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1. Introduction

The problem of classifying binary self-dual codes has been studied by a number of authors

[1]-[5], [9]-[11], [13], [18], [20], [21], [24]-[27], [30], [32]-[34], [38]-[54], [57]-[64], [66]-[73],

[14, Chap. 7], [31, Chap. 19]. The main results of the present paper are contained in the

following theorems.

Theorem 1. The minimal distance d of a binary self-dual code C of length n

(n ≠ 2 , 8 , 12 , 22 , 24 , 32 , 48 , 72 ) satisfies

d ≤ 2 
 10

n + 6_ ____ 
 . (1)

If C is of Type I (i.e. the weights are not all multiples of 4 ) then the bound fails just when n

(necessarily even) is 2 , 12 , 22 and 32, and if C is of Type II (i.e. the weights are multiples of 4 )

the bound fails just when n (necessarily a multiple of 8) is 8 , 24 , 32 , 48 and possibly 72. The

greatest minimal distance for these exceptional lengths is 2 [ (n + 6 )/10 ] + 2.

In [34] it was shown that d ≤ 2 [n /8 ] + 2 for all n, and in [33] that d ≤ n /4 − c, for any

constant c, provided n is sufficiently large. The bound (1) is stronger than these, although

asymptotically weaker than the McEliece-Rodemich-Rumsey-Welch bound, which for rate one-

________________
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half code implies d ≤ 0. 182490n + o(n) ([37], [36], [31, Chap. 17]).( 1 ) For Type II codes it is

known that

d ≤ 4 
 24

n_ __ 
 + 4 , for all n , (2)

and d ≤ n /6 − c for any constant c provided n is sufficiently large ([34], [33], [31, Chap. 19]).

Theorem 1 is a consequence of some new restrictions on the weight enumerator of a Type I

self-dual code, obtained by studying a particular translate of the code called its ‘‘shadow’’ (see

Theorem 5 and Section 2). For small values of n we can often obtain additional information

about the weight enumerator from its shadow, leading to the following result.

Theorem 2. The highest minimal distance of any self-dual code of length n ≤ 60 is known. The

actual values are as given in Table I.

Before this, the highest minimal distance was known only for n ≤ 32 ([11], [45]). Table I

also shows our present state of knowledge about codes of lengths 62 to 72. In the table d I (resp.

d II) denotes the highest minimal distance of any Type I (resp. Type II) self-dual code.

________________

(1) On p. 629 of [31] this is incorrectly stated as d ≤ 0. 178n + o(n).
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Table I

The highest minimal distance of a self-dual code

n d I d II Codes n d I d II Codes

2 2 i 2 . 38 8 ≥ 2

4 2 i 4 . 40 8 8 ≥ 2; ≥ 100 [60], [73]

6 2 i 6 . 42 8 ≥ 9

8 2 4 i 8; e 8 . 44 8 ≥ 14

10 2 i 10; e 8 i 2 . 46 10 ≥ 1

12 4 d12
+ . 48 10 12 ≥ 1; ≥ 1

14 4 e7
2 +. 50 10 ≥ 1

16 4 4 d8
2 +; d16

+ , e8
2 . 52 10 ≥ 1

18 4 d6
3 +, (d 10 e 7 f 1 )+. 54 10 ≥ 1

20 4 7 codes [44]. 56 10 or 12 12 ?; ≥ 20 [9], [70]

22 6 g 22 [48]. 58 10 ≥ 2

24 6 8 f 24; g 24 [48]. 60 12 ≥ 1

26 6 f13
2 [45]. 62 10 or 12

28 6 f7
4 (a), f7

4 (b), D1. 64 12 12 ≥ 1; ≥ 38 [71]

30 6 13 codes. 66 12 ≥ 1

32 8 8 3 codes; 5 codes. 68 12 ≥ 1

34 6 ≥ 200 70 10 or 12

36 8 ≥ 2 72 12 or 14 12 or 16

The fourth column of the table gives the known codes having the indicated minimal distance.

A period indicates that the lists of codes is complete. These enumerations (for n ≤ 30 and for

Type II codes of length 32) are due to Pless [43]-[45], Pless and Sloane [48], and Conway and

Pless [11] (but see however [13]). When n is a multiple of 8 a semicolon separates the Type I and

Type II codes. The codes in the fourth column are described in greater detail in Sect. 3; several of

them are new. In the past, codes of length 32 have received a great deal of attention [11], [24],

[25], [45], [72]. In particular, it is known that there are precisely five [32,16,8] Type II self-dual

codes [11] (see Section 4 below).
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Theorem 3. There are precisely three [ 32 , 16 , 8 ] Type I self-dual codes.

We also determine all lengths for which there exist 2-, 3- and 4-error-correcting self-dual

codes.

Theorem 4. Self-dual codes with minimal distance

d ≥ 6 exist precisely f or n ≥ 22,

d ≥ 8 exist precisely f or n = 24 , 32 and n ≥ 36,

d ≥ 10 exist precisely f or n ≥ 46.

For larger values of d we have less complete information. For example, self-dual codes with:

(a) d = 12 exist for n = 48, 56, 60, 64-68, n ≥ 72, perhaps n = 62 , 70, and no other values of n;

(b) d = 14 exist for n = 78, 80, 86, 88, n ≥ 98 (and possibly other values);

(c) d = 16 exist for n = 80, 88, 100-104, n ≥ 122 (and possible other values).

The key idea in proving these results is to study the ‘‘shadow’’ of a code. The shadow of a

self-dual code C is defined as follows. (A more general definition is given in Sect. 2.) Let C( 0 )

be the subcode of C consisting of all words whose weights are multiples of 4, and let

C( 2 ) = C \ C( 0 ) . The shadow code S =S (C) consists of all ‘‘parity vectors’’ for C: those

vectors u with the property that

u . v = 0 for all v ∈ C( 0 ) ,

u . v = 1 for all v ∈ C( 2 ) .

If C is a Type II code then C( 2 ) = ∅ and S (C) = C.

The next theorem summarizes a number of properties of the shadow of a Type I code.

Theorem 5. Let S =S (C) be the shadow code corresponding to an [n , n /2 , d] Type I self-dual

code C. The dual C( 0 ) ∗ consists of the union of four cosets of C( 0 ) , say
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C( 0 ) ∪ C( 1 ) ∪ C( 2 ) ∪ C( 3 ) , with C =C( 0 ) ∪ C( 2 ) .

( i ) S = C( 0 ) ∗ \ C = C( 1 ) ∪ C( 3 ) .

( ii ) The sum of any two vectors in S is in C. More precisely, if u , v ∈ C( 1 ) then u + v ∈ C( 0 );

if u ∈ C( 1 ) , v ∈ C( 3 ) then u + v ∈ C( 2 ); and if u , v ∈ C( 3 ) then u + v ∈ C( 0 ) .

( iii ) Let S(x, y) = Σ B r x n − r y r be the weight enumerator of S . Then

S(x, y) = W 
î √ 2

x + y_ ____ , i
√ 2
x − y_ ____ 

 , (3)

where W(x, y) is the weight enumerator of C. Also B r = B n − r for all r,

B r = 0 unless r ≡ n /2 ( mod 4 ) , (4)

B 0 = 0 , (5)

B r ≤ 1 f or r < d /2 , (6)

B d /2 ≤ 2n / d , (7)

B r ≤ A(n , d , r)( 2 ) , f or all r , and (8)

at most one B r is nonzero for r < (d + 4 )/2 . (9)

( iv ) If we write

W(x, y) =
j =0
Σ

[n /8 ]
a j (x 2 + y 2 ) n /2 −4 j {x 2 y 2 (x 2 − y 2 )2 } j (10)

using Gleason’s theorem ([2], [14, p. 186], [18], [30], [31, p. 602], [51]-[54]), for suitable

integers a j , then

S(x, y) =
j =0
Σ

[n /8 ]
( − 1 ) j a j 2n /2 −6 j (xy) n /2 −4 j (x 4 − y 4 )2 j . (11)

________________

(2) A(n , d , w) denotes the maximal possible number of binary vectors of length n, weight w and Hamming distance at
least d apart [7], [31].
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In particular, a j is divisible by 2n /2 −6 j for all j.

( v ) Let W ( j) (x, y) be the weight enumerator of C( j) ( 0 ≤ j ≤ 3 ), so that W = W ( 0 ) + W ( 2 ) ,

S = W ( 1 ) + W ( 3 ) . Then W ( 1 ) − W ( 3 ) is:

( a ) a polynomial in f 8 = x 8 + 14x 4 y 4 + y 8 and f 24 = x 4 y 4 (x 4 − y 4 )4 , if n ≡ 0 ( mod 8 ),

( b ) f 18 times a polynomial in f 8 and f 24 , if n ≡ 2 ( mod 8 ), where

f 18 = x 17 y − 34x 13 y 5 + 34x 5 y 13 − xy17

= xy(x 8 − y 8 ) (x 8 − 34x 4 y 4 + y 8 )

= xy(x 8 − y 8 ) (x 2 − 2xy − y 2 ) (x 2 + 2xy − y 2 ) (x 4 + 6x 2 y 2 + y 4 ) , (12)

( c ) f 12 times a polynomial in f 8 and f 24 , if n ≡ 4 ( mod 8 ), where

f 12 = x 10 y 2 − 2x 6 y 6 + x 2 y 10

= x 2 y 2 (x 4 − y 4 )2 = f24
1⁄2 , (13)

( d ) f 30 = f 12 f 18 times a polynomial in f 8 and f 24 , if n ≡ 6 ( mod 8 ).

Remarks. (a) Part (iv) is due to Ward [64], who investigated the weight enumerator of S (without

however considering S as a code in its own right).

