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Abstract

A set S of vertices in a graph G is a total dominating set of G if every vertex of
G is adjacent to some vertex in S. The minimum cardinality of a total dominating
set of G is the total domination number of G. Let G be a connected graph of order n
with minimum degree at least two and with maximum degree at least three. We
define a vertex as large if it has degree more than 2 and we let L be the set of all
large vertices of G. Let P be any component of G−L; it is a path. If |P | ≡ 0 (mod 4)
and either the two ends of P are adjacent in G to the same large vertex or the two
ends of P are adjacent to different, but adjacent, large vertices in G, we call P a
0-path. If |P | ≥ 5 and |P | ≡ 1 (mod 4) with the two ends of P adjacent in G to the
same large vertex, we call P a 1-path. If |P | ≡ 3 (mod 4), we call P a 3-path. For
i ∈ {0, 1, 3}, we denote the number of i-paths in G by pi. We show that the total
domination number of G is at most (n + p0 + p1 + p3)/2. This result generalizes a
result shown in several manuscripts (see, for example, J. Graph Theory 46 (2004),
207–210) which states that if G is a graph of order n with minimum degree at least
three, then the total domination of G is at most n/2. It also generalizes a result by
Lam and Wei stating that if G is a graph of order n with minimum degree at least
two and with no degree-2 vertex adjacent to two other degree-2 vertices, then the
total domination of G is at most n/2.
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1 Introduction

In this paper, we continue the study of total domination in graphs which was introduced
by Cockayne, Dawes, and Hedetniemi [5]. A total dominating set, abbreviated TDS, of a
graph G is a set S of vertices of G such that every vertex is adjacent to a vertex in S.
Every graph without isolated vertices has a TDS, since S = V (G) is such a set. The total

domination number of G, denoted by γt(G), is the minimum cardinality of a TDS. A TDS
of G of cardinality γt(G) is called a γt(G)-set. Total domination in graphs is now well
studied in graph theory. The literature on this subject has been surveyed and detailed in
the two books by Haynes, Hedetniemi, and Slater [7, 8].

For notation and graph theory terminology we in general follow [7]. Specifically, let
G = (V,E) be a graph with vertex set V of order n = |V | and edge set E of size m = |E|,
and let v be a vertex in V . The open neighborhood of v is the set N(v) = {u ∈ V | uv ∈ E}.
For a set S ⊆ V , its open neighborhood is the set N(S) = ∪v∈SN(v). If Y ⊆ V , then the
set S is said to totally dominate the set Y if Y ⊆ N(S). For a set S ⊆ V , the subgraph
induced by S is denoted by G[S]. We denote the degree of v in G by dG(v), or simply by
d(v) if the graph G is clear from context. The minimum degree (resp., maximum degree)
among the vertices of G is denoted by δ(G) (resp., ∆(G)). We denote a path on n vertices
by Pn and a cycle on n vertices by Cn.

2 Known bounds on the total domination number

The decision problem to determine the total domination number of a graph is known to be
NP-complete. Hence it is of interest to determine upper bounds on the total domination
number of a graph. In particular, for a connected graph G with minimum degree δ ≥ 1
and order n, the problem of finding upper bounds on γt(G) in terms of δ and n has
been studied. The known upper bounds on γt(G) in terms of δ and n are summarized in
Table 1.

δ(G) ≥ 1 ⇒ γt(G) ≤
2

3
n if n ≥ 3 and G is connected

δ(G) ≥ 2 ⇒ γt(G) ≤
4

7
n if G /∈ {C3, C5, C6, C10} and G is connected

δ(G) ≥ 3 ⇒ γt(G) ≤
1

2
n

δ(G) ≥ 4 ⇒ γt(G) ≤
3

7
n

δ(G) large ⇒ γt(G) ≤

(

1 + ln δ

δ

)

n

Table 1. Upper bounds on the total domination number of a graph G.
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The result in Table 1 when δ is large is found using probabilistic methods in graph
theory. It can easily be deduced from results of Alon [1] that this upper bound for large δ
is nearly optimal. But what happens when δ is small? The problem then becomes more
difficult.

