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ABSTRACT

We present a new way of interpreting ICA as a proba-
bility density model and a new way of fitting this model to
data. The advantage of our approach is that it suggests sim-
ple, novel extensions to overcomplete, undercomplete and
multilayer non-linear versions of ICA.

1. ICA AS A CAUSAL GENERATIVE MODEL

Factor analysis is based on a causal generative model in
which an observation vector is generated in three stages.
First, the activities of the factors (also known as latent or
hidden variables) are chosen independently from one di-
mensional Gaussian priors. Next, these hidden activities
are multiplied by a matrix of weights (the “factor loading”
matrix) to produce a noise-free observation vector. Finally,
independent Gaussian “sensor noise” is added to each com-
ponent of the noise-free observation vector. Given an ob-
servation vector and a factor loading matrix, it is tractable
to compute the posterior distribution of the hidden activities
because this distribution is a Gaussian, though it generally
has off-diagonal terms in the covariance matrix so it is not
as simple as the prior distribution over hidden activities.

ICA can also be viewed as a causal generative model
[1, 2] that differs from factor analysis in two ways. First,
the priors over the hidden activities remain independent but
they are non-Gaussian. By itself, this modification would
make it intractable to compute the posterior distribution over
hidden activities. Tractability is restored by eliminating sen-
sor noise and by using the same number of factors as input
dimensions. This ensures that the posterior distribution over
hidden activities collapses to a point. Interpreting ICA as a
type of causal generative model suggests a number of ways
in which it might be generalized, for instance to deal with
more hidden units than input dimensions. Most of these
generalizations retain marginal independence of the hidden
activities and add sensor noise, but fail to preserve the prop-
erty that the posterior distribution collapses to a point. As�
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a result inference is intractable and crude approximations
are needed to model the posterior distribution, e.g., a MAP
estimate in [3], a Laplace approximation in [4, 5] or more
sophisticated variational approximations in [6].

2. ICA AS AN ENERGY-BASED DENSITY MODEL

We now describe a very different way of interpreting ICA
as a probability density model. In the next section we de-
scribe how we can fit the model to data. The advantage
of our energy-based view is that it suggests different gen-
eralizations of the basic ICA algorithm which preserve the
computationally attractive property that the hidden activities
are a simple deterministic function of the observed data. In-
stead of viewing the hidden factors

���
as stochastic latent

variables in a causal generative model, we view them as de-
terministic functions

�������
	�����
of the data with parameters��

. The hidden factors are then used for assigning an en-
ergy � ����� , to each possible observation vector

�
:

� ��������� � � ������������	������� (1)

where � indexes over the hidden factors. The probability of�
is defined in terms of its energy in the following way:

� ������� ��� �"! #�$%'& � � �"!
&
$)(�* (2)

Standard ICA with non-Gaussian priors � ��������� is imple-
mented by having the same number of hidden factors as
input dimensions and using��������+�������,�.-� �

(3)

� �����������0/21 3�4 � ��������� (4)

Furthermore, in this special case of standard ICA the nor-
malization term in Eq. 2 (the “partition function”) is tractable
and simplifies to5

& � � �"!
&
$ (�* �76 8:9�;�<>=���?@�'6

(5)
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where the rows of
?

are the filters
� �

.
The above energy-based model suggests thinking about

ICA as a recognition model, where observations are linearly
filtered, instead of as a causal generative model, where in-
dependent factors are linearly mixed. In [7] these filters are
interpreted as linear constraints, with the energies serving
as costs for violating the constraints. Using energies cor-
responding to heavy tailed distributions with a sharp peak
at zero means that the constraints should be “frequently ap-
proximately satisfied”, but will not be strongly penalized
if they are grossly violated. In this new view it is very
natural to include more constraints than input dimensions,
which implies however that the hidden units will no longer
be marginally independent. It is also natural to extend the
model to have non-linear constraints. This extension will be
further described in the discussion section. In the rest of this
paper we will assume linear constraints as in Eq. 3.

3. CONTRASTIVE DIVERGENCE LEARNING

We now describe a novel method of fitting models of the
type defined by Eqs. 1 and 2 to data. The method is not par-
ticularly efficient in the standard ICA case, but is very easy
to generalize to models where the number of hidden units is
not the same as the dimensionality of the observation vec-
tor, and

���
is any non-linear function. The fitting method

is based on the “contrastive divergence” objective function
introduced in [8].

