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Abstract In this paper, a new cluster validity index

which can be considered as a measure of the accuracy of

the partitioning of data sets is proposed. The new index,

called the STR index, is defined as the product of two

components which determine changes of compactness and

separability of clusters during a clustering process. The

maximum value of this index identifies the best clustering

scheme. Three popular algorithms have been applied as

underlying clustering techniques, namely complete-link-

age, expectation maximization and K-means algorithms.

The performance of the new index is demonstrated for

several artificial and real-life data sets. Moreover, this new

index has been compared with other well-known indices,

i.e., Dunn, Davies-Bouldin, PBM and Silhouette indices,

taking into account the number of clusters in a data set as

the comparison criterion. The results prove superiority of

the new index as compared to the above-mentioned indices.

Keywords Clustering � Validity index � Unsupervised
classification

1 Introduction

Clustering is named as unsupervised learning or unsuper-

vised classificationwhich uses unlabelled patterns andwhere

structural information about data is not available. In this

process data is partitioned into homogeneous subsets (called

clusters), inside which elements are similar to each other

while being different from items in other groups. In many

clustering methods clusters are represented by their centers.

Nowadays, a large number of clustering algorithms exist

having found use in various fields such as data mining,

bioinformatics, exploration data, etc. In general, these

algorithms can be classified into two basic categories, i.e.,

partitional and hierarchical methods [8]. The first-group

methods provide one-level partitioning data, and the well-

known algorithms of this type are, e.g., K-means and its

variations [5, 21] or expectation maximization (EM) [15].

The second category of methods comprises multi-level

partitioning data, and the representative examples of such

algorithms are hierarchical agglomerative approaches such

as single-linkage, complete-linkage or average-linkage [12,

16, 22]. However, these algorithms are seldom used for

large sets since their computational complexity is high

[29]. It should be noted that the results of partitioning of

the same data may be different when input parameters of

the clustering algorithm vary within a certain range. The

significant input parameter of many clustering algorithms

is a number of clusters, which is often selected in advance.

Thus, the key issue is how to properly evaluate results of

data clustering. There are three techniques which can be

used to evaluate partitioning of data sets, namely, external,

internal or relative approaches [12, 25]. The first two

techniques are based on statistical testing, and their com-

putational demands are high. On the other hand, the rela-

tive methods perform the comparison of partitioning

schemes obtained by a clustering algorithm using different

values of input parameters multiple times. Then, cluster

validity indices are used to find the best partitioning of

data. A great number of such indices have been introduced,

e.g., [3, 9, 10, 13, 17, 26, 28, 30, 31]. In many validity

indices two properties of clusters are taken into account,
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i.e., compactness and separability [11]. The first property is

associated with the within-cluster spread, and the second

with the inter-cluster separation. Validity indices are most

often a ratio of a measure of cluster compactness to cluster

separation or vice versa. They can also be the sum or the

product of these measures. Then, according to the type of

the validity indices, the right partitioning of a data set is

associated with the maximum or minimum value of the

validity index. In the literature well-known cluster validity

indices such as, e.g., Dunn [7], Davies-Bouldin (DB) [6],

PBM [18] or Silhouette (SIL) indices [23] are frequently

used when comparing results of different clustering tech-

niques. The Dunn index is the ratio of the minimum inter-

cluster distance to the maximum cluster diameter. In turn,

the Davies-Bouldin (DB) index is the ratio of the sum of

the within-cluster scatter to the inter-cluster separation. On

the other hand, the PBM index is a composition of three

factors, namely, the number of clusters, the measure of

cluster compactness and the measure of cluster separation.

It is proposed to be used to form a small number of com-

pact clusters. The silhouette (SIL) index is the mean of the

means of so-called silhouettes through all the clusters.

Recently, numerous new interesting solutions have been

proposed for cluster evaluation. For example, paper [14]

presents a new validity index for crisp clustering, which

emphasizes the cluster shape by using a high order char-

acterization of its probability. In turn, to represent the

separation among clusters a new measure called dual center

is proposed in [27]. A new measure of connectivity is

presented in [24]. This measure is based on the concept of

the relative neighborhood graph. Proposed new indices are

able to automatically detect clusters of any shape and size.

In turn, the stability index based on the variation on some

information measures over the partitions generated by a

clustering model is proposed in [20]. Moreover, in paper

[32] the authors note that the knee point detection is often

required because most indices show monotonicity with an

increasing number of clusters. Thus, indices with a clear

minimum or maximum value are preferred. They present

an index called the WB index. However, it should be noted

that existing validity indices have limitations and lack

generalization in evaluation of clustering results [1].