The result in Table 1 when δ ≥ 1 is due to Cockayne et al. [5] and the graphs achieving
this upper bound are characterized by Brigham, Carrington, and Vitray [3].

The result in Table 1 when δ ≥ 2 can be found in [9]. A characterization of the
connected graphs of large order with total domination number exactly four-sevenths their
order is also given in [9].

Chvátal and McDiarmid [4] and Tuza [13] independently established that every hyper-
graph on n vertices and m edges where all edges have size at least three has a transversal T
such that 4|T | ≤ m+n. As a consequence of this result about transversals in hypergraphs,
we have the result in Table 1 for the case when δ ≥ 3. We remark that Archdeacon et
al. [2] recently found an elegant one page graph theoretic proof of this upper bound of
n/2 when δ ≥ 3. Two infinite families of connected cubic graphs with total domination
number one-half their orders are constructed in [6]. Using transversals in hypergraphs, the
connected graphs with minimum degree at least three and with total domination number
exactly one-half their order are characterized in [10].

The result when δ ≥ 3 has recently been strengthened by Lam and Wei [11].

Theorem 1 (Lam, Wei [11]) If G is a graph of order n with δ(G) ≥ 2 such that every

component of the subgraph of G induced by its set of degree-2 vertices has size at most

one, then γt(G) ≤ n/2.

The result in Table 1 when δ ≥ 4 is due to Thomasse and Yeo [12]. Their proof uses
transversals in hypergraphs. Yeo [14] showed that for connected graphs G with minimum
degree at least four equality is only achieved in this bound if G is the relative complement
of the Heawood graph (or, equivalently, the incidence bipartite graph of the complement
of the Fano plane).

3 Main Result

Our aim in this paper is to present a new upper bound on the total domination number
of a graph with minimum degree two. For this purpose, we introduce some additional
notation.

We call a component of a graph a path-component if it is isomorphic to a path. A
path-component isomorphic to a path Pi on i vertices we call a Pi-component.

We define a vertex as small if it has degree 2, and large if it has degree more than 2.
Let G be a connected graph with minimum degree at least two and maximum degree at
least three. Let S be the set of all small vertices of G and L the set of all large vertices
of G. Consider the graph G − L = G[S] induced by the small vertices. Let P be any
component of G − L; it is a path. If |P | ≡ 0 (mod 4) and either the two ends of P are
adjacent in G to the same large vertex or the two ends of P are adjacent to different,
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but adjacent, large vertices in G, we call P a 0-path. If |P | ≥ 5 and |P | ≡ 1 (mod 4)
with the two ends of P adjacent in G to the same large vertex, we call P a 1-path. If
|P | ≡ 3 (mod4), we call P a 3-path. For i ∈ {0, 1, 3}, we denote the number of i-paths in
G by pi(G), or simply by pi if the graph G is clear from context. If G′ is a graph, then
for i ∈ {0, 1, 3} we denote pi(G

′) simply by p′
i
. For notational convenience, for a graph G

of order n and a graph G′ of order n′ we let

ψ(G) =
1

2
(n+ p0 + p1 + p3) and ψ(G′) =

1

2
(n′ + p′

0
+ p′

1
+ p′

3
).

We shall prove:

Theorem 2 If G is a connected graph of order n with δ(G) ≥ 2 and ∆(G) ≥ 3, then

γt(G) ≤ ψ(G).

Note that Theorem 2 generalizes Theorem 1 (see [11]) and the result from Table 1 for
δ(G) ≥ 3 (see [4] and [13]).

