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 Autocorrelation and measurement errors have a negative effect on the performance of any 
monitoring scheme; therefore, more efficient monitoring schemes are required to monitor such 
special processes. Hence, in this paper, the use of improved synthetic and runs-rules X  ̅schemes 
with an embedded variable sample size and sampling interval (VSSI) approach to efficiently 
monitor the mean of a process under the combined effect of autocorrelation and measurement 
errors is proposed. These new monitoring schemes incorporate a linearly covariate error model 
with a constant standard deviation and a first-order autoregressive model to the variability of this 
special process in order to account for measurement errors and autocorrelation, respectively. 
Moreover, in order to evaluate the zero- and steady-state run-length properties of the proposed 
monitoring schemes, a dedicated Markov chain matrix that takes into account the following is 
constructed: (i) VSSI approach, (ii) improved charting regions design of the synthetic and runs-
rules X  ̅schemes, and (iii) the combined effect of autocorrelation and measurement errors. Also, 
the probability elements of the Markov chain matrix incorporate two special sampling methods 
that aid in the reduction of the negative effect of autocorrelation and measurement errors. A real 
life example is given to illustrate the implementation of the proposed monitoring schemes. 
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1. Introduction 
 

 
Since the vast majority of the contributions in the statistical process monitoring (SPM) field assumes that 
observations are: (i) i.i.d. (independent and identically distributed), and (ii) correspond to perfect 
measurements, the experience in SPM application shows that this is usually not the case in real life 
applications. That is, (i) within-sample autocorrelation (see the review by Prajapati and Singh (2012)) 
and (ii) measurement errors (see the review by Maleki et al. (2017)) are well-known to negatively affect 
the statistical efficiency of any monitoring scheme. Consequently, more efficient monitoring schemes 
are required to be able to quickly distinguish between a process that is in a state of in-control (IC) and 
the one in a state of out-of-control (OOC) when the process is under a combined effect of autocorrelation 
and measurement errors. A process is said to be IC (OOC) when it is under the effect of common 
(assignable) causes of variability, respectively. Supplementary runs-rules and synthetic schemes have 
been documented in the SPM literature to be one of the most efficient Shewhart-type monitoring schemes 
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for i.i.d. observations; see the reviews by Koutras et al. (2007) and Rakitzis et al. (2019), respectively. 
Hence, in this paper, efficient runs-rules and synthetic monitoring schemes are proposed to monitor the 
process mean under the combined effect of autocorrelation and measurement errors. Before introducing 
these new monitoring schemes, a few preliminaries are discussed below.   
 
Firstly, numerous publications have shown that monitoring schemes that incorporate a variable sample 
size and sampling interval (VSSI) approach yield better OOC performance than their corresponding fixed 
sample size and sampling interval (FSSI) counterparts; see the review by Psarakis (2015). A majority of 
research works in the SPM literature based on the VSSI approach have been implemented for i.i.d. 
observations, see for instance Prabhu et al. (1994), Costa (1997), Celano et al. (2006), Jensen et al. (2008), 
Noorossana et al. (2015, 2016). Note though, Sabahno and Amiri (2017) studied the effect of 
measurement errors on the VSSI 𝑋 scheme. However, so far, no research work exists in the SPM 
literature that monitors the combined effect of autocorrelation and measurement errors using a VSSI 
approach. Secondly, combining the operations of the basic Shewhart 𝑋 scheme with the conforming run-
length (CRL) scheme yields a synthetic 𝑋 scheme; which was first proposed by Wu and Spedding (2000). 
The CRL is defined as the number of sampling points observed between two consecutive nonconforming 
samples, inclusive of the nonconforming sample at the end. Note that a sample plots on a conforming 
region when it is under the influence of common causes of variation only; however, when it plots on a 
nonconforming region, it implies that it has some assignable causes of variation present. Hence, a 
synthetic monitoring scheme gives an OOC signal when the CRL value is significantly small, say, CRL ≤ H, where H is a positive integer greater than 0. That is, the main difference between a basic Shewhart 
scheme and a synthetic scheme is that the basic Shewhart scheme issues an OOC signal at the first sample 
point that falls on the nonconforming region; however, synthetic scheme waits until a second sample 
point falls on the nonconforming region and if these two nonconforming samples are relatively close to 
each other, so that CRL ≤ H, then the CRL scheme signals and thus, an OOC signal is triggered. For 
some recent works on synthetic monitoring schemes for i.i.d. observations, see Haq (2019), Khaw et al. 
(2019), Tran et al. (2019), Malela-Majika (2019), Raza et al. (2019), Haq and Khoo (2019), etc. However, 
for autocorrelated observations, see Hu and Sun (2015) and Shongwe et al. (2019a); and finally for 
autocorrelated observations with measurement errors using FSSI approach, see Shongwe et al. (2020a). 
It is important for synthetic schemes to evaluate both zero- and steady-state run-length properties, see 
Davis and Woodall (2002). The zero- and steady-state modes are used to characterize short- and long-
term run-length properties of a monitoring scheme, respectively. That is, a zero-state run-length is a 
number of sampling points at which the scheme first signals given it begins in some specific initial state, 
whereas a steady-state run-length is a number of sampling points at which the scheme first signals given 
that the process begins and stays IC for a very long time, then at some random time, an OOC signal is 
observed. 
 
Thirdly, supplementary runs-rules have been in use since the 1950s to improve the performance of 
Shewhart schemes; however, they have also been used to improve memory-type monitoring schemes 
more recently. For more recent research works on runs-rules monitoring schemes for i.i.d. observations, 
see Adeoti and Malela-Majika (2020), Shongwe et al. (2019b), Maravelakis et al. (2019), Mehmood et 
al. (2019), Chew et al. (2019), etc. However, for autocorrelated observations, see Singh and Prajapati 
(2014), Lee and Khoo (2018), and Shongwe and Malela-Majika (2019); and finally for autocorrelated 
observations with measurement errors, see Shongwe et al. (2020b). Fourthly, the synthetic-type schemes 
were shown to have four categories in Rakitzis et al. (2019). Shongwe and Graham (2016) showed that 
the improved 2-of-(H+1) runs-rules schemes also have four categories. These are termed: non-side-
sensitive (NSS), standard side-sensitive (SSS), revised side-sensitive (RSS) and modified side-sensitive 
(MSS) designs. The MSS design was shown to outperform the other three types of designs for the 
synthetic and runs-rules schemes. Hence, to gain maximum OOC performance improvement, in this 
paper, the focus is on the MSS design only.  Finally, the MSS synthetic and runs-rules schemes with the 
VSSI approach for monitoring the process mean are denoted by VSSI-Synth and VSSI-Runs schemes, 
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respectively. Therefore, the main objective of this paper is to improve the FSSI Shewhart 𝑋 scheme for 
monitoring the process mean under a combined effect of autocorrelation and measurement errors 
(discussed in Costa and Castagliola, 2011) by using the new VSSI-Synth and VSSI-Runs monitoring 
schemes. That is, a dedicated Markov chain matrix is constructed which incorporates the following in 
the probability values: (i) VSSI approach, (ii) the MSS design for the charting regions, (iii) the first-order 
autoregressive (i.e. AR(1)) model with a constant standard deviation (to account for autocorrelation), (iv) 
the linearly covariate error model with a constant standard deviation (to account for the measurement 
errors). To reduce the negative effect of the latter two factors, the skipping sampling strategy and multiple 
measurements strategy are implemented; see the discussion of these strategies in Aslam and Ali (2019), 
and Linna and Woodall (2001), respectively. 
 