In this paper, a new cluster validity index called the STR

index is proposed and its maximum value indicates the best

partitioning of the data set for non-overlapping clusters.

Unlike most indices, this proposed approach uses the knee

point detection, and so a maximum value of the index is

very clear. It consists of the product of two components,

which determine changes of compactness and separability

of clusters in partitioning schemes [see Eq. (18)]. It should

be noted that values of these changes have different ranges,

but do not need to be normalized because they are multi-

plied. In order to present effectiveness of the new validity

index several experiments were performed for different

data sets. This paper is organized as follows: Sect. 2 pre-

sents an overview of several well-known validity indices.

Section 3 describes the new validity index and the basic

dependencies referring to cluster properties. Section 4

illustrates experimental results on artificial and real-life

data sets. Finally, Sect. 5 presents conclusions.

2 Chosen popular validity indices

Nowadays, in the clustering literature there is a large

number of various validity indices. Some of them are very

well known and are often used for comparing with other

indices. Among them are those mentioned above, i.e.,

Dunn, Davies-Bouldin (DB), PBM and Silhouette (SIL)

indices. Below, their detailed description is presented.

Dunn index This index is expressed as:

D ¼ min
1� i�K

min
1� j�K; i 6¼j

d Ci;Cj

� �

max
1� k�K

d Ckð Þð Þ

0

@

1

A

0

@

1

A ð1Þ

where K is a number of clusters in a data set, dðCkÞ is the
diameter of cluster Ck, i.e., the largest distance between two

points within the cluster, and dðCi;CjÞ is the minimum dis-

tance between two clustersCi andCj, which is calculated as a

distance between the closest points from these two clusters.

For well-separable clusters, distances between clusters are

large and their diameter is small. Thus, the maximum value

of the index indicates the right partitioning of data.

Davies–Bouldin (DB) index This index is defined as the

ratio of the sum of the within-cluster scatter to the inter-

cluster separation and can be expressed as follows:

DB ¼ 1

K

XK

i¼1

Ri ð2Þ

where the factor Ri can be written as:

Ri ¼ max
j 6¼i

Si þ Sj

dij
ð3Þ

Si and Sj denote the within-cluster scatter for ith and jth

clusters, respectively, and, e.g., Si can be expressed as

follows:

Si ¼
1

ni

X

x2Ci

x� vik k ð4Þ

where ni is a number of x in the cluster Ci, and vi is the

center of this cluster. Moreover, the dij is the distance

between the cluster centers, i.e., dij ¼ vi � vj

�� ��. The

minimum of the DB index indicates the appropriate parti-

tioning of a data set.

PBM index This index is defined as follows:
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PBM ¼ 1

K
� Eo

E
� D

� �2

ð5Þ

where E identifies the total within-cluster scatter, such that

E ¼
XK

k¼1

Xn

j¼1

lkj xj � vk

�� �� ð6Þ

and n is a number of elements in the data set, U ¼ ½lkj� is a
partition matrix of the data, and vk is the center of the

cluster Ck. On the other hand, the factor E0 represents total

scatter of all patterns belonging to one cluster in the given

data set. It is expressed as follows:

E0 ¼
X

x2X

x� vk k ð7Þ

where v is the center of patterns x 2 X. The next factor—

D—is a measure of cluster separation. It is defined as a

maximum distance between cluster centers:

D ¼ max
K

i;j¼1
vi � vj

�� �� ð8Þ

The maximum value of the index corresponds to the best

partitioning of a given data set.

Silhouette (SIL) index This index can be defined as:

SIL ¼ 1

K

XK

k¼1

SILðCkÞ ð9Þ

where SILðCkÞ is the Silhouette width for the given cluster

Ck and can be expressed as follows:

SILðCkÞ ¼
1

nk

X

x2Ck

SILðxÞ ð10Þ

where nk is a number of patterns in Ck, and SILðxÞ is the
Silhouette width for the pattern x and can be written as:

SILðxÞ ¼ bðxÞ � aðxÞ
max aðxÞ; bðxÞð Þ ð11Þ

aðxÞ is the within-cluster mean distance and it is defined as

the average distance between x and the rest of the patterns

belonging to the same cluster, bðxÞ is the smallest of the

mean distances of x to the patterns belonging to the other

clusters. The maximum of the SIL index provides the best

partitioning of a data set. It needs to be noted that unlike

the above-mentioned indices, it can be used for clusters of

arbitrary shapes.

