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ones by checking the magnitude of the equalizer parameter vector. 
These results have been developed with the intention zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof aiding 

further research into developing initialization tactics and parameter 
constraints designed to guarantee the desirable global convergence 

of blind equalization algorithms. 
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A New Variable Fractional Sample Delay Filter with 
Nonlinear Interpolation 

Ging-Shing Liu and Che-Ho Wei 

Abstract-This paper presents a finite impulse response (FIR) filter 
that can synthesize any fractional sample delay by nonlinear interpola- 
tion technique. Analytically closed-form solutions for the tap weights of 
such an FIR filter and their frequency responses are presented. 

I. INTRODUCTION 

In signal processing applications, linear phase shifter or constant 

delay of a signal waveform is often desired. Delaying a signal by 

integer multiples of the sampling period can be easily realized by 

cascading unit-delay elements. However, for some applications, it 
may be desirable to delay a signal by a fractional multiples of the 

sampling period. In this case, the signal must be interpolated to 
obtain new samples of the waveform at noninteger sampling in- 

stants. The process is considerably more difficult [l], [2]. 

Application in which such noninteger delays in the signal wave- 

form are required often occurs when some digital system must 

interface with other digital systems that are not clocked syn- 

chronously. In general, to transfer digital samples from one system 

to another system with the same clock rate but separate clocks 
would require an interpolator or a first in-first out buffer to com- 

pensate for the delay time between these clocks. For nonsyn- 
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chronous clocks of nearly the same frequency, the length of the 

required buffer is determined by the maximum difference in clock 

frequencies. Several digital signal processing techniques, such as the 

multirate signal processing method [3] and the minimum mean- 

square error method [l], have been adopted to solve this problem. 

Given an equally spaced data sequence of finite length, there are 

many interpolation techniques capable of estimating the sample 

value between the available discrete samples. Interpolation near the 

center of a set of evenly spaced samples is best accomplished by 
using central differences. There are many interpolation formulas 

using central differences. Stirling’s formula is one of the most 

commonly used methods [4]. For real-time transmitted data se- 

quences, which may be of infinite length, the concept of Stirling’s 

formula for central difference interpolation can be generalized. 

In this paper, by using this interpolation concept, a new fractional 

sample delay filter is proposed. It can buffer and delay a real-time 

transmitted data sequence by a fractional sample period. It can be 

implemented by a single-rate FIR filter whose coefficients are 

explicit functions of the delay time. This filter can be used as a 

digital interpolator capable of compensating for the delay time 
between the echo canceller output and the receiver input for the 

V.32 full-duplex modem or the U-transceiver in digital subscriber 

loops (DSL). Analytically closed-form solutions for the filter coef- 

ficients are derived. Frequency responses of the delay filter are then 

computed and compared versus the design parameters. 

11. DESIGN METHOD 

Consider a polynomial zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx( t )  of degree zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN given by 

N 

x ( t )  = a, + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa,t + a,t2 + a3t3 + + a , t N =  aktk zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1) 

passing through ( N  + 1) different points ( t n ,  x n ) ,  where n = 0, 1, 
2, .  * a ,  N. It is well known that coefficients { ak} can be solved by 

Cramer’s rule as ak = A k / A  (k = 0, 1, 2; * ., N ) ,  where A is the 

Vandermonde determinant given by 

k=O 

= n ( t i -  
O s i < j s N  

and A is the determinant of a new matrix obtained by replacing the 

kth column in (2) by the column vector ( x , ,  x,;. a ,  x,,,)~. The 

samples at noninteger sampling instants are directly interpolated by 

such a polynomial. It is worth noting that these zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(N + 1) successive 

samples may be a fragment of a real-time transmitted sequence. 

In the following, based on the simple idea, the derivation for the 

filter coefficients of the nonlinear interpolator with N = 2 and 

N = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 will be presented. 

A.  Second-Order Polynomial Interpolation (N = 2) 

Fig. l(a) demonstrates the function of a second-order polynomial 

interpolator. It is assumed that the polynomial x ( t )  = a,? + a,t  
+ a, passes through three equally spaced points ( ( n  - 1)T, x(n - 
l)), ( n T ,  x (n ) )  and ( ( n  + 1)T, x (n  + 1)). Thus the polynomial 

must satisfy the following linear equation: 

T A  = X (3) 

10.57-7130/92$03.00 0 1992 IEEE 
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x ( n )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwhere zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
c, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1/2a(a + 1) 

CO = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- ( a  - 1 ) ( a  + 1 )  

c- ,  = 1/2a(a - 1) .  (7) 

It is noted that C, , CO,  and C- , are time-invariant and depend only 

on the delay parameter a. Therefore, the interpolator can be 

implemented as a linear time-invariant FIR filter to synthesize the 

fractional sample delay aT. The delay filter output, i.e., the 

interpolated sample at noninteger multiples of sampling period, can 

be expressed explicitly as a linear combination of those at integer 

multiples of sampling period. Fig. 2 shows the waveforms at the 

output of such an FIR filter with various delays ranging from 0 to 

T,  where a sine wave is used as the input signal. 

