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Abstract—This letter proposes a new variable tap-length least-
mean-square (LMS) algorithm for applications in which the un-
known filter impulse response sequence has an exponential decay
envelope. The algorithm is designed to minimize the mean-square
deviation (MSD) between the optimal and adaptive filter weight
vectors at each iteration. Simulation results show the proposed al-
gorithm has a faster convergence rate as compared with the fixed
tap-length LMS algorithm and is robust to the initial tap-length
choice.

Index Terms—Adaptive filters, variable tap-length least-mean-
square (LMS) algorithm.

I. INTRODUCTION

THE least-mean-square (LMS) algorithm has been exten-
sively used in many applications as a consequence of its

simplicity and robustness [1], [2]. In many applications of the
LMS algorithm, the tap-length of the adaptive filter is kept fixed.
However, in certain applications, the tap-length of the optimal
filter is unknown or even variable. According to the analysis in
[3] and [4], the mean-square error (MSE) is likely to increase
if the tap-length is undermodeled. To avoid such a situation, a
sufficiently large filter tap-length is needed. However, the com-
putational cost is proportional to the tap-length; thus, a variable
tap-length algorithm is needed to find a proper choice of the
tap-length.

In many applications such as echo cancelling, the unknown
filter exhibits a constant exponential decay envelope. Modeling
the unknown impulse response in such applications is typically
achieved with a length finite impulse response (FIR) filter,
denoted by . In practice, is chosen as a compromise be-
tween modeling the significant energy within the impulse re-
sponse and limiting computational complexity. In this letter, we
seek an adaptive solution for the choice of . The evolution of
the tap-length of our algorithm is designed in an adaptive way
to minimize the mean-square deviation (MSD) at each iteration,
which is defined as , where is the
adaptive filter weight vector, denotes the squared Euclidean
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norm operator, and represents statistical expectation. The
target of our approach is not only to find a good choice of the
steady-state tap-length for the adaptive filter but also to ensure
well-behaved transient tap-length convergence, so that a better
performance as compared with the fixed tap-length algorithm is
obtained.

In a previous research study [3], a theoretically optimal vari-
able tap-length sequence for the LMS algorithm in such appli-
cations has been introduced. However, this algorithm suffers
from heavy computational complexity due to solving for Lam-
bert’s W-function [3]; thus, it is not suitable in practice. Other
existing variable tap-length algorithms such as [5]–[7] are sensi-
tive to the parameter choice, i.e., different parameters will result
in very different performance, according to the discussion in [7].
As will be shown by our simulation results, the proposed algo-
rithm converges faster than the fixed tap-length LMS algorithm
and is very robust to the initial tap-length choice.

II. NEW VARIABLE TAP-LENGTH LMS ALGORITHM

For convenience, we formulate the LMS algorithm with a
system identification model and assume that the desired un-
known filter impulse response sequence has a constant expo-
nential decay envelope. In this model, the desired signal is
formulated as follows:

(1)

where denotes the transpose operator, is the input
vector with a tap length of , is the noise signal, and
can be modeled as follows:

(2)

where is the th coefficient of the unknown filter vector ,
is a positive constant to model the decay rate, and is drawn

from a zero-mean unit variance Gaussian sequence.
Since in the variable-tap length LMS algorithm, the

tap-length is time-varying rather than fixed, we will use
to denote the integer tap-length that is used for the

coefficient update of the LMS algorithm at the th iteration
and assume . Note that in [3], the authors used a
parameter to denote the tap-length. By using our notation,
the filter coefficients can be updated as

(3)

where and are, respectively, the -tap adap-
tive filter vector and the input vector, is the step size for the
update of the coefficients, and is the output error defined
as

(4)
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Similar to the formulation in [3], we split into two parts
as

where is the part modeled by , and
is the part undermodeled. If we define as the total coef-
ficient error vector , where is obtained by
padding with zeros, the MSD can then be formulated
by .

Since the tap-length should not be constrained to be an integer
to find a continuous update, similar to as in [3] and [7], we use
the fractional-tap length concept in the following derivations,
where the fractional-tap length denoted by will be used
in the update of the tap-length, and the tap-length that is
used for the update of the adaptive filter coefficients is assigned
to the integer immediately below .

