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1. Introduction

The problem of classifying binary self-dual codes has been studied by a number of authors
[1]-[5], [9]-[11], [13], [18], [20], [21], [24]-[27], [30], [32]-[34], [38]-[54], [57]-[64], [66]-[73],
[14, Chap. 7], [31, Chap.19]. The main results of the present paper are contained in the

following theorems.

Theorem 1. The minimal distance d of a binary self-dual code C of length n

(n#2,8,12,22,24,32,48,72) satisfies

On+6
ds< 200 p (1)

If C is of Typel (i.e. the weights are not all multiples of 4) then the bound fails just when n
(necessarily even) is 2,12,22 and 32, and if C is of Typell (i.e. the weights are multiples of 4)
the bound fails just when n (necessarily a multiple of 8) is 8,24,32,48 and possibly 72. The

greatest minimal distance for these exceptional lengthsis2[(n+6)/10] + 2.

In [34] it was shown that d < 2[n/8]+2 for al n, and in [33] that d < n/4-c, for any
constant ¢, provided n is sufficiently large. The bound (1) is stronger than these, athough

asymptotically weaker than the McEliece-Rodemich-Rumsey-Welch bound, which for rate one-

*  This paper appeared in IEEE Trans. Inform. Theory, vol. 36 (Nov. 1990), pp. 1319-1333.



half code implies d < 0.182490n +o(n) ([37], [36], [31, Chap. 17]).Y) For Typell codes it is

known that

anQd
d<d4o-q+ 4, fordl n, 2

24

and d < n/6—c for any constant ¢ provided n is sufficiently large ([34], [33], [31, Chap. 19]).

Theorem 1 is a consequence of some new restrictions on the weight enumerator of a Typel
self-dual code, obtained by studying a particular translate of the code called its ‘‘ shadow’’ (see
Theorem 5 and Section 2). For small values of n we can often obtain additional information

about the weight enumerator from its shadow, leading to the following result.

Theorem 2. The highest minimal distance of any self-dual code of length n < 60 is known. The

actual valuesareasgivenin Tablel.

Before this, the highest minimal distance was known only for n < 32 ([11], [45]). Tablel
also shows our present state of knowledge about codes of lengths 62 to 72. In the table d; (resp.

d;) denotes the highest minimal distance of any Type (resp. Type I1) self-dual code.

(1) On p. 629 of [31] thisisincorrectly stated asd < 0.178n +o(n).
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Tablel

The highest minimal distance of a self-dual code

Codes

i,
i)

is.

ig;eg.

10, €gl 2.

+

12-

es*.

2+. 4+ 2
dg™; die, €5.

dg+1 (doerfy)™.

7 codes [44].
922 [48].

f24; 924 [48].
f,3 [45].

f4(a), f*(b), D1.

13 codes.

3 codes; 5 codes.

> 200
22

64

10
10o0r 12
10
12
10o0r 12
12
12
12
10o0r 12
12 or 14

dy Codes
>2

8 > 2; =100[60], [73]
>9
>14
>1

12 =21 =21
>1
>1
>1

12 ?, 22019, [70]
>2
>1

12 >1;, =238[7]1]
>1
>1

12 or 16

The fourth column of the table gives the known codes having the indicated minimal distance.

A period indicates that the lists of codes is complete. These enumerations (for n < 30 and for

Typell codes of length 32) are due to Pless [43]-[45], Pless and Sloane [48], and Conway and

Pless[11] (but see however [13]). When nisamultiple of 8 a semicolon separates the Type | and

Typell codes. The codesin the fourth column are described in greater detail in Sect. 3; several of

them are new. In the past, codes of length 32 have received a great deal of attention [11], [24],

[25], [45], [72]. In particular, it is known that there are precisely five [32,16,8] Typell self-dua

codes [11] (see Section 4 below).



Theorem 3. Thereare precisely three[32,16,8] Type | self-dual codes.

We aso determine all lengths for which there exist 2-, 3- and 4-error-correcting self-dual

codes.
Theorem 4. Self-dual codes with minimal distance

d=6 exist precisedly for n=z= 22,
d=>8 exist precisely for n= 24,32 and n= 36,
d>10 exist precisely for n=46.

For larger values of d we have less complete information. For example, self-dual codes with:
(@ d=12existforn=48, 56, 60, 64-68, n = 72, perhaps n =62, 70, and no other values of n;
(b) d=14 exist for n=78, 80, 86, 88, n = 98 (and possibly other values);

(c) d=16-existfor n=80, 88, 100-104, n = 122 (and possible other values).

The key idea in proving these results is to study the ‘‘shadow’’ of a code. The shadow of a
self-dual code C is defined as follows. (A more general definition is given in Sect. 2.) Let C(®
be the subcode of C consisting of all words whose weights are multiples of 4, and let
c® =c\ cO. The shadow code S=S(C) consists of all ‘‘parity vectors’ for C: those

vectors u with the property that

0 fordl vOcCO

e
<
1

u-v=1 fordl vOc® .

If CisaTypell codethenC®? = O andS(C) = C.
The next theorem summarizes a number of properties of the shadow of a Type | code.

Theorem 5. Let S =S (C) be the shadow code corresponding to an [n, n/2, d] Type | self-dual

code C. The dua COUF consists of the union of four cosets of C( say



c@O ogc® gc@® gc® withc=c® gc®,
(i) s =cOb\c=c® gcd

(ii) Thesumof any two vectorsin S isin C. More precisely, if u, v C® thenu+v O C©;

ifudCc® voc® thenu+vO CP:andifu,vO C® thenu+v O CO,

(iii) LetS(x,y) = ZB, x"™" y" bethe weight enumerator of S. Then

St y) = W i 2 ©

where W(X, y) isthe weight enumerator of C. AlsoB, =B, for all r,

B, =0 unless r =n/2 (mod 4) , %
Bo =0, ®)
B, <1 for r <d/2, (6)
By < 2n/d, (7)
B, < A(n,d, r)@, for all r, and (8)
atmost one B, isnonzerofor r < (d+4)/2. 9
(iv) If wewrite
[n/8] _ .
W(x, y) = 5 aj(x?+y?)"274 {x?y?(x? -y?)?}) (10)
j=0

using Gleason’s theorem ([2], [14, p. 186], [18], [30], [31, p. 602], [51]-[54]), for suitable

integers a;, then

S y) = 3 (1)) a 27278 ()2 (xf -y )2 (1)

[n/s]
j=0

(2) A(n, d, w) denotes the maximal possible number of binary vectors of length n, weight w and Hamming distance at
least d apart [7], [31].



In particular, a; isdivisible by 2"27®1 for all j.

(v) Let W (x,y) be the weight enumerator of C()) (0 < j < 3), so that W=W(© +W®

S=WD +WO®, Thenw® -w® js;
(a) apolynomial infg = x®+14x*y*+y8 andf,, = x*y*(x*-y*)4, ifn=0(mod 8),
(b) fqgtimesa polynomial infg andf,,, if n = 2(mod 8), where

f18 - X17y _ 34X13y5 + 34X5y13 _ Xy17

xy(x8 —y®)(x8 - 34x*yt +y?)

xy(x8 -y®) (x2 —2xy —y?)(x? + 2xy —y?) (x* +6x2y2 +y*) (12)

(c) fqo timesapolynomial infg andf,,, if n = 4(mod 8), where

fi, = x10y2 — 2xBy6 + x2y10

x2y?(x*=y*)? = £ (13)
(d) fag = 1o f1gtimesapolynomial infg andf,,, if n =6 (mod 8).

Remarks. (a) Part (iv) isdue to Ward [64], who investigated the weight enumerator of S (without

however considering S as acodein its own right).

(b) One of the differences between Typel and Typell codes is that the weight enumerator
W(x, y) of a Typel code is invariant under a group of order 16, whereas for a Typell code
W(X, y) is invariant under a group of order 192 ([31, Chap. 19], [51]-[54]). Thus W(X, y) is
more strongly constrained for Typell codes. As we shall see in Sect. 2, part (v) of the theorem
restores the balance to a certain extent by requiring W —W<®) to be a relative invariant (with

respect to a certain character) for the group of order 192.

