A new upper bound on the total domination number of a graph

${ }^{1}$ Michael A. Henning* and ${ }^{2}$ Anders Yeo
${ }^{1}$ School of Mathematical Sciences University of KwaZulu-Natal
Pietermaritzburg, 3209 South Africa
${ }^{2}$ Department of Computer Science
Royal Holloway, University of London, Egham
Surrey TW20 OEX, UK

Submitted: Sep 7, 2006; Accepted: Sep 3, 2007; Published: Sep 7, 2007

Abstract

A set S of vertices in a graph G is a total dominating set of G if every vertex of G is adjacent to some vertex in S. The minimum cardinality of a total dominating set of G is the total domination number of G. Let G be a connected graph of order n with minimum degree at least two and with maximum degree at least three. We define a vertex as large if it has degree more than 2 and we let \mathcal{L} be the set of all large vertices of G. Let P be any component of $G-\mathcal{L}$; it is a path. If $|P| \equiv 0(\bmod 4)$ and either the two ends of P are adjacent in G to the same large vertex or the two ends of P are adjacent to different, but adjacent, large vertices in G, we call P a 0 -path. If $|P| \geq 5$ and $|P| \equiv 1(\bmod 4)$ with the two ends of P adjacent in G to the same large vertex, we call P a 1-path. If $|P| \equiv 3(\bmod 4)$, we call P a 3 -path. For $i \in\{0,1,3\}$, we denote the number of i-paths in G by p_{i}. We show that the total domination number of G is at most $\left(n+p_{0}+p_{1}+p_{3}\right) / 2$. This result generalizes a result shown in several manuscripts (see, for example, J. Graph Theory 46 (2004), 207-210) which states that if G is a graph of order n with minimum degree at least three, then the total domination of G is at most $n / 2$. It also generalizes a result by Lam and Wei stating that if G is a graph of order n with minimum degree at least two and with no degree- 2 vertex adjacent to two other degree- 2 vertices, then the total domination of G is at most $n / 2$.

Keywords: bounds, path components, total domination number
AMS subject classification: 05C69

[^0]
1 Introduction

In this paper, we continue the study of total domination in graphs which was introduced by Cockayne, Dawes, and Hedetniemi [5]. A total dominating set, abbreviated TDS, of a graph G is a set S of vertices of G such that every vertex is adjacent to a vertex in S. Every graph without isolated vertices has a TDS, since $S=V(G)$ is such a set. The total domination number of G, denoted by $\gamma_{t}(G)$, is the minimum cardinality of a TDS. A TDS of G of cardinality $\gamma_{t}(G)$ is called a $\gamma_{t}(G)$-set. Total domination in graphs is now well studied in graph theory. The literature on this subject has been surveyed and detailed in the two books by Haynes, Hedetniemi, and Slater [7, 8].

For notation and graph theory terminology we in general follow [7]. Specifically, let $G=(V, E)$ be a graph with vertex set V of order $n=|V|$ and edge set E of size $m=|E|$, and let v be a vertex in V. The open neighborhood of v is the set $N(v)=\{u \in V \mid u v \in E\}$. For a set $S \subseteq V$, its open neighborhood is the set $N(S)=\cup_{v \in S} N(v)$. If $Y \subseteq V$, then the set S is said to totally dominate the set Y if $Y \subseteq N(S)$. For a set $S \subseteq V$, the subgraph induced by S is denoted by $G[S]$. We denote the degree of v in G by $d_{G}(v)$, or simply by $d(v)$ if the graph G is clear from context. The minimum degree (resp., maximum degree) among the vertices of G is denoted by $\delta(G)$ (resp., $\Delta(G)$). We denote a path on n vertices by P_{n} and a cycle on n vertices by C_{n}.

2 Known bounds on the total domination number

The decision problem to determine the total domination number of a graph is known to be NP-complete. Hence it is of interest to determine upper bounds on the total domination number of a graph. In particular, for a connected graph G with minimum degree $\delta \geq 1$ and order n, the problem of finding upper bounds on $\gamma_{t}(G)$ in terms of δ and n has been studied. The known upper bounds on $\gamma_{t}(G)$ in terms of δ and n are summarized in Table 1.