The rest of the paper is structured as follows: The theoretical properties of the basic 𝑋 scheme with a 
VSSI design for a process with a combined effect of autocorrelation and measurement errors is discussed 
in Section 2. In Section 3, the operation and run-length properties of the new VSSI-Synth and VSSI-
Runs monitoring schemes are discussed; with the construction of a dedicated Markov chain matrix done 
in the Appendix. The corresponding empirical discussion is done in Section 4. An implementation 
example is given in Section 5. Concluding remarks are given in Section 6. 
 
2. Autocorrelated data with measurement errors for the 𝑿 scheme with VSSI design 
 
Improving from Alwan and Radson (1992) discussion on monitoring an AR(1) process using an 𝑋 
scheme, Costa and Castagliola (2011) integrated the latter process with the skipping s observations before 
sampling to form a rational subgroup (denoted as s-skip strategy, where s is a positive integer) as a 
remedial approach in reducing the effect of autocorrelation and showed that the process remains an 
AR(1); however, with parameter 𝜙 , where 𝜙 is a specified parameter called a level of autocorrelation, 
with |𝜙| < 1. In an effort to further improve the performance of the 𝑋 scheme, the use of the VSSI design 
instead of the FSSI design by Costa and Castagliola (2011) is introduced in the model. Consequently, the 
sequence of observations from an AR(1) process are then defined as {𝑌 , : 𝑡 ≥ 0; 𝑖 = 1, 2,…, 𝑛 } 
with parameter 𝜙  are given by  
 𝑌 , − 𝜇 = 𝜙 𝑌 ,(( ) − 𝜇 + 𝜀  (1) 
 
where 𝑡 denotes the sample number or a sampling point taken at every 𝑑  time intervals, where 𝑟 = 1 (2) 
implies that a long (short) sampling interval at that specific 𝑡, respectively, with 𝑑 > 𝑑 . Also, assume 
that 𝑛  (𝑛 ) denotes the small (large) sample size at that specific sample number 𝑡, respectively, with 𝑛 < 𝑛 . Moreover, 𝜀 = 𝜀 + 𝜙𝜀 + 𝜙 𝜀 + ⋯+ 𝜙 𝜀 , 𝜀  are i.i.d. normal (0, 𝜎 ) random 
variables. The nominal IC mean and standard deviation process parameters are denoted by 𝜇  and 𝜎 , 
respectively, where 𝜎 = , and without loss of generality, assume 𝜎 = 1. Next, assume that the 𝑌 ,( )  are not directly observable, but can only be assessed from the results {𝑋 ,( ) , : 𝑡 ≥ 0; 𝑖 = 
1, 2, …, 𝑛 ;  j = 1,2,…,m}, where each element of the sequence can be expressed in terms of the linearly 
covariate error model with a constant standard deviation, see Linna and Woodall (2001). However, since 
this error model incorporate the AR(1) process with parameter 𝜙 , then it written in a slightly different 
manner, i.e.,  
 𝑋 ,( ) , = 𝐴 + 𝐵𝑌 ,( ) + 𝑒 ,( ) , ;   (2) 
 
where 𝑒 ,( ) , ~𝑁(0,𝜎 ) is a random error term due to measurement inaccuracy and 𝜎  is the 
standard deviation of the measurement system. For the sake of simplicity, in this paper, it is assumed that 
A=0 and B=1, where 𝐴 and 𝐵 are two constants depending on the measurement system location error. At 
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each sampling point, with 𝑑  sampling interval, there are m separate measurements, each of size 𝑛  (i.e. 
a total of 𝑚 × 𝑛  observations), so that the plotting statistics are obtained as, 
 𝑋 = 1𝑚𝑛 𝑋 ,( ) , = 1𝑛 𝑌 ,( ) + 1𝑚 𝑒 ,( ) , . (3) 

 
Since 𝑋  is assumed to be from an imperfect measurement system (i.e. 𝛾 = , which denotes the ratio 
of the measurement system variability to the process variability, where 0 ≤ 𝛾 ≤ 1) then it is standard 
practice to take multiple measurements (i.e. m-measurement strategy, with m > 1) as a remedial approach 
in reducing the negative effect of measurement errors, see for instance  the review paper by Maleki et al. 
(2017). The standard deviation of the process in Equation (3) at every 𝑑  sampling interval is given by 
    𝜎 = 𝜎√𝑛  𝜌(𝑛 ,𝑚, 𝛾, 𝑠,𝜙) (4) 

with, 

𝜌(𝑛 ,𝑚, 𝛾, 𝑠,𝜙) = 𝑚 + 𝛾𝑚 + 𝑛 + 2 ( )( ) ( )( )𝑛 − 1. (5) 

Note that when 𝜙 = 𝛾 = 0 (i.e., the i.i.d. case), then 𝜌(𝑛 ,𝑚, 𝛾, 𝑠,𝜙) is simply equal to 1 for any value 
of 𝑚, 𝑠 or 𝑛 . The standardized charting statistic for each sample of size 𝑛  at the 𝑡  sampling point, at 
every 𝑑  sampling interval is given by  𝑍 = 𝑋 − 𝜇𝜎  (6) 

where 𝑋 ~𝑁(𝜇 ,𝜎 ). When 𝛿 = 0, it means that the process is IC and 𝑍 ~𝑁(0,1). However, when 𝛿 ≠ 
0, the process is OOC and 𝑍 ~𝑁(𝛿, 1). 
 
3. Operation and run-length properties of the VSSI-Runs and VSSI-Synth schemes  
 
3.1 Operation of the VSSI-Runs and VSSI-Synth schemes 
 
In order to decide when to take larger / smaller samples or wait short / long intervals before sampling, the 
area between the control limits is essentially divided into multiple regions by warning / control limits. 
Depending on the area the point is plotted, a decision is made concerning the values of 𝑛  and 𝑑  for the 
next sample. Hence, in monitoring the process mean, samples of size 𝑛  are usually taken at each 
sampling point 𝑡 after 𝑑  time interval to be inspected and then, each of these samples, are classified as 
either conforming or nonconforming depending on where the sample point plots on the charting regions 
shown in Figure 1; with limits given by: lower control limit (LCL), lower outer warning limit (LOWL), 
lower inner warning limit (LIWL), center line (CL), upper inner warning limit (UIWL), upper outer 
warning limit (UOWL) and upper control limit (UCL). In Table 1, the operational procedure of each of 
the VSSI-Synth and VSSI-Runs monitoring schemes is presented, where the metric, average time to 
signal (ATS), is the average number of time periods until an OOC signal is generated by a monitoring 
scheme and ATS0 denotes the desired nominal ATS. Note that 𝐶𝑅𝐿  (𝐶𝑅𝐿 ) is the number of conforming 
samples that fall in region E  (E ); which are in between the two consecutive nonconforming samples 
that fall on region C  (C ), respectively. Moreover, each computation of the CRL value includes the 
nonconforming sample at the end, so that the absence of any nonconforming sample means that 𝐶𝑅𝐿  or 𝐶𝑅𝐿  is equal to 1. 
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Fig. 1. The control and warning limits and the corresponding regions of the VSSI-Synth and VSSI-
Runs 𝑋 sub-schemes 

 
Table 1  
Operation of the VSSI-Runs and VSSI-Synth s&m 𝑋 monitoring schemes 

Step Operation 
1 Specify the values of H, 𝑛1, 𝑛2, 𝑑1, 𝑑2, 𝜙, s, 𝛾, m and ATS0.  

2 
Set 𝑘1 to some value and compute the corresponding 𝑘2 and 𝑘3 so that the attained IC ATS is equal to the target 
ATS0, where the limits in Figure 1 are given by 

UCL/LCL = ±𝑘 ,  UOWL/LOWL = ±𝑘 , UIWL/LIWL = ±𝑘  and CL = 0; with 𝑘1 > 𝑘2 > 𝑘3 > 0. 