3.1 Preliminary Results and Observations

Before presenting a proof of Theorem 2, we define three graphs which we call X, Y and
Z shown in Figures 1(a), (b) and (c), respectively. The vertices named x, y and z in
Figure 1 we call the link vertices of the graphs X, Y and Z, respectively.

u u
u

u u uu u u
u u u

u
u u

u
u

@@�� @@�� @@�� @@��
@@��
��@@

x

y
z

(a) X (b) Y (c) Z

Figure 1: The three graphs X, Y and Z.

Let H ∈ {X, Y, Z}. By attaching a copy of H to a vertex v in a graph G we mean
adding a copy of H to the graph G and joining v with an edge to the link vertex of H.
We call v an attached vertex in the resulting graph. We will frequently use the following
observations in the proof of Theorem 2.

Observation 1 If G′ is obtained from a graph G with no isolated vertex by attaching a

copy of X with link vertex x to a vertex x′ of G, then there exists a γt(G
′)-set S such that

S ∩ (V (X) ∪ {x′}) = {x, x′}.

Observation 2 If G′ is obtained from a graph G with no isolated vertex by attaching a

copy of Y with link vertex y to a vertex y ′ of G, then there exists a γt(G
′)-set S that

contains exactly four vertices of Y , namely the two vertices of Y at distance 2 from y and

the two vertices of Y at distance 3 from y (and so, y ′ belongs to S to totally dominate y
while a neighbor of y′ in G belongs to S to totally dominate y ′).
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Observation 3 If G′ is obtained from a graph G with no isolated vertex by attaching

a copy of Z with link vertex z to a vertex z ′ of G, then there exists a γt(G
′)-set S that

contains exactly two vertices of Z, namely z and a neighbor of z in Z (and so, z totally

dominates z′ in G′).

We define an elementary 4-subdivision of a nonempty graph G as a graph obtained
from G by subdividing some edge four times. We shall need the following lemma from [9].

Lemma 1 ([9]) Let G be a nontrivial graph and let G′ be obtained from G by an elemen-

tary 4-subdivision. Then γt(G
′) = γt(G) + 2.

We will refer to a graph G as a reduced graph if G has no induced path on six vertices,
the internal vertices of which have degree 2 in G. Hence if u, v1, v2, v3, v4, v is a path in a
reduced graph G, then dG(vi) ≥ 3 for at least one i, 1 ≤ i ≤ 4, or uv ∈ E(G).

3.2 Proof of Theorem 2

We proceed by induction on the lexicographic sequence (p0+p1+p3, n), where p0+p1+p3 ≥
0 and n ≥ 4. For notational convenience, for a graph G of order n and a graph G′ of
order n′, we denote the sequence (p0+p1+p3, n) by s(G) and the sequence (p′

0
+p′

1
+p′

3
, n′)

by s(G′). Further, we denote the set of small vertices ofG andG′ by S and S ′, respectively,
and the set of large vertices of G and G′ by L and L′, respectively.

By Lemma 1, we may assume that G is a reduced graph. Thus since G is a connected
graph with ∆(G) ≥ 3, every component of G[S] is a path Pi for some i where 1 ≤ i ≤ 5.

When p0+p1+p3 = 0, every component ofG[S] is either P1 or P2 and the desired result
follows from Theorem 1. This establishes the base case. Assume, then, that p0+p1+p3 ≥ 1
and n ≥ 4 and that for all connected graphs G′ of order n′ with δ(G′) ≥ 2 and ∆(G′) ≥ 3
that have lexicographic sequence s(G′) smaller than s, γt(G

′) ≤ ψ(G′). Let G = (V,E)
be a connected graph of order n with δ(G) ≥ 2 and ∆(G) ≥ 3 and with lexicographic
sequence s(G) = s.

Observation 4 We may assume that p0 = 0.

Proof. Suppose that p0 ≥ 1. Let P : v1, v2, v3, v4 be a P4-component of G[S]. Let u be
the neighbor of v1 not on P and let v be the neighbor of v4 not on P .