B. Fourth-Order Polynomial Interpolation (N = 4) 

The function of a fourth-order polynomial interpolation is illus- 

trated in Fig. le). Let the polynomial pass through five equally 

spaced samples. After some tedious but straightforward manipula- 
tions, a time-varying coefficient vector A is obtained. Similar to (6) 
and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(7), the interpolated sample at t = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(n - a)T can be determined 

and expressed with X as 

a ( n  - a )  = C , x ( n  - 2) + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC , x ( n  - 1 )  

where + Cox( . )  + C - , x ( n  + 1 )  + C - , x ( n  + 2) 

where 

1 

24 
c-, = - ( a  + l ) a ( a  - 1 ) ( a  - 2) 

c-, = - - ( a  + 2)a(a  - l)(a - 2) 
1 

6 
1 

CO = T ( a  + 2) (a  + 1)(a - 1)(a - 2 )  
4 

1 

(4) 6 

x ( n  + 1) 

x ( n  - 1 )  

c, = - - ( a  + 2 ) ( a  + l ) a ( a  - 2 )  

+ 2) (a  + l ) a ( a  - 1) .  
1 

c2 = - ( a  24 (8) 
By using Cramer's rule, vector A can be solved and rearranged 

with X as The frequency response for such an FIR filter can be written as 

1 1 1  

n ( n  + 1 )  n(n - 1 )  

2 
- ( n  + l ) ( n  - I )  

r .  

+ j  - - a ( a 2 -  l ) s in(2w)  I :  
1 

1 

3 
+ - a ( a 2  - 4)s in(w)  (9) 

For ideal fractional sample delay filter, its frequency response is 

H( e':) = e-jwa. The squared approximation error between H( e'") 
and H(e'") can be defined as 

t = I H(ejw)  - Ej(e'") I '. 
Fig. 3 Plots the squared approximation error t 
( N  = 4). 

C. Nth-Order Polynomial Interpolation (N = 2M) 

There are several very interesting regularities in the coefficients 

given in (7) and (8) for the second- and fourth-order delay filters. 

The interpolated sample at time t = ( n  - a)T can be written as 

( 10) i ( n  - a )  = a,t2 + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa,t + a, I (6) 

where (y denotes the fractional sample delay and P(n - a)  repre- 

sents the estimate of the delayed replica of x ( n )  with delay time 
aT. Combining (5) and (6), the estimate i ( n  - a )  can be simpli- 

fied and expressed with X as 

a and 

a ( n  - = C l x ( n  - l )  + + C - , x ( n  + '1 
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TIME ( i n  T zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 

Fig. 2. Output waveforms with various delays zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( N  = 2). 

Fig. 4. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASquared approximation error versus zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw (N = 12). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
R 

Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 .  Squared approximation error 5 versus a and w ( N  = 4). 

First, for some coefficient C j ,  all the factors in the form of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( a  - i), 
except ( a  - j ) ,  will appear at the right-hand side of the equations, 
where index i ranges from - M  to M .  Second, C j  equals unity 

when j is substituted for a in (7) and (8). Furthermore, Cj  equals 

zero when any integer m not equal to j is substituted for a ,  where 

- M  5 rn 5 M .  For example, letting a = 1 in (8), we obtain 

c 2 -  - 0, c, = 1 ,  CO = 0, c-,  = 0, c-, = 0. (11) 

In this case, y ( n )  = i ( n  - a )  = x ( n  - l ) ,  i.e., the filter synthe- 

sizes an integer delay. 

Based on these regularities, for an Nth-order (with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN = 2M) 
delay filter, a generalized closed-form solution for the filter coeffi- 

cients can be derived and appears as 

1 M 

c.  = n ( a - i )  ' ( - I ) ~ - ' ( M +  j ) ! ( M -  j ) !  i = - M  

j =  -M,  - M +  l ; . * , M -  1,M.  

i # j  

(12) 

Note that (7) and (8) are special cases of (12) with M = 1(N = 2) 
and M = 2(N = 4), respectively. Fig. 4 demonstrates the squared 

Fig. 5. Squared approximation error 5 versus Nand w. 

approximation error 5 versus the delay (CY) and the frequency ( w )  
for a higher order filter ( N  = 12). Given the same delay time CYT, 
Fig. 5 compares the squared approximation error versus the filter 

order N in frequency domain. 