In Sect. 2 we give a more general definition of the shadow code and establish some of its

properties, including those stated in Theorem 5.



In Section 3 we study self-dual codes of length n < 72, where considerable information about
the best codes can be obtained by considering their shadows, and in particular establish
Theorem 2. Often we can restrict the weight enumerator of the code and its shadow to one of

small number of possibilities.

This approach enables us to give analytical proofs of various results that were previously
known only from the complete enumerations mentioned above. Typical results are that there are
only two possible weight enumerators for a [18,9,4] Typel code and only one for a [24,12,6]
Typel code. (Gleason’s theorem alone does not imply theseresults.) It also follows immediately
that there do not exist linear codes with the same weight enumerators as the ‘* formally self-dual’

nonlinear codes of lengths 8 ([31, p. 140, Fig. 5.1), and 16 (the Nordstrom-Robinson code), etc.

Consideration of the shadow code has aso revealed some errors in the literature. At length
28, minimal distance 6, there are two possible weight enumerators (see Sect. 3). Reference [45]
does give two codes, but only one of them (2f4(l)) corresponds to one of our weight
enumerators. The other code (2f14(11)) in [45] has nonintegral coefficients in the weight
enumerator of its shadow, and in fact is not a self-dual code. The coefficients in the second of our
weight enumerators suggest that a code might exist which it is invariant under a permutation of
order 13, and indeed such a code exists. It is a child (omitted from [45]) of the length 32 code
dgf13. There arein fact three [28,15,6] Type| codes — see Sect. 3. Reference [13] contains the

correctionsto [45].

At length 58 our results show that the highest possible minimal distance is 10. On the other
hand, [3] claims to present a [58,29,12] self-dual code. However, the weight enumerator of the

shadow of that code (found for example from Eq. (3)) begins

29 19285 5
y + y> o+ e
8192 4096

which isimpossible.(® A code (D12) with d =10 does exist — see Table |1 below.



Theorems3 and 4 are proved (using the results of Sect. 3) in Sect. 4. The final section

contains the proof of Theorem 1.

Codes with trivial group. There has been interest recently in self-dual codes with trivial
automorphism group [37b], [60]. We have found numerous [34,17,6] self-dua codes with trivial
group, for example the code RO in Tablelll. (The 22 words of weight 6 generate RO, and the
program Nauty [37a] was used to show that this 22-word constant weight code has trivial group.)
All the [34,17,6] codes with trivial group that we found have weight enumerators of the form
W= 1+(34-B)y® +(255+4B)y®+ --- (see Sect.3) with B =2 (at least three distinct codes),

3 =3 (at least six distinct codes) or 3 =4 (at least six distinct codes).

Itisvery likely that these length 34 Type | codes are the shortest possible self-dual codes with
trivial group. For we know ([11],[13]) that the trivial group does not occur for a Typel code
with n < 30, nor for a Type |l code with n < 32, and an extensive computer search has failed to

produce a Type | example of length 32.

Length 40 is the smallest possible length where a Type |l code with no group can exist, and
Tonchev [60] gives an example of such a code. Our computer search suggests that in fact
[40,20,8] Typell codes with no group are very common (out of 50 codes chosen at random, 44
had trivial group and were all distinct). Thisis not surprising, since the total mass = [Aut(C)I*

for al Type Il codes of length 40is17492.86....

The results of this paper were announced in [15]. Similar theorems can be proved for

unimodular lattices[16], [17].

(3) Indeed, the code described in [3] has generator matrix of the form given in Eq. (41) below, where the first row of R
is 19E89179 in hexadecimal, and is not self-dual.



Open questions. (1) Since there are many more Type | than Type |l codes ([48], [31, Chap. 19]),
and the best bound known for Typel codes (Eq. (1)) is larger than that for Typell codes
(Eq. (2)), it is natural to ask for the smallest length at which a Type| code has a higher minimal
distance than any Typell code. Tablel suggests this could be n=72 — see the weight

enumeratorsin Sect. 3.

(2) The bound of Theorem1 can be tightened dlightly (at the cost of alowing more
exceptions) by using (8) to bound B, for r > d/2. This suggests that by following the methods of
[33] it may be possible to prove that d < n/5-c¢ holds for any constant ¢, provided n is

sufficiently large.

(3) Determine precisely when self-dual codes with d =12, 14 and 16 exist (see the remarks

following Theorem 4).

(4) Remove some gaps in Tablel and Section 3 by constructing or proving nonexistence of
the following codes (see Sect. 3, where the corresponding weight enumerators are indicated by
the symbol =) [42,21,8], second case; [48,24,10], Typel, first case; [50,25,10], first case;
[52,26,10], second case; [54,26,10], second case; [56,28,12], Typel, two cases; [60,30,12], two

of the three cases; [64,32,12], Typel, first case; [72,36,14], Typel, three cases; etc.

Notation. An [n, k, d] code C is a binary linear code of length n, dimension k and minimal
distanced. W(x,y) = Z A, x"""y" isits weight enumerator, where A, is the number of words
of weight r. S(x,y) = Z B, x"""y" is the weight enumerator of the shadow code S (C). The
dual to C is denoted by C". A self-dua code (with C = C") is of Typell (or doubly even) if the
weight of every word is amultiple of 4; otherwiseisof Typel (or singly even). If Cisof Typel,
C(® denotes the doubly even subcode, CO% = c(® g c@® gc®@ gc®, c=c@ gcH,

s(c) = c® g c® and Wi (x, y) denotes the weight enumerator of C()). We often set x =1

<_
in weight enumerators and write W(y) for W(1, y), etc. f (y) = y"f(1/y) denotes a reciprocal
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polynomial.
For codes of length up to 32 we sometimes usethed,,, e, f,, g, hotation of [11], [45], [48].

To save space some vectors have been written in hexadecimal, using 0 = 0000, ..., 9 = 1001,

A = 1010, ..., F = 1111, usualy omitting leading zeros (so the vectors are right-justified).

2. Shadow codes

We give a general definition of the shadow of a code, which reduces to that of Sect. 1 when
the code is self-dual. Let C be a binary linear [n, k, d] code which contains its dual C"” = B
(say). Let B be the subcode of B consisting of al words with weights divisible by 4 (the
weightsin B are necessarily even). The shadow code S = S (C) consists of al ‘* parity vectors'”

for C™ all vectorsusuchthatu - v =0foralvOB©®,u-v=1foralvOB \ BO,

We give four examples; others will be found in Sect. 3. (i) If C consists of all even weight
vectors of even length n, then S = C if nisamultiple of 4, and otherwise S consists of all odd

weight vectors. (ii) If C isthe self-dual code
i2m=i26i26 "'6i2, i2={00,11}, (14)

consisting of al vectorsu=u; U, - Uyy With Ug =Us, U3 =Uy, ..., then S is the trandate of
C by the vector 101010..., and consists of all vectors uwith uq # u,, Uz # Uy, .... (iii) If Cisthe

self-dual code (dipe; fq1)™ of [44], [48], with generator matrix
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1111
1111
1111
1111
1111
1111 (15)
1 1 1 1
1 1 1 1
11111111111

then S is the translate of C by the vector 0*71. (iv) Let C = g,,, the [22,11,6] ‘*shorter Golay
code’’ [4], formed by subtracting (see [12]) i, from the [24,12,8] Golay code go4. Thus goo
consists of al words of g4 that begin 00 or 11, with these two coordinates deleted. Then S

consists of the remaining words of g,, with the same two coordinates del eted.

Theorem 6. Let C bean [n, k, d] code such that C O C”, and let S = S(C) be its shadow. If

all weightsin C” are multiplesof 4 then S = C. If not then:
(& S isanonlinear code, atranslate of C, given by

s =BOU\ C. (16)

(b) Ifu,vOSthenu+v(C.