(b) One of the differences between Type I and Type II codes is that the weight enumerator

W(x, y) of a Type I code is invariant under a group of order 16, whereas for a Type II code

W(x, y) is invariant under a group of order 192 ([31, Chap. 19], [51]-[54]). Thus W(x, y) is

more strongly constrained for Type II codes. As we shall see in Sect. 2, part (v) of the theorem

restores the balance to a certain extent by requiring W ( 1 ) − W ( 3 ) to be a relative invariant (with

respect to a certain character) for the group of order 192.

In Sect. 2 we give a more general definition of the shadow code and establish some of its

properties, including those stated in Theorem 5.
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In Section 3 we study self-dual codes of length n ≤ 72, where considerable information about

the best codes can be obtained by considering their shadows, and in particular establish

Theorem 2. Often we can restrict the weight enumerator of the code and its shadow to one of

small number of possibilities.

This approach enables us to give analytical proofs of various results that were previously

known only from the complete enumerations mentioned above. Typical results are that there are

only two possible weight enumerators for a [18,9,4] Type I code and only one for a [24,12,6]

Type I code. (Gleason’s theorem alone does not imply these results.) It also follows immediately

that there do not exist linear codes with the same weight enumerators as the ‘‘formally self-dual’’

nonlinear codes of lengths 8 ([31, p. 140, Fig. 5.1), and 16 (the Nordstrom-Robinson code), etc.

Consideration of the shadow code has also revealed some errors in the literature. At length

28, minimal distance 6, there are two possible weight enumerators (see Sect. 3). Reference [45]

does give two codes, but only one of them (2 f 14 ( I )) corresponds to one of our weight

enumerators. The other code (2 f 14 ( II )) in [45] has nonintegral coefficients in the weight

enumerator of its shadow, and in fact is not a self-dual code. The coefficients in the second of our

weight enumerators suggest that a code might exist which it is invariant under a permutation of

order 13, and indeed such a code exists. It is a child (omitted from [45]) of the length 32 code

d 6 f13
2 . There are in fact three [28,15,6] Type I codes – see Sect. 3. Reference [13] contains the

corrections to [45].

At length 58 our results show that the highest possible minimal distance is 10. On the other

hand, [3] claims to present a [58,29,12] self-dual code. However, the weight enumerator of the

shadow of that code (found for example from Eq. (3)) begins

8192
29_ ____ y +

4096
19285_ _____ y 5 + . . . ,

which is impossible.( 3 ) A code (D12) with d = 10 does exist – see Table II below.
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Theorems 3 and 4 are proved (using the results of Sect. 3) in Sect. 4. The final section

contains the proof of Theorem 1.

Codes with trivial group. There has been interest recently in self-dual codes with trivial

automorphism group [37b], [60]. We have found numerous [34,17,6] self-dual codes with trivial

group, for example the code R0 in Table III. (The 22 words of weight 6 generate R0, and the

program Nauty [37a] was used to show that this 22-word constant weight code has trivial group.)

All the [34,17,6] codes with trivial group that we found have weight enumerators of the form

W = 1 + ( 34 − β) y 6 + ( 255 + 4β) y 8 + . . . (see Sect. 3) with β =2 (at least three distinct codes),

β =3 (at least six distinct codes) or β =4 (at least six distinct codes).

It is very likely that these length 34 Type I codes are the shortest possible self-dual codes with

trivial group. For we know ([11], [13]) that the trivial group does not occur for a Type I code

with n ≤ 30, nor for a Type II code with n ≤ 32, and an extensive computer search has failed to

produce a Type I example of length 32.

Length 40 is the smallest possible length where a Type II code with no group can exist, and

Tonchev [60] gives an example of such a code. Our computer search suggests that in fact

[40,20,8] Type II codes with no group are very common (out of 50 codes chosen at random, 44

had trivial group and were all distinct). This is not surprising, since the total mass Σ  Aut (C) −1

for all Type II codes of length 40 is 17492.86... .

The results of this paper were announced in [15]. Similar theorems can be proved for

unimodular lattices [16], [17].

________________

(3) Indeed, the code described in [3] has generator matrix of the form given in Eq. (41) below, where the first row of R
is 19E89179 in hexadecimal, and is not self-dual.
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Open questions. (1) Since there are many more Type I than Type II codes ([48], [31, Chap. 19]),

and the best bound known for Type I codes (Eq. (1)) is larger than that for Type II codes

(Eq. (2)), it is natural to ask for the smallest length at which a Type I code has a higher minimal

distance than any Type II code. Table I suggests this could be n = 72 – see the weight

enumerators in Sect. 3.

(2) The bound of Theorem 1 can be tightened slightly (at the cost of allowing more

exceptions) by using (8) to bound B r for r > d /2. This suggests that by following the methods of

[33] it may be possible to prove that d ≤ n /5 − c holds for any constant c, provided n is

sufficiently large.

(3) Determine precisely when self-dual codes with d = 12 , 14 and 16 exist (see the remarks

following Theorem 4).

(4) Remove some gaps in Table I and Section 3 by constructing or proving nonexistence of

the following codes (see Sect. 3, where the corresponding weight enumerators are indicated by

the symbol ): [42,21,8], second case; [48,24,10], Type I, first case; [50,25,10], first case;

[52,26,10], second case; [54,26,10], second case; [56,28,12], Type I, two cases; [60,30,12], two

of the three cases; [64,32,12], Type I, first case; [72,36,14], Type I, three cases; etc.

Notation. An [n , k, d] code C is a binary linear code of length n, dimension k and minimal

distance d. W(x, y) = Σ A r x n − ry r is its weight enumerator, where A r is the number of words

of weight r. S(x, y) = Σ B r x n − ry r is the weight enumerator of the shadow code S (C). The

dual to C is denoted by C∗ . A self-dual code (with C = C∗ ) is of Type II (or doubly even) if the

weight of every word is a multiple of 4; otherwise is of Type I (or singly even). If C is of Type I,

C( 0 ) denotes the doubly even subcode, C( 0 ) ∗ = C( 0 ) ∪ C( 1 ) ∪ C( 2 ) ∪ C( 3 ) , C = C( 0 ) ∪ C( 2 ) ,

S (C) = C( 1 ) ∪ C( 3 ) , and W ( j) (x, y) denotes the weight enumerator of C( j) . We often set x = 1

in weight enumerators and write W(y) for W( 1 , y), etc. f
< −

(y) = y n f ( 1/ y) denotes a reciprocal
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polynomial.

For codes of length up to 32 we sometimes use the d n , e n , f n , g n notation of [11], [45], [48].

To save space some vectors have been written in hexadecimal, using 0 = 0000 , ..., 9 = 1001,

A = 1010 , ..., F = 1111, usually omitting leading zeros (so the vectors are right-justified).

2. Shadow codes

We give a general definition of the shadow of a code, which reduces to that of Sect. 1 when

the code is self-dual. Let C be a binary linear [n , k, d] code which contains its dual C∗ = B

(say). Let B ( 0 ) be the subcode of B consisting of all words with weights divisible by 4 (the

weights in B are necessarily even). The shadow code S = S (C) consists of all ‘‘parity vectors’’

for C∗ : all vectors u such that u . v = 0 for all v ∈ B ( 0 ) , u . v = 1 for all v ∈ B \ B ( 0 ) .

We give four examples; others will be found in Sect. 3. (i) If C consists of all even weight

vectors of even length n, then S = C if n is a multiple of 4, and otherwise S consists of all odd

weight vectors. (ii) If C is the self-dual code

i 2m = i 2 6 i 2 6 . . . 6 i 2 , i 2 = { 00 , 11 } , (14)

consisting of all vectors u = u 1 u 2
. . . u 2m with u 1 = u 2 , u 3 = u 4 , ..., then S is the translate of

C by the vector 101010..., and consists of all vectors u with u 1 ≠ u 2 , u 3 ≠ u 4 , .... (iii) If C is the

self-dual code (d 10 e 7 f 1 )+ of [44], [48], with generator matrix



- 11 -

1
1 1 1 1

1 1 1 1

1

1 1 1 1
1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1 1 1 1 1 1 1

1

1 1 1 1
1 1 1

(15)

then S is the translate of C by the vector 0171. (iv) Let C = g 22 , the [22,11,6] ‘‘shorter Golay

code’’ [4], formed by subtracting (see [12]) i 2 from the [24,12,8] Golay code g 24 . Thus g 22

consists of all words of g 24 that begin 00 or 11, with these two coordinates deleted. Then S

consists of the remaining words of g 24 with the same two coordinates deleted.

Theorem 6. Let C be an [n , k, d] code such that C ⊇ C∗ , and let S = S (C) be its shadow. If

all weights in C∗ are multiples of 4 then S = C. If not then:

(a) S is a nonlinear code, a translate of C, given by

S = B ( 0 ) ∗ \ C . (16)

(b) If u , v ∈ S then u + v ∈ C.

(c) Let S(x, y) = Σ B r x n − ry r be the weight enumerator of S . Then the B r are nonnegative

integers satisfying B r = B n − r for all r,

B 0 = 0 , (17)

B r ≤ 1 f or r < d /2 , (18)

B d /2 ≤ 2n / d , (19)

B r ≤ A(n , d , r) , for all r , and (20)

at most one B r is nonzero for r < (d + 1 )/2 . (21)
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(d) If W(x, y) and W ∗ (x, y) are the weight enumerators of C and C∗ respectively then

S(x, y) = W 
î 2

( 1 + i) x + ( 1 − i) y_ _______________ ,
2

( 1 − i) x + ( 1 + i) y_ _______________ 
 (22)

and

S(x, y) =
2n −k

1_ ____ W ∗ (x + y, i(x − y) ) . (23)

Remark. For comparison, note that the MacWilliams identity [31, Chap. 5] states that

W(x, y) =
2n −k

1_ ____ W ∗ (x + y, x − y) . (24)

Proof. If all weights in C∗ are multiples of 4 then B ( 0 ) = B and S = C. Otherwise B ( 0 ) is a

subcode of B of index 2, and B ( 0 ) ∗ = C ∪ (a +C) for some a /∈ C. We will show that

S = a +C. It follows immediately from the definition that S ⊆ B ( 0 ) ∗ \ C. On the other hand if

u ∈ B ( 0 ) ∗ \ C then for some v ∈ B \ B ( 0 ) we have u . v = 1. Any v ′ ∈ B \ B ( 0 ) can be

written as v ′ = v + w, w ∈ B ( 0 ) , and u . v ′ = u . v + u . w = 1. Thus S = B ( 0 ) ∗ \ C, which

proves (a). Part (b) follows immediately from (a). (c) C must contain the all-ones vector, so

W(y, x) = W(x, y). This implies S(y, x) = S(x, y) from (22) (proved below), hence

B r = B n − r for all r. Equation (17) holds because 0 is not a parity vector, and (18), (20), (21) all

follow from (b). Equation (19) is a special case of (20). To prove (d) we compute the following

weight enumerators, using the MacWilliams identity [31, Chap. 5].