$\delta(G) \geq 1$	$\Rightarrow \gamma_{t}(G) \leq \frac{2}{3} n$	if $n \geq 3$ and G is connected
$\delta(G) \geq 2$	$\Rightarrow \gamma_{t}(G) \leq \frac{4}{7} n$	if $G \notin\left\{C_{3}, C_{5}, C_{6}, C_{10}\right\}$ and G is connected
$\delta(G) \geq 3$	$\Rightarrow \gamma_{t}(G) \leq \frac{1}{2} n$	
$\delta(G) \geq 4 \quad \Rightarrow \gamma_{t}(G) \leq \frac{3}{7} n$		
$\delta(G)$ large $\quad \Rightarrow \gamma_{t}(G) \leq\left(\frac{1+\ln \delta}{\delta}\right) n$		

Table 1. Upper bounds on the total domination number of a graph G.

The result in Table 1 when δ is large is found using probabilistic methods in graph theory. It can easily be deduced from results of Alon [1] that this upper bound for large δ is nearly optimal. But what happens when δ is small? The problem then becomes more difficult.

The result in Table 1 when $\delta \geq 1$ is due to Cockayne et al. [5] and the graphs achieving this upper bound are characterized by Brigham, Carrington, and Vitray [3].

The result in Table 1 when $\delta \geq 2$ can be found in [9]. A characterization of the connected graphs of large order with total domination number exactly four-sevenths their order is also given in [9].

Chvátal and McDiarmid [4] and Tuza [13] independently established that every hypergraph on n vertices and m edges where all edges have size at least three has a transversal T such that $4|T| \leq m+n$. As a consequence of this result about transversals in hypergraphs, we have the result in Table 1 for the case when $\delta \geq 3$. We remark that Archdeacon et al. [2] recently found an elegant one page graph theoretic proof of this upper bound of $n / 2$ when $\delta \geq 3$. Two infinite families of connected cubic graphs with total domination number one-half their orders are constructed in [6]. Using transversals in hypergraphs, the connected graphs with minimum degree at least three and with total domination number exactly one-half their order are characterized in [10].

The result when $\delta \geq 3$ has recently been strengthened by Lam and Wei [11].
Theorem 1 (Lam, Wei [11]) If G is a graph of order n with $\delta(G) \geq 2$ such that every component of the subgraph of G induced by its set of degree- 2 vertices has size at most one, then $\gamma_{t}(G) \leq n / 2$.

The result in Table 1 when $\delta \geq 4$ is due to Thomasse and Yeo [12]. Their proof uses transversals in hypergraphs. Yeo [14] showed that for connected graphs G with minimum degree at least four equality is only achieved in this bound if G is the relative complement of the Heawood graph (or, equivalently, the incidence bipartite graph of the complement of the Fano plane).

3 Main Result

Our aim in this paper is to present a new upper bound on the total domination number of a graph with minimum degree two. For this purpose, we introduce some additional notation.

We call a component of a graph a path-component if it is isomorphic to a path. A path-component isomorphic to a path P_{i} on i vertices we call a P_{i}-component.

We define a vertex as small if it has degree 2, and large if it has degree more than 2 . Let G be a connected graph with minimum degree at least two and maximum degree at least three. Let \mathcal{S} be the set of all small vertices of G and \mathcal{L} the set of all large vertices of G. Consider the graph $G-\mathcal{L}=G[\mathcal{S}]$ induced by the small vertices. Let P be any component of $G-\mathcal{L}$; it is a path. If $|P| \equiv 0(\bmod 4)$ and either the two ends of P are adjacent in G to the same large vertex or the two ends of P are adjacent to different,
but adjacent, large vertices in G, we call P a 0 -path. If $|P| \geq 5$ and $|P| \equiv 1(\bmod 4)$ with the two ends of P adjacent in G to the same large vertex, we call P a 1-path. If $|P| \equiv 3(\bmod 4)$, we call P a 3 -path. For $i \in\{0,1,3\}$, we denote the number of i-paths in G by $p_{i}(G)$, or simply by p_{i} if the graph G is clear from context. If G^{\prime} is a graph, then for $i \in\{0,1,3\}$ we denote $p_{i}\left(G^{\prime}\right)$ simply by p_{i}^{\prime}. For notational convenience, for a graph G of order n and a graph G^{\prime} of order n^{\prime} we let

$$
\psi(G)=\frac{1}{2}\left(n+p_{0}+p_{1}+p_{3}\right) \quad \text { and } \quad \psi\left(G^{\prime}\right)=\frac{1}{2}\left(n^{\prime}+p_{0}^{\prime}+p_{1}^{\prime}+p_{3}^{\prime}\right)
$$

We shall prove:
Theorem 2 If G is a connected graph of order n with $\delta(G) \geq 2$ and $\Delta(G) \geq 3$, then $\gamma_{t}(G) \leq \psi(G)$.