Similar to [3], we assume that both the input signal and
the noise signal are statistically independent identically
distributed (i.i.d.) zero-mean Gaussian white noise signals with
variances and , respectively. According to the analysis in
[3], we know that the evolution of the MSD can be formulated
as follows:

(5)

where
(6)

(7)

and
(8)

The range of the step size that ensures the convergence of (5) is
[3]

(9)

A theoretical optimal tap-length sequence for the LMS algo-
rithm has been given in [3] by minimizing the MSD at each iter-
ation, according to (5). Based on this work, next, we will derive
a new practical optimal variable tap-length LMS algorithm in
an adaptive form. The motivation of this approach is that with a
given current tap length, we may find the tap-length for the next
iteration, so the MSD will be minimized.

A. New Variable Tap Length Algorithm

At first, to speed up the convergence rate of the LMS algo-
rithm, the step size is made variable rather than fixed, according
to the range of described in (9). In [3], the step size is set to

, where is a fixed constant and
less than two. To remove the dependence between the step size

and the tap length , and noting that is
very close to , we set the step size as follows:

(10)

where is an integer larger than two to ensure stability of the
algorithm.

Second, the squared norm of the partial response of can
be expressed in the form [3]

(11)

As shown in [3], the second-order derivative
is positive; thus,

a tap-length is existing to minimize the term

. Replacing in (5) with ,
substituting (6), (7), (8), (11) into (5), and setting

, we can obtain

(12)

After rearranging, we can find

(13)

Substituting (10) into (13), we have

(14)

If we define , from (14), we obtain
that

(15)

Thus, we obtain the update of the tap-length of the new variable
tap-length LMS algorithm

(16)

If we assume that the input signals are independent of the adap-
tive weight coefficients, we can show that [1]

(17)

Substituting (17) into (16), we have

(18)

In practice, the statistical average term can be ap-
proximated by its time average estimation , which can be
obtained as

(19)
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where is a positive constant close to but less than unity. The
new variable-tap length algorithm is then obtained as follows:

(20)
Since the tap length that is used in the update of the filter coef-
ficients must be an integer, we choose the floor of
for the coefficient update

(21)

where is the floor operator that rounds down the embraced
value to the nearest integer. If we replace the in (3) with

, the full adaptive algorithm can consequently then be im-
plemented by (3), (4), (10), (19), (20), and (21).

B. Steady-State Performance of the Proposed Algorithm

According to the update (20), it is straightforward to obtain
that

(22)

where and are the initial and steady-state values
of the fractional tap-length, and and are the initial
and steady-state values of the smoothed square error. The initial
value can be set as , where is the variance of the
desired signal and can be formulated by . Substituting
(17) into (22), we have

(23)

From (5)–(8) and (10), we can have (24), shown at the bottom
of the page.

To simplify the formulation, we assume is very large
and is close to ; thus,

and the term is very small.

Furthermore, if we assume that has been chosen properly so

that the term , we obtain

(25)

Substituting (25) into (23), we have

(26)

Fig. 1. One representation of the unknown impulse response sequence.

From (26), we know that the steady-state tap-length
is correlated with three parameters: the step size , the param-
eter , and the initial tap-length . If we assume that
has been chosen properly, and both and are much
larger than and , then the influence of and can be ig-
nored. Next we will show by simulations that with wide range
in the choice of the initial tap-length , the steady-state
tap-length can converge to values that provide a good
compromise between modeling the significant energy within the
impulse response and limiting computational complexity.

III. SIMULATION

In this section, we will examine the above derivations and
compare the proposed algorithm with the fixed tap-length LMS
algorithm and the optimal variable tap-length LMS algorithm
[3] by simulations. The setup of all the simulations is similar to
that in [3]: the unknown filter is a white Gaussian noise sequence
with zero mean and a variance of 0.01 weighted by an exponen-
tial decay envelope. The tap-length is set to 1024, and the decay
parameter is set to 0.005. One representation of the unknown
filter can be seen in Fig. 1. The input signal is another white
Gaussian noise sequence with zero mean and unit variance. The
noise signal is a zero-mean random Gaussian sequence with a
variance of 0.01. The parameter for the proposed algorithm is
set to 5. The smoothing parameter in (19) is set to 0.99. The
step size for both the proposed algorithm and the optimal
variable tap-length algorithm is set to 0.5. The initial value of