3 The new validity index

First, the definition of the index is presented, and next the

role of its components and interactions between them are

explained in detail.

Let us denote a data set by X ¼ fx1; x2; . . .; xng, where n

is a number of patterns. Moreover, let Ck indicate kth

cluster, where k ¼ 1; . . .;K. Notice that in the given data

set the number of clusters K is limited by the number of

patterns n. Measure of cluster compactness can be

expressed as the ratio of the total scatter of all patterns to

the total scatter of the within clusters. Thus, for the K

partition scheme, it is defined as follows:

EðKÞ ¼ E0

EK

ð12Þ

Here, E0 denotes the total scatter of all patterns of X and is

expressed as:

E0 ¼
X

x2X

x� vk k ð13Þ

where v is the center of the data set X. Whereas, EK is the

total scatter of the within clusters, such that

EK ¼
XK

k¼1

X

x2Ck

x� vkk k ð14Þ

and vk is the center of the kth cluster. In turn, the measure

of cluster separation can be defined as the ratio of the

maximum to the minimum distance between cluster centers

and can be written as:

DðKÞ ¼ DKmax

DKmin

ð15Þ

and

DKmax ¼ max
K

i;k¼1
vi � vkk k ð16Þ

DKmin ¼ min
K

i;k¼1
vi � vkk k ð17Þ

where vi and vk are the centers of the ith and kth clusters.

Based on these measures of cluster properties (Eqs. 12

and 15), the new validity index, called the STR index, is

defined as:

STR ¼ EðKÞ � EðK � 1Þ½ � � DðK þ 1Þ � DðKÞ½ � ð18Þ

where EðK � 1Þ is the measure of compactness of clusters

calculated for the K � 1 partition scheme, that is:

EðK � 1Þ ¼ E0

EK�1

ð19Þ

and

EK�1 ¼
XK�1

k¼1

X

x2Ck

x� vkk k ð20Þ

while DðK þ 1Þ is the measure of cluster separation cal-

culated for the K þ 1 partition configuration and is

expressed as follows:
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DðK þ 1Þ ¼
DðKþ1Þmax

DðKþ1Þmin
ð21Þ

and

DðKþ1Þmax ¼ max
Kþ1

i;k¼1
vi � vkk k ð22Þ

DðKþ1Þmin ¼ min
Kþ1

i;k¼1
vi � vkk k ð23Þ

To determine the proper partitioning of a data set, the

maximum value of the STR index is found (see Eq. 18).

3.1 Detailed explanation

Let us denote by c� the actual number of clusters present in

a data set X. For instance, Fig. 1 shows an example of a

data set consisting of four clusters c� ¼ 4, which contain 50

instances per class. In order to demonstrate changes of

compactness and separability of clusters, for these data a

partitioning process was carried out using the complete-

linkage clustering algorithm. The number of clusters

K varied from 12 to 1, and the variation of the STR index

factors is presented in Fig. 2.

It should be noted that when K [ c�, the compact

clusters are subdivided into smaller ones. Thus, the scatter

of the patterns in individual clusters becomes small and
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Fig. 1 An example of a data set consisting of four clusters
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Fig. 2 Variation of the STR index factors with respect to the number of clusters for the example data set: a DðKÞmax, b DðKÞmin, c E(K), d DK

and EK
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then the compactness of these new clusters does not change

so much. Similarly, if K ¼ c�, the within-cluster scatter is

small because the data consist of compact clusters with a

small spread of patterns. On the other hand, when K\c�,
individual clusters are merged into larger ones and the total

scatter of the within clusters increases significantly. This

means that abrupt changes of compactness occur when the

number of clusters varies from K ¼ c� to K ¼ c� � 1.

In the proposed new index the measure of compactness

of clusters is expressed by E(K) (see Eq. 12). For example,

Fig. 2c shows variation of EK (denominator of the E(K))

with respect to the number of clusters. As it can be

observed, EK increases abruptly when the number K varies

from c� to c� � 1. This phenomenon forms the knee point

at the number of clusters c� ¼ 4. Notice that the factor

E(K) will also have the knee point because it is the ratio of

E0 to EK , where E0 is constant. However, the behavior of

this factor around c� is inverse, that is, it is large for K ¼ c�

, and it is small for K ¼ c� � 1 (see Fig. 2d). Of course,

when K equals 1, the value of E(K) is 1. Thus, changes of

compactness of clusters shown by E(K) are greatest

between K ¼ c� and K ¼ c� � 1 partition schemes.