Note that Theorem 2 generalizes Theorem 1 (see [11]) and the result from Table 1 for $\delta(G) \geq 3$ (see [4] and [13]).

3.1 Preliminary Results and Observations

Before presenting a proof of Theorem 2, we define three graphs which we call X, Y and Z shown in Figures 1(a), (b) and (c), respectively. The vertices named x, y and z in Figure 1 we call the link vertices of the graphs X, Y and Z, respectively.

Figure 1: The three graphs X, Y and Z.
Let $H \in\{X, Y, Z\}$. By attaching a copy of H to a vertex v in a graph G we mean adding a copy of H to the graph G and joining v with an edge to the link vertex of H. We call v an attached vertex in the resulting graph. We will frequently use the following observations in the proof of Theorem 2.

Observation 1 If G^{\prime} is obtained from a graph G with no isolated vertex by attaching a copy of X with link vertex x to a vertex x^{\prime} of G, then there exists a $\gamma_{t}\left(G^{\prime}\right)$-set S such that $S \cap\left(V(X) \cup\left\{x^{\prime}\right\}\right)=\left\{x, x^{\prime}\right\}$.

Observation 2 If G^{\prime} is obtained from a graph G with no isolated vertex by attaching a copy of Y with link vertex y to a vertex y^{\prime} of G, then there exists a $\gamma_{t}\left(G^{\prime}\right)$-set S that contains exactly four vertices of Y, namely the two vertices of Y at distance 2 from y and the two vertices of Y at distance 3 from y (and so, y^{\prime} belongs to S to totally dominate y while a neighbor of y^{\prime} in G belongs to S to totally dominate $\left.y^{\prime}\right)$.

Observation 3 If G^{\prime} is obtained from a graph G with no isolated vertex by attaching a copy of Z with link vertex z to a vertex z^{\prime} of G, then there exists a $\gamma_{t}\left(G^{\prime}\right)$-set S that contains exactly two vertices of Z, namely z and a neighbor of z in Z (and so, z totally dominates z^{\prime} in G^{\prime}).

We define an elementary 4-subdivision of a nonempty graph G as a graph obtained from G by subdividing some edge four times. We shall need the following lemma from [9].

Lemma 1 ([9]) Let G be a nontrivial graph and let G^{\prime} be obtained from G by an elementary 4-subdivision. Then $\gamma_{t}\left(G^{\prime}\right)=\gamma_{t}(G)+2$.

We will refer to a graph G as a reduced graph if G has no induced path on six vertices, the internal vertices of which have degree 2 in G. Hence if $u, v_{1}, v_{2}, v_{3}, v_{4}, v$ is a path in a reduced graph G, then $d_{G}\left(v_{i}\right) \geq 3$ for at least one $i, 1 \leq i \leq 4$, or $u v \in E(G)$.

3.2 Proof of Theorem 2

We proceed by induction on the lexicographic sequence $\left(p_{0}+p_{1}+p_{3}, n\right)$, where $p_{0}+p_{1}+p_{3} \geq$ 0 and $n \geq 4$. For notational convenience, for a graph G of order n and a graph G^{\prime} of order n^{\prime}, we denote the sequence $\left(p_{0}+p_{1}+p_{3}, n\right)$ by $s(G)$ and the sequence $\left(p_{0}^{\prime}+p_{1}^{\prime}+p_{3}^{\prime}, n^{\prime}\right)$ by $s\left(G^{\prime}\right)$. Further, we denote the set of small vertices of G and G^{\prime} by \mathcal{S} and \mathcal{S}^{\prime}, respectively, and the set of large vertices of G and G^{\prime} by \mathcal{L} and \mathcal{L}^{\prime}, respectively.

By Lemma 1, we may assume that G is a reduced graph. Thus since G is a connected graph with $\Delta(G) \geq 3$, every component of $G[\mathcal{S}]$ is a path P_{i} for some i where $1 \leq i \leq 5$.