3 

Wait until the next inspection time, implement the s&m strategy to take a sample of size 𝑛𝑟 after 𝑑𝑟 time interval, 
depending on which region the 𝑍𝑡−1 plotted and calculate the sample mean 𝑍𝑡, where:  

 r = 2 if 𝑍𝑡−1 ∈ {D+,D−,B+,B−,C+,C−} 
 r = 1 if 𝑍𝑡−1 ∈ {A+, A−}. 

4 If 𝑍𝑡 ≤ LCL or 𝑍𝑡 ≥ UCL go to Step (8). 
5 If LOWL < 𝑍𝑡 < UOWL, the 𝑡th sample is conforming, hence return to Step (3); otherwise go to Step (6). 
6 If LCL < 𝑍𝑡 ≤ LOWL go to Step (7a), or if UOWL ≤ 𝑍𝑡 < UCL go to Step (7b). 

7 (7a) Calculate 𝐶𝑅𝐿  and if 𝐶𝑅𝐿  ≤ H go to Step (8); otherwise return to Step (3). 
(7b) Compute 𝐶𝑅𝐿  and if 𝐶𝑅𝐿  ≤ H go to Step (8); otherwise return to Step (3). 

8 Issue an OOC signal and then take necessary corrective action to find and remove the assignable causes. Then 
return to Step (3). 

 
3.2 Run-length properties using the Markov chain TPM 
 
The first sample that is taken from the process when it is starting or after an OOC signal is randomly 
decided to be of size 𝑛  and at sampling interval 𝑑  with probability 𝑝 , or of size 𝑛  and at sampling 
interval 𝑑  with probability 1 − 𝑝 , where 𝑝 = Φ(𝑘 ) −Φ(−𝑘 ). That is, 𝑝  corresponds to states with 
(𝑛  & 𝑑 ), whereas (1 − 𝑝 ) corresponds to states with (𝑛  & 𝑑 ), so that during the IC period, the rate 
of inspected items per sampling or average sample size (i.e., 𝑛) is given by (see for instance, Costa and 
Machado, 2016) 𝑛 = 𝑛 𝑝 + 𝑛 (1 − 𝑝 ), (7) 
whereas; the average sampling interval (i.e. �̅�) is given by �̅� = 𝑑 𝑝 + 𝑑 (1 − 𝑝 ). (8) 
Jensen et al. (2008) citing a number of earlier works, stated that the use of the ATS as well as the standard 
deviation of the number of time periods to signal (SDTS) to measure the performance of a monitoring 
scheme is recommended for a VSSI approach. The latter metrics are respectively given by: 
ATS = 𝛏 (𝐈 − 𝐐) 𝐝, (9) 
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SDTS = 𝛏 (𝐈 − 𝐐) (2𝐃𝐝(𝐈 − 𝐐) 𝐝 − 𝐝(𝟐)) −  𝐴𝑇𝑆 , 
 
where 𝐐 is the M×M essential TPM discussed in the Appendix, 𝛏 is a M×1 vector with entries equal to 
either 𝑝  or (1 − 𝑝 ) depending on which state the entry of the vector corresponds with which entry on 
the TPM, i.e., 𝑝  corresponds to states with (𝑛  & 𝑑 ), whereas (1 − 𝑝 ) corresponds to states with (𝑛  
& 𝑑 ). Similarly, 𝐝 is a M×1 vector with entries equal to either 𝑑  or 𝑑  depending on which state it 
corresponds with on the TPM, i.e., 𝑑  corresponds to states with (𝑛  & 𝑑 ), whereas 𝑑  corresponds to 
states with (𝑛  & 𝑑 ). Next, 𝐝(𝟐) contains the squares of the elements of 𝐝, 𝐃𝐝 is a M×M diagonal matrix 
containing the elements of 𝐝 as diagonals and zeros elsewhere; finally, 𝐈 is a M×M identity matrix. 
Furthermore, Jensen et al. (2008) noted that to measure the number of switches from the state (𝑛  & 𝑑 ) 
to the state (𝑛  & 𝑑 )  and vice versa - to calculate these, the average number of switches to signal while 
the process is IC (denoted by ANSW) and its standard deviation (denoted by SDNSW) are calculated using: 
  

ANSW = 𝛏 (𝐈 − 𝐐) 𝐩, 

SDNSW = 𝛏 (𝐈 − 𝐐) (2𝐃𝐩(𝐈 − 𝐐) 𝐩 − 𝐩(𝟐)) −  𝐴𝑁𝑆𝑊 , (10) 

 
where 𝐩 is a M×1 vector with entries equal to either 𝑝  or 𝑝 ; where 𝑝  is the probability of moving from 
state (𝑛  & 𝑑 ) to state (𝑛  & 𝑑 ), and 𝑝  is the probability of moving from state (𝑛  & 𝑑 ) to state (𝑛  
& 𝑑 ), which are both calculated while 𝛿 = 0. Moreover, 𝐩(𝟐) contains the squares of the elements of 𝐩 
and 𝐃𝐩 is a M×M diagonal matrix containing the elements of 𝐩 as diagonals and zeros elsewhere. To 
evaluate the performance of the proposed schemes from an overall performance perspective, the expected 
ATS (EATS) and the expected SDTS (ESDTS) are used because users tend not to know beforehand what 
exact shift value(s) is targeted – see for example, Khoo et al. (2019) and Mabude et al. (2020). The EATS 
and ESDTS measure the performance of a monitoring scheme over a range of shift values, i.e. 𝛿  to 𝛿  – which are the lower and the upper bound of 𝛿, respectively. Note that the shifts within the interval [𝛿 ,𝛿 ] usually occur according to a pdf which is usually unknown. In the absence of any particular 
information, it is usually assumed that the shifts in the process mean happen with an equal probability, 
i.e., a Uniform (𝛿 , 𝛿 ) distribution. The proposed scheme is designed such that, 𝑘  and 𝑘  are fixed, 
then implement a search algorithm for a value of 𝑘  so that the attained IC ATS is equal to the target 𝐴𝑇𝑆 . Thus, the combination of design parameters that yields the best overall performance for a range of 
specified shifts is chosen and it is achieved by using (H,𝑘 ,𝑘∗,𝑘 ) = 𝐸𝐴𝑇𝑆( , , , )          , with  
 𝐸𝐴𝑇𝑆 = ∆ ∑ 𝐴𝑇𝑆(𝛿) and also,  𝐸𝑆𝐷𝑇𝑆 = ∆∑ 𝑆𝐷𝑇𝑆(𝛿) (11) 
 
subject to 𝐴𝑇𝑆(𝛿 = 0) = 𝐴𝑇𝑆 , with 𝛿 ∈ [𝛿 , 𝛿 ] and ∆ is the number of increments from 𝛿  to 𝛿  of a Riemann sum. Moreover, 𝐴𝑇𝑆(𝛿) and 𝑆𝐷𝑇𝑆(𝛿) are the ATS and SDTS as a function of the shift 𝛿 in the parameter under surveillance. However, the expected ANSW (denoted by EANSW) and expected 
SDNSW (ESDNSW) are given by 
 𝐸𝐴𝑁𝑆𝑊 = ∆∑ 𝐴𝑁𝑆𝑊(𝛿) and  𝐸𝑆𝐷𝑁𝑆𝑊 = ∆ ∑ 𝑆𝐷𝑁𝑆𝑊(𝛿) (12) 
 
where 𝐴𝑁𝑆𝑊(𝛿) and 𝑆𝐷𝑁𝑆𝑊(𝛿) are the ANSW and SDNSW as a function of 𝛿 in the parameter under 
surveillance. Finally, to investigate the effect of varying the value of (𝜙, 𝛾) yields in terms of the 
monitoring scheme’s performance at some specific values of s&m, the percentage difference (%Diff) is 
defined. For instance, the EATS’s is calculated as, %Diff = ( , ) ( , )( , ) × 100%, where EATS( , ) denote the EATS at some specific values of 𝜙 and 𝛾, whereas EATS( , ) denotes the one of the 
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i.i.d. case. The other %Diff are defined in a similar manner, i.e., %Diff = ( , ) ( , )( , ) × 100%, %Diff = ( , ) ( , )( , ) × 100%, %Diff = ( , ) ( , )( , ) × 100% for the 

ESDTS, EANSW and ESDNSW, respectively. 
 