Suppose firstly that u 6= v. Since G is a reduced graph, uv ∈ E(G). LetG′ = G−V (P ).
Then, G′ is a connected graph of order n′ with δ(G′) ≥ 2. Suppose G′ is a cycle. Then,
G′ ∈ {C3, C4, C5, C6}. If G′ = C3, then γt(G) = 4 and ψ(G) = 4. If G′ = C4, then
γt(G) = 4 and ψ(G) = 4 1

2
. If G′ = C5, then γt(G) = 5 and ψ(G) = 5 1

2
. If G′ = C6,

then γt(G) = 6 and ψ(G) = 6. In all cases, γt(G) ≤ ψ(G). Hence we may assume that
∆(G′) ≥ 3. We remark that it is possible that the graph G′ has an induced path on six
vertices containing u and v with the internal vertices on this path having degree 2 in G′,
in which case G′ is not a reduced graph, but then it is not a problem to reduce it. Since
p′

0
+ p′

1
+ p′

3
≤ p0 + p1 + p3 and n′ = n − 4, the lexicographic sequence s(G′) is smaller
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than s(G). Applying the inductive hypothesis to G′, γt(G
′) ≤ ψ(G′) ≤ ψ(G) − 2. Every

γt(G
′)-set can be extended to a TDS of G by adding to it the vertices {v2, v3}, and so

γt(G) ≤ γt(G
′) + 2 ≤ ψ(G).

Suppose secondly that u = v. Then, C: v, v1, v2, v3, v4, v is a cycle in G. Let G′ be
the graph obtained from G − V (C) by attaching the same copy of Z to each vertex in
NG(v) \ {v1, v4}. Then, G′ is a connected (reduced) graph of order n′ = n − 1 with
δ(G′) ≥ 2 and ∆(G′) ≥ 3 (as v was a large vertex, z is attached to at least one vertex
and ∆(Z) = 3). The components of G′[S ′], other than the P1-component consisting
of the degree-2 vertex in the copy of Z, are precisely the components of G[S] minus
the path-component P . Hence, p′

0
= p0 − 1, p′

1
= p1 and p′

3
= p3. The lexicographic

sequence s(G′) is therefore smaller than s(G). Applying the inductive hypothesis to G′,
γt(G

′) ≤ ψ(G′) = ψ(G) − 1. By Observation 3, there exists a γt(G
′)-set S that contains

the link vertex and a neighbor of the link vertex (distinct from the attached vertex) from
the attached copy of Z. Deleting these two vertices in the attached copy of Z from the
set S and adding to the resulting set the three vertices v, v1, v2 produces a TDS of G.
Hence, γt(G) ≤ |S| + 1 = γt(G

′) + 1 ≤ ψ(G). 2

Observation 5 We may assume that p1 = 0.

Proof. Suppose that p1 ≥ 1. Let P : v1, v2, . . . , v5 be a P5-component of G[S]. Since
G is a reduced graph, v1 and v5 have a common neighbor v in G. Let G′ be obtained
from G by deleting the vertices v3, v4 and v5 and adding the edge vv2; that is, G′ =
(G−{v3, v4, v5})∪{vv2}. Then, G′ is a reduced connected graph of order n′ with δ(G′) ≥ 2
and ∆(G′) = ∆(G) ≥ 3. Further, p′

0
= p0, p

′

1
= p1 − 1, p′

3
= p3, and n′ = n − 3. Hence

the lexicographic sequence s(G′) is smaller than s(G). Applying the inductive hypothesis
to G′, γt(G

′) ≤ ψ(G′) = ψ(G) − 2. Let S ′ be a γt(G
′)-set that contains neither v1 nor v2

(if there is a γt(G
′)-set S ′ that contains both v1 and v2, simply replace these two vertices

in S ′ by v and a neighbor of v in G− V (P ), while if there is a γt(G
′)-set S ′ that contains

exactly one of v1 and v2, simply replace this vertex in S ′ by a neighbor of v in G−V (P )).
Then, S ′ ∪ {v3, v4} is a TDS of G, and so γt(G) ≤ |S ′| + 2 = γt(G