(c) LetS(x,y) = 2B, x"™"y" be the weight enumerator of S. Then the B, are nonnegative

integers satisfying B, = B,,_, for all r,

Bg =0, (17)
B, <1 for r<d/2, (18)
Bgi2 < 2n/d, (19)
B, < A(n,d,r), foral r, and (20)

atmost one B, isnonzerofor r < (d+1)/2. (21)



-12-

(d) IfW(x, y) and W"(x, y) are the weight enumerators of C and C" respectively then

S(x,y) = WB(lﬂ)X; (1-i)y , (1-i)x 42r (1+i)yg 2

and

1
S(x, y) r=k

WH(x+y, i(x-y)) - (23)

Remark. For comparison, note that the MacWilliams identity [31, Chap. 5] states that

L Wix+y, x-y) . (24)

W(x,y) = h=k

Proof. If all weightsin C" are multiples of 4then B(®) = B and S = C. Otherwise B(¥ isa
subcode of B of index 2, and B(O” = C O (a+C) for some all C. We will show that
S = a+C. It followsimmediately from the definition that S 0 B\ C. On the other hand if
udB©U\ C then for some vOB \B©® wehave u-v=1 Any v' 0B\ B®© can be
written as v' = v+w, wOB® andu-v =u-v+u-w=1 ThusS =B\ C, which
proves (). Part (b) follows immediately from (@). (c) C must contain the all-ones vector, so
W(y, X) = W(X,y). This implies S(y, x) = S(x,y) from (22) (proved below), hence
B, = B,-, for al r. Equation (17) holds because 0 is not a parity vector, and (18), (20), (21) al
follow from (b). Equation (19) is a special case of (20). To prove (d) we compute the following

weight enumerators, using the MacWilliamsidentity [31, Chap. 5].
B =C”: X wix+y, x-v)
- . EF y1 y ]

B : Ek]:'_l {W(x+y, x-y) + W(x+iy, x—iy)},

BOD. Zin [W(2x, 2y) + W((L+i)X + (1=i)y), (1=D)x + (1-1)y)} |

O@@+i)x+ (2-i)y (1-i)x+ (1+i)yDO
a 2 ’ 2 -

s =BO@OU\c:w

(To obtain the final expression we use the fact that W(x, y) is homogeneous of degree n.)
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Equation (23) follows similarly.

Proof of Theorem 5. Suppose C is an [n, n/2, d] Typel code. (i) Then B=C, B(® = c(®,
BOB=cO gc® gc® oc® whee c=c@® 0c®. Thens =c® 0c® from
(16). (ii) follows because C(97/C(® jsa4-group. (Itisagroup of order 4 and is not cyclic since

it isthe quotient of a vector space over GF(2).)

(iii), (iv) Equation (3) follows from (23) (since now W" = W), and (5)-(9) from (17)-(21).

Equation (11) follows from (3) and (10), and (4) from (11).

(v) We begin by showing that C(® 0 Cc® and C(® O Cc® are both self-dua if n=0
(mod 4), whileC(® 0 C® and C(@ 0 C® aredual to each other if n = 2 (mod 4). Proof. The
dual of C© O C® contains C(? and is contained in C©@ 0 c® oc® oc®. 1fn=0
(mod4) and u,vO CP we read wt(u+v) = wt(u) + wt(v) — 2wt(u n v) modulo4 and
(using Eq. (4)) deduce that wt(u n v) is even. Hence C(© 0 CO s self-dual. A similar

argument appliesif n = 2 (mod 4).

For a matrix A = % gg we write Ao f(x,y) = f(ax+b, cx+d). From the previous

paragraph (and the MacWilliams identity), if n = 0 (mod 4) we have
Mo (WO +w®y = wO + w@ |

Mo (WO +we) = wO@ + we |

Mo (WD —we)y = wilh — we |
where

M= L m 1g
T 5 o-1o

Therefore W — W®) satisfies
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M o (W(l) - W(3)) - (—l)”lz(W(l) - W(3)) ,

Jo (WO —w®) = jn2wd —we®)y (25)
U1 o
whered = 0~ " [ using (4).
00 I g

The matrices M, J generate a unitary reflection group G of order 192 [31, Chap. 19], [51]-
[54], and (25) implies that WY — W) js arelative invariant for G with respect to the character
defined by X(M) = (-1)"2, X(J) =i"™2. If n=0 (mod8) then X is identically 1 and

WO — W) jsan absolute invariant for G, hence apolynomial in fg and f,4 [31, p. 602].

If n# 0 (mod 8) then W) — W is a relative but not absolute invariant for G. In this
situation there is a particular polynomial f (depending on X) such that W — W can be
written uniquely as f times an absolute invariant for G (see for example [55], [56]). To find the

degree of f we compute the Molien series

_ 1 X (A)
Px(A) = EGDAEG det(1 - AA) (26)

where the bar denotes complex conjugation. This is easily computed if we observe that G has a

subgroup H of order 24 generated by

O_; 10
U=RMJMJ2M=LD !1 ,
\/_2 0 Il|:|
where
O 1O
R = MJ2M = 5015.
0l 0g
Then
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whereC; = T, Cj+a = RT#(0<j<3),and T = MR Using thisin (26) we find that Oy (A)is

)\18

(1_)\8)(1_)\24) , if  n=2(mod8),

)\12
(1-2%)(1-2%)’

)\30
(1-A8)(1-A%)’

if  n=4(mod8),

if  n=6(mod8).

On the other hand it is easy to verify that the polynomials fg, f12, f15 f12 (see (12), (13)), of
degrees 18, 12, 30 respectively, are indeed relative invariants with respect to the appropriate X.

This completes the proof of Theorem 5.

3. Self-dual codes of length up to 72 and their weight enumerators

In this section we attempt to determine the weight enumerators of self-dual codes of length

n < 72 having the highest minimal distance d.
Calculation of weight enumerators. It isconvenient to write the weight enumerator of C as
W(y) = 2 ArY'
(setting x =1 in W(X, y)), where A, isthe number of words of weight r, so that
W(Y) =1+ Agyd+ . (27

From Gleason’ s theorem (see (10)) we can write
[n/8

W) = 5 a(1+y2)"2-4 {y2(1-y2)2} (28)
i=0

wherea, = 1, and determineay, ..., aq/2-1 from (27). There are [n/8] coefficients a; available,
and if they are chosen to make A, = Ay = -+ = Apyg = 0 then it is known that

Ajrng+2 # 0, and so any self-dual code satisfies
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On O

dsZDSD

+ 2 (29)

([34], [31, Chap. 19]). The corresponding W(y) is called an extremal weight enumerator. Aswe

shall see, usually we cannot achieve equality in (29).

The weight enumerator of the shadow code (for any choice of the a;’s) is given by

[n/8] ) ) ) .
S(y) = T (-1)) ay 2270y (1-y*) (30)
j=0

(see(11)). From Theorem 5 we know that if C isof Typell then
S(y) =1+ Agy? + 0 = W(Y) , (3D

and if C isof Typel then either

+

S(y) = y"© + aBg y (32)

or
S(y) = By y* + -+, (33)
where0 <ig < d/2and d' = (d+4)/2. Thisrestriction on S constrains the final a,’s, namely

a[n/g]» @[n/g] -1, - Often determining them uniquely.

We may then use Theorem 5(v) to determine the weight enumerators WY, W®) of cosets

c®, c®), These satisfy
Sty) = W (y) + Wl (y) .

The weight enumerators W(®, W(2) of cosets C(?), C(? consist of the terms of W(y) of the form

4m ,Am+2

respectively. Thus

y .y

W(y) = WO (y) + w@(y) .