Therefore, the difference between E(K) and EðK � 1Þ is

used by the new index (see Eq. 18) to determine these

changes of compactness.

The second property of clusters is their separability.

Measure of this property can be defined in different ways,

for example, as a minimum distance between clusters. But

the key issue is to find the knee point when the number K

varies from Kmax to Kmin. It should be noted that when the

number of clusters K [ c�, the minimum distance between

clusters does not change so much because clusters are still

small and exist in their natural groups. But when K ¼ c�,
this measure of separability increases abruptly, because

there are well-separable clusters in the given data set and

the distances between them are large. Similarly, if K\c�,
then clusters are merged by a clustering algorithm and are

far away from each other.

In this proposed index, a separability measure called

D(K) (see Eq. 15) is defined as the ratio of two inter-cluster

distances. The first one, DKmax, is the maximum distance

between cluster centers, and the other one, DKmin, is the

minimum distance between them (see Eqs. 16 and 17). Of

course, DKmax is limited by the maximum separation

between two patterns in the given data set. Notice that

when the number of clusters K [ c�, the distance DKmax is

large, because clusters are still small and also the maxi-

mum distance does not change so much when these clusters

are merged. Similarly, for K ¼ c�, the distance DKmax is

also large because the data consist of well-separable clus-

ters. Whereas, for K\c� this factor decreases, because

clusters are merged into large ones and the maximum

distance between the centers is smaller (see Fig. 2a). On the

other hand, the DKmin is small when K [ c�, because

clusters are subdivided into smaller ones and hence their

centers are close to each other. But when K ¼ c�, the factor
DKmin abruptly increases since distances between the cen-

ters will be proportionally larger. This applies also to

K\c�, and then the value of DKmin increases further until

the number of clusters K ¼ 2. Thus, for DKmin the knee

point occurs when the number of clusters is equal to c� þ 1

(see Fig. 2b). It can be seen that the change of the D(K)

between K ¼ c� þ 1 and K ¼ c� partition schemes is the

biggest (see Fig. 2d). Therefore, the difference between

DðK þ 1Þ and D(K) can be used to determine significant

changes of separability. Notice that if K ¼ 1, it is assumed

that D(K) equals 0.

In order to understand the details of the STR index better,

an example of calculating of the index will be presented. Let

us denote this index as STR ¼ A � B, where the component A

denotes EðKÞ � EðK � 1Þ, and B is DðK þ 1Þ � DðKÞ. As
mentioned above, the example data were partitioned by the

complete linkage clustering algorithm, and the number of

clusters K was varied from 12 to 1. Since the proposed index

is based on E(K) and D(K), so they must be computed for

each K partition scheme of the data. In Table 1 are presented

values of the STR index and of its componentswith respect to

number of clusters. It should be noted that if the number of

cluster equals 12 or 11, the index cannot be computed,

because, e.g., if K ¼ 12, the factor DðK þ 1Þ is not calcu-
lated. Consequently, the index calculation starts when the

number of clusters is equal to K � 1 ¼ 10, and then K ¼ 11

and K þ 1 ¼ 12. In this case, components of the index are as

follows: A ¼ Eð11Þ � Eð10Þ ¼ 9:75� 9:38 ¼ 0:37 and

B ¼ Dð12Þ � Dð11Þ ¼ 20:50� 14:90 ¼ 5:6. Finally, the

STR index is equal to 0:37 � 5:6 ¼ 2:07 (see Table 1). It

should be observed that if the number of clusters equals 7, the

component B is negative. This is so because DKmin can

Table 1 Values of the STR index and of its components with respect

to the number of clusters K for the example data

K E(K) D(K) A B STR index

12 9.98 20.50 – – –

11 9.75 14.90 – – –

10 9.38 14.09 0.37 5.60 2.07

9 8.95 13.31 0.43 0.81 0.35

8 8.33 14.65 0.62 0.78 0.48

7 7.90 12.32 0.43 -1.34 0

6 7.35 11.60 0.55 2.33 1.28

5 6.87 11.22 0.48 0.72 0.35

4 6.38 2.66 0.49 0.38 0.19

3 3.04 2.01 3.34 8.56 28.59

2 1.87 1 1.17 0.65 0.76

1 1 0 0.87 1.01 0.88
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decrease when the number of clusters varies from Kmax to

Kmin, and then the factor D(K) achieves large values (see

Fig. 2b, d). In these cases, the value of the index is assumed to

equal 0. Notice that the factor E(K) is positive because sizes

of clusters are always increased during a clustering process.