From the numerical results shown in Figs. 3 and 4, it is found 

that the filter always provides nearly flat delay and magnitude 

responses over the band of [ - O h ,  +0.5r] (or [-1/4T, +1/4T]), 
where T is the sampling period. For practical applications, the 

designer can only choose a suitable value N.  As a rule of thumb, if 

the designer wants to design a programmable delay filter, which is 

capable of delaying a discrete sequence by fractional delay between 

-MT and MT, the suitable choice of the filter order N is 2M or 

more. To any specific order N ,  the higher the sampling rate, the 

better the linearity of the delay filter. As a compromise between 
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complexity and approximation error, the fourth-order zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(N zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 4) de- 

lay filter is a desirable candidate for many applications. 

III. CONCLUSIONS 

A new technique is presented for designing and implementing a 

programmable digital delay element capable of synthesizing any 

fractional sample delay-time zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa T .  This method is based on the 

concept of nonlinear polynomial interpolation. Derivation of the 

analytically closed-form solutions for the filter coefficients has been 

described. The resulting digital FIR filter can be implemented 

directly in real-time structure. The flatness of the delay response can 

be improved by using higher order delay filters. To any specific 

order N, the higher the sampling rate, the better the linearity of the 

delay filter. 
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A Theoretical Approach to the Design 
of A/D Converter by Means of 

Schmitt Triggers 

G. Di Cataldo and G. Palumbo 

Abstrcrct-In this paper a neural A/D converter that avoids the 
incorrect conversion of the Hopfield A/D is proposed. The converter 
proposed is noteworthy for its conversion speed as it relates to its size. 
The conversion procedure is based on a theorem, included in this paper, 
which starts from the Smith and Portmann suggestion relative to the 
study of the Hopfield neural network by means of Schmitt triggers. 

I. INTRODUCITON 

Neural networks, based on a massive parallelism of simple proc- 

essors (artificial neurons) [l], are well established; however, studies 
in this area have been revitalized due to advances in VLSI technolo- 

gies [2]-[6]. In particular the Hopfield neural network, composed of 

one-layer neurons fully connected by feedback resistors, is widely 

applicable in electronic computing. Because of the simplicity of the 

network structure and the convergence in the time-domain behavior 

[7], [8], it can powerfully perform associative memory, patter 
classification, and optimization [9]. 

The realization of an A/D converter is a specific problem of 

optimization for which a Hopfield neural network can be built (Fig. 

1). An example of a four-bit A/D converter is reported in [lo]. The 

actual transfer characteristic of an A/D converter, based on a 

Hopfield neural network, shows strong nonlinearity due to amplifier 

mismatches and to the initial state of the network. In particular, in a 

neural A/D converter, the problem deriving from the initial state of 

the network can simply be eliminated by resetting the network for 
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Fig. 1. Hopfield AID converter. 

each sample date. However, this solution is not sufficient to avoid 

hysteresis and incorrect encoding of the Hopfield A/D converter 

[ 1 11- [ 141. 

Smith and Portmann, referring to the previous work of Catter- 

mole [ l l ] ,  have proposed the realization of converters that are 

modified with respect to the original Hopfield neural network, in 

order to avoid the above-mentioned problems. In particular they 

point out that by redesigning a Hopfield A/D converter as a Type I 

serial encoder, we can assure stability and correct encoding. This 

solution leads to an A/D converter that takes a time n . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr (where r 
is the settling time for each neuron) [13]. 

In this paper we present a Type I serial encoder in which the 

speed operation is increased and takes a time of 2( r  + A T )  with 

AT 4 r, instead of n 7. In our analysis we will make use, as 

suggested in [13], of an equivalent network made of Schmitt triggers 

designed so as to have different settling times. 

II. THE PROPOSED A/D CONVERTER 

To better understand the hysteresis and incorrect encoding of 

Hopfield neural networks, transformation into an equivalence feed- 

back electric circuit realized by means of Schmitt triggers has been 

proposed [13] (Fig. 2). We started from this suggestion to develop 

our circuit. Our converter, reported in Fig. 3, is derived from the 

circuit of Fig. 1 operating a right shift for each trigger characteristic 

equal to 2j-I. Moreover, we have assumed that for trigger settling 

times r i+,  < r ,  holds [15], i.e., the triggers respond with a de- 

creasing speed to the decrease in the bit weight that each represents. 

We point out that the resulting network has an ideal sum node (i.e., 

a sum node with zero response time). 

The solution here discussed is based on a theorem that assures the 

correct theoretical conversion of circuit. The proof is reported in the 

Appendix. 

Theorem: 

Hp: 1) The circuit in Fig. 3(a) has n Schmitt triggers that have 

2) the Schmitt trigger characteristic is shown in Fig. 3(b); 
3) the network has a zero initial state: V,- ,(O) = * * = 

4) Vi, is constant for 0 5 t 5 r,,. 

settling times of r i+ ,  < r l ;  

V,(O) = 0; 
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