B = C∗ :
2k

1_ __ W(x + y, x − y) ,

B ( 0 ) :
2k +1

1_ ____ {W(x + y, x − y) + W(x + iy , x − iy) } ,

B ( 0 ) ∗ :
2n

1_ __ {W( 2x, 2y) + W( ( 1 + i) x + ( 1 − i) y) , ( 1 − i) x + ( 1 − i) y) } ,

S = B ( 0 ) ∗ \ C : W 
î 2

( 1 + i) x + ( 1 − i) y_ _______________ ,
2

( 1 − i) x + ( 1 + i) y_ _______________ 
 .

(To obtain the final expression we use the fact that W(x, y) is homogeneous of degree n.)
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Equation (23) follows similarly.

Proof of Theorem 5. Suppose C is an [n , n /2 , d] Type I code. (i) Then B =C, B ( 0 ) = C( 0 ) ,

B ( 0 ) ∗ = C( 0 ) ∪ C( 1 ) ∪ C( 2 ) ∪ C( 3 ) where C = C( 0 ) ∪ C( 2 ) . Then S = C( 1 ) ∪ C( 3 ) from

(16). (ii) follows because C( 0 ) ∗ /C( 0 ) is a 4-group. (It is a group of order 4 and is not cyclic since

it is the quotient of a vector space over GF( 2 ).)

(iii), (iv) Equation (3) follows from (23) (since now W ∗ = W), and (5)-(9) from (17)-(21).

Equation (11) follows from (3) and (10), and (4) from (11).

(v) We begin by showing that C( 0 ) ∪ C( 1 ) and C( 0 ) ∪ C( 3 ) are both self-dual if n ≡ 0

(mod 4), while C( 0 ) ∪ C( 1 ) and C( 0 ) ∪ C( 3 ) are dual to each other if n ≡ 2 (mod 4). Proof. The

dual of C( 0 ) ∪ C( 1 ) contains C( 0 ) and is contained in C( 0 ) ∪ C( 1 ) ∪ C( 2 ) ∪ C( 3 ) . If n ≡ 0

(mod 4) and u , v ∈ C( 1 ) we read wt(u + v) = wt(u) + wt(v) − 2wt(u ∩ v) modulo 4 and

(using Eq. (4)) deduce that wt(u ∩ v) is even. Hence C( 0 ) ∪ C( 1 ) is self-dual. A similar

argument applies if n ≡ 2 (mod 4).

For a matrix A = 
î c

a
d
b 

 we write A f (x, y) = f (ax + b , cx + d). From the previous

paragraph (and the MacWilliams identity), if n ≡ 0 (mod 4) we have

M (W ( 0 ) + W ( 1 ) ) = W ( 0 ) + W ( 1 ) ,

M (W ( 0 ) + W ( 3 ) ) = W ( 0 ) + W ( 3 ) ,

M (W ( 1 ) − W ( 3 ) ) = W ( 1 ) − W ( 3 ) ,

where

M =
√ 2
1_ ___ 

î 1

1

− 1

1 
 .

Therefore W ( 1 ) − W ( 3 ) satisfies
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M (W ( 1 ) − W ( 3 ) ) = ( − 1 ) n /2 (W ( 1 ) − W ( 3 ) ) ,

J (W ( 1 ) − W ( 3 ) ) = i n /2 (W ( 1 ) − W ( 3 ) ) , (25)

where J =


î 0 i

1 0 


, using (4).

The matrices M , J generate a unitary reflection group G of order 192 [31, Chap. 19], [51]-

[54], and (25) implies that W ( 1 ) − W ( 3 ) is a relative invariant for G with respect to the character

defined by χ (M) = ( − 1 ) n /2 , χ (J) = i n /2 . If n ≡ 0 (mod 8) then χ is identically 1 and

W ( 1 ) − W ( 3 ) is an absolute invariant for G, hence a polynomial in f 8 and f 24 [31, p. 602].

If n ≡ / 0 (mod 8) then W ( 1 ) − W ( 3 ) is a relative but not absolute invariant for G. In this

situation there is a particular polynomial f (depending on χ) such that W ( 1 ) − W ( 3 ) can be

written uniquely as f times an absolute invariant for G (see for example [55], [56]). To find the

degree of f we compute the Molien series

Φχ (λ ) =
 G
1_ ___

A ∈ G
Σ det (I − λA)

χ (A)
_ ____

_ _________ (26)

where the bar denotes complex conjugation. This is easily computed if we observe that G has a

subgroup H of order 24 generated by

U = RMJMJ2 M =
√ 2
1_ ___



î i

− i

1

1 



,

where

R = MJ2 M =


î 1

0

0

1 



.

Then

G =
j =0
∪

7
C j H ,
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where C j = T j , C j +4 = RT 4 (0 ≤ j ≤ 3), and T = MR. Using this in (26) we find that Φχ (λ ) is

( 1 − λ8 ) ( 1 − λ24 )

λ18
_ ______________, if n ≡ 2 (mod 8),

( 1 − λ8 ) ( 1 − λ24 )

λ12
_ ______________, if n ≡ 4 (mod 8),

( 1 − λ8 ) ( 1 − λ24 )

λ30
_ ______________, if n ≡ 6 (mod 8).

On the other hand it is easy to verify that the polynomials f 18 , f 12 , f 18 f 12 (see (12), (13)), of

degrees 18, 12, 30 respectively, are indeed relative invariants with respect to the appropriate χ.

This completes the proof of Theorem 5.

3. Self-dual codes of length up to 72 and their weight enumerators

In this section we attempt to determine the weight enumerators of self-dual codes of length

n ≤ 72 having the highest minimal distance d.

Calculation of weight enumerators. It is convenient to write the weight enumerator of C as

W(y) = Σ A r y r

(setting x = 1 in W(x, y)), where A r is the number of words of weight r, so that

W(y) = 1 + A d y d + . . . . (27)

From Gleason’s theorem (see (10)) we can write

W(y) =
j =0
Σ

[n /8 ]
a j ( 1 + y 2 ) n /2 −4 j {y 2 ( 1 − y 2 )2 } j , (28)

where a 0 = 1, and determine a 1 , ... , a d /2 −1 from (27). There are [n /8 ] coefficients a j available,

and if they are chosen to make A 2 = A 4 = . . . = A 2 [n /8 ] = 0 then it is known that

A 2 [n /8 ] +2 ≠ 0, and so any self-dual code satisfies



- 16 -

d ≤ 2 
 8

n_ _ 
 + 2 (29)

([34], [31, Chap. 19]). The corresponding W(y) is called an extremal weight enumerator. As we

shall see, usually we cannot achieve equality in (29).

The weight enumerator of the shadow code (for any choice of the a j’s) is given by

S(y) =
j =0
Σ

[n /8 ]
( − 1 ) j a j 2n /2 −6 j y n /2 −4 j ( 1 − y 4 )2 j , (30)

(see (11)). From Theorem 5 we know that if C is of Type II then

S(y) = 1 + A d y d + . . . = W(y) , (31)

and if C is of Type I then either

S(y) = y i 0 + aB d ′ y d ′ + . . . (32)

or

S(y) = B d ′ y d ′ + . . . , (33)

where 0 < i 0 < d /2 and d ′ ≥ (d + 4 )/2. This restriction on S constrains the final a r’s, namely

a [n /8 ] , a [n /8 ] −1 , ..., often determining them uniquely.

We may then use Theorem 5(v) to determine the weight enumerators W ( 1 ) , W ( 3 ) of cosets

C( 1 ) , C( 3 ) . These satisfy

S(y) = W ( 1 ) (y) + W ( 3 ) (y) .

The weight enumerators W ( 0 ) , W ( 2 ) of cosets C( 0 ) , C( 2 ) consist of the terms of W(y) of the form

y 4m , y 4m +2 respectively. Thus

W(y) = W ( 0 ) (y) + W ( 2 ) (y) .

An example. To illustrate we consider self-dual codes of length n = 18. From (29), d ≤ 6. If

d = 6 then from (27) we have a 1 = a 2 = −9; and
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S(y) = −
8
9_ _ y +

2
153_ ___ y 5 +

4
1445_ ____ y 9 +

2
153_ ___ y 13 −

8
9_ _ y 17

is determined by (11). Since the coefficients are not integers, this is impossible. Now suppose

d = 4. From (27) we have

W(y) = 1 + ( 9 + a 2 ) y 4 + ( 75 − 3a 2 ) y 6 + . . . ,

S(y) =
8

a 2_ __ y +
2

144 − a 2_ _______ y 5 + . . . . (34)

Therefore, from Theorem 5(iii), a 2 is 0 or 8, and so there are just two possibilities: either

W(y) = 1 + 9y 4 + 75y 6 + 171y 8 + . . . ,

S(y) = 72y 5 + 368y 9 + 72y 13 , (35)

or

W(y) = 1 + 17y 4 + 51y 6 + 187y 8 + . . . ,

S(y) = y + 68y 5 + 374y 9 + 68y 13 + y 17 . (36)

We see the advantage of considering the shadow code. From Gleason’s theorem alone we could

conclude (if d = 4) only that W(y) has the form (34) for some undetermined a 2 .