An example. To illustrate we consider self-dual codes of length n=18. From (29), d < 6. If

d =6 then from (27) wehavea; = a, = —-9; and
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9 153 5 . 1445 ¢ 153 3 9 7
= —-_Vy+ + + -
S(y) gV > 7Y > gV

is determined by (11). Since the coefficients are not integers, this is impossible. Now suppose

d=4. From (27) we have

W(y) = 1+ (9+az)y* + (75-3a)y® + -,

ao 144_a2
- y +
8 2

S(y) y> e (34)

Therefore, from Theorem 5(iii), a5 is0 or 8, and so there are just two possibilities; either

W(y) = 1 + 9y* + 75y® + 171y + ... |

S(y) = 72y° + 368y° + 72y (35)
or
W(y) =1+ 17y* + 51y® + 187y% + ... |

S(y) = y + 68y° + 374y° + 68y%3 + yl7 . (36)

We see the advantage of considering the shadow code. From Gleason’ s theorem alone we could

conclude (if d =4) only that W(y) has the form (34) for some undetermined a,.

In fact each possibility is redized by a unique code, (35) by the code d3* and (36) by

(dioe7f1)™ (see Eq. (15)) [44], [48].

We now determine the weight enumerators W() of the individual cosets C)) (0<j < 3). In

the case (35),
Wh (y) + W (y) = S(y) = 72y° + 368y° + -, (37

while from Theorem 5 (since n = 2 mod 8) W (y) — W (y) is a multiple of f;g=y —34y° +

34y18 —y17 say cfig. From (12), (37), c=0, and W (y) = W) (y). We conclude that
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WO (y) =1+ 9y* + 171y8 + ... |
W (y) = 75y° + .-

W (y) = W (y) = 36y° + 184y° + - . (38)
In the case (36),

WO (y) + WO (y) =y + 68y> + 374y% + ... |

Wb (y) - Wl (y) = cf1?,
andsoc=z1,say +1. Then

WO (y)

1+ 17y* + 187y% + - |

W@ (y) = 51y% + ... |

wW® (y) =y + 17y® + 187y° + 51y |

W® (y) = 51y° + 187y° + 17y®® + yi7 | (39)

Weight enumerators of code (or putative codes) with the highest possible minimal distance. In
the following paragraphs we record the results of applying the above method to codes of length

up to 72.

When it is possible to use Theorem 5(v) to decompose S uniquely into W and W(®) we do
s0, otherwise we just give S. The coefficients of W(y), S(y) (and sometimes W (y), W) (y))
are palindromic, and we give them only up to the midpoint. For codes of length n = 34 the

expansions have been further truncated. We use  and y for undetermined parameters, and

f(y) = y"f(1/y) to denote a reciprocal polynomial. The symbol &= indicates a family of

weight enumerators for which no corresponding codes are known.

n=2,4,6, d=2. W= (1+y?)"2 s=(2y)"2, w® = wW®  a unique code (i, — see (14),

[44]).
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n=8,d=4, Typell. W=S=fy = 1+14y* +y®, a unique code (the Hamming code eg — see

[44]).

n=8, d=2, Typel. W= (1+y?)4 S= (2y)* W = wW® a unique code (i, — see (14),
[44]). (So there is no self-dual code with the weight enumerator 1+ 7y? +7y®+y8 of the

nonlinear formally self-dual code givenin[31, p. 141, Fig. 5.1].)

n=10,d=4. S= 5y/2+27y°+ .-, impossible.

n=10, d=2. W= 1+(5-2B)y?+ -+, S=By+(32-2B)y°+ -+, W) = WO s B is
even and < 2, hence two possibilitiess W = 1+y?+14y*+ .., S=2y+28y°+ .-.: or
W = 1+5y?+10y*+ ---, S= 32y°. Each is redlized by a unique code (egi,; i1 — See
[44]).

n=12,d=4. W= 1+15y*+32y%+ ... S=6y2+52y®+ ... WD =6y2+20y6 + ...,

w® = 32y6, aunique code (dj, —see [44]).

n=14, d=4. W= 1+14y*+49y+ ... S=14y3+100y"+ ---, WD = W a unique

code (€2* —see[44]).

n=16, d=6. W= 1+112y%+30y8+ ..., S= -3/4+35y*+ ..., impossible. (So thereis

no self-dual code with the weight enumerator of the Nordstrom-Robinson code.)

n=16, d=4. Either W= S= fZ, Typell, precisdly two codes (€3, dis — see [44]); or
W= 1+12y*+64y8 +102y8 + -, S=32y*+192y8+ .-, W =wW® a unique

code (d3* — see [44]).
n =18: discussed earlier in this section.
From now on we usually do not mention weight enumerators that can be eliminated.

n=20, d=4  W=1+(5+4B)y*+(80-8B)y®+(250-4B)y®+(352+16B)y%+ ...,

S= By?+(160-4pB)y® +(704+6B)y°+ ..., precissly 7 codes, corresponding to



-20-

B=0,..4,610—see[44].

n=22, d=6. W = 1+77y®+330y8 +616y°+ - - -, S=352y7 +1344y1 4 ...

WO = W aunique code (the ‘“ shorter Golay code’” g, defined in Sect. 2 — see [48]).

n=24,d=8, Typell. W= S=1+759y®+2576y'?+ .. aunique code (the Golay code g,

—see[43], [48], [31], [14]).

n=24, d=6, Typel. W = 1+64y®+375y8+0960y%°+1206y'?+ ..., S=6y*+744y8
+2506y12+ ... WD = 6y4+360y8+1316y12+ ..., WO = 384y8+1280y22 + ...,

aunique code (the *‘ odd Golay code’’ f,, — see [49]).

n=26 d=6. 2 cases ethe W = 1+52y%+390y®+1313y0+2340y*2+ ...,
S = 26y° +1560y° +5020y 13 + - - -, W = W) aunique code (A =& —see Tablell,

[13], [45]); or W = 1+20y®+550y8+1025y%° +2500y2+ ..., S=y+20y°

<

+1575y° +5000y 2 + ..., W = y+550y° +2500y13 + 1025y + 20y?t, w® = wb

(no code exists — see [13], [49]).

n=28  d=6. Either =~ W = 1+26y°® +442y8 + 1560y *° + 3653y 1% + 5020y 4 + - - -,

WO = y2 +52y6 +1703y10 + 4680y 4 + - -, W) = 26y° +1560y10 +5020y4 + - -, a
unique code (A,g=D1, omitted from [45] - see Tablell, [13]); or
W = 1+42y%+378y8 +1624y10 +3717y2  +4680y*+ ..., S=84y%+3248y10+

9720y + ... precisely 2 codes (Bog = f-** (@), Cpg = f4* (b) — see [13], [45]).

n=30, d=6. Three casess. W = 1+19y®+393y®+1848y'%+5192y1? +8931y%* + ...,
W = W = y®+114y7 +3375y" +9404y ™+ - -, precisely 3 codes (Ag, Bso, Can,
omitted from [45] — see [13]); W = 1+27y° +369y® + 1848y 10 + 5256y12 + 8883y 14 + - - - |
WO = y34234y7 +6735y1 +18828y 5+ -, WO =y3  +99y7 +3402y 1
+9414y™+ ... a unique code (D, omitted from [45] — see [13]); or

W = 1+35y6 +345y8 +1848y1° + 5320y 12 + 8835y 14 + - - - wd = w@ = 120y7
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+3360y 1! +9424y'® + ... precisely 9 codes (Eg, ..., M3, only 8 of which are given in

[45] — see [13]).

n=32, d=8. Either W =S = 1+620y®+13888y*?+36518y'®+ ---, Typell, precisely 5
codes (see  Sect.4, [11]) or W = 1+364y®+2048y*° +6720y'? + 14336y
+18598y16 + ... S=8y*+502y®+13944y1% +36448y6 + ... WO = gy*+336y8
+6776y12 +18528y6 + ..., WO =256y +7168y2 +17920y®+ ..., Typel;

precisely 3 codes (see Sect. 4).

n=34, d=6. Either W = 1+(34-4B)y® +(255+4B)y® + (1921 +20B) y*°
+(8466-20B)y2+ -+, WD = WO = pyS+(816-6B)y° +(14144+15B)y B+ - -,
codes exist corresponding to B =0 (D2),3 (R0),1,2,4,5,6,7 (not shown); or
W = 1+6y°+411y8+1165y° +10886y'2+ ---, WO =y+411y°+10886y°+ - - -,

