corresponding for such a ? Considering a bi-
nomial law of parameter on trials, we have

(52)

Using the Chernoff bound we get for a variable

(53)

So, with a of the form , a sufficient condition
on for to satisfy (51) is given by

(54)

In the end, we have a vanishing error probability for a satis-
fying

(55)

for all in . With this result, we also get an asymptotic
lower bound on the algebraic immunity of a balanced random
Boolean function. This is our Theorem 3.

VI. CONCLUSION

We have exploited here the information contained in the gen-
eralized Hamming weights to derive an error probability upper
bound over the erasure channel.

Moreover, we have seen that for a fairly general class of linear
codes, we can derive an interesting error bound just knowing
the dimension and the minimum distance of the code. This ap-
plies to the class of rate-consistent codes for which we have a
lower bound on the generalized Hamming weights. Notice that
we have proved the rate consistency for several code families
and it is safe to conjecture that it is satisfied by many more fam-
ilies.

Finally, remark that some codes may have generalized Ham-
ming weights far away from the lower bound given by the rate-
consistency property. For those codes, one can derive a better
block error probability bound after decoding over the erasure
channel. This will probably not be the case for Reed–Muller
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codes but may apply to generalized Reed–Muller codes or geo-
metric Goppa codes.

APPENDIX

We detail here the Reed–Muller generalized Hamming
weights and prove the rate-consistency of this code family.

The generalized Hamming weights of were first
calculated in [16] and can be expressed quite easily. Let us con-
sider the numbers from to written in base . For such a
number , we will denote the number of in its binary decom-
position by . Arrange the numbers of the set

(56)

in increasing order, and let be the th number of this ordered
set. There are such numbers because a trivial bijection with
the monomials of RM exists:

(57)

The generalized Hamming weights of RM are then given
by (see [16])

(58)

One can verify that we have and .
Now, let us prove the rate-consistency of Reed–Muller codes.

We have to show that the generalized Hamming weights of
the Reed–Muller code of length and dimension satisfy

(59)

We will actually prove the following equivalent formula on the
:

(60)

The proof is done by induction on . Property (60) is true for
. We assume it to be true for and want to prove

it for . Using the bijection (57) and writing for the
dimension of RM it can be checked that the relation

(61)

corresponds to the distribution of the ’s before and after .
In the following, we will respectively write for
and for . This notation reflects the fact that

is always greater than or equal to .
Using the induction hypothesis when is smaller than , we

get the sought property almost directly

(62)

For greater than , a little more work is needed. By induction,
being the th number of the set

, we have

(63)

Separating the term we want to obtain, we get

(64)

Remark that the factor multiplying the rightmost is positive.
So, by upper bounding this by , we can write

(65)

Finally, since , the term in bracket is equal to zero
and we obtain once again the property (60).
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