4. Empirical analysis of the VSSI approach for the proposed monitoring schemes 
 
4.1 IC design considerations 
 
Since the design parameters (i.e. 𝐻, 𝑘 , 𝑘  and 𝑘 ) are determined while the process is in a state of IC, 
then they are the same as those for i.i.d. observations because they do not depend on the level of 
autocorrelation and / or measurement errors. Note though, the VSSI-Synth and VSSI-Runs monitoring 
schemes for i.i.d. observations do not exist in the SPM literature, hence, they will also be discussed here. 
Note that, for i.i.d. observations, Yu et al. (2016) investigated the VSSI synthetic schemes using the NSS 
design with fewer charting regions so that it has two design parameters (𝑘  and 𝑘 ) for a given H, instead 
of three as discussed here. For illustration purpose, the design parameters are only shown for 𝑘 ∈{3.1, 
3.5, 4.0} and 𝑘 =0.6724, separately, in the zero- and steady-state modes for ATS0=370.4 in Table 2. 
Based on the boldfaced values, it is observed that as H increases, the values of 𝑘  such that the attained 
IC ATS is equal to ATS0 converge to some specific value no matter how large H is. A similar pattern in 𝑘  values is observed for other different values of 𝑘  and 𝑘  as well as at different desired values of ATS0. 
In the zero-state mode, the VSSI-Runs and VSSI-Synth monitoring schemes have different 𝑘  design 
parameters (for some given 𝑘  and 𝑘 ); however, in the steady-state mode, these two schemes are 
equivalent, and thus the 𝑘  design parameters are the same – see a thorough discussion in the Appendix.  

 
Table 2  
The values of 𝑘  for the zero- and steady-state VSSI-Runs and VSSI-Synth schemes when 𝑘 ∈{3.1, 3.5, 
4.0}, H ∈{1,2,…,20}, ATS0=370.4 and 𝑘 =0.6724 

 𝒌𝟏=3.1 𝒌𝟏=3.5 𝒌𝟏=4.0 

 Zero-state Zero-state Steady-state Zero-state Zero-state Steady-state Zero-
state Zero-state Steady-state 

H Runs Synth Runs&Synth Runs Synth Runs&Synth Runs Synth Runs&Synth 
1 2.0393 2.0664 2.0398 1.8221 1.8401 1.8227 1.7866 1.8035 1.7872 
2 2.1150 2.1469 2.1157 1.9056 1.9269 1.9064 1.8713 1.8914 1.8721 
3 2.1425 2.1765 2.1433 1.9357 1.9585 1.9366 1.9018 1.9232 1.9027 
4 2.1544 2.1894 2.1553 1.9486 1.9721 1.9496 1.9148 1.9369 1.9158 
5 2.1600 2.1954 2.1609 1.9545 1.9782 1.9555 1.9207 1.9431 1.9218 
6 2.1626 2.1982 2.1635 1.9572 1.9811 1.9583 1.9235 1.9460 1.9246 
7 2.1638 2.1996 2.1648 1.9585 1.9825 1.9596 1.9248 1.9473 1.9259 
8 2.1644 2.2002 2.1654 1.9591 1.9832 1.9602 1.9254 1.9480 1.9265 
9 2.1647 2.2006 2.1657 1.9594 1.9835 1.9605 1.9257 1.9483 1.9268 

10 2.1649 2.2007 2.1659 1.9595 1.9836 1.9606 1.9258 1.9484 1.9269 
11 2.1649 2.2008 2.1659 1.9596 1.9837 1.9607 1.9259 1.9485 1.9270 
12 2.1650 2.2008 2.1660 1.9597 1.9837 1.9608 1.9259 1.9485 1.9270 
13 2.1650 2.2009 2.1660 1.9597 1.9837 1.9608 1.9259 1.9485 1.9270 
14 2.1650 2.2009 2.1660 1.9597 1.9837 1.9608 1.9259 1.9486 1.9270 
15 2.1650 2.2009 2.1660 1.9597 1.9837 1.9608 1.9259 1.9486 1.9270 
16 2.1650 2.2009 2.1660 1.9597 1.9837 1.9608 1.9259 1.9486 1.9270 
17 2.1650 2.2009 2.1660 1.9597 1.9837 1.9608 1.9259 1.9486 1.9270 
18 2.1650 2.2009 2.1660 1.9597 1.9837 1.9608 1.9259 1.9486 1.9270 
19 2.1650 2.2009 2.1660 1.9597 1.9837 1.9608 1.9259 1.9486 1.9270 
20 2.1650 2.2009 2.1660 1.9597 1.9837 1.9608 1.9259 1.9486 1.9270 ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
100 2.1650 2.2009 2.1660 1.9597 1.9837 1.9608 1.9259 1.9486 1.9270 ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
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4.2 OOC performance 
 
In Tables 3 and 4, the run-length properties (i.e. ATS, SDTS, ANSW, SDNSW, EATS, ESDTS, EANSW 
and ESDNSW) from Eq. (9) to Eq. (12) are used to evaluate the proposed VSSI-Synth and VSSI-Runs 
monitoring schemes in zero- and steady-state modes and then compare their OOC performance with the 
Costa and Castagliola (2011)’s FSSI 𝑋 scheme as well as the VSSI 𝑋 scheme when: 
 
(i) 𝜙 = 𝛾 = 0, i.e. the i.i.d. case, 
(ii) 𝜙 = 𝛾 = 0.75, i.e. the combined effect of autocorrelation and measurement errors. 
 
Firstly, for the i.i.d. case, it is observed from Panel (a) of Table 3 that in the zero-state mode, the VSSI-
Synth monitoring scheme has the best OOC ATS at all considered shift values and consequently, the 
lowest EATS. However, the corresponding SDTS is slightly higher when the process is IC and other small 
shift values; hence, the corresponding ESDTS is higher than that of the VSSI-Synth scheme in steady-
state and VSSI-Runs scheme in zero-state.  
 
Similarly, in Panel (a) of Table 4, the OOC ANSW and EANSW of the VSSI-Synth scheme in zero-state 
is the smallest, the corresponding ESDNSW are higher. Since the sample size and sampling interval are 
fixed at 𝑛 and �̅� for the FSSI 𝑋 monitoring scheme, there are no switches; hence, it is not considered in 
Table 4. Secondly, the OOC performance of the VSSI-Runs scheme in steady-state mode is 
approximately equal to that of the VSSI-Runs scheme in zero-state mode. Consequently, the resulting 
deductions are summarized in Remark 1. 
 

Remark 1: Let the zero- and steady-state EATS be denoted by ZSEATS and SSEATS, respectively. Then 
the percentage difference for the VSSI-Runs scheme (calculated using × 100%) are 
always less than 1%. Similarly, the same deduction is observed for the zero- and steady-state ESDTS, 
EANSW and ESDNSW of the VSSI-Runs scheme. As it can be seen from Tables 3 and 4, similar results 
can be observed for the processes under the combined effect of autocorrelation and measurement errors. 
In order to preserve writing space, the VSSI-Runs scheme in the steady-state mode only is considered 
hereafter.  