In Fig. 3 a variation of the STR index with respect to the

number of clusters for the example data is presented.

Thus, it seems reasonable that the definition of the

new index includes the product of these two components

calculated as the differences of the cluster compactness

and separability between K and K � 1, and also K þ 1

and K partition schemes (Eq. 18). Unlike most other

indices, this new index uses the knee point detection

when the number K varies within a certain range and is

an input parameter of an underlying clustering algo-

rithm. Although these two components of the index may

have different scales, they need not be normalized

because they are multiplied. Furthermore, the maximum

value of the index occurs when a number of clusters

K ¼ c� � 1, because the measure of cluster compactness

changes abruptly between K ¼ c� and K ¼ c� � 1 parti-

tion schemes. Consequently, the right number of clusters

equals c� ¼ K þ 1.

4 Experimental results

Several experiments were carried out to verify effective-

ness of the new index. The first ones relate to determining

the number of clusters for artificial and real-life data sets

when the complete-linkage algorithm is applied as the

underlying clustering method. The subsequent experiments

are to show how effectively this new index works in

comparison to the other popular validity indices such as

Dann, DB, PBM and SIL indices. Here, three well-known

algorithms were selected for clustering of data sets,

namely, complete-linkage, K-means and EM methods.

4.1 Artificial data

Randomly generated six artificial data sets with a various

number of clusters were used in the experiments. The first

three of them called Data 1, Data 2 and Data 3 are 2-di-

mensional with 3, 4 and 15 clusters, respectively. The next

three sets called Data 4, Data 5 and Data 6 are 3-dimen-

sional with 4, 7 and 9 clusters, respectively. Table 2 pre-

sents a detailed description of these data taking also into

account the number of elements per class.

As it can be observed in Fig. 4 clusters are mostly cir-

cular and located in various distances from each other;

some of them are quite close. For example, in Fig. 4c

clusters are small and most of them are very near each

other. On the other hand, Fig. 4d–f presents various large

clusters of 3-dimensional data sets. Here, clusters are more

scattered, and the distances between them are also very

different.

10 2186421 3 5 7 9 11
0

20

10

30

5

15

25

Fig. 3 Variation of the STR index with respect to the number of

clusters for the example data

Table 2 Detailed description of

the artificial data sets
Data sets No. of elements Features Classes No. of elements per class

Data 1 134 2 3 39, 48, 47

Data 2 400 2 4 50, 50, 150, 150

Data 3 429 2 15 31, 39, 38, 18, 29

30, 32, 27, 10, 39

22, 27, 39, 20, 28

Data 4 550 3 4 100, 100, 150, 200

Data 5 820 3 7 80, 90, 100, 100

100, 150, 200

Data 6 391 3 9 68, 62, 22, 22, 32

52, 36, 47, 50
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4.1.1 Determination of the cluster number for the artificial

data sets

Several tests were performed with the artificial data. The

complete-linkage method as the underlying clustering

algorithm was used for partitioning of these data, and the

cluster number K varied from Kmax ¼
ffiffiffi
n

p
to Kmin ¼ 1.

Note that the maximum number of clusters should not be

greater than
ffiffiffi
n

p
, where n is the number of elements in a

given data set. This value is an accepted rule in the
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Fig. 4 Artificial data sets: a Data 1, b Data 2, c Data 3, d Data 4, e Data 5, f Data 6
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clustering literature [19]. To demonstrate the behavior of

this index, in Fig. 5 the variation of the STR index with

respect to the number of clusters is presented.

As it can be noticed, in all these cases the maximum

values of this index indicate K ¼ c� � 1 partition

scheme of data. To calculate the correct number of clusters

we need to increase K by 1—this issue is explained in

detail in Sect. 3.1. It can be seen that for most of the well-

separable data, the index peaks are high and explicit.

However, Fig. 5b shows several high distinct peaks for the

set Data 2, which consists of large ellipsoidal clusters.

Notice that for K [ c� these clusters are subdivided into

smaller ones. But when they are merged into larger ones by

the clustering algorithm, their compactness and separability

change significantly. Therefore, this index provides several

large values. On the other hand, in Fig. 5d–f are presented

values of the index for the 3-dimensional data. Despite the

fact that the patterns in some clusters are much more

scattered, the STR index generates clear peaks which are

related to the correct partitioning of the data.

Moreover, the number of the peaks and their height can

provide interesting information about data structure, e.g., it
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can indicate how much these clusters are separated; how-

ever, this subject requires further study.