In fact each possibility is realized by a unique code, (35) by the code d6
3 + and (36) by

(d 10 e 7 f 1 )+ (see Eq. (15)) [44], [48].

We now determine the weight enumerators W ( j) of the individual cosets C( j) (0 ≤ j ≤ 3). In

the case (35),

W ( 1 ) (y) + W ( 3 ) (y) = S(y) = 72y 5 + 368y 9 + . . . , (37)

while from Theorem 5 (since n ≡ 2 mod 8) W ( 1 ) (y) − W ( 3 ) (y) is a multiple of f 18 = y − 34y 5 +

34y 13 − y 17 , say c f 18 . From (12), (37), c = 0, and W ( 1 ) (y) = W ( 3 ) (y). We conclude that
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W ( 0 ) (y) = 1 + 9y 4 + 171y 8 + . . . ,

W ( 2 ) (y) = 75y 6 + . . . ,

W ( 1 ) (y) = W ( 3 ) (y) = 36y 5 + 184y 9 + . . . . (38)

In the case (36),

W ( 1 ) (y) + W ( 3 ) (y) = y + 68y 5 + 374y 9 + . . . ,

W ( 1 ) (y) − W ( 3 ) (y) = c f 18 ,

and so c = ±1, say + 1. Then

W ( 0 ) (y) = 1 + 17y 4 + 187y 8 + . . . ,

W ( 2 ) (y) = 51y 6 + . . . ,

W ( 1 ) (y) = y + 17y 5 + 187y 9 + 51y 13 ,

W ( 3 ) (y) = 51y 5 + 187y 9 + 17y 13 + y 17 . (39)

Weight enumerators of code (or putative codes) with the highest possible minimal distance. In

the following paragraphs we record the results of applying the above method to codes of length

up to 72.

When it is possible to use Theorem 5(v) to decompose S uniquely into W ( 1 ) and W ( 3 ) we do

so, otherwise we just give S. The coefficients of W(y), S(y) (and sometimes W ( 1 ) (y), W ( 3 ) (y))

are palindromic, and we give them only up to the midpoint. For codes of length n ≥ 34 the

expansions have been further truncated. We use β and γ for undetermined parameters, and

f
< −

(y) = y n f ( 1/ y) to denote a reciprocal polynomial. The symbol indicates a family of

weight enumerators for which no corresponding codes are known.

n = 2 , 4 , 6, d = 2. W = ( 1 + y 2 ) n /2 , S = ( 2y) n /2 , W ( 1 ) = W ( 3 ) , a unique code (i n – see (14),

[44]).
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n = 8, d = 4, Type II. W = S = f g = 1 + 14y 4 + y 8 , a unique code (the Hamming code e 8 – see

[44]).

n = 8, d = 2, Type I. W = ( 1 + y 2 )4 , S = ( 2y)4 , W ( 1 ) = W ( 3 ) , a unique code (i 10 – see (14),

[44]). (So there is no self-dual code with the weight enumerator 1 + 7y 2 + 7y 6 + y 8 of the

nonlinear formally self-dual code given in [31, p. 141, Fig. 5.1].)

n = 10, d = 4. S = 5y /2 + 27y 5 + . . . , impossible.

n = 10, d = 2. W = 1 + ( 5 − 2β) y 2 + . . . , S = βy + ( 32 − 2β) y 5 + . . . , W ( 1 ) = W ( 3 ) , so β is

even and ≤ 2, hence two possibilities: W = 1 + y 2 + 14y 4 + . . . , S = 2y + 28y 5 + . . . ; or

W = 1 + 5y 2 + 10y 4 + . . . , S = 32y 5 . Each is realized by a unique code (e 8 i 2; i 10 – see

[44]).

n = 12, d = 4. W = 1 + 15y 4 + 32y 6 + . . . , S = 6y 2 + 52y 6 + . . . , W ( 1 ) = 6y 2 + 20y 6 + . . . ,

W ( 3 ) = 32y 6 , a unique code (d12
+ – see [44]).

n = 14, d = 4. W = 1 + 14y 4 + 49y 6 + . . . , S = 14y 3 + 100y 7 + . . . , W ( 1 ) = W ( 3 ) , a unique

code (e7
2 + – see [44]).

n = 16, d = 6. W = 1 + 112y 6 + 30y 8 + . . . , S = −3/4 + 35y 4 + . . . , impossible. (So there is

no self-dual code with the weight enumerator of the Nordstrom-Robinson code.)

n = 16, d = 4. Either W = S = f8
2 , Type II, precisely two codes (e8

2 , d16
+ – see [44]); or

W = 1 + 12y 4 + 64y 6 + 102y 8 + . . . , S = 32y 4 + 192y 8 + . . . , W ( 1 ) = W ( 3 ) , a unique

code (d8
2 + – see [44]).

n = 18: discussed earlier in this section.

From now on we usually do not mention weight enumerators that can be eliminated.

n = 20, d = 4. W = 1 + ( 5 + 4β) y 4 + ( 80 − 8β) y 6 + ( 250 − 4β) y 8 + ( 352 + 16β) y 10 + . . . ,

S = βy 2 + ( 160 − 4β) y 6 + ( 704 + 6β) y 10 + . . . , precisely 7 codes, corresponding to
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β = 0 , ... , 4 , 6 , 10 – see [44].

n = 22, d = 6. W = 1 + 77y 6 + 330y 8 + 616y 10 + . . . , S = 352y 7 + 1344y 11 + . . . ,

W ( 1 ) = W ( 3 ) , a unique code (the ‘‘shorter Golay code’’ g 22 defined in Sect. 2 – see [48]).

n = 24, d = 8, Type II. W = S = 1 + 759y 8 + 2576y 12 + . . . , a unique code (the Golay code g 24

– see [43], [48], [31], [14]).

n = 24, d = 6, Type I. W = 1 + 64y 6 + 375y 8 + 960y 10 + 1296y 12 + . . . , S = 6y 4 + 744y 8

+ 2596y 12 + . . . , W ( 1 ) = 6y 4 + 360y 8 + 1316y 12 + . . . , W ( 3 ) = 384y 8 + 1280y 12 + . . . ,

a unique code (the ‘‘odd Golay code’’ f 24 – see [48]).

n = 26, d = 6. 2 cases: either W = 1 + 52y 6 + 390y 8 + 1313y 10 + 2340y 12 + . . . ,

S = 26y 5 + 1560y 9 + 5020y 13 + . . . , W ( 1 ) = W ( 3 ) , a unique code (A 26 = f13
2 + – see Table II,

[13], [45]); or W = 1 + 20y 6 + 550y 8 + 1025y 10 + 2500y 12 + . . . , S = y + 20y 5

+ 1575y 9 + 5000y 13 + . . . , W ( 1 ) = y + 550y 9 + 2500y 13 + 1025y 17 + 20y 21 , W ( 3 ) = W
< −

( 1 )

(no code exists – see [13], [45]).

n = 28, d = 6. Either W = 1 + 26y 6 + 442y 8 + 1560y 10 + 3653y 12 + 5020y 14 + . . . ,

W ( 1 ) = y 2 + 52y 6 + 1703y 10 + 4680y 14 + . . . , W ( 3 ) = 26y 6 + 1560y 10 + 5020y 14 + . . . , a

unique code (A 28 =D1, omitted from [45] – see Table II, [13]); or

W = 1 + 42y 6 + 378y 8 + 1624y 10 + 3717y 12 + 4680y 14 + . . . , S = 84y 6 + 3248y 10 +

9720y 14 + . . . , precisely 2 codes (B 28 = f7
4 + (a), C 28 = f7

4 + (b) – see [13], [45]).

n = 30, d = 6. Three cases: W = 1 + 19y 6 + 393y 8 + 1848y 10 + 5192y 12 + 8931y 14 + . . . ,

W ( 1 ) = W ( 3 ) = y 3 + 114y 7 + 3375y 11 + 9404y 15 + . . . , precisely 3 codes (A 30 , B 30 , C 30 ,

omitted from [45] – see [13]); W = 1 + 27y 6 + 369y 8 + 1848y 10 + 5256y 12 + 8883y 14 + . . . ,

W ( 1 ) = y 3 + 234y 7 + 6735y 11 + 18828y 15 + . . . , W ( 3 ) = y 3 + 99y 7 + 3402y 11

+ 9414y 15 + . . . , a unique code (D 30 , omitted from [45] – see [13]); or

W = 1 + 35y 6 + 345y 8 + 1848y 10 + 5320y 12 + 8835y 14 + . . . , W ( 1 ) = W ( 3 ) = 120y 7
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+ 3360y 11 + 9424y 15 + . . . , precisely 9 codes (E 30 , ... , M 30 , only 8 of which are given in

[45] – see [13]).

n = 32, d = 8. Either W = S = 1 + 620y 8 + 13888y 12 + 36518y 16 + . . . , Type II, precisely 5

codes (see Sect. 4, [11]) or W = 1 + 364y 8 + 2048y 10 + 6720y 12 + 14336y 14

+ 18598y 16 + . . . , S = 8y 4 + 592y 8 + 13944y 12 + 36448y 16 + . . . , W ( 1 ) = 8y 4 + 336y 8

+ 6776y 12 + 18528y 16 + . . . , W ( 3 ) = 256y 8 + 7168y 12 + 17920y 16 + . . . , Type I;

precisely 3 codes (see Sect. 4).

n = 34, d = 6. Either W = 1 + ( 34 − 4β) y 6 + ( 255 + 4β) y 8 + ( 1921 + 20β) y 10