Thirdly, when the process is under the combined effect of autocorrelation and measurement errors, all 
the corresponding run-length properties are inflated as the latter two factors have a negative effect 
towards the OOC performance. In Panel (b) of Tables 3 and 4, the ‘no remedy strategy’ denotes a scenario 
where 𝑠=0 (i.e. no skip) and 𝑚=1 (i.e. single measurement). Hence, based on the ‘%Diff’ values, it is 
observed that for each corresponding scheme there is deterioration in performance as all the percentage 
values are large. 
 
Fourthly, implementing the s&m strategy (i.e. 𝑠=3 & 𝑚=4), reduces the combined negative effect of 
autocorrelation and measurement errors as compared to the no remedy strategy because all the %Diff 
values are slightly closer to those of the i.i.d. case for all the considered schemes in Tables 3 and 4.  
 
Overall, it is observed that at each instance, the proposed schemes have a better OOC performance than 
the Costa and Castagliola (2011)’s FSSI 𝑋 scheme as well as the corresponding VSSI 𝑋 scheme. 
Although the VSSI-Synth scheme has the best ATS and ANSW performance in zero-state, their 
corresponding variability are higher than those in steady-state mode. Due to the lower variability in the 
steady-state mode and taking into account Remark 1, moving forth, the focus is on the VSSI-Synth / 
VSSI-Runs scheme in the steady-state mode. 
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Next, in Table 5, the effect of varying the sample size and sampling interval on the performance of the 
FSSI 𝑋, VSSI 𝑋, VSSI-Synth and VSSI-Runs schemes is studied. Firstly, for all the schemes, using the 
3&4 strategy instead of the no remedy strategy yields better EATS for different values of 𝜙>0 and 𝛾>0. 
Secondly, for each pair (𝜙, 𝛾), increasing 𝑛 leads to an improved performance for all the considered 
schemes. Thirdly, for each pair (𝜙, 𝛾), when decreasing 𝑑  (while increasing 𝑑  so that �̅� remains 
constant) leads to an improved performance for all the considered schemes; however, the converse leads 
to a deterioration, i.e. increasing 𝑑  (while decreasing 𝑑  so that �̅� remains constant). Lastly, at any 
specific combination: 𝜙, 𝛾, 𝑛 and �̅�, the proposed VSSI-Synth / VSSI-Runs scheme has the best OOC 
performance than the competing FSSI and VSSI 𝑋 schemes.    

 

Table 5  
The EATS of the FSSI and VSSI 𝑋 schemes as well as steady-state VSSI-Synth and VSSI-Runs 
schemes when using a no remedy approach (and 3&4 – in brackets) strategies with H=5, �̅�=1, 𝛿 =0, 𝛿 =3, ATS0=370.4 and 𝑛 ∈ {2,5,7} 

  FSSI 𝑋 VSSI 𝑋 VSSI-Synth & VSSI-Runs 
(𝜙, 𝛾) 𝑛 𝑑 =0.5,𝑑 =1.5 𝑑 =0.01,𝑑 =1.99 𝑑 =0.5,𝑑 =1.5 𝑑 =0.01,𝑑 =1.99 

 2 65.3 (59.4) 60.5 (54.5) 58.1 (52.5) 47.5 (43.5) 46.4 (42.5) 
(0.25,0.25) 5 49.8 (43.6) 45.8 (40.2) 44.3 (38.9) 37.9 (34.6) 37.1 (34.0) 

 7 45.1 (39.6) 42.1 (37.2) 40.7 (36.1) 35.6 (32.9) 35.0 (32.4) 
 2 73.0 (61.6) 68.4 (56.6) 65.5 (54.5) 53.0 (44.9) 51.6 (43.9) 

(0.5,0.5) 5 58.7 (45.4) 54.2 (41.8) 52.1 (40.5) 43.3 (35.6) 42.2 (34.9) 
 7 53.6 (41.1) 49.9 (38.5) 48.0 (37.3) 40.4 (33.7) 39.5 (33.1) 
 2 81.5 (67.9) 77.4 (63.2) 74.0 (60.6) 59.2 (49.3) 57.7 (48.1) 
(0.75,0.75) 5 69.8 (52.4) 65.4 (48.2) 62.6 (46.5) 50.8 (39.4) 49.5 (38.5) 

 7 65.3 (47.4) 61.2 (44.2) 58.6 (42.7) 47.9 (36.9) 46.7 (36.1) 
NB: 𝑛 equal to 2, 5 and 7 implies that (𝑛 =1, 𝑛 =3), (𝑛 =2, 𝑛 =8) and (𝑛 =4, 𝑛 =10), respectively 
 

Next, in Tables 6 and 7, the EATS, ESDTS, EANSW and ESDNSW are given for the VSSI-Synth / VSSI-
Runs scheme in steady-state when 𝜙 = 𝛾 = 0.5 (in Table 7) and those of the i.i.d. case (in Table 6) with 𝑛 equal to 5 and 7. The ‘%Diff’ in brackets in Table 7 are computed using the corresponding i.i.d. EATS, 
ESDTS, EANSW and ESDNSW values in Table 6. From Table 6, as well as for each s&m in Table 7, it is 
observed that, while the EATS and ESDTS decrease as 𝑑  decreases (or 𝑑  increases) for a specific 𝑛; 
however, the corresponding EANSW and ESDNSW remain constant. For each (𝑑 ,𝑑 ) and / or 𝑛: An 
improvement in performance with the largest desired effect occurs when both s and m are increased. For 
example, for (𝑑 ,𝑑 )=(0.5,1.5) and 𝑛=5, the EATS=43.3 and %DiffA=25.5% when s=0 and m=1 in Table 
7, hence increasing both s and m to 1 and 2 yields EATS=38.3 and %DiffA=11.0%. Increasing either s or 
m yields the best improvement when s is increased (with m constant) as compared to the converse. For 
instance, for (𝑑 ,𝑑 )=(0.5,1.5) and 𝑛=5, the %DiffA=25.5% when s=0 and m=1 in Table 7, hence 
increasing s to 1 (with m=1) yields %DiffA=13.0%; however, increasing m to 2 (with s=0) yields %DiffA=23.5%. Thus, it follows that, individually, the s-skip strategy has a greater improvement effect 
on the OOC performance than the multiple measurements strategy. 
 

Table 6  
The EATS (first row), ESDTS (second row), EANSW (third row) and ESDNSW (fourth row) for the steady-
state VSSI-Synth and VSSI-Runs 𝑋 scheme when H=5, 𝑛 ∈{5, 7}, �̅�=1, 𝜙 = 𝛾 = 0 and ATS0=370.4  