4.1.2 Determination of suitable clustering for the artificial

data sets

As it was mentioned above, in all those experiments the

STR index proved reliable and made it possible to specify

the correct number of clusters in the artificial data sets.

However, a very important issue is also the appropriate

partitioning of data, which means that all patterns belong to

suitable clusters. This can be demonstrated graphically but

only for 2-dimensional and 3-dimensional data sets. As in

Sect. 4.1.1, the complete-linkage method in conjunction

with the STR index was used for partitioning of the above-

mentioned artificial data, and Fig. 6 presents clustered data,

where each cluster is denoted by a successive number. It

can be seen that despite various size and number of clus-

ters, all the patterns are assigned to correct groups. Notice

that the right number of clusters given as an input param-

eter of a clustering algorithm does not guarantee that all

patterns are associated with appropriate clusters. It mainly

depends on properties and additional input parameters of

clustering algorithms. Certainly, an incorrect number of

K results in poor partitioning of data by these algorithms.

4.2 Real-life data

The complete-linkage method was also used for the parti-

tioning of the real-life data sets, where the cluster number

K also varied from
ffiffiffi
n

p
to 1. The appropriate number of

clusters in the data was found for the following sets: Breast

cancer, Breast tissue, Glass, Haberman, Iris, Parkinsons,

Vertebral column and Wine, which were drawn from the

UCI repository [2]. The description of these data is pre-

sented in Table 3.

The first set called Breast cancer is the Wisconsin Breast

Cancer data. It consists of 683 patterns belonging to two

classes: Benign (444 instances) and Malignant (239

instances). Each pattern is characterized by nine features.

The next set called Breast tissue includes measurements of

electrical impedance of tissue samples excised from

breasts. This set includes 106 elements, which are located

in 6 classes, and each sample is described by 9 features.

Next, the Glass data set contains information about 6 types

of glass, which are defined in terms of their oxide content.

In more detail, the set has 214 instances and each of them is

described by 9 attributes. The Haberman data set consists

of the cases from a study on the survival of patients who

had undergone surgery for breast cancer. The set has 306

cases belonging to two classes, and the number of features

equals 3. The Iris data are very well known and extensively

used in many comparisons of classifiers. This set has three

classes Setosa, Virginica and Versicolor, which contain 50

instances per class. Moreover, each pattern is represented

by four features, and two classes Virginia and Versicolor

are overlapping each other. On the other hand, the third

class Setosa is well separated from the others. The next set

is the Parkinsons data set and it consists of 195 cases,

which are described by 22 attributes. These data are

composed of biomedical voice measurements from people

and are used to discriminate healthy people from those with

Parkinson’s disease (2 classes). The following set, Verte-

bral column, contains values of six biomechanical features,

which are used to classify orthopedic patients into 3 clas-

ses. In this set, the total number of cases equals 310.

Finally, the Wine data set shows the results of a chemical

analysis of wines. It comprises three classes of wines,

which consist of 59, 71 and 48 samples per class, respec-

tively. Altogether, the data set contains 178 patterns rep-

resented by 13 features.

Figure 7 shows values of the STR index with respect to

the number of clusters when the complete-linkage algo-

rithm was used for partitioning of the data. As it can be

observed, despite the multidimensional data and a various

number of the ’natural’ clusters in these data sets, the STR

index provides the right number K in most cases. For

example, Fig. 7a presents the maximum of the STR index

for K ¼ 1, and so, the appropriate number of clusters

equals 2 for the Breast cancer data set. For the other data,

when the actual number of clusters equals 2 or 3, this new

index also provides correct indications (see Fig. 7d–h). On

the other hand, there are two cases where this number of

clusters is incorrect, and it concerns two sets, i.e., Breast

tissue and Glass. It should be noted that these data possess

several clusters, but with a small number of elements.

Thus, in this case the appropriate partitioning data are very

hard, and most validity indices give wrong results. In

addition, the properties of clustering algorithms greatly

affect the shape and the size of created clusters. For

example, the complete-linkage method favors creation of

compact clusters and imposes spherical-shape clusters on

data. However, it should be emphasized that the proposed

index accurately indicates the appropriate number of

clusters for the other data. Thus, these experiments confirm

the effectiveness of this approach in the partitioning of

these data sets.

4.3 Comparison of several validity indices

In order to demonstrate the effectiveness of the proposed

index, several experiments have been performed for the

above-mentioned data sets. For comparison four indices

have been used, i.e., Dunn, DB, PBM and SIL indices.