Maximizing the log likelihood of the observed data un-
der a model is equivalent to minimizing the Kullback-Leibler
(KL) divergence,

� ��� 6 6 ��� �
, between the distribution,

���
,

of the data and the distribution,
���

, defined by the model.
For the model in Eq. 2 the gradient of the KL divergence is:� � ��� 6 6 ��� ��
	�� � �� � ��
	�� ������� /� � ��
	�� ������� (6)

where the derivative of the partition function, given by the
second term, is an average of the gradient over the model
distribution. In the standard ICA setting this term is equal
to
/ ��? � - ��� � . An exact computation of this average, how-

ever, is intractable in general. Instead it is possible to ap-
proximate the average by generating samples using a Markov
chain whose equilibrium distribution is the distribution de-
fined by the model. In practice however, the chain has to
be run for many steps before it approaches the equilibrium
distribution and it is hard to estimate how many steps are
required (hence the � in “

���
”). This means that fitting

the model by following the gradient of the log likelihood is
slow and can be unreliable.

The idea of contrastive divergence is to avoid the need to
approach the stationary distribution by starting the Markov
chain at the distribution of the observed data and then watch-
ing how it begins to diverge from the data distribution. Even

if the chain is only run for a few steps, any consistent ten-
dency to move away from the data distribution provides
valuable information that can be used to adapt the parame-
ters of the model. Intuitively, we need to modify the energy
function so that the Markov chain does not tend to move
away from the data distribution. This can be achieved by
lowering the energy of points in the data space that have
high probability in the data distribution but lower probabil-
ity after a few steps of the Markov chain, and raising the
energy of points whose probability rises after a few steps of
the Markov chain. This intuitive idea can be understood as a
way of improving the following contrastive divergence cost
function: ��� � � � � 6 6 � � ��/ � ��� 6 6 � � �

(7)

where
� �

is the distribution obtained after running � steps
of the Markov chain starting from

� �
. Since a Markov

chain has the property that the KL divergence from the sta-
tionary distribution never increases, the contrastive diver-
gence can never become negative, and will be zero exactly
when

��� � ���
. The gradient of

� � � 6 6 ��� �
is:� � � � 6 6 ��� ��
	�� � �� � ��
	�� ������ 

/! � ��
	�� ����� �#" � � � � 6 6 ��� �� � � � � ��
	�� � (8)

and the gradient of the contrastive divergence therefore is:� ����
	�� � �� � ��
	�� ������� /� � ��
	�� ������ / � � � � 6 6 ��� �� � � � � ��
	�� � (9)

The last term in Eq. 9 represents the effect that changes in	�� �
have on

���
via the effect on

� �
. This term is typically

small and simulations in [8] suggest that it can be safely
ignored. The results later in this paper also show that it is
safe to ignore this term.

In summary, we propose the following algorithm to learn
the parameters of the energy-based model defined by Eq. 2.

1. Compute the gradient of the total energy with respect
to the parameters and average over the data cases

�#$
.

2. Run MCMC samplers for � steps, starting at every
data-vector

�%$
, keeping only the last sample & $ of

each chain.

3. Compute the gradient of the total energy with respect
to the parameters and average over the samples & $ .

4. Update the parameters using,

'(	�� � � /�)*,+- �
data #/.

� � ���%$ ��
	�� � / �
samples 0 .

� � � & $:��
	�� �213
(10)

where ) is the learning rate and
*

the number of sam-
ples in each mini-batch.

747



1 2 3 4 5 6

5.5

6

6.5

7

7.5

A
m

ar
i−

D
is

ta
nc

e

Method

M
H

 

La
n C
or

La
n 

H
M

C
 

E
qu

il 

E
xa

ct
 

Fig. 1. Final Amari-Distance for the various algorithms, averaged
over ��� runs. The boxes have lines at the lower quartile, median,
and upper quartile values. The whiskers show the extent of the
rest of the data. Outliers are denoted by “+”. This plot shows
that all the methods arrive at essentially the same result at the end
of their runs, with the sampling methods having a higher variance
than Exact. Although not shown here, we find that HMC is best
able to scale well to high dimensions.

If the shape of the energies � � is parameterized as well,
similar update rules as Eq. 9 can be used to fit them to data.
For standard ICA, this corresponds to learning the shape of
the prior densities.

4. EXPERIMENT: BLIND SOURCE SEPARATION

To assess the performance of the proposed contrastive diver-
gence learning algorithm we compared � versions, differing
in their MCMC-implementation, with an exact sampling al-
gorithm as well as the Bell and Sejnowski algorithm on a
standard “blind source separation” problem1. The model
has the same number of hidden and visible units, and the
energy of the model is defined as

� �����������@/ 1 3�4 ���"�����:�>� 8 /��"�����������
(11)

This model is strictly equivalent to the noiseless ICA model
with sigmoidal outputs used by Bell and Sejnowski [9]. Be-
low we will give a very brief description of the different
MCMC methods, but refer to [10] for more details.