𝑛=5 

34.5 34.0 33.9 
33.9 34.0 34.0 
17.6 17.6 17.6 
17.0 17.0 17.0 

𝑛=7 

32.8 32.4 32.3 
32.3 32.4 32.4 
16.7 16.7 16.7 
16.2 16.2 16.2 

(𝑑 ,𝑑 ) (0.5,1.5) (0.1,1.9) (0.01,1.99) 
NB: 𝑛 equal to 5 and 7 implies that (𝑛 =2, 𝑛 =8) and (𝑛 =4, 𝑛 =10), respectively. 
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Table 7  
The EATS (%DiffA), ESDTS (%DiffSD), EANSW (%DiffAN) and ESDNSW (%DiffSDN) with the 
corresponding percentage difference (in brackets) from the i.i.d. case values for the steady-state 
VSSI-Synth and VSSI-Runs 𝑋 scheme when H=5, 𝑛 ∈{5, 7}, �̅�=1, 𝜙 = 𝛾 = 0.5 and ATS0=370.4  

  s=0 s=1 

𝑛=5 

m=1 

43.3 (25.5%) 42.4 (24.7%) 42.2 (24.5%) 39.0 (13.0%) 38.3 (12.6%) 38.2 (12.7%) 
42.6 (25.7%) 42.4 (25.1%) 42.4 (25.1%) 38.4 (13.3%) 38.3 (12.6%) 38.3 (12.6%) 
22.1 (25.6%) 22.1 (25.6%) 22.1 (25.6%) 19.9 (13.1%) 19.9 (13.1%) 19.9 (13.1%) 
21.5 (26.5%) 21.5 (26.5%) 21.5 (26.5%) 19.3 (13.5%) 19.3 (13.5%) 19.3 (13.5%) 

m=2 

42.6 (23.5%) 41.8 (22.9%) 41.6 (22.7%) 38.3 (11.0%) 37.6 (10.6%) 37.5 (10.6%) 
41.9 (23.6%) 41.8 (22.9%) 41.7 (22.6%) 37.7 (11.2%) 37.6 (10.6%) 37.6 (10.6%) 
21.8 (23.9%) 21.8 (23.9%) 21.8 (23.9%) 19.6 (11.4%) 19.6 (11.4%) 19.6 (11.4%) 
21.2 (24.7%) 21.2 (24.7%) 21.2 (24.7%) 19.0 (11.8%) 19.0 (11.8%) 19.0 (11.8%) 

𝑛=7 

m=1 

40.4 (23.2%) 39.7 (22.5%) 39.5 (22.3%) 36.5 (11.3%) 35.9 (10.8%) 35.7 (10.5%) 
39.7 (22.9%) 39.6 (22.2%) 39.6 (22.2%) 35.9 (11.1%) 35.8 (10.5%) 35.8 (10.5%) 
20.7 (24.0%) 20.7 (24.0%) 20.7 (24.0%) 18.6 (11.4%) 18.6 (11.4%) 18.6 (11.4%) 
20.1 (24.1%) 20.1 (24.1%) 20.1 (24.1%) 18.1 (11.7%) 18.1 (11.7%) 18.1 (11.7%) 

m=2 

39.9 (21.6%) 39.2 (21.0%) 39.0 (20.7%) 35.9 (9.5%) 35.3 (9.0%) 35.2 (9.0%) 
39.2 (21.4%) 39.1 (20.7%) 39.1 (20.7%) 35.3 (9.3%) 35.3 (9.0%) 35.3 (9.0%) 
20.4 (22.2%) 20.4 (22.2%) 20.4 (22.2%) 18.3 (9.6%) 18.3 (9.6%) 18.3 (9.6%) 
19.8 (22.2%) 19.8 (22.2%) 19.8 (22.2%) 17.8 (9.9%) 17.8 (9.9%) 17.8 (9.9%) 

 (𝑑 ,𝑑 ) (0.5,1.5) (0.1,1.9) (0.01,1.99) (0.5,1.5) (0.1,1.9) (0.01,1.99) 
 
When the users of the proposed monitoring schemes are interested in small shift values, the values of H 
that are at least 5 are recommended; also by keeping in mind the convergence property in Table 2. 
However, for moderate to large shifts, H values that are less than 5 are recommended.  In order to avoid 
violating the concept of R&R (repeatability and reproducibility) and rational subgroups, large values of 
s and m are not advised; see for instance, Linna and Woodall (2001), Costa and Castagliola (2011) and 
Maleki et al. (2017). Moreover, note that for a specific 𝑛 , when 𝑠 or 𝑚 increase, the 𝜌(𝑛 ,𝑚, 𝛾, 𝑠,𝜙) 
(see Equation (5)) decreases towards a value of 1 (i.e., a desired effect because this decreases the 
variability of the process under the combined effect of autocorrelation and measurement errors). Thus, 
the higher the values of 𝑠 and 𝑚, the closer the value of 𝜌(𝑛 ,𝑚, 𝛾, 𝑠,𝜙) gets towards the value of 1.  
Next, to obtain an OOC performance that is within 5% of the i.i.d. OOC performance in terms of the 
EATS (i.e. %DiffA), recommendations are as follows:  
 

 For 𝜙 within the intervals (0, 0.3], (0.3, 0.5], (0.5, 0.6] and (0.6, 0.8], a value of s equal to 1, 2, 
3-4 and 5 is recommended, respectively; for any given value of 𝛾. 

 For 𝛾 within the intervals (0, 0.4], (0.4, 0.7] and (0.7, 1], a value of m equal to 2, 3 and 4 is 
recommended, respectively; for any given value of 𝜙. 

In a ‘big data’ environment, much greater values of s are required to ensure that the underlying 
autocorrelation is theoretically removed. Moreover, large values of s are mandatory in the scenarios 
where 𝜙 > 0.8 to ensure that the OOC performance of the process under the combined effect of 
autocorrelation and measurement errors have a %DiffA within 5%. Since measurement errors do not have 
as much of a greater negative effect on the OOC performance as compared to autocorrelation; hence, 
multiple measurements with a value of m greater than 4 are not recommended.  
 
5. Implementation example 
 

An illustration example showing how to implement the s&m = 1&2 strategy for the VSSI-Synth / VSSI-
Runs monitoring scheme and form rational subgroups of size 𝑛 =1 and 𝑛 =3, at sampling intervals 𝑑 =1.5 hours and 𝑑 =0.5 hours, assuming that the weight of the yogurt cup filling process given in Table 
8 (taken from Costa and Castagliola (2011, page 670)) has been IC for a long time, i.e. a steady-state 
mode. The Phase I analysis of this process indicated that the weight of a yogurt cup, 𝑋 , , , fits an AR(1) 
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model with parameter 𝜙 = 0.38, an IC mean estimate, 𝜇 = 124.9𝑔, an IC standard deviation, 𝜎  = 0.76𝑔 
and the R&R historical study indicates that 𝜎  = 0.24𝑔, so that 𝛾 = 0.316.  
 
Table 8 
The weight of the yogurt filling cup process dataset 

Sample number (𝒕) 𝑿𝒕,𝟏,𝟏 𝑿𝒕,𝟏,𝟐 𝑿𝒕,𝟐,𝟏 𝑿𝒕,𝟐,𝟐 𝑿𝒕,𝟑,𝟏 𝑿𝒕,𝟑,𝟐 𝑿𝒕,𝟒,𝟏 𝑿𝒕,𝟒,𝟐 𝑿𝒕,𝟓,𝟏 𝑿𝒕,𝟓,𝟐 
1 124.9 124.8 125.9 125.9 125.2 124.8 124.6 124.1 124.8 124.4 
2 124.9 125.2 125.5 125.0 124.1 123.9 125.2 125.2 125.0 125.6 
3 125.1 125.1 125.2 124.8 125.4 125.3 122.9 122.4 125.4 125.4 
4 126.1 125.9 124.6 124.8 125.7 125.5 126.4 126.5 124.9 125.7 
5 125.8 125.7 122.6 122.6 124.1 123.5 126.1 126.3 124.9 125.0 
6 125.0 125.2 125.5 124.8 124.8 125.0 124.9 124.8 124.8 124.2 
7 124.2 124.6 125.8 125.3 125.4 125.5 126.4 126.2 125.1 125.2 
8 124.9 124.9 123.8 123.2 125.1 125.3 124.0 124.5 124.4 124.2 
9 125.9 125.8 124.4 124.8 126.3 125.7 124.9 125.2 125.2 125.1 
10 124.2 124.3 126.2 125.5 125.6 125.0 124.4 124.4 124.1 124.3 
11 123.7 123.6 123.4 123.3 124.7 124.8 123.1 123.1 123.1 122.8 
12 124.0 124.1 122.6 122.4 123.6 123.6 124.4 124.5 123.6 123.1 
13 122.0 122.5 123.9 124.0 123.7 124.1 124.3 124.4 121.9 122.9 
14 122.4 123.0 122.8 123.1 123.7 124.2 123.7 124.1 122.8 123.1 
15 123.9 123.6 124.1 124.5 123.4 122.9 123.1 123.1 124.5 125.1 
16 121.9 122.3 123.4 123.3 123.5 123.3 125.3 125.5 123.3 123.6 
17 123.3 122.9 123.6 123.5 124.2 123.8 123.4 123.6 123.5 123.4 
18 122.0 122.2 123.6 123.4 124.7 125.0 122.6 122.5 124.5 123.9 
19 124.0 123.9 123.1 123.4 123.9 124.5 122.6 122.8 124.2 123.5 
20 125.5 124.9 122.2 122.3 123.2 123.2 123.2 123.3 123.2 123.2 