WE® = 6y°+1165y° +17556y3 + - - -, acodeexists (R1).

n =36, d=8. Either W = 1+225y8 +2016y1° + 9555y 12 + 28800y 4 + - - -
S = 42y% +3780y10 +58230y 4 + - - -; or W = 1+289y8 +1632y1° + 10387y 12
+28288y1+ -, W = y2+34y6+2176y0 + 209886y + -, W) = 1632y1°

+28288y** + - - .: codesexist in both cases (R2, D3).

n=238, d=8. Either W = 1+171y® + 1862y + 10374y*? + 36765y 14 + - - -,
S = 114y’ +9044y* + 118446y ° + .. . or W= 1+203y®+1702y1 + 10598y*?
+36925y*+ ... S=y3+106y’ +9072y* +118390y° + - - -, codes exist in both cases

(D4, R3).

n=40, d=8. Either W = S = 1+285y® +21280y'? + 239970y + 525504y + ... Typell,
at least 100 codes — see [60], [73] (e.g. D5); or W = 1+(125+16B)y® + (1664 -64p) y*°
+(10720+32B) y'? + (44160 +192B)y¥* + ---,  S= By +(320-8B)y®  +(21120

+28B)y*?+ .-, Typel, codes exist corresponding to =0 and 10 (D6, D7) and possibly
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other values.
n=42, d=8. Either W = 1+(84+8PB)y® + (1449 - 24p) y*° + (10640 - 16) y*?
+(50256+112B)y6+ ---, S= By>+(896-8P)y° +(48384+28B)y3+ ---, codes

exist corresponding to at least B = 0 (R4), 1, ..., 7 (not shown), and 42 (a cyclic self-dua
code with generator polynomial (x +1)(x? +x+1)(x3 +x+1)?(x® +x®+x* +x2 +1)? [174],

54a)); or w= W =1+164y8+697y°® +15088y'2+33456y4+ ..., WO =
y y

<_
WG = y+164y° + 15088y 13 + 196718y  +512992y?! + 289460y + 33456y2° + 697y 3,

no known codes.

n=44, d=8. Either W = 1+(44+4B)y8 +(976-8p) y? + (12289 -20p) y*2
+(47904+48B)yM + .-, WD = y2+(B-10)y® +1533y% + (61096 - 20B) y4 + - - -,
WO = (976-8B)y° + (47904 +48B)y™* + - -, codes exist corresponding to at least

B=14 (not shown) and 17 (D8); or W= 1+(44+4p)y®+(1232-8B)y°+

(10241 -20B) y*? +(54560+48B)y¥* + - - -, S = By®+(2464-8B)y° +
(109120+28B)y'#+ ---, codes exist corresponding to at least B =4 (R5),5...., 15 (not
shown).

n=46, d=10. W = 1+1012y° +9660y*? +56925y** +235200y16 + ... Wl =w® =
3312y +121440y® + - - -, acode exists (subtract i , from qg).

n=48, d=12, Typell. W = S= 1+17296y* +535095y6 + 3995376y + 7681680y *

+ -+, acodeexists (q4g — See also [20]).

n=48, d=10, Typel. Either r== W = 1+704y'® +8976y* +56896y'* + 267575y6 + - ..,
S = y*+44y8 +17021y*? +535920y'®, no known codes; or W = 1+ 768y +8592y'?

+57600y** +267831y16 + ... S = 54y8+16976y'? +536040y, ... acodeexists (N1).

n=50, d=10. Either ©F W = 1+196y°+11368y'?+31752y*+397782y0+ ...,
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W = we = y +11368y*3 +397782y Y7 + ... +31752y%" +196y*, no known codes;
or W = 1+(580-32B)y +(7400+ 160B) y'2 + (56200 — 160B) y*4 + (292950 — 480B) y 1
+ -+, S= By>+(250-10B)y® +(42800+45B)y® + - .-, acode exists corresponding to
B=0 (D9). Remark. Suppose a [50,25,10] code exists corresponding to the first weight
enumerator, and let C be the [49,25,9] code obtained by deleting the coordinate corresponding
to the y term in W), Then it can be shown [6] that the codewords of any fixed weight in C
form a 2-design. In particular, the codewords of minimal weight form a 2-design with
parametersv =49, b =196, r =36, k=9, A =6, in which any two distinct blocks meet in either

1 or 3 points. Conversely, if such adesign exists then so does the code.

n=52, d=10. Either W = 1+ 250y +7980y*2 + 42800y ** + 349150y 6 + ..., W® = y2+
580y10 +63600y** + - -, W = 250y10+42800y™* + - - -, a code exists (D10); or r=
W = 1+(442-16pB)y'° + (6188 +64P) y'? +53040y4 + (308958 - 320B) y® + ..., S=

By® +(884-10B)y* + (106080 +45B) y'* + - - -, noknown codes.

n=54, d=10. Either =~ W = 1+(351-8B)y° +(5031+24p)y* + (48492 +32p) y**
+(315198-160B)ye+ ..., S= By’ +(2808-10B)y'! + (258624 +45R)y®+ ---, a
code exists (subtract i, from D11); or r= W = 1+(351-8B)y0 +(5543+24p)y*?
+(43884+32PB) y* + (332094 -160B)y*® + ---, S=y3+(B-12)y’ +(2874-10p)y"*

+(258404+45B)y*® + - - - no known codes.

n=56 d=12, Typell. W =S= 1+8190y'?+622314y'® +11699688y° + 64909845y ?*

+ ..., aleast 20 codes exist —see [9], [70] (for example D11).

n=56  d=12, Typel. Either = W = 1+4606y*? +45056y'4 +306922y1°
+1576960y8 + ...  S= 77y8+7630y' +624393y®+ ... or wx W = 1+4862y%?
+43008y 1 + 313066y 16 + 1570816y 8 + - .-, WD = y*+65y8 +4368y12 + 314926y16

+ -+, WO = 3328y +309248y6 + - --: no known codes in either case. A code exists
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with d =10 (N2).

n=58 d=10. Either > W=1+(165-2y)y® +(5078+2y)y* +(17190+188)y*
+(433323-18y)y®+ .-, S=y+yy?+(23918-10y)y*® + (1471338 +458) yY’ + .-,
no known codes, or W=1+(319-24B-2y)y¥® +(3132+152B +2y)y*? +(36540-
680 +18y) y1* + (299541 + 18323 —18y) y16 + - - -, S=py°+yy° +(24128-
543 —10y)y*® + (1469952 +320B +45y)y*’ + ---, codes exist corresponding to p=y =0

(D12) and 3 =0, y =58 (D124).

n=60, d=12. Threecases; r=" W = 1+ 2555y* + 33600y +278865y1% + 1717760y + - - -,
S = 396y10 +63240y14 + 3453340y 18 + - - -, no known codes; ey
W = 1+2619y1? +33216y14 +279441y1® + 1718784y 18 + ..., S=y%+384y0+
63306y14 +3453120y'® + ..., no known codes; or W = 1+3451y'?+24128y*
+336081y16 + 1469952y 18 + .. WO =y? +319y10+39672y14 +1981300y 18 + - - .|

W = 24128y* +1469952y8 + ... acodeexists (D13).
(This completes the proof of Theorem 2.)

n=62, d=12. Either r= W=1+(1860+32B)y* +(28055-160p)y* +(255533+96p3)y®

+(1718020+800B) y8+ ..., S=Ry’+(1116-12B)y! +(171368+66B)y*>+ ---, or
rs  W=1+2308y'? +23767y* +279405y16 + 1622724y 8 + ... ~ S=y3+1039y*
+171928y*° + - - - no known codesin either case.

n=64, d=12, Typell. W = S= 1+2976y* +454956y6 +18275616y%° + 233419584y ?*

+ .- atleast 38 codes exist — see [71] (for example D14).

n=64, d=12, Typel. Eithee = W= 1+(1312+16p)y'?+(22016-64p)y*
+(239148-32B)y¥0+ ..., S=y*+(B-14)y® +(3419-12B) y'? + (451732 +660) y1®
+ .-+, no known codes, or W =1+(1312+16B)y"?+(23040-64p)y*

+(228908-32B)ye+ ..., S= By®+(3328-12B)y*? +(452096+66B)ye+ ---, a
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code exists corresponding to f =32 (D15).

n=72, d=14, Typel. Three cases. = W = 1+7616y**+134521y'6 + 1151040y + - - -,

S = y*+442y*2 +245480y16 + .. wm= W = 1+8576y'* +124665y1° + 1206912y'8
+ .-, S=y8+532y2+244675y®+ ... or = W = 1+8640y*+124281y1®
+1207360y*8 + ... S = 546y* +244584y% + .. .: noknown codesin any case.