Detailed information regarding these indices is presented in
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Fig. 6 Clustered data by the complete-linkage algorithm, corresponding to the maximal value of STR index and indicated by numbers, for:

a Data 1, b Data 2, c Data 3, d Data 4, e Data 5, f Data 6
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Sect. 2. Three methods were used as underlying clustering

techniques, namely, complete-linkage, EM and K-means.

Each of these has different properties and approach to data

set partitioning. Moreover, for each of these algorithms, the

value of the input parameter K varied from

Kmax ¼
ffiffiffi
n

p
to Kmin ¼ 1. These experiments concern the

determining of the proper number of clusters present in the

given data sets, and, as mentioned, it is the key parameter

for clustering algorithms.

Additionally, the accuracy rate is defined to determine

the accuracy of a validity index in detecting the number of

clusters. Here, the rate equals A=total number of data sets.

A is the sum of the ratios of the difference jp � oj to p,

where the factor p denotes the actual number of clusters

present in a given data set, and the other factor o is the

number of clusters provided by the validity index. Of

course, if the rate used for the index is close to 0, this

means that this index is perfect.

Table 4 presents the comparison of the five indices while

taking into account the number of clusters. As mentioned

above, the complete-linkage algorithm creates compact

clusters of approximately equal diameters and it is sensitive

to outliers. It is so due to the fact that the similarity mea-

sure of clusters is the maximum distance between two

patterns. As it can be seen from the table, the STR index

provides the right cluster number for all data sets, apart

from Glass and Breast Tissue. These two data sets possess

6 clusters while the maximum value of this new index

indicates 5 clusters. But these results are good when

compared to the other indices. For Glass, the four indices,

i.e., Dunn, DB, PBM and SIL fail to detect the appropriate

number of clusters and show 4, 10 ,2 and 8 clusters,

respectively. Similarly, these indices provide an incorrect

number of clusters for the Breast tissue data. Thus, the

results confirm very good effectiveness of the STR index.

Table 5 provides the comparison of these five indices for

the EM method, which looks for Gaussian-shape clusters.

Notice that the choice of initial parameters for this clus-

tering method is of great importance for obtaining correct

results. Here, the STR index was able to provide the right

number of clusters for the eight data sets, i.e., Data 1, Data

2 and from Data 4 to Data 6 and three real-life data sets. In

turn, the Dunn index indicated the appropriate number of

clusters only for three data sets, the DB index for eight sets,

the PBM and the SIL for six sets. It can be seen that when

compared to the other indices, the results obtained by the

STR index are very good.

In Table 6 the results for K-means method are shown. It

is generally known that this algorithm often gets stuck at

suboptimal configurations. In order to overcome this

problem, several re-initializations are used for different

initial cluster centers. This algorithm looks for compact

clusters around a mean. From this table it can be seen that

the STR index indicates the proper number of clusters in

almost all the cases except for Data 3, Iris and Vertebral

column data sets. In comparison to the others, it is the best

result.

To summarize, regardless which one of the three

underlying clustering algorithms was used, the STR

index provides very impressive results. The proposed

index consistently outperforms the other indices in terms

of the correct indication of the cluster number. The

values of the accuracy rate also prove the superiority of

this new index.

5 Conclusion

There is a large number of cluster validity indices in the

clustering literature. Generally, these indices can be used to

assess crisp and/or fuzzy clustering of data. The above-

mentioned validity indices, i.e., the Dunn index, the DB

index, the PBM index or the SIL index are popular and

widely used by different clustering algorithms. However,

there is no validity index which works well with all the

clustering algorithms for a wide range of data sets. Hence,

there is a constant need to develop efficient indices which

can be used with different algorithms for various data sets.

In this paper, a new cluster validity index was proposed

and the detailed analysis of its work was also done. Similar

to the other reported studies of indices, this index was

mainly used to identify the right number of clusters, and

was also the measure of the correctness of various parti-

tioning of data. The proposed index is defined as the pro-

duct of two components, and its maximum value indicates

the appropriate partition scheme. The first component

measures changes of cluster compactness, and the second

one measures changes of cluster separability. Here, unlike

most of the other indices, this approach makes it possible to

Table 3 Description of real-life data sets

Data set No. of elements Features Classes

Breast cancer 683 9 2

Breast tissue 106 9 6

Glass 214 9 6

Haberman 306 3 2

Iris 150 4 3

Parkinsons 195 22 2

Vertebral column 310 6 3

Wine 178 13 3
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detect the knee point occurring in the measuring of cluster

compactness and separability. Thus, the maximum value of

this index is very clear. Moreover, although the two com-

ponents have different scales, they do not need to be nor-

malized. It can be seen that measures of cluster properties

are also appropriately chosen so that the value of this index

is very large when a number of clusters equals the actual

number of clusters present in a data set. To investigate the

behavior of the proposed validity index, as the underlying

clustering algorithms, three well-known methods charac-

terizing different approaches to partitioning of data sets

were selected. They are, the complete-linkage, the K-means

and the EM algorithms.