When $p_{0}+p_{1}+p_{3}=0$, every component of $G[\mathcal{S}]$ is either P_{1} or P_{2} and the desired result follows from Theorem 1. This establishes the base case. Assume, then, that $p_{0}+p_{1}+p_{3} \geq 1$ and $n \geq 4$ and that for all connected graphs G^{\prime} of order n^{\prime} with $\delta\left(G^{\prime}\right) \geq 2$ and $\Delta\left(G^{\prime}\right) \geq 3$ that have lexicographic sequence $s\left(G^{\prime}\right)$ smaller than $s, \gamma_{t}\left(G^{\prime}\right) \leq \psi\left(G^{\prime}\right)$. Let $G=(V, E)$ be a connected graph of order n with $\delta(G) \geq 2$ and $\Delta(G) \geq 3$ and with lexicographic sequence $s(G)=s$.

Observation 4 We may assume that $p_{0}=0$.
Proof. Suppose that $p_{0} \geq 1$. Let $P: v_{1}, v_{2}, v_{3}, v_{4}$ be a P_{4}-component of $G[\mathcal{S}]$. Let u be the neighbor of v_{1} not on P and let v be the neighbor of v_{4} not on P.

Suppose firstly that $u \neq v$. Since G is a reduced graph, $u v \in E(G)$. Let $G^{\prime}=G-V(P)$. Then, G^{\prime} is a connected graph of order n^{\prime} with $\delta\left(G^{\prime}\right) \geq 2$. Suppose G^{\prime} is a cycle. Then, $G^{\prime} \in\left\{C_{3}, C_{4}, C_{5}, C_{6}\right\}$. If $G^{\prime}=C_{3}$, then $\gamma_{t}(G)=4$ and $\psi(G)=4$. If $G^{\prime}=C_{4}$, then $\gamma_{t}(G)=4$ and $\psi(G)=4 \frac{1}{2}$. If $G^{\prime}=C_{5}$, then $\gamma_{t}(G)=5$ and $\psi(G)=5 \frac{1}{2}$. If $G^{\prime}=C_{6}$, then $\gamma_{t}(G)=6$ and $\psi(G)=6$. In all cases, $\gamma_{t}(G) \leq \psi(G)$. Hence we may assume that $\Delta\left(G^{\prime}\right) \geq 3$. We remark that it is possible that the graph G^{\prime} has an induced path on six vertices containing u and v with the internal vertices on this path having degree 2 in G^{\prime}, in which case G^{\prime} is not a reduced graph, but then it is not a problem to reduce it. Since $p_{0}^{\prime}+p_{1}^{\prime}+p_{3}^{\prime} \leq p_{0}+p_{1}+p_{3}$ and $n^{\prime}=n-4$, the lexicographic sequence $s\left(G^{\prime}\right)$ is smaller
than $s(G)$. Applying the inductive hypothesis to $G^{\prime}, \gamma_{t}\left(G^{\prime}\right) \leq \psi\left(G^{\prime}\right) \leq \psi(G)-2$. Every $\gamma_{t}\left(G^{\prime}\right)$-set can be extended to a TDS of G by adding to it the vertices $\left\{v_{2}, v_{3}\right\}$, and so $\gamma_{t}(G) \leq \gamma_{t}\left(G^{\prime}\right)+2 \leq \psi(G)$.

Suppose secondly that $u=v$. Then, $C: v, v_{1}, v_{2}, v_{3}, v_{4}, v$ is a cycle in G. Let G^{\prime} be the graph obtained from $G-V(C)$ by attaching the same copy of Z to each vertex in $N_{G}(v) \backslash\left\{v_{1}, v_{4}\right\}$. Then, G^{\prime} is a connected (reduced) graph of order $n^{\prime}=n-1$ with $\delta\left(G^{\prime}\right) \geq 2$ and $\Delta\left(G^{\prime}\right) \geq 3$ (as v was a large vertex, z is attached to at least one vertex and $\Delta(Z)=3)$. The components of $G^{\prime}\left[\mathcal{S}^{\prime}\right]$, other than the P_{1}-component consisting of the degree- 2 vertex in the copy of Z, are precisely the components of $G[\mathcal{S}]$ minus the path-component P. Hence, $p_{0}^{\prime}=p_{0}-1, p_{1}^{\prime}=p_{1}$ and $p_{3}^{\prime}=p_{3}$. The lexicographic sequence $s\left(G^{\prime}\right)$ is therefore smaller than $s(G)$. Applying the inductive hypothesis to G^{\prime}, $\gamma_{t}\left(G^{\prime}\right) \leq \psi\left(G^{\prime}\right)=\psi(G)-1$. By Observation 3, there exists a $\gamma_{t}\left(G^{\prime}\right)$-set S that contains the link vertex and a neighbor of the link vertex (distinct from the attached vertex) from the attached copy of Z. Deleting these two vertices in the attached copy of Z from the set S and adding to the resulting set the three vertices v, v_{1}, v_{2} produces a TDS of G. Hence, $\gamma_{t}(G) \leq|S|+1=\gamma_{t}\left(G^{\prime}\right)+1 \leq \psi(G)$.