, i.e., , is set to .
The steady-state MSD with different steady-state tap-length

values is shown in Fig. 2(a), calculated from (24). It is clear to
see in Fig. 2(a) that the steady-state MSD decreases with the
increase of the steady state tap-length. However, due to the ex-
ponential damping envelope structure as shown in Fig. 1, the
MSD will nearly be a constant if the steady-state tap-length is
larger than some value, such as 800 in our simulation. The main
energy of the unknown impulse response is contained in approx-
imately the first 800 coefficients, which is the part we want to
find by our approach.

The values of the steady-state tap-length with different initial
tap-length values are shown in Fig. 2(b), calculated from (26).

(24)
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Fig. 2. (a) Steady-state MSD with different values of the steady-state tap-length
according to (24). (b) Steady-state tap-lengths with different initial tap-length
values according to (26).

We can see from Fig. 2(b), together with Fig. 2(a), that with a
wide range of the initial tap-length, the steady-state tap-length
can converge to some values that give good compromise be-
tween modeling the significant energy within the impulse re-
sponse and limiting computational complexity; thus, we con-
clude that the proposed algorithm is robust to the choice of the
initial tap-length.

To confirm (26), we perform several simulations for the
proposed algorithm with different initial tap-length values.
The evolution curves of the tap-length with different initial
tap-length values are shown in Fig. 3(a), where different initial
tap-length values, simulated steady-state tap-length values, and
the theoretical steady-state tap-length values that are obtained
from (26) are given in the legend of the plot. As a comparison,
the optimal variable tap-length is also given. From these values,
we can see that the simulated steady-state tap-lengths match
the theoretical values quite well. Furthermore, the initial parts
of all the variable tap-length evolution curves of the proposed
algorithm are similar to that of the optimal variable tap-length
sequence.

Finally, the proposed algorithm is compared with the fixed
tap-length LMS algorithm and the optimal variable tap-length
algorithm by comparing the MSD. Two experiments are per-
formed for the fixed tap-length algorithm with different tap-
lengths. In one experiment, the tap-length is set to 1024, and the
step size is set to 0.5/1024. In another experiment, the tap-length
is set to 512, and the step size is set to 0.5/512. The initial
tap-length of the proposed algorithm is set to 20. The evolution
curves of the MSD of the fixed tap-length LMS algorithm, the
optimal variable tap-length LMS algorithm, and the proposed
algorithm are shown in Fig. 3(b). All the results in Fig. 3 are
obtained by averaging the results over 100 Monte Carlo trials of
the same experiment.

From Fig. 3(b), we can find that although the steady-state tap-
length of the proposed algorithm is less than that of the optimal
variable tap-length algorithm, their MSD evolution curves are
nearly the same. It is clear to see that with a similar steady-
state MSD, the proposed algorithm converges faster than the
fixed tap-length LMS algorithm with a tap-length of 1024. The
convergence rate of the fixed tap-length LMS algorithm with a
tap-length of 512 is fast, but the MSD is large. The proposed
algorithm has both fast convergence rate and small MSD, and a
good steady-state tap-length is also found in an adaptive way.

Fig. 3. (a) Optimal variable tap-length sequence obtained from [3] and the
evolution curves of the tap-length of the proposed method with different ini-
tial tap-lengths (M0: initial tap length; MS: simulated steady-state result; MT:
theoretical steady-state result). (b) Evolution curves of the MSD of the fixed
tap-length LMS algorithm, optimal variable tap-length LMS algorithm, and the
proposed algorithm.

IV. CONCLUSION

A new variable tap-length LMS algorithm has been intro-
duced in this letter. This algorithm is based on the assumption of
an exponential decay envelope filter impulse response structure
and designed to minimize the MSD by using variable tap-length
at each iteration. According to the simulation results, the pro-
posed algorithm provides a good approach for the choice of
the unknown steady-state tap-length as well as both fast con-
vergence rate and small steady-state MSD.
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