The performed tests have proven the advantages of the

proposed index compared to the above-mentioned indices,

i.e., Dunn, DB, PBM and SIL indices. In these experi-

ments, several artificial and real-life data sets were used,

where artificial data were two or three dimensional, and the

number of clusters varied from three to fifteen. The

dimensionality of the real-life data was from three to

twenty two. All the presented results confirm high

bFig. 7 Variation of the STR index with respect to the number of

clusters for: a Breast cancer, b Breast tissue, c Glass, d Haber-

man,e Iris, f Parkinsons, g Vertebral column, h Wine

Table 4 Comparison of the number of clusters obtained by means of

the complete-linkage algorithm in conjunction with the Dunn index,

the DB index, the PBM index, the SIL index and the STR index

Data set N Number of clusters obtained

Dunn DB PBM SIL STR

Data 1 3 2 2 3 2 3

Data 2 4 2 4 4 4 4

Data 3 15 13 14 15 14 15

Data 4 4 4 4 4 4 4

Data 5 7 2 7 7 7 7

Data 6 9 7 9 9 7 9

Cancer 2 15 2 2 2 2

Tissue 6 2 2 3 2 5

Glass 6 4 10 2 8 5

Haberman 2 6 12 3 12 2

Iris 3 12 3 3 3 3

Parkinsons 2 2 2 2 2 2

Vertebral column 3 2 2 2 2 3

Wine 3 12 12 3 2 3

Accuracy rate 1.26 0.72 0.14 0.52 0.02

The values of the STR index are in bold

N denotes the actual number of clusters in the data sets. The Accuracy

rate determines the accuracy of the validity index in detecting the

proper number of clusters (Sect. 4.3)

Table 5 Comparison of the number of clusters obtained by means of

the EM algorithm in conjunction with the Dunn index, the DB index,

the PBM index, the SIL index and the STR index

Data set N Number of clusters obtained

Dunn DB PBM SIL STR

Data 1 3 2 2 3 2 3

Data 2 4 4 4 7 4 4

Data 3 15 12 14 17 13 14

Data 4 4 4 4 4 4 4

Data 5 7 2 7 6 7 7

Data 6 9 7 9 9 7 9

Cancer 2 2 2 2 2 2

Tissue 6 3 2 5 2 5

Glass 6 7 6 2 2 5

Haberman 2 4 11 3 3 3

Iris 3 2 2 3 2 2

Parkinsons 2 7 2 3 2 2

Vertebral column 3 14 2 4 2 2

Wine 3 6 3 3 3 3

Accuracy rate 0.62 0.44 0.26 0.23 0.11

The values of the STR index are in bold

N denotes the actual number of clusters in the data sets. The accuracy

rate determines the accuracy of the validity index in detecting the

proper number of clusters (Sect. 4.3)

Table 6 Comparison of the number of clusters obtained by means of

the K-means algorithm in conjunction with the Dunn index, the DB

index, the PBM index, the SIL index and the STR index

Data set N Number of clusters obtained

Dunn DB PBM SIL STR

Data 1 3 2 2 3 2 3

Data 2 4 4 4 4 4 4

Data 3 15 11 14 13 13 14

Data 4 4 4 4 4 4 4

Data 5 7 2 7 6 7 7

Data 6 9 7 9 9 9 9

Cancer 2 2 2 2 2 2

Tissue 6 4 2 4 2 6

Glass 6 4 6 6 6 6

Haberman 2 2 6 2 2 2

Iris 3 2 2 3 2 2

Parkinsons 2 4 2 3 2 2

Vertebral column 3 2 2 3 2 2

Wine 3 4 3 3 3 3

Accuracy rate 0.27 0.31 0.079 0.18 0.075

The values of the STR index are in bold

N denotes the actual number of clusters in the data sets. The accuracy

rate determines the accuracy of the validity index in detecting the

proper number of clusters (Sect. 4.3)
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efficiency of the STR index where this index in most cases

outperforms the other indices in the conducted experi-

ments. Further work will include application of the new

index for the fuzzy clustering of various data sets.

Open Access This article is distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://crea
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distribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were
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