Observation 5 We may assume that $p_{1}=0$.
Proof. Suppose that $p_{1} \geq 1$. Let $P: v_{1}, v_{2}, \ldots, v_{5}$ be a P_{5}-component of $G[\mathcal{S}]$. Since G is a reduced graph, v_{1} and v_{5} have a common neighbor v in G. Let G^{\prime} be obtained from G by deleting the vertices v_{3}, v_{4} and v_{5} and adding the edge $v v_{2}$; that is, $G^{\prime}=$ $\left(G-\left\{v_{3}, v_{4}, v_{5}\right\}\right) \cup\left\{v v_{2}\right\}$. Then, G^{\prime} is a reduced connected graph of order n^{\prime} with $\delta\left(G^{\prime}\right) \geq 2$ and $\Delta\left(G^{\prime}\right)=\Delta(G) \geq 3$. Further, $p_{0}^{\prime}=p_{0}, p_{1}^{\prime}=p_{1}-1, p_{3}^{\prime}=p_{3}$, and $n^{\prime}=n-3$. Hence the lexicographic sequence $s\left(G^{\prime}\right)$ is smaller than $s(G)$. Applying the inductive hypothesis to $G^{\prime}, \gamma_{t}\left(G^{\prime}\right) \leq \psi\left(G^{\prime}\right)=\psi(G)-2$. Let S^{\prime} be a $\gamma_{t}\left(G^{\prime}\right)$-set that contains neither v_{1} nor v_{2} (if there is a $\gamma_{t}\left(G^{\prime}\right)$-set S^{\prime} that contains both v_{1} and v_{2}, simply replace these two vertices in S^{\prime} by v and a neighbor of v in $G-V(P)$, while if there is a $\gamma_{t}\left(G^{\prime}\right)$-set S^{\prime} that contains exactly one of v_{1} and v_{2}, simply replace this vertex in S^{\prime} by a neighbor of v in $G-V(P)$). Then, $S^{\prime} \cup\left\{v_{3}, v_{4}\right\}$ is a TDS of G, and so $\gamma_{t}(G) \leq\left|S^{\prime}\right|+2=\gamma_{t}\left(G^{\prime}\right)+2 \leq \psi(G)$.

By Observations 4 and 5 , we have $p_{0}=p_{1}=0$ and $p_{3} \geq 1$. Thus, since G is a reduced graph, every component of $G[\mathcal{S}]$ is a path P_{i} for some i where $1 \leq i \leq 3$. Let $P: v_{1}, v_{2}, v_{3}$ be a P_{3}-component of $G[\mathcal{S}]$. Let u be the neighbor of v_{1} not on P and let v be the neighbor of v_{3} not on P.

Observation 6 We may assume that $u \neq v$.
Proof. Suppose that $u=v$. Let G^{\prime} be the graph obtained from $G-V(P)$ by attaching both a copy of X and a copy of Z to the vertex v. Then, G^{\prime} is a connected (reduced) graph of order $n^{\prime}=n+4$ with $\delta\left(G^{\prime}\right) \geq 2$ and $\Delta\left(G^{\prime}\right)=\Delta(G) \geq 3$. The degree of the large vertex v is unchanged in G and G^{\prime}. Since $p_{0}^{\prime}=p_{0}=0, p_{1}^{\prime}=p_{1}=0$ and $p_{3}^{\prime}=p_{3}-1$, the lexicographic sequence $s\left(G^{\prime}\right)$ is smaller than $s(G)$. Applying the inductive hypothesis to $G^{\prime}, \gamma_{t}\left(G^{\prime}\right) \leq \psi\left(G^{\prime}\right)=\psi(G)+3 / 2$. By Observations 1 and 3 , there exists a $\gamma_{t}\left(G^{\prime}\right)$-set S that contains the vertex v and three vertices from the attached copies of X and Z, namely
the link vertex and a neighbor of the link vertex in the attached copy of Z and the link vertex in the attached copy of X. Deleting these three vertices in the attached copies of X and Z from the set S and adding to the resulting set the vertex v_{1} produces a TDS of G. Hence, $\gamma_{t}(G) \leq|S|-2=\gamma_{t}\left(G^{\prime}\right)-2 \leq \psi(G)-1 / 2$.