′) + 2 ≤ ψ(G). 2

By Observations 4 and 5, we have p0 = p1 = 0 and p3 ≥ 1. Thus, since G is a reduced
graph, every component of G[S] is a path Pi for some i where 1 ≤ i ≤ 3. Let P : v1, v2, v3

be a P3-component of G[S]. Let u be the neighbor of v1 not on P and let v be the neighbor
of v3 not on P .

Observation 6 We may assume that u 6= v.

Proof. Suppose that u = v. Let G′ be the graph obtained from G− V (P ) by attaching
both a copy of X and a copy of Z to the vertex v. Then, G′ is a connected (reduced)
graph of order n′ = n+4 with δ(G′) ≥ 2 and ∆(G′) = ∆(G) ≥ 3. The degree of the large
vertex v is unchanged in G and G′. Since p′

0
= p0 = 0, p′

1
= p1 = 0 and p′

3
= p3 − 1, the

lexicographic sequence s(G′) is smaller than s(G). Applying the inductive hypothesis to
G′, γt(G

′) ≤ ψ(G′) = ψ(G) + 3/2. By Observations 1 and 3, there exists a γt(G
′)-set S

that contains the vertex v and three vertices from the attached copies of X and Z, namely
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the link vertex and a neighbor of the link vertex in the attached copy of Z and the link
vertex in the attached copy of X. Deleting these three vertices in the attached copies of
X and Z from the set S and adding to the resulting set the vertex v1 produces a TDS of
G. Hence, γt(G) ≤ |S| − 2 = γt(G

′) − 2 ≤ ψ(G) − 1/2. 2

Observation 7 We may assume that no common neighbor of u and v has degree two.

Proof. Suppose that u and v have a common neighbor w with N(w) = {u, v}. Let
W be the set of all such degree-2 vertices that are adjacent to both u and v. Let R =
W ∪ {u, v, v1, v2, v3}. Let Nuv = (N(u) ∪N(v)) \R.

Suppose V = R. If |W | = 1, then uv ∈ E, n = 6, p3 = 1, and γt(G) = 3 = ψ(G)−1/2.
If |W | ≥ 2, then n ≥ 7, p3 = 1, and γt(G) ≤ 4 ≤ ψ(G). Hence we may assume that
V 6= R. Thus, |Nuv| ≥ 1. At least one of u and v, say v, is therefore adjacent to a vertex
in V \R.

If |W | ≥ 2, then let G′ = G − w. The graph G′ is a connected reduced graph of
order n′ = n − 1 with δ(G′) ≥ 2 and ∆(G′) ≥ dG(v) − 1 ≥ 3. If dG′(u) = 2, then
p′

0
= p0, p

′

1
= p1 + 1 and p′

3
= p3 − 1, while if dG′(u) ≥ 3, then p′

0
= p0, p

′

1
= p1

and p′
3

= p3. In both cases, p′
0

+ p′
1

+ p′
3

= p0 + p1 + p3. Applying the inductive
hypothesis to G′, γt(G

′) ≤ ψ(G′) = ψ(G) − 1/2. Every γt(G
′)-set is a TDS of G, and

so γt(G) ≤ γt(G
′) < ψ(G). Hence we may assume that |W | = 1, and so W = {w} and

R = {u, v, v1, v2, v3, w}.
Let G′ be the connected graph obtained from G−R by attaching the same subgraph