+ ( 8466 − 20β) y 12 + . . . , W ( 1 ) = W ( 3 ) = βy 5 + ( 816 − 6β) y 9 + ( 14144 + 15β) y 13 + . . . ,

codes exist corresponding to β = 0 ( D 2 ) , 3 ( R 0 ) , 1 , 2 , 4 , 5 , 6 , 7 (not shown); or

W = 1 + 6y 6 + 411y 8 + 1165y 10 + 10886y 12 + . . . , W ( 1 ) = y + 411y 9 + 10886y 13 + . . . ,

W ( 3 ) = 6y 5 + 1165y 9 + 17556y 13 + . . . , a code exists (R1).

n = 36, d = 8. Either W = 1 + 225y 8 + 2016y 10 + 9555y 12 + 28800y 14 + . . . ,

S = 42y 6 + 3780y 10 + 58230y 14 + . . . ; or W = 1 + 289y 8 + 1632y 10 + 10387y 12

+ 28288y 14 + . . . , W ( 1 ) = y 2 + 34y 6 + 2176y 10 + 29886y 14 + . . . , W ( 3 ) = 1632y 10

+ 28288y 14 + . . . ; codes exist in both cases (R2, D3).

n = 38, d = 8. Either W = 1 + 171y 8 + 1862y 10 + 10374y 12 + 36765y 14 + . . . ,

S = 114y 7 + 9044y 11 + 118446y 15 + . . . ; or W = 1 + 203y 8 + 1702y 10 + 10598y 12

+ 36925y 14 + . . . , S = y 3 + 106y 7 + 9072y 11 + 118390y 15 + . . . , codes exist in both cases

(D4, R3).

n = 40, d = 8. Either W = S = 1 + 285y 8 + 21280y 12 + 239970y 16 + 525504y 20 + . . . , Type II,

at least 100 codes – see [60], [73] (e.g. D5); or W = 1 + ( 125 + 16β) y 8 + ( 1664 − 64β) y 10

+ ( 10720 + 32β) y 12 + ( 44160 + 192β) y 14 + . . . , S = βy 14 + ( 320 − 8β) y 8 + ( 21120

+ 28β) y 12 + . . . , Type I, codes exist corresponding to β =0 and 10 (D6, D7) and possibly
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other values.

n = 42, d = 8. Either W = 1 + ( 84 + 8β) y 8 + ( 1449 − 24β) y 10 + ( 10640 − 16β) y 12

+ ( 50256 + 112β) y 16 + . . . , S = βy 5 + ( 896 − 8β) y 9 + ( 48384 + 28β) y 13 + . . . , codes

exist corresponding to at least β = 0 ( R 4 ) , 1 , ... , 7 (not shown), and 42 (a cyclic self-dual

code with generator polynomial (x + 1 ) (x 2 + x + 1 ) (x 3 + x + 1 )2 (x 6 + x 5 + x 4 + x 2 + 1 )2 [17a],

[54a]); or W = 1 + 164y 8 + 697y 10 + 15088y 12 + 33456y 14 + . . . , W ( 1 ) =

W
< −

( 3 ) = y + 164y 9 + 15088y 13 + 196718y 17 + 512992y 21 + 289460y 25 + 33456y 29 + 697y 33 ,

no known codes.

n = 44, d = 8. Either W = 1 + ( 44 + 4β) y 8 + ( 976 − 8β) y 10 + ( 12289 − 20β) y 12

+ ( 47904 + 48β) y 14 + . . . , W ( 1 ) = y 2 + (β −10 ) y 6 + 1533y 10 + ( 61096 − 20β) y 14 + . . . ,

W ( 3 ) = ( 976 − 8β) y 10 + ( 47904 + 48β) y 14 + . . . , codes exist corresponding to at least

β =14 (not shown) and 17 (D8); or W = 1 + ( 44 + 4β) y 8 + ( 1232 − 8β) y 10 +

( 10241 − 20β) y 12 + ( 54560 + 48β) y 14 + . . . , S = βy 6 + ( 2464 − 8β) y 10 +

( 109120 + 28β) y 14 + . . . , codes exist corresponding to at least β =4 (R5), 5,... , 15 (not

shown).

n = 46, d = 10. W = 1 + 1012y 10 + 9660y 12 + 56925y 14 + 235290y 16 + . . . , W ( 1 ) = W ( 3 ) =

3312y 11 + 121440y 15 + . . . , a code exists (subtract i 2 from q 48).

n = 48, d = 12, Type II. W = S = 1 + 17296y 12 + 535095y 16 + 3995376y 20 + 7681680y 24

+ . . . , a code exists (q 48 – see also [20]).

n = 48, d = 10, Type I. Either W = 1 + 704y 10 + 8976y 12 + 56896y 14 + 267575y 16 + . . . ,

S = y 4 + 44y 8 + 17021y 12 + 535920y 16 , no known codes; or W = 1 + 768y 10 + 8592y 12

+ 57600y 14 + 267831y 16 + . . . , S = 54y 8 + 16976y 12 + 536040y 16 , ... a code exists (N1).

n = 50, d = 10. Either W = 1 + 196y 10 + 11368y 12 + 31752y 14 + 397782y 16 + . . . ,
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W ( 1 ) = W
< −

( 3 ) = y + 11368y 13 + 397782y 17 + . . . + 31752y 37 + 196y 41 , no known codes;

or W = 1 + ( 580 − 32β) y 10 + ( 7400 + 160β) y 12 + ( 56200 − 160β) y 14 + ( 292950 − 480β) y 16

+ . . . , S = βy 5 + ( 250 − 10β) y 9 + ( 42800 + 45β) y 13 + . . . , a code exists corresponding to

β =0 (D9). Remark. Suppose a [50,25,10] code exists corresponding to the first weight

enumerator, and let C be the [49,25,9] code obtained by deleting the coordinate corresponding

to the y term in W ( 1 ) . Then it can be shown [6] that the codewords of any fixed weight in C

form a 2-design. In particular, the codewords of minimal weight form a 2-design with

parameters v = 49, b = 196, r = 36, k = 9, λ = 6, in which any two distinct blocks meet in either

1 or 3 points. Conversely, if such a design exists then so does the code.

n = 52, d = 10. Either W = 1 + 250y 10 + 7980y 12 + 42800y 14 + 349150y 16 + . . . , W ( 1 ) = y 2 +

580y 10 + 63600y 14 + . . . , W ( 3 ) = 250y 10 + 42800y 14 + . . . , a code exists (D10); or

W = 1 + ( 442 − 16β) y 10 + ( 6188 + 64β) y 12 + 53040y 14 + ( 308958 − 320β) y 16 + . . . , S =

βy 6 + ( 884 − 10β) y 10 + ( 106080 + 45β) y 14 + . . . , no known codes.

n = 54, d = 10. Either W = 1 + ( 351 − 8β) y 10 + ( 5031 + 24β) y 12 + ( 48492 + 32β) y 14

+ ( 315198 − 160β) y 16 + . . . , S = βy 7 + ( 2808 − 10β) y 11 + ( 258624 + 45β) y 15 + . . . , a

code exists (subtract i 2 from D11); or W = 1 + ( 351 − 8β) y 10 + ( 5543 + 24β) y 12

+ ( 43884 + 32β) y 14 + ( 332094 − 160β) y 16 + . . . , S = y 3 + (β −12 ) y 7 + ( 2874 − 10β) y 11

+ ( 258404 + 45β) y 15 + . . . , no known codes.

n = 56, d = 12, Type II. W = S = 1 + 8190y 12 + 622314y 16 + 11699688y 20 + 64909845y 24

+ . . . , at least 20 codes exist – see [9], [70] (for example D11).

n = 56, d = 12, Type I. Either W = 1 + 4606y 12 + 45056y 14 + 306922y 16

+ 1576960y 18 + . . . , S = 77y 8 + 7630y 12 + 624393y 16 + . . . ; or W = 1 + 4862y 12

+ 43008y 14 + 313066y 16 + 1570816y 18 + . . . , W ( 1 ) = y 4 + 65y 8 + 4368y 12 + 314926y 16

+ . . . , W ( 3 ) = 3328y 12 + 309248y 16 + . . . ; no known codes in either case. A code exists
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with d = 10 (N2).

n = 58, d = 10. Either W = 1 + ( 165 − 2γ) y 10 + ( 5078 + 2γ) y 12 + ( 17190 + 188 ) y 14

+ ( 433323 − 18γ) y 16 + . . . , S = y + γy 9 + ( 23918 − 10γ) y 13 + ( 1471338 + 458 ) y 17 + . . . ,

no known codes; or W = 1 + ( 319 − 24β −2γ) y 10 + ( 3132 + 152β +2γ) y 12 + ( 36540 −

680β +18γ) y 14 + ( 299541 + 1832β −18γ) y 16 + . . . , S = βy 5 + γy 9 + ( 24128 −

54β −10γ) y 13 + ( 1469952 + 320β +45γ) y 17 + . . . , codes exist corresponding to β = γ =0

(D12) and β =0, γ =58 (D12a).

n = 60, d = 12. Three cases: W = 1 + 2555y 12 + 33600y 14 + 278865y 16 + 1717760y 18 + . . . ,

S = 396y 10 + 63240y 14 + 3453340y 18 + . . . , no known codes;

W = 1 + 2619y 12 + 33216y 14 + 279441y 16 + 1718784y 18 + . . . , S = y 6 + 384y 10 +

63306y 14 + 3453120y 18 + . . . , no known codes; or W = 1 + 3451y 12 + 24128y 14

+ 336081y 16 + 1469952y 18 + . . . , W ( 1 ) = y 2 + 319y 10 + 39672y 14 + 1981309y 18 + . . . ,

W ( 3 ) = 24128y 14 + 1469952y 18 + . . . , a code exists (D13).