Observation 7 We may assume that no common neighbor of u and v has degree two.
Proof. Suppose that u and v have a common neighbor w with $N(w)=\{u, v\}$. Let W be the set of all such degree- 2 vertices that are adjacent to both u and v. Let $R=$ $W \cup\left\{u, v, v_{1}, v_{2}, v_{3}\right\}$. Let $N_{u v}=(N(u) \cup N(v)) \backslash R$.

Suppose $V=R$. If $|W|=1$, then $u v \in E, n=6, p_{3}=1$, and $\gamma_{t}(G)=3=\psi(G)-1 / 2$. If $|W| \geq 2$, then $n \geq 7, p_{3}=1$, and $\gamma_{t}(G) \leq 4 \leq \psi(G)$. Hence we may assume that $V \neq R$. Thus, $\left|N_{u v}\right| \geq 1$. At least one of u and v, say v, is therefore adjacent to a vertex in $V \backslash R$.

If $|W| \geq 2$, then let $G^{\prime}=G-w$. The graph G^{\prime} is a connected reduced graph of order $n^{\prime}=n-1$ with $\delta\left(G^{\prime}\right) \geq 2$ and $\Delta\left(G^{\prime}\right) \geq d_{G}(v)-1 \geq 3$. If $d_{G^{\prime}}(u)=2$, then $p_{0}^{\prime}=p_{0}, p_{1}^{\prime}=p_{1}+1$ and $p_{3}^{\prime}=p_{3}-1$, while if $d_{G^{\prime}}(u) \geq 3$, then $p_{0}^{\prime}=p_{0}, p_{1}^{\prime}=p_{1}$ and $p_{3}^{\prime}=p_{3}$. In both cases, $p_{0}^{\prime}+p_{1}^{\prime}+p_{3}^{\prime}=p_{0}+p_{1}+p_{3}$. Applying the inductive hypothesis to $G^{\prime}, \gamma_{t}\left(G^{\prime}\right) \leq \psi\left(G^{\prime}\right)=\psi(G)-1 / 2$. Every $\gamma_{t}\left(G^{\prime}\right)$-set is a TDS of G, and so $\gamma_{t}(G) \leq \gamma_{t}\left(G^{\prime}\right)<\psi(G)$. Hence we may assume that $|W|=1$, and so $W=\{w\}$ and $R=\left\{u, v, v_{1}, v_{2}, v_{3}, w\right\}$.

Let G^{\prime} be the connected graph obtained from $G-R$ by attaching the same subgraph X to every vertex in $N_{u v}$. Let $N_{u v}^{*}=(N(u) \cap N(v)) \backslash R$ and if $N_{u v}^{*} \neq \emptyset$ then also attach the same subgraph Z to every vertex in $N_{u v}^{*}$. Note that $d_{G^{\prime}}(x)=d_{G}(x)$ for every vertex $x \in V\left(G^{\prime}\right) \backslash V(X \cup Z)$. Furthermore, $\Delta\left(G^{\prime}\right) \geq 3$ as the link vertex in the copy of X has degree at least three. The components of $G^{\prime}\left[\mathcal{S}^{\prime}\right]$, other than the P_{2}-component consisting of the two degree- 2 vertices in the copy of X and, if $N_{u v}^{*} \neq \emptyset$, the P_{1}-component consisting of the degree- 2 vertex in the copy of Z, are precisely the components of $G[\mathcal{S}]$ minus the path-component P and the P_{1}-component consisting of the vertex w. Hence, $p_{0}^{\prime}=p_{0}=0$, $p_{1}^{\prime}=p_{1}=0$ and $p_{3}^{\prime}=p_{3}-1$. Thus, $p_{0}^{\prime}+p_{1}^{\prime}+p_{3}^{\prime}=p_{0}+p_{1}+p_{3}-1$. Applying the inductive hypothesis to $G^{\prime}, \gamma_{t}\left(G^{\prime}\right) \leq \psi\left(G^{\prime}\right)$. By the construction of X, there exists a $\gamma_{t}\left(G^{\prime}\right)$-set S, such that $S \cap N_{u v} \neq \emptyset$ and $|S \cap X|=1$. We may assume without loss of generality that v is adjacent in G to a vertex in $S \cap N_{u v}$.