Algorithm HMC uses
8

step of hybrid Monte Carlo sim-
ulation to sample from

��� �����
. This involves sampling a

momentum variable 	 from a standard normal distribution,
followed by deterministic Hamiltonian dynamics starting at
the data

�
such that the total energy 
 � � " �� 6 	 6 � is pre-

served. The dynamics is implemented by � leapfrog steps
of size  . A rejection rule is then used to correct for dis-
cretization error. CorLan resamples the momentum vari-
able 	 after every leapfrog step. This is equivalent to us-

1Note however that recovering more sound sources than input dimen-
sions (sensors) is not possible with our energy-based model.
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Fig. 2. Evolution of the Amari-Distance relative to Exact which
is shown at the right upper corner. Note that the CD algorithms,
which do not sample from the equilibrium distribution, converge
just as fast as Equil.

ing an isotropic normal distribution as the proposal distri-
bution, with variance  � but centered at

� / ��  ��� �� # . As
���� , we can show that the acceptance rate approaches
1. Hence assuming that step sizes are small enough, we
can simplify and accept all proposals without incurring a
loss in accuracy. This is called Langevin dynamics and im-
plemented in Lan. On the other hand, if we use isotropic
normal proposals centered on the current location

�
, we get

a simple Metropolis-Hastings sampler. This is used in MH.
For noiseless ICA, it is possible to sample efficiently from
the true equilibrium distribution. This is used in Equil. To
be fair, we used a number of samples equal to the number
of data vectors in each mini-batch. We can also compute
the partition function using Eq. 5, and evaluate the second
term of Eq. 6 exactly. This is precisely Bell and Sejnowski’s
algorithm and was implemented in Exact.

The data consisted of
8��

, � -second stereo CD record-
ings of music, sampled at ����� 8 kHz 2. Each recording was
down-sampled by a factor of � , randomly permuted over
the time-index and rescaled to unit variance. The resulting��� ��� � samples in

8��
channels were linearly mixed using the

standard instamix routine with � � ��� � (
8

on the diagonal
and

8:9 �
off the diagonal)3, before presentation to the learn-

ing algorithm.
Parameter updates were performed on mini-batches of8 ��� data vectors. The learning rate was annealed from ��� ���

down to ��� ������� in �!����� iterations of learning, while a mo-
mentum factor of ��� � was used to speed up convergence.
The initial weights were sampled from a Gaussian with std.
��� 8 . The number of sampling steps for MH, Lan, CorLan
and HMC are "!� , "!� ,

8 � and "!� respectively. The number of
steps are chosen so that the amount of computation required
for each algorithm is approximately equal. The step-sizes

2http://sweat.cs.unm.edu/˜ bap/demos.html
3http://sound.media.mit.edu/ica-bench/
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(a)

(b)

Fig. 3. (a) Filters found by the 2 � overcomplete HMC algorithm
with

� � leapfrog steps and an acceptance rate of ����� . The first �
filters are the ones with largest power, indicating that they repre-
sent important constraints. The last � filters are randomly drawn
from the remaining ����� filters. (b) Corresponding power-spectra.

of the MCMC samplers were adapted (at the end of each
MC run) such that the acceptance rates were maintained at
0.5, 0.95, 0.5 and 0.9 respectively (for Lan this means that
the step size was adapted such that if we were to use an
accept/reject step, i.e. use CorLan instead, the acceptance
rate would have been ��� � � ).

During learning we monitored the Amari-Distance4 to
the true unmixing matrix. In figures 1 and 2 we show the
results of the various algorithms on the sound separation
task. The main conclusion of this experiment is that we
do not need to sample from the equilibrium distribution in
order to learn the filters � . This validates the ideas behind
CD learning.

5. EXPERIMENT: INDEPENDENT COMPONENTS
OF SPEECH

To test whether the model could extract meaningful filters
from speech data we used recordings of

8 � male speakers
from the TIMIT database, uttering the sentence “Don’t ask
me to carry an oily rag like that”. The sentences were down-
sampled to

�
kHz and �!������� ,

8 " � � ms segments (correspond-
ing to 100 samples) were extracted from random locations.
Before presenting to the learning algorithm the data was
centered and sphered.

The HMC implementation was used with "!� leapfrog
steps. Mini-batches of size

8 ��� were used, while the step
size was annealed from ��� ��� to ��� ������� in "!������� iterations.
The filters were initialized at small random values and mo-
mentum was used to speed up convergence.

4The Amari-Distance [11] measures a distance between
two matrices � and 	 up to permutations and scalings:
�� ��� 
������� ��� � ���������  !"�#�$&% . � � ��� ��� �  . �(' � � �������)�  !*�#�$&% . � � ��� ��� � . ! �,+.-0/*132 .
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Fig. 4. Distribution of power over time and frequency. First the
envelope of each filter (the absolute value of its Hilbert transform)
was computed and squared. Next, the squared envelope and the
power spectrum were thresholded by mapping all values greater
than half the peak value to one and the rest to zero. Gaps smaller
than 4 samples in time and 5 samples in frequency were filled in.
Finally, the outer product of the two “templates” were computed,
weighted by the total power of the filter, and added to the diagram.