(This completes the proof of Theorem 2.)

n = 62, d = 12. Either W = 1 + ( 1860 + 32β) y 12 + ( 28055 − 160β) y 14 + ( 255533 + 96β) y 16

+ ( 1718020 + 800β) y 18 + . . . , S = βy 7 + ( 1116 − 12β) y 11 + ( 171368 + 66β) y 15 + . . . , or

W = 1 + 2308y 12 + 23767y 14 + 279405y 16 + 1622724y 18 + . . . , S = y 3 + 1039y 11

+ 171928y 15 + . . . ; no known codes in either case.

n = 64, d = 12, Type II. W = S = 1 + 2976y 12 + 454956y 16 + 18275616y 20 + 233419584y 24

+ . . . ; at least 38 codes exist – see [71] (for example D14).

n = 64, d = 12, Type I. Either W = 1 + ( 1312 + 16β) y 12 + ( 22016 − 64β) y 14

+ ( 239148 − 32β) y 16 + . . . , S = y 4 + (β −14 ) y 8 + ( 3419 − 12β) y 12 + ( 451732 + 66β) y 16

+ . . . , no known codes; or W = 1 + ( 1312 + 16β) y 12 + ( 23040 − 64β) y 14

+ ( 228908 − 32β) y 16 + . . . , S = βy 8 + ( 3328 − 12β) y 12 + ( 452096 + 66β) y 16 + . . . , a
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code exists corresponding to β =32 (D15).

n = 72, d = 14, Type I. Three cases: W = 1 + 7616y 14 + 134521y 16 + 1151040y 18 + . . . ,

S = y 4 + 442y 12 + 245480y 16 + . . . ; W = 1 + 8576y 14 + 124665y 16 + 1206912y 18

+ . . . , S = y 8 + 532y 12 + 244675y 16 + . . . ; or W = 1 + 8640y 14 + 124281y 16

+ 1207360y 18 + . . . , S = 546y 12 + 244584y 16 + . . . ; no known codes in any case.

Examples of self-dual codes. The following codes, referred to in the preceding paragraphs, have

the highest possible minimal distance d of any self-dual code of the given length and type. (The

codes N1, N2, D1-D4, D6-D10, D12-D13, D15-D20, R1-R5 appear to be new.)

The neighbor construction. If C is a self-dual code and u /∈ C has even weight then the neighbor

N (u) of C corresponding to u is generated by u and the vectors {v ∈ C : u . v = 0 }. It is easy to

show that N (u) is self-dual and that any self-dual code of length n can be reached from any other

by taking successive neighbors. The analogous construction for lattices was used by Kneser [23].

(q 48 ). The [48,24,12] Type II quadratic residue code q 48 is generated by the vectors 11 ...1 and

1 ( 01111011110010101110010011011000101011000010000 )

(with 1’s at the nonzero squares modulo 47). The parentheses indicate as usual that all cyclic

shifts are to be used – compare [7], [11].

(N1) If u = 08050410 CD 00, the corresponding neighbor N (u) of q 48 is a [48,24,10] Type I

code.

(N2) If u = B 12 FC 10 D 44 D 47 C the corresponding neighbor N (u) of D 11 (see Table II) is a

[56,28,10] Type I code.( 4 )

________________

(4) Unlike other codes in this section, this does not necessarily have the highest possible d (cf. Table I).
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The double circulant construction. Table II lists self-dual codes having generator matrices of the

form

1 1 1

1
1
1
1

I R

0 1

(40)

or

R I ,
(41)

where R is a circulant matrix with first row r. (40) is used only when n ≡ 0 (mod 4). These

constructions have been investigated by several authors [1], [3], [21], [22], [29], [31, Chap. 16],

[49], [62], [63], [68]-[71].
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Table II

Double circulant codes

Name n k d Type Form r (hexadecimal)

g 22 22 11 6 I (41) 97

g 24 24 12 8 II (40) B7

A 26 = f13
2 + 26 13 6 I (41) 5F7

A 28 =D1 28 14 6 I (40) 8D

D2 34 17 6 I (41) 1ECE

D3 36 18 8 I (40) 2C6B

D4 38 19 8 I (41) 5793

D5 40 20 8 II (41) 57EB

D6 40 20 8 I (41) 11E35

D7 40 20 8 I (41) B393

D8 44 22 8 I (40) 5E6B5

D9 50 25 10 I (41) 31C4D

D10 52 26 10 I (40) 57F69D

D11 56 28 12 II (40) ADF1FF

D12 58 29 10 I (41) D5A89B

D12a 58 29 10 I (41) 2DD1D3

D13 60 30 12 I (40) 3EF6B77

D14 64 32 12 II (40) 427BD0B

D15 64 32 12 I (41) 2EF3DD75

D16 66 33 12 I (41) B2D97D9

D17 68 34 12 I (41) 1F5C885F

D18( 4 ) 72 36 12 I (41) 2B8795E5

D19( 4 ) 74 37 12 I (41) 1439372C7

D20( 4 ) 82 41 12 I (41) A464B919B

Codes with no known structure. The codes in Table III were found by constructing self-dual

codes at random until a sufficiently high minimal distance occurred. The algorithm used was a

binary version of that given in the appendix to [28], modified as follows. After n /2 − 1 generators

are found, instead of searching randomly for the final generator, the program searches for an even

weight vector in B ∗ \ B , where B is the code generated by the first n /2 − 1 generators.
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We describe these codes by giving the rows of A in hexadecimal, where [I A] is a generator

matrix.

Table III

Codes with no known structure

(R0) [34,17,6]: 033E3, 037D8, 03D05, 0710E, 07C0F, 08548, 08A2B, 0AC94, 0B8AB, 0D09C,

107C8, 11CAE, 150A6, 186FB, 1C018, 1C693, 1CBB0

(R1) [34,17,6]: 04B8A, 04D43, 05A07, 083A9, 0C84E, 0CBFC, 0CD28, 0D5BD, 0D834,

0EF5A, 0F5D3, 0F902, 12331, 188D4, 197B3, 1DCEC, 1E0BA

(R2) [36,18,8]: 03BB4, 05FEA, 07113, 0C7F6, 123BA, 133C6, 13770, 19B64, 1A86D, 1CAE1,

1F3A0, 260FA, 2A751, 2EAEF, 31666, 32179, 36502, 37F59

(R3) [38,19,8]: 078F4, 1499B, 15B0D, 18338, 18744, 19194, 1E2FA, 2B40A, 2DF8A, 31457,

35F67, 3C23F, 4C3A6, 4C535, 530FB, 566C1, 5B226, 6EA18, 70897

(R4) [42,21,8]: 020D3D, 02854A, 039F91, 061D23, 06295C, 06DA9F, 076544, 086B07,

0A7377, 0DD96D, 0DF2FE, 0F505E, 125583, 139C17, 14AA29, 198EAA, 19D343,

1B6414, 1C7EB2, 1D3619, 1F12EB

(R5) [44,22,8]: 01597D, 03E68E, 0684E0, 06D614, 09E19E, 0A6385, 141CDB, 178090,

1D71EC, 1F2F97, 1F52D3, 22F5FB, 260267, 268334, 277D38, 282BD9, 293F8E, 2A8D24,

33AE9F, 350159, 3528E5, 3D17C0

4. The proof of Theorems 3 and 4

It was shown in [11] that there are precisely five [32,16,8] codes. Koch [24], [25] has given

an alternative proof of this result. These codes are
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CP1 (or q 32), a quadratic residue code,

CP2 (or r 32), a second-order Reed-Muller code,

CP3 (or 2g 16), a twisted Reed-Muller code,

CP4 (or 8 f 4),

CP5 (or 16 f 2).

CP1 is generated by the vectors

1 ( 0001001000011101010001111011011 )

(having 1’s at the nonresidues modulo 31), CP2 is well-known (see for example [31]), and a

generator matrix for CP5 is given at the foot of p. 41 of [11]. Koch [24] and Yorgov [72] have

given alternative constructions for CP3 and CP4. Let e 8 be the particular version of the [8,4,4]

Hamming code generated by the vectors 1 ( 1101000 ), let e8′ be the version generated by

1 ( 1011000 ), and let G 1 , G 2 be corresponding generator matrices. Let τ be the permutation

( 0 ) ( 1 , 2 , ... , 7 ). Then CP3 and CP4 have generator matrices

CP 3 :






 0

G 2

0

G 1

G 2

G 2

G 1

0

0

G 2

G 1

G 1

G 2

0

G 1

0 






, (42)

CP 4 :









G 2

G 2

0

G 1

τ −1 G 2

G 2

G 1

0

0

G 2

G 1

G 1

G 2

0

τG 1

G 1








. (43)

An octet in one of these codes is a set eight mutually disjoint sets of four coordinates (called

tetrads) with the property that the union of any two is the support of a word of weight eight in the

code. It is not difficult to verify with the assistance of a computer that the number of octets is as

follows:
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CP 1 : 0 , CP 2 : 155 , CP 3 : 35 , CP 4 : 1 , CP 5 : 0 .

Also all octets in any CPi are equivalent under the group of the code. Furthermore, if t 1 , ... , t 8

are the tetrads of an octet in CPi, then for all u ∈ CPi, either  u ∩ t 1  , ... ,  u ∩ t 8  are even or

 u ∩ t 1  , ... ,  u ∩ t 8  are odd.

Proof of Theorem 3. We show that any [32,16,8] Type I code C can be constructed in a certain

way from a unique [32,16,8] Type II code B . From Theorem 5 it follows (see the previous

section) that W = 1 + 364y 8 + 2048y 10 + . . . , S = 8y 4 + 592y 8 + . . . If C( 1 ) and C( 3 ) both

contain vectors of weight 4 then their sum is in C( 2 ) and so has weight 6, a contradiction.

Therefore we may assume C( 1 ) contains all 8 vectors of weight 4. These must be disjoint, and the

sum of any two is a word of weight 8 in C( 0 ) .

The code B = C( 0 ) ∪ C( 3 ) is self-dual (see the proof of Theorem 5), has minimal weight 8,

and so must be one of the CPi. By the previous paragraph B contains an octet. Also C( 2 ) is a

translate of C( 3 ) by any of the eight tetrads in the octet. Thus C is obtained from B by the

following construction.