Examples of self-dual codes. The following codes, referred to in the preceding paragraphs, have
the highest possible minimal distance d of any self-dual code of the given length and type. (The

codes N1, N2, D1-D4, D6-D10, D12-D13, D15-D20, R1-R5 appear to be new.)

The neighbor construction. If C isaself-dual code and u [l C has even weight then the neighbor
N (u) of C corresponding to u is generated by u and thevectors{v O C: u-v = 0}. Itiseasy to
show that N (u) is self-dual and that any self-dual code of length n can be reached from any other

by taking successive neighbors. The analogous construction for lattices was used by Kneser [23].
(q4g). The[48,24,12] Type Il quadratic residue code 45 is generated by the vectors 11...1 and
1(01111011110010101110010011011000101011000010000)

(with 1's at the nonzero squares modulo 47). The parentheses indicate as usual that al cyclic

shifts are to be used — compare [7], [11].

(N1) If u = 08050410CD 00, the corresponding neighbor N (u) of qug is a [48,24,10] Typel

code.

(N2) If u=B12FC10D44D47C the corresponding neighbor N(u) of D11 (see Tablell) isa

[56,28,10] Type | code.(¥

(4) Unlike other codes in this section, this does not necessarily have the highest possible d (cf. Table ).
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The double circulant construction. Tablell lists self-dual codes having generator matrices of the

form

1111

(40)

e =)
Py)

or

| R ! (41)

where R is a circulant matrix with first row r. (40) is used only when n=0 (mod 4). These
constructions have been investigated by several authors [1], [3], [21], [22], [29], [31, Chap. 16],

[49], [62], [63], [68]-[71].
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Tablell

Double circulant codes

Name n k d Type Form r (hexadecimal)
U2 2 11 6 | (41) 97
024 24 12 8 |l (40) B7
Ax=f3" 26 13 6 | (41) 5F7
Axg=D1 28 14 6 | (40) 8D
D2 3 17 6 | (41) 1ECE
D3 3 18 8 | (40) 2C6B
D4 38 19 8 | (41) 5793
D5 40 20 8 I (41) 57EB
D6 40 20 8 | (41) 11E35
D7 40 20 8 | (41) B393
D8 4 22 8 | (40) 5E6B5
D9 50 25 10 | (41) 31C4D
D10 52 26 10 | (40) 57F69D
D11 56 28 12 |l (40) ADF1FF
D12 58 29 10 | (41) D5A89B
D12a 58 29 10 | (41) 2DD1D3
D13 60 30 12 | (40) 3EF6B77
D14 64 32 12 |l (40) 427BDOB
D15 64 32 12 | (41) 2EF3DD75
D16 66 33 12 | (41) B2D97D9
D17 68 34 12 | (41) 1F5C885F
D18 72 36 12 | (41) 2B8795E5
D19 74 37 12 | (41) 1439372C7
D20 82 41 12 | (41) A464B919B

Codes with no known structure. The codes in Tablelll were found by constructing self-dual
codes at random until a sufficiently high minimal distance occurred. The algorithm used was a
binary version of that given in the appendix to [28], modified as follows. After n/2 -1 generators
are found, instead of searching randomly for the final generator, the program searches for an even

weight vector in BY \ B, where B is the code generated by the first n/2 - 1 generators.
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We describe these codes by giving the rows of A in hexadecimal, where [I A] is a generator

matrix.

Tablelll

Codes with no known structure

(RO) [34,17,6]: 033E3, 037D8, 03D05, 0710E, 07COF, 08548, 08A2B, 0AC94, 0BSAB, 0D09C,

107C8, 11CAE, 150A6, 186FB, 1C018, 1C693, 1CBBO

(R1) [34,17,6]: 04B8A, 04D43, 05A07, 083A9, OCS84E, OCBFC, 0CD28, OD5BD, 0D834,

OEF5A, OF5D3, 0F902, 12331, 188D4, 197B3, 1DCEC, 1EOBA

(R2) [36,18,8]: 03BB4, 05FEA, 07113, 0OC7F6, 123BA, 133C6, 13770, 19B64, 1A86D, 1CAEL,

1F3A0, 260FA, 2A751, 2EAEF, 31666, 32179, 36502, 37F59

(R3) [38,19,8]: 078F4, 1499B, 15B0D, 18338, 18744, 19194, 1E2FA, 2B40A, 2DF8A, 31457,

35F67, 3C23F, 4C3A6, 4C535, 530FB, 566C1, 5B226, 6EA18, 70897

(R4) [42,21,8]: 020D3D, 02854A, 039F91, 061D23, 06295C, 06DA9F, 076544, 086B07,
O0A7377, ODD96D, ODF2FE, OF505E, 125583, 139C17, 14AA29, 198EAA, 19D343,

1B6414, 1C7EB2, 1D3619, 1F12EB

(R5) [44,22,8]: 01597D, 03E68E, 0684E0, 06D614, 09E19E, 0A6385, 141CDB, 178090,
1D71EC, 1F2F97, 1F52D3, 22F5FB, 260267, 268334, 277D38, 282BD9, 293F8E, 2A8D24,

33AE9F, 350159, 3528E5, 3D17C0

4. The proof of Theorems3 and 4

It was shown in [11] that there are precisely five [32,16,8] codes. Koch [24], [25] has given

an alternative proof of thisresult. These codes are



CP1
CP2
CP3
CP4
CP5

(or gzp),
(orrs),

(or 2g16),
(or 8f4),

(or 16f5,).

CP1 is generated by the vectors
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aquadratic residue code,
a second-order Reed-Muller code,
atwisted Reed-Muller code,

1(0001001000011101010001111011011)

(having 1's at the nonresidues modulo 31), CP2 is well-known (see for example [31]), and a

generator matrix for CP5 is given at the foot of p. 41 of [11]. Koch [24] and Yorgov [72] have

given alternative constructions for CP3 and CP4. Let eg be the particular version of the [8,4,4]

Hamming code generated by the vectors 1(1101000), let e be the version generated by

1(1011000), and let G4, G, be corresponding generator matrices. Let T be the permutation

(0)(1, 2, ..., 7). Then CP3 and CP4 have generator matrices

0
cp3: U

CP4: Ep
2

0 G, 0O
[l
G, Gi Gif w
G, G, O E’
G2 0 GzD
0
0 G G U
Gl Gl TG]_D (43)

An octet in one of these codes is a set eight mutually digoint sets of four coordinates (called

tetrads) with the property that the union of any two is the support of aword of weight eight in the

code. Itisnot difficult to verify with the assistance of a computer that the number of octets is as

follows;



-30-

CP1:0, CP2: 155, CP3:35, CP4:1, CP5:0.

Also dl octets in any CPi are equivalent under the group of the code. Furthermore, if tq, ..., tg
are the tetrads of an octet in CPi, then for al u O CPi, either [u n t,0 ..., [u n tg[Are even or

(U n t.d .., U n tglare odd.

Proof of Theorem 3. We show that any [32,16,8] Typel code C can be constructed in a certain
way from a unique [32,16,8] Typell code B. From Theorem5 it follows (see the previous
section) that W = 1+364y8+2048y°+ ..., S=8y*+592y8+ ... If C and C® both
contain vectors of weight 4 then their sum is in C® and so has weight 6, a contradiction.
Therefore we may assume CY) contains all 8 vectors of weight 4. These must be disjoint, and the

sum of any two isaword of weight 8in C(?).