In figure 3 we show
8 � of the "!��� features that were ex-

tracted together with their power spectra. Recall that since
there are " times more filters extracted as dimensions in the
input space, the energy-based model is no longer equiva-
lent to any ICA model. Figure 4 shows the distribution of
power over time and frequency. There seems to be inter-
esting structure around

8 � � kHz, where the filters are less
localized and more finely tuned in frequency than average.
This phenomenon is also reported in [12].

6. EXPERIMENT: NATURAL IMAGES

We tested our algorithm on the standard ICA task of de-
termining the “independent” components of natural images.
The data set used was obtained from van Hateren’s website5

[13]. The logarithm of the pixel intensities was first taken
and then the image patches were centered and whitened
with ZCA. There were 122880 patches and each patch was
16 6 16 in size.

We trained up a network with 256 6 3
�

768 features, with
energy functions of the form

� ������������+���������87��)1 3�409�8 " � � -� ��� ��:
(12)

where the filters
� �

and the weights
7��

were adapted with
CD learning. The HMC algorithm was used with 30 leapfrog
steps and an adaptive step size so that the acceptance rate is
approximately 90%. Both

� �
and

7��
are unconstrained, but

a small weight decay of
8 � �<; was used for

� �
to encourage

the features to localize. The
� �

’s were initialized to random

5ftp://hlab.phys.rug.nl/pub/samples/imlog
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Fig. 5. Learned filters for natural images

vectors of norm 1, while the
7��

’s were initialized at 1. Both��
and

7��
were learned with a learning rate of ��� � 8 and mo-

mentum factor of ��� � . We found however that the result is
not sensitive to the settings of these parameters.

A random sample of
8 ��� learned features is shown in

figure 5. They were roughly ordered by increasing spatial
frequency. By hand, we counted a total of

8��
features which

have not localized either in the spatial or frequency domain.
Most of the features can be described well with Gabor func-
tions. To further analyze the set of learned filters, we fitted
a Gabor function of the form used in [5] to each feature and
extracted parameters like spatial frequency, location and ex-
tent in the spatial and frequency domains. These are sum-
marized in figures 6 and 7, and show that the filters form a
nice tiling of both the spatial and frequency domains. We
see from figures 5 and 7 that filters are learned at multi-
ple scales, with larger features typically being of lower fre-
quency. However we also see an over emphasis of hori-
zontal and vertical filters. This effect has been observed in
previous papers [13, 5], and is probably due to pixellation.

7. DISCUSSION

We have shown that ICA can be viewed as an energy-based
probability density model, and can as such be trained us-
ing the contrastive divergence algorithm. Framing ICA in
this new way suggests simple, novel extensions which re-
tain many of the attractive properties of the original ICA
algorithm. In particular the framework makes it very easy
to deal with overcomplete and non-linear models.

Fig. 6. The spatial layout and size of the filters, which are de-
scribed by the position and size of the bars.

0 0.125 0.25 0.5Frequency

Fig. 7. A polar plot of frequency tuning and orientation selectiv-
ity of the learned filters, with the center of each cross at the peak
frequency and orientation response, and crosshairs describing the
��� ��4 -bandwidth.

This energy-based view of ICA stems from our previous
work on products of experts (PoEs) [8]. In fact our model is
a type of PoE in which each energy term corresponds to one
expert. The PoE framework is related to the maximum en-
tropy framework advocated by some researchers [14, 15].
The difference is that in PoEs the features come from a
parameterized family and are fitted together with weights
using CD-based gradient descent, while in the maximum
entropy literature the features are usually either fixed or in-
duced in an outer loop and the weights are learned with vari-
ants of iterative scaling. As a matter of fact in Eq. 12 the
features are

1 3�4 � 8 " � � -� ��� � � with
7��

being the correspond-
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layer 1
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Visible

Fig. 8. Architecture of a hierarchical non-linear energy-based
model. Non-linearities are indicated by sigmoidal units in hidden
layer 1. Energies are contributed by hidden units in both layers,
and the number of hidden units need not correspond to the number
of visible units.

ing maximum entropy weights.
Our present work is actively exploring a hierarchical

non-linear architecture (figure 8) in which the hidden ac-
tivities are computed with a feed-forward neural network
(see [16] for related work). To fit this model to data, back-
propagation is used to compute gradients of the energy with
respect to both the data vector (to be used in MCMC sam-
pling), and the weights (to be used for weight updates).
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