 
 
For illustration purpose, assume H=1, 𝑘 =3.5 and ATS0=370.4, then from Table 2, it follows that 𝑘 =1.8227 and 𝑘 =0.6724; see Steps 1 and 2 in Table 1. Using Equation (4),  𝜌(𝑛 ,𝑚, 𝛾, 𝑠,𝜙) and 𝜎  
are equal to 1.0247 and 0.7787 when 𝑛 =1, but are equal to 1.1209 and 0.4918 when 𝑛 =3. For example, 
the charting statistics of the sample numbers 9 and 10 are calculated as follows: 
 At sample number 9, the sample size & interval are equal to 𝑛  & 𝑑  as 𝑍  plotted in region A  (see Step (3) 

in Table 1) and the cumulative time is equal to 12.5; hence, 𝑋 = × 𝑋 , , + 𝑋 , , = 125.85 and  𝑍 = . .. = 1.22, plotting in region B . 
 Since 𝑍  plots in Region B , then the sample size & interval at sample number 10 are equal to 𝑛  & 𝑑 , and 

the cumulative time is equal to 13; and 𝑋 = × 𝑋 , , + 𝑋 , , + 𝑋 , , + 𝑋 , , + 𝑋 , , + 𝑋 , , =124.58 and 𝑍 = . ..  =-0.64, 
falling in region A ; hence, at the next sampling point, the sample size & interval are equal to 𝑛  & 𝑑 .  

The rest of the charting procedure is done in a similar manner. 
 

 
Fig. 2. Monitoring the weight of the yogurt cups using the VSSI-Synth / VSSI-Runs scheme with the 

1&2 sampling strategy 
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Table 9  
The charting statistics of the VSSI-Synth / VSSI-Runs monitoring scheme using the 1&2 sampling 
strategy 

Sample 
number (𝑛 ,𝑑 ) Cumulative time 𝑋  𝑍  Region 

1 (𝑛 ,𝑑 ) 1.5 124.85 -0.06 A  
2 (𝑛 ,𝑑 ) 3 125.05 0.19 A  
3 (𝑛 ,𝑑 ) 4.5 125.10 0.26 A  
4 (𝑛 ,𝑑 ) 6 126.00 1.41 B  
5 (𝑛 ,𝑑 ) 6.5 124.83 -0.14 A  
6 (𝑛 ,𝑑 ) 8 125.10 0.26 A  
7 (𝑛 ,𝑑 ) 9.5 124.40 -0.64 A  
8 (𝑛 ,𝑑 ) 11 124.90 0.00 A  
9 (𝑛 ,𝑑 ) 12.5 125.85 1.22 B  
10 (𝑛 ,𝑑 ) 13 124.58 -0.64 A  
11 (𝑛 ,𝑑 ) 14.5 123.65 -1.61 B  
12 (𝑛 ,𝑑 ) 15 123.67 -2.51 C  
13 (𝑛 ,𝑑 ) 15.5 122.85 -4.17 D  
14 (𝑛 ,𝑑 ) 16 123.20 -3.46 C  
15 (𝑛 ,𝑑 ) 16.5 123.90 -2.03 C  
16 (𝑛 ,𝑑 ) 17 122.98 -3.90 D  
17 (𝑛 ,𝑑 ) 17.5 123.52 -2.81 C  
18 (𝑛 ,𝑑 ) 18 123.72 -2.41 C  
19 (𝑛 ,𝑑 ) 18.5 124.00 -1.83 C  
20 (𝑛 ,𝑑 ) 19 123.87 -2.10 C  

 

It is observed from either Table 9 or Figure 2 that the VSSI-Synth / VSSI-Runs monitoring scheme using 
a 1&2 strategy in steady-state mode issues the first OOC signal at sampling number 13 or cumulative 
time of 15.5 hours indicating an unexpected downwards shift in the mean weight of the yogurt cups, due 
to some undesired assignable cause(s). After some investigation, it was observed that it was due to a clog 
in the pipe of the machine.  
 
6. Conclusion 
 
Since autocorrelation and measurement errors are often encountered in real life applications of SPM; 
then in this paper, the proposed use of improved synthetic and runs-rules 𝑋 schemes with an embedded 
VSSI approach is essential because they yield a significant improvement as compared to the existing 
FSSI 𝑋 scheme. Moreover, to reduce the negative effect of autocorrelation and measurement errors, the 
s&m strategy does yield a desired effect of improving the OOC performance of the proposed monitoring 
schemes. Individually, the autocorrelation levels have a greater negative effect as compared to the 
measurement errors, and thus, the s-skip strategy has a greater improvement influence than the multiple 
measurement strategy. For small-to-moderate levels of autocorrelation, reasonable values of s are 
sufficient; however, for large levels of autocorrelation and if the source dataset is limited, then the 
required values of s may violate the concept of rational subgroups; but is fully applicable in a ‘big data’ 
environment.  A drawback of these new monitoring schemes with s&m strategy is that, they require more 
observations (as some will be skipped during inspection) and more effort (multiple measurements on 
each item are taken during inspection) as compared to the no remedy approach. Finally, quality 
practitioners are recommended to implement the proposed improved synthetic and runs-rules 𝑋 schemes 
with an embedded VSSI approach instead of the existing FSSI 𝑋 scheme when monitoring the process 
mean under the combined effect of autocorrelation and measurement errors. For future research, the 
effect of autocorrelation and measurement errors on the memory-type monitoring schemes as well as on 
nonparametric monitoring schemes can be studied. Moreover, the performance of the schemes discussed 
herein when underlying process parameters are unknown need to be investigated. 
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Appendix: Transition probability matrix of the VSSI-Runs and VSSI-Synth schemes 
 
To construct a general transition probability matrices (TPM) for any monitoring scheme, the scheme’s 
charting region need to be divided into separate distinct regions as shown in Figure 1 – this is consistent 
with the manner that it is done in Fu and Lou (2003)’s Chapter 4, Celano et al. (2006), Costa and Machado 
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(2016), Shongwe and Graham (2016). That is, let {𝑍 ; 𝑡 ≥ 0} be a sequence of autocorrelated, with 
measurement errors, trials taking values within the set 𝜁={A , A , B , B , C , C , D , D }. Next, the 
probabilities of these events depend on the sample size (i.e. 𝑛 ) and sampling interval (i.e. 𝑑 ); that is, 
for (𝑛  & 𝑑 ), the probability that a plotting statistic falls in the regions A , A , B , B , C , C , D , D  
is given by A , A , B , B , C , C , D , D , whereas for (𝑛  & 𝑑 ), the probabilities are given by A , A , B , B , C , C , D , D , respectively. For some (𝑛  & 𝑑 ), suppose that the values of 𝜇  and 𝜎  are 
known, then these probabilities are given by  
 A  = Φ(𝑘 − 𝛿√𝑛 ) −Φ(−𝛿√𝑛 ), A  = Φ(−𝛿√𝑛 ) −Φ(−𝑘 − 𝛿√𝑛 ), B  = Φ(𝑘 − 𝛿√𝑛 ) −Φ(𝑘 − 𝛿√𝑛 ), B  = Φ(−𝑘 − 𝛿√𝑛 ) −Φ(−𝑘 − 𝛿√𝑛 ), C  = Φ(𝑘 − 𝛿√𝑛 ) −Φ(𝑘 − 𝛿√𝑛 ), C  = Φ(−𝑘 − 𝛿√𝑛 ) −Φ(−𝑘 − 𝛿√𝑛 ), D  = 1 −Φ(𝑘 − 𝛿√𝑛 ), D  = Φ(−𝑘 − 𝛿√𝑛 ), A  = A + A ,  B  = B + B , C  = C + C , D  = D + D .  