Thecode B = C(© 0 C® js self-dual (see the proof of Theorem 5), has minimal weight 8,
and so must be one of the CPi. By the previous paragraph B contains an octet. Also C( isa
translate of C(® by any of the eight tetrads in the octet. Thus C is obtained from B by the

following construction.

Let B be a CPi that contains an octet, and let t be any tetrad of the octet. We form C by
taking all wordsu [0 B that meet t in an even number of coordinates, together with al words u +t
where u [J B meetst in an odd number of coordinates. It is easy to check that C is linear and
self-dual, and is independent of the choice of t. Also the minimal weight in C is 8, since if u
intersectst oddly then u intersects all eight tetrads oddly and so has weight at least 8. By adding t
we change the weight of u from 4mto 4m + 2. We conclude that C is a[32,16,8] Typel code.
Precisely three such codes arise in this way, from CP2, CP3 and CP4, since each of these contains

just one type of octet. This completes the proof.
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Proof of Theorem 4. Let Q, be the set of al distinct (but not necessarily inequivalent) self-dual

codes of length n (of both typesif nisamultiple of 8), and let

1 n i
W) = > W) =Xy (44)
@ nOeig 0
be their average weight enumerator. If Y, + Py + -+ + Pq-» < 1, there must exist an

[n, n/2, d] self-dual code. We know from [48] that, if n=2m,

I mmO

l-lJ(y) — Elzm—l+l|:l—l EQm—l (1+y2m) + z 2]% (45)
Uop % il

There are similar expressions for codes of Typel and Typell aone. Equation (45) implies that

self-dual codeswith

d=4 exit if n=16
d=6 exist if n=34
d=8 exist if n=50
d=10 exist if n=68
d>12 exit if n=>86
d=>14 exist if n=>104
d=16 exist if n=122
d=18 exist if n=140
d=20 exist if n=158.

This, coupled with codes from [31] and Section |11, compl etes the proof of Theorem 4.

The same method can be used to obtain lower bounds on the number of inequivalent codes.
Consider Type | codes of length 34, for example. Let N be the total number of distinct codes, and

let N, be the number that contain precisely r words of weights 2 and 4. Then

16 .
N=T] (2!+1) = 2.0769 --- - 104,
j=1

(from [48]), and from (44), (45) the average number of vectors of weights2 and 4 is

46937

w57 N (W)

Wo + Wy =
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The total number of words of weight 2and 4 is

AN

1'N1+2'N2+3'N3+"'

v

Ny + N + N3+ -+ =N - Ng.
Therefore the number of codes with no vectors of weight 6 is
No = N(1-2A) = 5.8945... - 10%° .

Since each code has a symmetry group of order at most 34!, we conclude that there are at least

5.8945... - 10%9/34! = 199.65... (hence 200) inequivalent [34,17,8] Type | codes (see Tablel).

5. The proof of Theorem 1.

Typell codes. If Cisof Typell then the highest minimal distance is known for n < 88, n£72
[14, p. 194], [31, p. 626]. For n= 80, 2[(n+6)/10] is greater than or equal to the Mallows-

Sloane bound (2). This establishesthe result for Type Il codes.

Type | codes. Let C be a Typel code of length n=8k+2t, 0<t<3. The weight
enumerators of C and its shadow S can be written as in (28), (30), for certain integers ag=1,
ai, ..., a¢. For n < 72 the theorem follows from the results in Section 4, so we now assume
n>72 We write n=101+20, -3<d <1, and suppose, contrary to the theorem, that
d=2[(n+6)/10] +2. We actually assume d = 2[(n+6)/10]+2 = 2| +2, for the same

contradictions apply if d is greater than thisvalue. Then
W) =1+ Agy?*2+ - (46)

We apply the method used in [34]. Equating (28) and (46) and dividing by (1+y?)"™? yields

[ 0 vy 4
(1+Y)™"2 = 5 a DY(l—Y‘?d + termsof order Y'*1,
i=o 0(+Y)" O

whereY = y?. The aj forj < | can be determined by expanding (1+Y) "2 in powers of
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_ Y(1-Y)
(1+Y)*

viathe Burmann-Lagrange theorem ([19], [31, p. 627], [33], [34], [65]):

04-1 O Nun
a=20% 0% ey ¥0m
" gay!~t gdy o-m
n gd?t —n/2-1-4j -2j, U
O R RO @)
and in particular
a = - % coefficientof Y'™! in (1+Y) " (1-¥)” (48)
- NSy 521051 -8-12
_on '\ I+ 10021+ 8- - 10
Tor 2 GOV Tggo-1 o (49)

i=0

On the other hand an upper bound for [&, Ltan be obtained by considering S Let
S=35 B y". (50)

From Theorem 5 we know that there is at most one nonzero B, forr < (d+4)/2. Let B;, yio be
the lowest degree nonzero term in S Then B; = 1if iy < d/2, B;, < 2n/d if ig = d/2 (from
Egs. (6),(7)). Furthermore By = 0 (Eq. (5)), and (from (4)) B, = 0 unless r =t (mod 4).

Therefore we can rewrite (30) as

Et _ % (- 1)k A on/2-6k+6] 71 (1 _7)2%k~2]
y i=io

whereig = 4jo+t, Z=y*,
= B, Z'° + termsof order 27, (51)

whereJ = [{d/2+1-t)/40 Wedivide this by (1-2Z)?* and use the Biirmann-Lagrange theorem



to expand Z/° (1-2) "2k in powersof ¢ =Z(1-2)"2. Let
Z°(1-2)* =3 o, ¢ . (52)

Then a; isdetermined for j < J-1. Wehave

aj = 57 Edizjjil 07 (@ (1279523 ES#‘ (53

and (comparing (51), (52)),
ay_; = (- 1)k p-n/2+6k-6] B, q , (54)
forj <J-1. Toobtainaboundfora, wesetj=j', wherek—j' = 1. Thevaueof j' dependson

the residue class of n modulo 40, as shown in Table V. Thetable also givesd and J - 1.

TablelV

Vauesof d, J-—1andj’ asfunctionsof n

n=40a + O 2 4 6 8 10 12 14 16 18

k ba ba ba 5a b5a+1 5a+15a+1 5a+1 5a+2 b5a+2
t 0 1 2 3 0 1 2 3 0 1

I 4a 4a 4da+1 4a+1 4a+1 4a+1 4a+1 4a+2 4a+2 4a+2
o) 0 1 -3 -2 -1 0 1 -3 -2 -1
d 8a+2 8a+2 8a+4 8a+4 8a+4 8a+4 8a+4 8a+6 B8a+6 8a+b6
J-1 a a a a-1 a a a a a a
N a a a-1 a-1 a a a a-1 a a

n=40a + 20 22 24 26 28 30 32 34 36 38

k ba+2 5a+2 5a+3 5a+3 5a+3 5a+3 5a+4 5a+4 5a+4 5a+4
t 2 3 0 1 2 3 0 1 2 3

I 4a+2 4a+2 4a+3 4a+3 4a+3 4a+3 4a+3 4a+4 4da+4 4a+4
o) 0 1 -3 -2 -1 0 1 -3 -2 -1
d 8a+6 8a+6 8a+8 8a+8 8a+8 8a+8 8a+8 8a+10 8a+10 8a+10
J-1 a a a+l a a a a+l a+l a a
j" a a a a a a a+l a a a

From (23),
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]_° coefficientof Z) 7o in (1-2)2" 2
j

2
I

- 2—k - coefficientof Z) 7t in (1-Zz)3" ~2k-1 (55)
J

2(Kj' —2Kjo+j'] —j'—j,—10
_ (J_, _'Jo_ j'o) Eék.’j. jo-13 (=6
i"(i"=jo) o1 -le1 p

The magnitude of this expression is maximized by taking jo=0. Setting jo=0 in (54), (56) we
obtain

) O
[y 2_kC 261 -n/2 %k_'—J -17, (57)
j ol -1 g

wherecislunless4j’' +t = d/2,inwhich casec = 2n/d. Thisisthe desired bound for a,.