Let B be a CPi that contains an octet, and let t be any tetrad of the octet. We form C by

taking all words u ∈ B that meet t in an even number of coordinates, together with all words u + t

where u ∈ B meets t in an odd number of coordinates. It is easy to check that C is linear and

self-dual, and is independent of the choice of t. Also the minimal weight in C is 8, since if u

intersects t oddly then u intersects all eight tetrads oddly and so has weight at least 8. By adding t

we change the weight of u from 4m to 4m ± 2. We conclude that C is a [32,16,8] Type I code.

Precisely three such codes arise in this way, from CP2, CP3 and CP4, since each of these contains

just one type of octet. This completes the proof.
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Proof of Theorem 4. Let Ω n be the set of all distinct (but not necessarily inequivalent) self-dual

codes of length n (of both types if n is a multiple of 8), and let

Ψ(y) =
Ω n 

1_ ____
C ∈ Ω n

Σ W(y) =
0
Σ
n

ψ j y j (44)

be their average weight enumerator. If ψ2 + ψ4 + . . . + ψd −2 < 1, there must exist an

[n , n /2 , d] self-dual code. We know from [48] that, if n = 2m,

Ψ(y) = 
î 2m −1 + 1 


−1



î

2m −1 ( 1 + y 2m ) +
j =0
Σ
m 

î 2 j
2m 

 y 2 j




. (45)

There are similar expressions for codes of Type I and Type II alone. Equation (45) implies that

self-dual codes with

d ≥ 4 exist if n ≥ 16
d ≥ 6 exist if n ≥ 34
d ≥ 8 exist if n ≥ 50
d ≥ 10 exist if n ≥ 68
d ≥ 12 exist if n ≥ 86
d ≥ 14 exist if n ≥ 104
d ≥ 16 exist if n ≥ 122
d ≥ 18 exist if n ≥ 140
d ≥ 20 exist if n ≥ 158.

This, coupled with codes from [31] and Section III, completes the proof of Theorem 4.

The same method can be used to obtain lower bounds on the number of inequivalent codes.

Consider Type I codes of length 34, for example. Let N be the total number of distinct codes, and

let N r be the number that contain precisely r words of weights 2 and 4. Then

N =
j =1
Π
16

( 2 j + 1 ) = 2. 0769 . . . . 1041 ,

(from [48]), and from (44), (45) the average number of vectors of weights 2 and 4 is

ψ2 + ψ4 =
65537
46937_ _____ = λ ( say ) .
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The total number of words of weight 2 and 4 is

λ N = 1 . N 1 + 2 . N 2 + 3 . N 3 + . . .

≥ N 1 + N 2 + N 3 + . . . = N − N 0 .

Therefore the number of codes with no vectors of weight 6 is

N 0 ≥ N( 1 − λ) = 5. 8945 ... . 1040 .

Since each code has a symmetry group of order at most 34!, we conclude that there are at least

5.8945... . 1040 /34 ! = 199. 65 ... (hence 200) inequivalent [34,17,8] Type I codes (see Table I).

5. The proof of Theorem 1.

Type II codes. If C is of Type II then the highest minimal distance is known for n ≤ 88, n≠72

[14, p. 194], [31, p. 626]. For n ≥ 80, 2 [ (n + 6 )/10 ] is greater than or equal to the Mallows-

Sloane bound (2). This establishes the result for Type II codes.

Type I codes. Let C be a Type I code of length n = 8k + 2t, 0 ≤ t ≤ 3. The weight

enumerators of C and its shadow S can be written as in (28), (30), for certain integers a 0 = 1,

a 1 , ... , a k . For n ≤ 72 the theorem follows from the results in Section 4, so we now assume

n > 72. We write n = 10l + 2δ, − 3 ≤ δ ≤ 1, and suppose, contrary to the theorem, that

d ≥ 2 [ (n + 6 )/10 ] + 2. We actually assume d = 2 [ (n + 6 )/10 ] + 2 = 2l + 2, for the same

contradictions apply if d is greater than this value. Then

W(y) = 1 + A d y 2l +2 + . . . . (46)

We apply the method used in [34]. Equating (28) and (46) and dividing by ( 1 + y 2 ) n /2 yields

( 1 + Y)−n /2 =
j =0
Σ
l

a j



î ( 1 + Y)4

Y( 1 − Y)_ _______




j
+ terms of order Y l +1 ,

where Y = y 2 . The a j for j ≤ l can be determined by expanding ( 1 + Y)−n /2 in powers of
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φ =
( 1 + Y)4

Y( 1 − Y)_ _______

via the Bu
. .
rmann-Lagrange theorem ([19], [31, p. 627], [33], [34], [65]):

a j =
j!
1__



 dY j −1

d j −1
_ _____



î dY

d_ __ ( 1 + Y)−n /2 
î φ

Y_ _ 


j 







Y =0

= −
2 . j!

n_ ____ 
 dY j −1

d j −1
_ _____ { ( 1 + Y)−n /2 −1 −4 j ( 1 − Y)−2 j } 

 Y =0 , (47)

and in particular

a l = −
2l
n_ __ . coefficient of Y l −1 in ( 1 + Y )− l − δ −1

( 1 − Y )− 2l

(48)

= −
2l
n_ __

j =0
Σ

l −1
( − 1 ) j 

î j
− 2l




î l − j − 1

− l − δ −1



=
2l
n_ __

j =0
Σ

l −1
( − 1 ) l + j 

î j
2l + j − 1



î l − j − 1
2l + δ −j − 1

 . (49)

On the other hand an upper bound for  a l  can be obtained by considering S. Let

S = Σ B r y r . (50)

From Theorem 5 we know that there is at most one nonzero B r for r < (d + 4 )/2. Let B i 0
y i 0 be

the lowest degree nonzero term in S. Then B i 0
= 1 if i 0 < d /2, B i 0

≤ 2n / d if i 0 = d /2 (from

Eqs. (6), (7)). Furthermore B 0 = 0 (Eq. (5)), and (from (4)) B r = 0 unless r ≡ t (mod 4).

Therefore we can rewrite (30) as

y t

S_ __ =
j = j 0

Σ
k

( − 1 ) k − j a k − j 2n /2 −6k +6 j Z j ( 1 − Z)2k −2 j ,

where i 0 = 4 j 0 + t, Z = y 4 ,

= B i 0
Z j 0 + terms of order Z J , (51)

where J =  (d /2 + 1 − t)/4 . We divide this by ( 1 − Z)2k and use the Bu
. .
rmann-Lagrange theorem



- 34 -

to expand Z j 0 ( 1 − Z)−2k in powers of φ = Z( 1 − Z)−2 . Let

Z j 0 ( 1 − Z)−2k = Σ α j φj . (52)

Then α j is determined for j ≤ J − 1. We have

α j =
j!
1__



 dZ j −1

d j −1
_ _____



î dZ

d_ __ (Z j 0 ( 1 − Z)−2k ) 
î φ

Z_ _ 


j 







Z =0 , (53)

and (comparing (51), (52)),

a k − j = ( − 1 ) k − j 2 −n /2 +6k −6 j B i 0
α j , (54)

for j ≤ J − 1. To obtain a bound for a l we set j = j ′ , where k − j ′ = l. The value of j ′ depends on

the residue class of n modulo 40, as shown in Table IV. The table also gives d and J − 1.

Table IV

Values of d , J − 1 and j ′ as functions of n

n = 40a + 0 2 4 6 8 10 12 14 16 18

k 5a 5a 5a 5a 5a + 1 5a + 1 5a + 1 5a + 1 5a + 2 5a + 2
t 0 1 2 3 0 1 2 3 0 1
l 4a 4a 4a + 1 4a + 1 4a + 1 4a + 1 4a + 1 4a + 2 4a + 2 4a + 2
δ 0 1 − 3 − 2 − 1 0 1 − 3 − 2 − 1
d 8a + 2 8a + 2 8a + 4 8a + 4 8a + 4 8a + 4 8a + 4 8a + 6 8a + 6 8a + 6

J − 1 a a a a − 1 a a a a a a
j ′ a a a − 1 a − 1 a a a a − 1 a a

n = 40a + 20 22 24 26 28 30 32 34 36 38

k 5a + 2 5a + 2 5a + 3 5a + 3 5a + 3 5a + 3 5a + 4 5a + 4 5a + 4 5a + 4
t 2 3 0 1 2 3 0 1 2 3
l 4a + 2 4a + 2 4a + 3 4a + 3 4a + 3 4a + 3 4a + 3 4a + 4 4a + 4 4a + 4
δ 0 1 − 3 − 2 − 1 0 1 − 3 − 2 − 1
d 8a + 6 8a + 6 8a + 8 8a + 8 8a + 8 8a + 8 8a + 8 8a + 10 8a + 10 8a + 10

J − 1 a a a + 1 a a a a + 1 a + 1 a a
j ′ a a a a a a a + 1 a a a

From (23),
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α j ′ =
j ′
j 0_ __ . coefficient of Z j ′ − j 0 in ( 1 − Z)2 j ′ −2k

−
j ′
2k_ __ . coefficient of Z j ′ − j 0 −1 in ( 1 − Z)2 j ′ −2k −1 (55)

= −
j ′ ( j ′ − j 0 )

2 (k j ′ − 2k j 0 + j ′ j 0 )_ ________________


î j ′ − j 0 − 1
2k − j ′ − j 0 − 1




. (56)

The magnitude of this expression is maximized by taking j 0 = 0. Setting j 0 = 0 in (54), (56) we

obtain

 a l  ≤
j ′

2kc_ ___ 26l −n /2


î j ′ − 1
2k − j ′ − 1




, (57)

where c is 1 unless 4 j ′ + t = d /2, in which case c = 2n / d. This is the desired bound for a l .