On the one hand, suppose that $N_{u v}^{*} \neq \emptyset$. Then, $n^{\prime}=n+1$ and $\psi\left(G^{\prime}\right)=\psi(G)$. Delete from S the vertices in X and Z and add the vertices $\left\{u, v, v_{1}\right\}$. The resulting set has size at most that of S and is a TDS of G. Hence, $\gamma_{t}(G) \leq \gamma_{t}\left(G^{\prime}\right) \leq \psi\left(G^{\prime}\right)=\psi(G)$.

On the other hand, suppose that $N_{u v}^{*}=\emptyset$. Then, $n^{\prime}=n-3$ and $\psi\left(G^{\prime}\right)=\psi(G)-2$. Now delete from S the vertex in X and add the vertices $\left\{u, v, v_{1}\right\}$. The resulting set has size $|S|+2$ and is a TDS of G. Hence, $\gamma_{t}(G) \leq \gamma_{t}\left(G^{\prime}\right)+2 \leq \psi\left(G^{\prime}\right)+2=\psi(G)$.

Let $R=\left\{u, v, v_{1}, v_{2}, v_{3}\right\}$ and let $N_{u v}=(N(u) \cup N(v)) \backslash R$. Then, $\left|N_{u v}\right| \geq 1$. By Observation 7, every vertex in $N_{u v}$ that is adjacent to both u and v has degree at least 3 . Hence every vertex in $N_{u v}$ is adjacent to at least one vertex different from u and v.

Observation 8 We may assume that $\left|N_{u v}\right|=1$.
Proof. Suppose that $\left|N_{u v}\right| \geq 2$. Let G^{\prime} be obtained from $G-V(P)$ by adding all possible edges between the set $\{u, v\}$ and the set $N_{u v}$, and by adding the edge $u v$ if u and v are not adjacent to G. Then, G^{\prime} is a connected (reduced) graph of order $n^{\prime}=n-3$ with $\delta\left(G^{\prime}\right) \geq 2$ and $\Delta\left(G^{\prime}\right) \geq 3$. By construction, both u and v are large vertices in G^{\prime}. Note that some vertices in $N_{u v}$ may be large in G^{\prime} even though they were not large in G. However as every component in $G[\mathcal{S}]$ is a path containing at most three vertices, we note that $p_{0}^{\prime}+p_{1}^{\prime}+p_{3}^{\prime} \leq p_{0}+p_{1}+p_{3}-1$. We can therefore apply the inductive hypothesis to G^{\prime}. Thus, $\gamma_{t}\left(G^{\prime}\right) \leq \psi\left(G^{\prime}\right) \leq \psi(G)-2$. Let S^{\prime} be a $\gamma_{t}\left(G^{\prime}\right)$-set. If $\{u, v\} \subseteq S^{\prime}$, let $S=S^{\prime} \cup\left\{v_{1}, v_{3}\right\}$. If $\left|\{u, v\} \cap S^{\prime}\right| \leq 1$, then the set S^{\prime} contains a vertex $u^{\prime} \in N_{u v}$ to totally dominate u or v in G^{\prime}. The vertex u^{\prime} is adjacent in G to at least one of u and v, say to u. If $\left|\{u, v\} \cap S^{\prime}\right|=1$, let $S=S^{\prime} \cup\left\{u, v, v_{3}\right\}$. If $\{u, v\} \cap S^{\prime}=\emptyset$, let $S=S^{\prime} \cup\left\{v_{2}, v_{3}\right\}$. In all three cases, S is a TDS of G and $|S|=\left|S^{\prime}\right|+2$. Hence, $\gamma_{t}(G) \leq|S|=\gamma_{t}\left(G^{\prime}\right)+2 \leq \psi(G)$.

By Observation $8,\left|N_{u v}\right|=1$, implying that $u v \in E$. Let $N_{u v}=\{w\}$. Let $G^{\prime}=$ $G-V(P)$. Then, G^{\prime} is a connected (reduced) graph of order $n^{\prime}=n-3$ with $\delta\left(G^{\prime}\right) \geq 2$ and $\Delta\left(G^{\prime}\right)=\Delta(G) \geq 3$. Since $p_{0}^{\prime}+p_{1}^{\prime}+p_{3}^{\prime}=p_{0}+p_{1}+p_{3}-1$, we can apply the inductive hypothesis to G^{\prime}. Thus, $\gamma_{t}\left(G^{\prime}\right) \leq \psi\left(G^{\prime}\right)=\psi(G)-2$. Let S^{\prime} be a $\gamma_{t}\left(G^{\prime}\right)$. Then, $S^{\prime} \cup\left\{v_{1}, v_{2}\right\}$ is a TDS of G, and so $\gamma_{t}(G) \leq\left|S^{\prime}\right|+2=\gamma_{t}\left(G^{\prime}\right)+2=\psi(G)$.