For n in the range 74 < n < 500, (49) exceeds this bound (thus proving the result), for all
except the 12 values n =82, 92, 102, 112, 122, 132, 152, 162,172, 192, 202 and 232. This may
be established by direct calculation of (49) and (57). Even though there is massive cancellation in
(49), double precision arithmetic on a Cray X-MP computer is accurate enough to evaluate the
sum in (49) to at least 14 significant digits. For example, when n =500, | =50, from (49) we find
that agy = —3.347020 - - - - 10%3 (although the largest terms in the sum are around + 10%),

while (57) gives [agy[& 1.059833 - - - - 103!, acontradiction.

For the 12 values 82, ..., 232 we establish a contradiction as follows. The coefficients
ag, ..., a, are caculated from (28) and (46), and substituted in S (in Eg. (30)). Then
a+1, 4)+2, ... aredetermined by requiring that the leading coefficients{ B; : i < d/2} in Sshall
either al be zero or exactly one of them be 1 and the rest zero. In every case it turns out that one
of the next two coefficients in S (Bsj+t OF Baj+a+t) IS Negative. This is impossible, and
establishes the result. For example, when n=82 (so that k=8, t=1, | =8, d =18), we have

ag=1, a;=-41, a,=615, a;=-4182, a,=13161, a5=-18040, ag=9512, a;=-3280 and
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ag=—39524. If werequirethat S/ybegins0-Z + 0-2Z2 + --- thenag = a;p = Oand
Sly = -308.78... Z° + 6580.5 Z% + ---

The negative coefficient yields the desired contradiction. (We could also deduce the contradiction
from the fact that the coefficients are not integers.) Similar contradictions arise in the cases

Sly=1-Z+0-2%+ ---and0-Z+1-2%+ ---

For n > 500 we apply the saddle-point method [8]. For simplicity we assume that n is a
multiple of 40, n=40a say, so that k=4a,t=0, 1 =4a, 6=0,d=8a+2and|' =a. The other 19

residue classes modulo 40 can be handled in the same way.

To further simplify the analysis®® we begin by verifying that (49) exceeds (57) for al n =40a
in the range 500 < n < 3000. This calculation can be carried out exactly (in multiple-precision
integers) using the Macsyma program [35]. For example when n =3000 we find from (49) that
asp = —8.890... - 1027, whereas from (57) [CAgypl< 2.002...- 10'%, a contradiction.

Therefore, when applying the saddle-point method, we may assumen > 3000, | > 300.

We first estimate b; = —2n~I a,, which from (48) is equal to the coefficient of Y' ™1 in

(1+Y)~'"1(1-Y)?". From Cauchy’sformula,

L a+n'ta-n

by = ST VES!

Y,

integrated along asmall circlearound 0. LetY = e?™2, z = @ +iy, so that

_ 1 4 1
by = I 21z 0 271z 21z 4Ttz
p l+e ge (1-e ") (1-e"") O

= [ 9(2) e"@ dz, (58)
P

(5) Inretrospect it is clear that a much smaller value than 3000 would suffice.
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wherePisany path{ z = 0+iy: -% < 8<% },y>0,9(2) = (1+e?™?) ! and

h(Z) - _ Iog{eZ]‘[iZ(l_eZHiZ)(l_e4T[iZ)} )
Then
2 _ .
h'(Z) = 270 - 4q +q2 1 , q= eZmz,
1-q

5_an4_7a43_-9n2 —
h'(z) = a2 - 242847 ~79 222q tq-1
q(1-9%)

We see that h'(z2) =0 when q=qo=(V17-1)/8=0.390.. and z=zq = iy,

Yo = 0.14970331.... Then

@) _ 1 _ 512
do(1-do)(1-05)  51V17 -107

= 4.95747480... = ¢; (sa&y) , (59)

h''(zo) = — 192.04135.. = — a (say) . (60)

In fact h(z) has a saddle point at zy, and we choose P = { B +iyy: —% < 0<% }. Wedivide
P into three sectionss -% <8 <-Viogl/VI, -+Vlogl/VT <8 <+Vlogl/VT,
Viog | /V1 < 8<%, and denote the corresponding integrals in (58) by 1, Iy, | g respectively.

Then, for | = 300,

VTog | INT 0 o B DD
Iy =2 1 -~ 02- L 06%311d0
w229(0) [ el hize) - 582~ ¢ e,
where
O 0
B=max[Th" (2)0:z= 0 +iy,, BX w/|°9 300 .
0 300 O

By computer we find that 3 = 1503.9.... Therefore

Iy = 0.7192... ¢} Iy ,
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where

Viog I WT  _ 00 g2, B g0
=2 [ e % "do.
0
Weset 8 = t/Val, obtaining
> VaTogl - t - Y e
= [ e T dt
Val 0
wherey = F(6a°?) = 0.09418...
2 [L)o [ D _i_iﬁ
=_B’— [ Be T (61)
Vol Do e B
O 90
Thefirst termin (61) is
1 t? 3
- -cyt
> _2 | e dt,
0

wherec, = y/v/300

I
©
o
Q
¥

\Y)

1
| e " dt, c3=% +c,=05054..
0

0.123...
=/ L ef(vey) = :
cial

Vil

al

The second term in (61) is easily shown to be negligible (less than 10747 in fact) for | = 300
Thus

0.0885... ¢}

Iy 2 ———, for 12300.
VI

In evaluating the next integral we make use of the inequality



-39-

cosx<1—%x2, for 0<x<a, (62)
where
0. arf
B 0N 5 0
c=[1——"1.
o2 O
O 2 0O
We omit the easy proof.

The contribution to b, from the right-hand section of the path is

72 O -27i0
1 0 ¢ S do .

Ig 2
1-do VTog | VT qu(1_qoe2m6)(l_qoe4m9)D

Let

O
1

. . 2
2(1-00e™™®)(1-qoe™®) o

\}

. . 2
o(1-doe™™*)(1-goe'™) o

in the range of theintegral, wheree = Viog | /V1 , and so
D > (1+g3—-2qo cos 21me)((1+0g)% — 4qg cOS® 2TT€) .

Regarded as a cubic polynomial in cos 21t ¢, this expression has negative slope near 1, and so we

obtain alower bound to it (from (62)) by replacing cos 21 eby

Cs logl
1-_—
2 [

where
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U . m/Tog 300 iy
cy = 5 30 O - 0.9390..
g 1vlog 300 g
0 V300 0
After some further simplifications we obtain
O O
D > 0.2670... [ + 2 'Iog A,
0 0
Therefore, for | = 300,
~1/2 % |
O 0 . C
PR P 'Iog'm (4.95747480...)' [ e2M0de > .
1-qo 0 0 JTog | [
T

The same bound applies to | . These terms are negligible compared with I, and we conclude

that

0.0885... c}
b, > — | = 300, (63)

where ¢ isgiven by (59).
On the other hand (57) implies

20 42 Mal 5 4a+9aH,(1/9)
(b0< £ 242 < 2 2
9 © Hal” 3yma

from [28, p. 309], whereH,(x) = —xlog, X — (1-x)log,(1-x), and so

1.8806... ck
[b,0< ——\/T , (64)

where

oL+ (9/4)H,(1/9)

Cs = = 4.38425361...

It is easy to verify that the two bounds (63) and (64) are incompatible for | = 300. This
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completes the proof of Theorem 1.
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List of Footnotes

On p. 629 of [31] thisisincorrectly stated asd < 0.178n +0o(n).

A(n, d, w) denotes the maximal possible number of binary vectors of length n, weight w

and Hamming distance at least d apart [7], [31].

Indeed, the code described in [3] has generator matrix of the form given in Eq. (41) below,

where thefirst row of Ris 19E89179 in hexadecimal, and is not self-dual.

Unlike other codes in this section, this does not necessarily have the highest possible d (cf.

Tablel).

In retrospect it is clear that a much smaller value than 3000 would suffice.
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