For n in the range 74 ≤ n ≤ 500, (49) exceeds this bound (thus proving the result), for all

except the 12 values n = 82, 92, 102, 112, 122, 132, 152, 162,172, 192, 202 and 232. This may

be established by direct calculation of (49) and (57). Even though there is massive cancellation in

(49), double precision arithmetic on a Cray X-MP computer is accurate enough to evaluate the

sum in (49) to at least 14 significant digits. For example, when n = 500, l = 50, from (49) we find

that a 50 = −3. 347020 . . . . 1033 (although the largest terms in the sum are around ± 1046),

while (57) gives  a 50  ≤ 1. 059833 . . . . 1031 , a contradiction.

For the 12 values 82 , ... , 232 we establish a contradiction as follows. The coefficients

a 0 , ... , a l are calculated from (28) and (46), and substituted in S (in Eq. (30)). Then

a l +1 , a l +2 , ... are determined by requiring that the leading coefficients {B i : i < d /2 } in S shall

either all be zero or exactly one of them be 1 and the rest zero. In every case it turns out that one

of the next two coefficients in S (B 4J + t or B 4J +4 + t) is negative. This is impossible, and

establishes the result. For example, when n = 82 (so that k = 8, t = 1, l = 8, d = 18), we have

a 0 = 1, a 1 = −41, a 2 = 615, a 3 = −4182, a 4 = 13161, a 5 = −18040, a 6 = 9512, a 7 = −3280 and
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a 8 = −39524. If we require that S / y begins 0 . Z + 0 . Z 2 + . . . , then a 9 = a 10 = 0 and

S / y = −308. 78 ... Z 3 + 6580. 5 Z 4 + . . . .

The negative coefficient yields the desired contradiction. (We could also deduce the contradiction

from the fact that the coefficients are not integers.) Similar contradictions arise in the cases

S / y = 1 . Z + 0 . Z 2 + . . . and 0 . Z + 1 . Z 2 + . . . .

For n ≥ 500 we apply the saddle-point method [8]. For simplicity we assume that n is a

multiple of 40, n = 40a say, so that k = 4a, t = 0, l = 4a, δ =0, d = 8a + 2 and j ′ = a. The other 19

residue classes modulo 40 can be handled in the same way.

To further simplify the analysis( 5 ) we begin by verifying that (49) exceeds (57) for all n = 40a

in the range 500 < n ≤ 3000. This calculation can be carried out exactly (in multiple-precision

integers) using the Macsyma program [35]. For example when n = 3000 we find from (49) that

a 300 = −8. 890 ... . 10207 , whereas from (57)  a 300  < 2. 002 ... . 10193 , a contradiction.

Therefore, when applying the saddle-point method, we may assume n > 3000, l > 300.

We first estimate b l = −2n −1 l a l , which from (48) is equal to the coefficient of Y l −1 in

( 1 + Y)− l −1 ( 1 − Y)−2l . From Cauchy’s formula,

b l =
2πi
1_ ___ ∫

Y l +1

( 1 + Y)− l −1 ( 1 − Y)−2l
_ __________________ dY ,

integrated along a small circle around 0. Let Y = e 2πiz , z = θ + iy, so that

b l =
P
∫

1 + e 2πiz

1_ _______


î e 2πiz ( 1 − e 2πiz ) ( 1 − e 4πiz )

1_ _____________________




l
dz

=
P
∫ g(z) e lh(z) dz , (58)

________________

(5) In retrospect it is clear that a much smaller value than 3000 would suffice.
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where P is any path { z = θ + iy : − 1⁄2 < θ ≤ 1⁄2 }, y > 0, g(z) = ( 1 + e 2πiz )−1 and

h(z) = − log {e 2πiz ( 1 − e 2πiz ) ( 1 − e 4πiz ) } .

Then

h ′ (z) = 2πi .
1 − q 2

4q 2 + q − 1_ _________ , q = e 2πiz ,

h ′ ′ (z) = 4π2 .
q( 1 − q 2 )2

4q 5 − 3q 4 − 7q 3 − 2q 2 + q − 1_ ________________________ .

We see that h ′ (z) = 0 when q = q 0 = (√ 17 − 1 )/8 = 0. 390 ... and z = z 0 = iy 0 ,

y 0 = 0. 14970331 .... Then

e h(z 0 ) =
q 0 ( 1 − q 0 ) ( 1 − q0

2 )

1________________ =
51√ 17 − 107

512_ ___________

= 4. 95747480 ... = c 1 ( say ) , (59)

h ′ ′ (z 0 ) = − 192. 04135 ... = − α ( say ) . (60)

In fact h(z) has a saddle point at z 0 , and we choose P = { θ +iy 0 : − 1⁄2 < θ ≤ 1⁄2 }. We divide

P into three sections: − 1⁄2 < θ ≤ − √ log l /√ l , − √ log l /√ l < θ ≤ √ log l /√ l ,

√ log l /√ l < θ ≤ 1⁄2 , and denote the corresponding integrals in (58) by I L , I M , I R respectively.

Then, for l ≥ 300,

I M ≥ 2g(z 0 )
0
∫

√ log l /√ l

exp


î

l î h(z 0 ) −
2
α_ _ θ2 −

6
β_ _ θ3 






dθ ,

where

β = max


î
 h ′ ′ ′ (z) : z = θ + iy 0 , θ ≤ √ 300

log 300_______




.

By computer we find that β = 1503. 9 .... Therefore

I M ≥ 0. 7192 ... c1
l IM′ ,
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where

IM′ = 2
0
∫

√ log l /√ l

e
− lî 2

α_ __ θ2 +
6
β_ __ θ3 

 dθ .

We set θ = t /√ α l , obtaining

IM′ ≥
√ α l

2_ ____
0
∫

√   α log l

e
−

2
t 2
_ __ −

√ l
γ_ ___ t 3

dt

where γ = β/( 6α3/2 ) = 0. 09418 ...

=
√ α l

2_ ____



î 0
∫
∞

−
√   α log l

∫
∞ 





e
−

2
t 2
_ __ −

√ l
γ_ ___ t 3

dt . (61)

The first term in (61) is

≥
√ α l

2_ ____
0
∫
1

e
−

2
t 2
_ __ − c2 t 3

dt ,

where c 2 = γ/√ 300 = 0. 0054 ...,

≥
√ α l

2_ ____
0
∫
1

e−c3 t 2

dt , c 3 = 1⁄2 + c 2 = 0. 5054 ...

= √ c 3 α l
π_ ____ er f (√ c 3 ) =

√ l
0. 123..._ ______ .

The second term in (61) is easily shown to be negligible (less than 10 −470 in fact) for l ≥ 300.

Thus

I M ≥
√ l

0. 0885 ... c1
l

_ __________ , for l ≥ 300 .

In evaluating the next integral we make use of the inequality
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cos x < 1 −
2
c_ _ x 2 , for 0 < x < a , (62)

where

c =





î 2

a_ _

sin
2
a_ _

_ _____







2

.

We omit the easy proof.

The contribution to b l from the right-hand section of the path is

I R ≥
1 − q 0

1_ _____

√ log l /√ l
∫
1⁄2 


î q 0 ( 1 − q 0 e 2πiθ ) ( 1 − q 0 e 4πiθ )

e−2πiθ
_ _________________________





l
dθ .

Let

D = 
 ( 1 − q 0 e 2πiθ ) ( 1 − q 0 e 4πiθ ) 


2

≥ 
 ( 1 − q 0 e 2πiε ) ( 1 − q 0 e 4πiε ) 


2

in the range of the integral, where ε = √ log l /√ l , and so

D ≥ ( 1 + q0
2 − 2q 0 cos 2π ε) ( ( 1 + q 0 )2 − 4q 0 cos2 2π ε) .

Regarded as a cubic polynomial in cos 2π ε, this expression has negative slope near 1, and so we

obtain a lower bound to it (from (62)) by replacing cos 2π εby

1 −
2

c 4_ __
l

log l_ ____

where
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c 4 =






î √ 300

π√log 300_ _________

sin
√ 300

π√log 300_ _________

______________








2

= 0. 9390 ...

After some further simplifications we obtain

D ≥ 0. 2670 ...


î
1 +

l
70 log l_ _______





.

Therefore, for l ≥ 300,

I r ≥
1 − q 0

1_ _____


î
1 +

l
70 log l_ _______





− l /2

( 4. 95747480 ...) l

√ l
√ log l_ ______

∫
1⁄2

e−2πiθ dθ ≥
l 34

c1
l

_ ___ .

The same bound applies to I L . These terms are negligible compared with I M , and we conclude

that

b l ≥
√ l

0. 0885 ... c1
l

_ __________ , l ≥ 300 , (63)

where c 1 is given by (59).

On the other hand (57) implies

 b l  <
9
20_ __ 24a 

î a
9a 

 ≤
3 √ πa

5_ ______ 24a +9aH 2 ( 1/9 ) ,

from [28, p. 309], where H 2 (x) = −x log 2 x − ( 1 − x) log 2 ( 1 − x), and so

 b l  <
√ l

1. 8806 ... c5
l

_ __________ , (64)

where

c 5 = 21 + ( 9/4 ) H 2 ( 1/9 ) = 4. 38425361 ...

It is easy to verify that the two bounds (63) and (64) are incompatible for l ≥ 300. This
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completes the proof of Theorem 1.
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List of Footnotes

(1) On p. 629 of [31] this is incorrectly stated as d ≤ 0. 178n + o(n).

(2) A(n , d , w) denotes the maximal possible number of binary vectors of length n, weight w

and Hamming distance at least d apart [7], [31].

(3) Indeed, the code described in [3] has generator matrix of the form given in Eq. (41) below,

where the first row of R is 19E89179 in hexadecimal, and is not self-dual.

(4) Unlike other codes in this section, this does not necessarily have the highest possible d (cf.

Table I).

(5) In retrospect it is clear that a much smaller value than 3000 would suffice.
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