(A1) 

The TPM of the Markov chain technique for any positive integer value of M > 0 is given by a (𝑀 +1) × (𝑀 + 1) matrix P, 
 𝐏 = 𝐐𝟎′     𝐫1  (A2) 
 

where 𝐐 is the 𝑀 × 𝑀 essential TPM with its elements given by the probabilities in Equation (A1), the 𝑀 × 1 vector 𝐫 satisfies 𝐫 = 𝟏 − 𝐐𝟏 with the 𝑀 × 1 vectors given by 𝟏 = (1 1 …  1)  and 𝟎 =(0 0 …  0) . To define the run-length characteristics, the compound patterns that result in an OOC event 
(which is also known as the waiting time until the first occurrence of an OOC signal) need to be defined. 
For example, the sequence of plotting statistics ‘C C ’ indicates two consecutive plotting statistics 
falling in region C . The symbol ‘±’ is used to denote the assumption that (at time 0) the first observation 
falls either in region C  or in region C , i.e. the head-start feature for the synthetic monitoring schemes 
(see Davis and Woodall (2002)); so that ‘±C ’ indicate that the first plotting statistic, at time 0, falls 
either in region C  or C  and the second in region C . Define Λ as a compound pattern if it is the union 
of 𝜔 distinct simple absorbing patterns i.e. Λ =  Λ ∪ Λ ∪ …∪ Λ . Similarly, define Ψ as a compound 
pattern if it is the union of 𝜐 distinct simple absorbing patterns with a head-start states i.e. Ψ =  Ψ ∪Ψ ∪ …∪ Ψ . Let W denote the waiting time for the first occurrence of either Λ or Ψ – as these are the 
absorbing states of the Markov chain. Then the run-length distribution of the VSSI-Runs and VSSI-Synth 𝑋 monitoring schemes coincides with the waiting time distribution of W. Hence, the Markov chain matrix 
with the state space, Ω, operating on {𝑍 (𝑛 ,𝑑 );  𝑡 ≥ 0} is as follows: 
 Absorbing states (denoted by ‘OOC’) – the union of  Λ ,…, Λ , Ψ ,…, Ψ , i.e. the 𝜔+𝜐 states that 

signal the entrance of the Markov chain to an absorbing state; 
 Sub-patterns (denoted by 𝜂 ,…, 𝜂  and 𝜓 ,…, 𝜓 ) – the distinct first element(s) of the simple pattern Λ ,.., Λ  and Ψ ,.., Ψ  without the last element, where 𝜏 < 𝜔 and 𝜅 < 𝜐, respectively. For instance, 

if Λ ={C B C } then 𝜂 ={C B }, similarly, if Ψ ={±B C } then 𝜓 ={±B };   
 Central regions – two of the 𝜂 ’s are equal to the transient states, denoted by 𝜑  and 𝜑 , corresponding 

to the IC central regions for (𝑛  & 𝑑 ) and (𝑛  & 𝑑 ), respectively. 
 
For illustration purpose, the construction of the TPMs of the VSSI-Synth and VSSI-Runs monitoring 
schemes when H = 1 and 2 are shown in detail. In Table A1, the compound patterns (i.e. Λ and Ψ), their 
corresponding sub-patterns (i.e. 𝜂 and 𝜓) and the corresponding state spaces are shown when H = 1 and 
2. Note that the VSSI-Runs schemes exclude the compound (and sub-patterns) that corresponds to Ψ 
(and 𝜓), respectively. Next, Equations (A1) and (A2) are used to construct the corresponding TPMs 
shown in Table A2, when H = 1 and 2.
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Table A2  
TPMs of the VSSI-Synth and VSSI-Runs schemes when H ∈{1,2} 

 
H=1: VSSI-Synth (removing 𝜓  yields VSSI-Runs) scheme 

 𝜂  𝜂  𝜂  𝜂  𝜓  OOC 𝜂   B +B  A +A  C   C +D +D  𝜂  C  B +B  A +A  C    D +D  𝜂  C  B +B  A +A  C   D +D  𝜂  C  B +B  A +A    C +D +D  𝜓   B +B  A +A    C +C +D +D  
OOC      1 

 

 
H=2: VSSI-Synth (removing 𝜓 ,.., 𝜓  yields VSSI-Runs) 

 𝜂  𝜂  𝜂  𝜂  𝜂  𝜂  𝜂  𝜂  𝜓  𝜓  𝜓  𝜓  𝜓  OOC 𝜂     B +B  A +A  C         C +D +D  𝜂     B +B  A +A  C         C +D +D  𝜂  B  A   B  A  C         C +D +D  𝜂    C  B +B  A +A  C         D +D  𝜂    C  B +B  A +A  C         D +D  𝜂    C  B  A   A  B       C +D +D  𝜂    C  B +B  A +A          C +D +D  𝜂    C  B +B  A +A          C +D +D  𝜓           B  A  B  A  C +C +D +D  𝜓    C  B +B  A +A          C +D +D  𝜓    C  B +B  A +A          C +D +D  𝜓     B +B  A +A  C         C +D +D  𝜓     B +B  A +A  C         C +D +D  
OOC              1 

 

 
Continuing in the similar fashion, for other values of H, the state space of each of the VSSI-Synth and 

VSSI-Runs monitoring schemes is as follows, 

VSSI-Synth: Ω = {𝜂 ,…,𝜂 ; 𝜂 = 𝜑 , 𝜂 = 𝜑 ; 𝜂 ,…, 𝜂 ; 𝜓 , …, 𝜓 ; OOC}, 
VSSI-Runs: Ω = {𝜂 ,…,𝜂 ; 𝜂 = 𝜑 , 𝜂 = 𝜑 ; 𝜂 ,…, 𝜂 ; OOC}, (A3) 

where  𝜏 =  4𝐻 and   𝜅 =  4𝐻 − 3. (A4) 
That is, removing the 𝜓 ,…, 𝜓  elements (corresponding to the head-start feature) on the state space of 
the VSSI-Synth scheme yields the state space of the VSSI-Runs scheme. Therefore, the dimension of the 
essential TPMs is given by M = 𝜏 + 𝜅. Note that in the steady-state mode, VSSI-Synth scheme’s head-
start feature is no longer applicable, and thus, the head-start elements on the TPM are discarded and 
consequently, the VSSI-Synth scheme’s TPM is exactly the same as the VSSI-Runs scheme’s TPM. In 
turn, the latter imply that the design parameters are also the same. This was first shown in Davis and 
Woodall (2002) for the FSSI schemes and re-iterated more recently in a review paper by Rakitzis et al. 
(2019). For example, the general TPM of the VSSI-Runs scheme (in both zero- and steady-state modes) 
and the VSSI-Synth scheme (in steady-state mode only) is given in Table A3. 
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