X to every vertex in Nuv. Let N∗

uv
= (N(u) ∩N(v)) \R and if N ∗

uv
6= ∅ then also attach

the same subgraph Z to every vertex in N ∗

uv. Note that dG′(x) = dG(x) for every vertex
x ∈ V (G′) \ V (X ∪ Z). Furthermore, ∆(G′) ≥ 3 as the link vertex in the copy of X has
degree at least three. The components of G′[S ′], other than the P2-component consisting
of the two degree-2 vertices in the copy of X and, if N ∗

uv 6= ∅, the P1-component consisting
of the degree-2 vertex in the copy of Z, are precisely the components of G[S] minus the
path-component P and the P1-component consisting of the vertex w. Hence, p′

0
= p0 = 0,

p′
1

= p1 = 0 and p′
3

= p3 −1. Thus, p′
0
+p′

1
+p′

3
= p0 +p1 +p3−1. Applying the inductive

hypothesis to G′, γt(G
′) ≤ ψ(G′). By the construction of X, there exists a γt(G

′)-set S,
such that S ∩ Nuv 6= ∅ and |S ∩X| = 1. We may assume without loss of generality that
v is adjacent in G to a vertex in S ∩Nuv.

On the one hand, suppose that N ∗

uv
6= ∅. Then, n′ = n+ 1 and ψ(G′) = ψ(G). Delete

from S the vertices in X and Z and add the vertices {u, v, v1}. The resulting set has size
at most that of S and is a TDS of G. Hence, γt(G) ≤ γt(G

′) ≤ ψ(G′) = ψ(G).
On the other hand, suppose that N ∗

uv
= ∅. Then, n′ = n − 3 and ψ(G′) = ψ(G) − 2.

Now delete from S the vertex in X and add the vertices {u, v, v1}. The resulting set has
size |S| + 2 and is a TDS of G. Hence, γt(G) ≤ γt(G

′) + 2 ≤ ψ(G′) + 2 = ψ(G). 2

Let R = {u, v, v1, v2, v3} and let Nuv = (N(u) ∪ N(v)) \ R. Then, |Nuv| ≥ 1. By
Observation 7, every vertex in Nuv that is adjacent to both u and v has degree at least 3.
Hence every vertex in Nuv is adjacent to at least one vertex different from u and v.
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Observation 8 We may assume that |Nuv| = 1.

Proof. Suppose that |Nuv| ≥ 2. Let G′ be obtained from G−V (P ) by adding all possible
edges between the set {u, v} and the set Nuv, and by adding the edge uv if u and v are
not adjacent to G. Then, G′ is a connected (reduced) graph of order n′ = n − 3 with
δ(G′) ≥ 2 and ∆(G′) ≥ 3. By construction, both u and v are large vertices in G′. Note
that some vertices in Nuv may be large in G′ even though they were not large in G.
However as every component in G[S] is a path containing at most three vertices, we note
that p′

0
+ p′

1
+ p′

3
≤ p0 + p1 + p3 − 1. We can therefore apply the inductive hypothesis

to G′. Thus, γt(G
′) ≤ ψ(G′) ≤ ψ(G) − 2. Let S ′ be a γt(G

′)-set. If {u, v} ⊆ S ′, let
S = S ′ ∪{v1, v3}. If |{u, v}∩S ′| ≤ 1, then the set S ′ contains a vertex u′ ∈ Nuv to totally
dominate u or v in G′. The vertex u′ is adjacent in G to at least one of u and v, say to u.
If |{u, v} ∩ S ′| = 1, let S = S ′ ∪ {u, v, v3}. If {u, v} ∩ S ′ = ∅, let S = S ′ ∪ {v2, v3}. In all
three cases, S is a TDS of G and |S| = |S ′|+2. Hence, γt(G) ≤ |S| = γt(G

′)+2 ≤ ψ(G). 2

By Observation 8, |Nuv| = 1, implying that uv ∈ E. Let Nuv = {w}. Let G′ =
G− V (P ). Then, G′ is a connected (reduced) graph of order n′ = n − 3 with δ(G′) ≥ 2
and ∆(G′) = ∆(G) ≥ 3. Since p′