3.3 Sharpness of Theorem 2

To illustrate that the bound in Theorem 2 is sharp, we introduce a family \mathcal{G} of graphs. For this purpose, we define three types of graphs which we call units.

Figure 2: The three types of units
We define a type-0 unit to be the graph obtained from a 10-cycle by adding a chord joining two vertices at maximum distance 5 apart on the cycle and then adding a pendant edge to a resulting vertex that has no degree-3 neighbor. We define a type-1 unit to be the graph obtained from a 6 -cycle by adding to this cycle a pendant edge. We define a type-3 unit to be the graph obtained from a 6 -cycle by adding to this cycle a new vertex and joining it to two vertices at distance 2 on this cycle. The three types of units are shown in Figure 2.

Next we define a link vertex in each unit as follows. In a type-0 unit and type-1 unit, we call the degree-1 vertex in the unit the link vertex of the unit, while in a type-3 unit we select one of the two degree- 2 vertices with both its neighbors of degree 3 and call it the link vertex of the unit.

Let \mathcal{G} denote the family of all graphs G that are obtained from the disjoint union of at least two units, each of which is of type- 0 , type- 1 or type- 3 , in such a way that G is connected and every added edge joins two link vertices. A graph G in the family \mathcal{G} is illustrated in Figure 3 (here the subgraph of G induced by the link vertices is a cycle C_{4}).

The graph G in Figure 3 has order $n=32, p_{0}=1, p_{1}=1, p_{3}=2$, and $\gamma_{t}(G)=18=$ $\psi(G)$. In general, if $G \in \mathcal{G}$ and $i \in\{0,1,3\}$, then each type- i unit in G contains an i-path and contributes one to p_{i}. Thus if $G \in \mathcal{G}$ has a type- 0 units, b type- 1 units, and c type- 3 units, then $n=11 a+7(b+c), p_{0}=a, p_{1}=b, p_{3}=c$ and $\gamma_{t}(G)=6 a+4(b+c)=\psi(G)$.

Figure 3: A graph G in the family \mathcal{G}.

References

[1] N. Alon, Transversal number of uniform hypergraphs. Graphs Combin. 6 (1990), 1-4.
[2] D. Archdeacon, J. Ellis-Monaghan, D. Fischer, D. Froncek, P.C.B. Lam, S. Seager, B. Wei, and R. Yuster, Some remarks on domination. J. Graph Theory 46 (2004), 207-210.
[3] R.C. Brigham, J.R. Carrington, and R.P. Vitray, Connected graphs with maximum total domination number. J. Combin. Comput. Combin. Math. 34 (2000), 81-96.
[4] V. Chvátal and C. McDiarmid, Small transversals in hypergraphs. Combinatorica 12 (1992), 19-26.
[5] E. J. Cockayne, R. M. Dawes, and S. T. Hedetniemi, Total domination in graphs. Networks 10 (1980), 211-219.
[6] O. Favaron, M.A. Henning, C.M. Mynhardt, and J. Puech, Total domination in graphs with minimum degree three. J. Graph Theory 34 (2000), 9-19.
[7] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater (eds), Fundamentals of Domination in Graphs, Marcel Dekker, Inc. New York, 1998.
[8] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater (eds), Domination in Graphs: Advanced Topics, Marcel Dekker, Inc. New York, 1998.
[9] M. A. Henning, Graphs with large total domination number. J. Graph Theory 35 (2000), 21-45.
[10] M. A. Henning and A. Yeo, Hypergraphs with large transversal number and with edge sizes at least three, manuscript (2006).
[11] P. C. B. Lam and B. Wei, On the total domination number of graphs. Utilitas Math. 72 (2007), 223-240.
[12] S. Thomassé and A. Yeo, Total domination of graphs and small transversals of hypergraphs. To appear in Combinatorica.
[13] Z. Tuza, Covering all cliques of a graph. Discrete Math. 86 (1990), 117-126.
[14] A. Yeo, Improved bound on the total domination in graphs with minimum degree four, manuscript (2006).

[^0]: *Research supported in part by the South African National Research Foundation and the University of KwaZulu-Natal.