0
+ p′

1
+ p′

3
= p0 + p1 + p3 − 1, we can apply the inductive

hypothesis to G′. Thus, γt(G
′) ≤ ψ(G′) = ψ(G)−2. Let S ′ be a γt(G

′). Then, S ′∪{v1, v2}
is a TDS of G, and so γt(G) ≤ |S ′| + 2 = γt(G

′) + 2 = ψ(G). 2

3.3 Sharpness of Theorem 2

To illustrate that the bound in Theorem 2 is sharp, we introduce a family G of graphs.
For this purpose, we define three types of graphs which we call units.

u u
u u

u u u u
u u u u

u uu
u
u
u
u

u
u
u
u
u
u

HHH ��� HHH ���

���
HHH

���
HHH










J
J

JJ

(i) Type-0 (ii) Type-1 (iii) Type-3

Figure 2: The three types of units

We define a type-0 unit to be the graph obtained from a 10-cycle by adding a chord
joining two vertices at maximum distance 5 apart on the cycle and then adding a pendant
edge to a resulting vertex that has no degree-3 neighbor. We define a type-1 unit to be
the graph obtained from a 6-cycle by adding to this cycle a pendant edge. We define a
type-3 unit to be the graph obtained from a 6-cycle by adding to this cycle a new vertex
and joining it to two vertices at distance 2 on this cycle. The three types of units are
shown in Figure 2.
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Next we define a link vertex in each unit as follows. In a type-0 unit and type-1 unit,
we call the degree-1 vertex in the unit the link vertex of the unit, while in a type-3 unit
we select one of the two degree-2 vertices with both its neighbors of degree 3 and call it
the link vertex of the unit.

Let G denote the family of all graphs G that are obtained from the disjoint union of
at least two units, each of which is of type-0, type-1 or type-3, in such a way that G is
connected and every added edge joins two link vertices. A graph G in the family G is
illustrated in Figure 3 (here the subgraph of G induced by the link vertices is a cycle C4).

The graph G in Figure 3 has order n = 32, p0 = 1, p1 = 1, p3 = 2, and γt(G) = 18 =
ψ(G). In general, if G ∈ G and i ∈ {0, 1, 3}, then each type-i unit in G contains an i-path
and contributes one to pi. Thus if G ∈ G has a type-0 units, b type-1 units, and c type-3
units, then n = 11a+ 7(b+ c), p0 = a, p1 = b, p3 = c and γt(G) = 6a+ 4(b + c) = ψ(G).

u u u u
u u u u

u u u u u u u u
u u u u u u u

u u u u uu u
u u
u u

HHH ��� HHH ��� HHH ���

���
HHH

���
HHH

���
HHH

���
HHH










J
J

JJ










J
J

JJ

�
�

�
�

Figure 3: A graph G in the family G.
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[4] V. Chvátal and C. McDiarmid, Small transversals in hypergraphs. Combinatorica 12

(1992), 19–26.

[5] E. J. Cockayne, R. M. Dawes, and S. T. Hedetniemi, Total domination in graphs.
Networks 10 (1980), 211–219.

[6] O. Favaron, M.A. Henning, C.M. Mynhardt, and J. Puech, Total domination in
graphs with minimum degree three. J. Graph Theory 34 (2000), 9–19.

[7] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater (eds), Fundamentals of Domination

in Graphs, Marcel Dekker, Inc. New York, 1998.

[8] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater (eds), Domination in Graphs:

Advanced Topics, Marcel Dekker, Inc. New York, 1998.

the electronic journal of combinatorics 14 (2007), #R65 9



[9] M. A. Henning, Graphs with large total domination number. J. Graph Theory 35

(2000), 21–45.

[10] M. A. Henning and A. Yeo, Hypergraphs with large transversal number and with
edge sizes at least three, manuscript (2006).

[11] P. C. B. Lam and B. Wei, On the total domination number of graphs. Utilitas Math.

72 (2007), 223–240.
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