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ABSTRACT

We survey the newly developed Hilbert spectral analysis method and its appli-

cations to Stokes waves, nonlinear wave evolution processes, the spectral form

of the random wave field, and turbulence. Our emphasis is on the inadequacy of

presently available methods in nonlinear and nonstationary data analysis. Hilbert

spectral analysis is here proposed as an alternative. This new method provides

not only a more precise definition of particular events in time-frequency space

than wavelet analysis, but also more physically meaningful interpretations of the

underlying dynamic processes.

INTRODUCTION

Historically, there are two views of nonlinear mechanics: the Fourier and the

Poincaré. The traditional Fourier view is an outcome of perturbation analysis in

1The US government has the right to retain a non-exclusive, royalty-free license in and to any

copyright covering this paper.
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418 HUANG ET AL

which a nonlinear equation is reduced to a system of linear ones. The final so-

lution becomes the sum of these linear equations. In most mechanics problems,

the linearized equations are second order; therefore, the solutions are trigono-

metric functions, and the sum of the solutions of this linear system constitutes

the Fourier expansion of the “true” solution. This is thus the Fourier view: The

system has a fundamental oscillation (the first-order solution) and bounded

harmonics (all the higher-order solutions). Although this approach might be

mathematically sound, and seems to be logical, the limitations of this view be-

come increasingly clear on closer examination: First, the perturbation approach

is limited to only small nonlinearity; when the nonlinear terms become finite,

the perturbation approach then fails; Second, and more importantly, the solu-

tion obtained makes little physical sense. It is easily seen that the properties

of a nonlinear equation should be different from a collection of linear ones;

therefore, the two sets of solutions from the original equation and the perturbed

ones should have different physical and mathematical properties. Realizing this

limitation, recent investigators of nonlinear mechanics adopted a different view,

that of Poincaré.

Poincaré’s system provides a discrete description. It defines the mapping

of the phase space onto itself. In many cases, Poincaré mapping enables a

graphical presentation of the dynamics. Typically, the full nonlinear solution is

computed numerically. Then the dynamics are viewed through the intersections

of the trajectory and a plane cutting through the path in the phase space. The

intersections of the path and the plane are examined to reveal the dynamical

characteristics. This approach also has limitations, for it relies heavily on the

periodicity of the processes. The motion between the Poincaré cuts could also

be just as important for the dynamics. Both the Fourier and Poincaré views have

existed for a long time. Only recently has an alternative view for mechanics,

the Hilbert view, been proposed.

The Hilbert view is based on a new method, called empirical mode decom-

position (EMD) and Hilbert spectral analysis as described by Huang (1996)

and Huang et al (1996, 1998a). It has found many immediate applications in

a variety of problems covering geophysical (Huang et al 1996, 1998a) and

biomedical engineering (Huang et al 1998b). In this review, the new method

will be summarized, and fluid mechanics examples of nonlinear water waves

and turbulence data will be used to illustrate the use of this method to interprete

the dynamics of these phenomena.

As the new method became available only recently, it is necessary to give

a summary of it and describe some recent improvements to it here. Huang

et al (1998a) clearly point out that a faithful representation of the nonlinear and

nonstationary data requires an approach that differs from Fourier or Fourier-

based wavelet analysis. The new method developed by Huang et al (1998a)

seems to fit this need. This method uses two steps to analyze the data. The
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NONLINEAR WAVES: THE HILBERT SPECTRUM 419

first step is to decompose the data according to their intrinsic characteristic

scales into a number of intrinsic mode function (IMF) components by using

the empirical mode decomposition method. In this way, the data are expanded

in a basis derived from the data itself. The second step is to apply the Hilbert

transform to the IMF components and construct the time-frequency-energy

distribution, designated as the Hilbert spectrum. In this form, the time localities

of events will be preserved, for frequency and energy defined by the Hilbert

transform have intrinsic physical meaning at any point. We will introduce the

whole process by starting from the Hilbert transform.

THE HILBERT TRANSFORM

For an arbitrary time series, X (t), we can always have its Hilbert transform,

Y (t), as

Y (t) =
1

π
P

∫

X (t ′)

t − t ′
dt ′, (1)

where P indicates the Cauchy principal value. This transform exists for all

functions of class Lp (see, for example, Titchmarsh 1948). With this definition,

X (t) and Y (t) form a complex conjugate pair, so we can have an analytic signal,

Z(t), as

Z(t) = X (t) + Y (t) = a(t)eiθ(t), (2)

in which

a(t) = [X2(t) + Y 2(t)]
1
2 ;

θ(t) = arctan
Y (t)

X (t)
.

(3)

Theoretically, there are an infinite number of ways to define the imaginary

part, but the Hilbert transform provides a unique way for the result to be an

analytic function. A brief tutorial on the Hilbert transform, with emphasis on its

physical interpretation, can be found in Bendat & Piersol (1986). Essentially,

Equation (1) defines the Hilbert transform as the convolution of X (t) with 1/t ;

therefore, it emphasizes the local properties of X (t). In Equation (2), the polar

coordinate expression further clarifies the local nature of this representation: it

is the best local fit of an amplitude- and phase-varying trigonometric function

to X (t). Even with the Hilbert transform, there is still considerable controversy

in defining the instantaneous frequency as

ω(t) =
dθ(t)

dt
. (4)

Detailed discussions and justifications are given by Huang et al (1998a). With

this definition of instantaneous frequency, its value changes from point to point
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420 HUANG ET AL

in time. Two simple examples in Figure 1 (see color figure at end of volume) il-

lustrate this approach. Figure 1a gives the familiar sine wave changing from one

frequency to another. These data are certainly nonstationary, a characteristic

that repeatedly demonstrates the power of wavelet analysis. The wavelet spec-

trum in color and the Hilbert analysis representation as a thin line through the

wavelet spectrum are shown in Figure 1b. Their projections on the frequency-

energy plane are shown in Figure 1c. The comparison is clear: The Hilbert

representation gives a much sharper resolution in frequency and a more precise

location in time. The second example is the common exponentially damped

oscillation. The data, wavelet and Hilbert representations, and their projections

are given in Figures 1d–f, respectively. Again, it can be seen that the Hilbert

representation gives a superior resolution in time and frequency. Based on these

comparisons, we can conclude that wavelet analysis indeed improves the time

resolution compared with the Fourier method. Wavelet analysis gives a uniform

frequency resolution, but as can be seen, the resolution is also uniformly poor.

Convenient and powerful as the Hilbert transform seems, by itself it is not

usable for general random data, as discussed by Huang et al (1998a). In the

past, applications of the Hilbert transform have been limited to narrow band

data; otherwise, the results are only approximately correct (Long et al 1993b).

Even under such restrictions, the Hilbert transform has been used by Huang

et al (1992) and Huang et al (1993) to examine the local properties of ocean

waves with detail that no other method has ever achieved. Later, it was also used

by Huang (1995) to study nonlinear wave evolution. For general application,

however, it is now obvious that the data will have to be decomposed first, as

proposed by Huang et al (1998a).

Independently, the Hilbert transform has also been applied to study vibration

problems for damage identification (Feldman 1991, 1994a,b, Feldman & Braun

1995, Braun & Feldman 1997, and Feldman 1997). In all these studies, the

signals were limited to “monocomponent” signals, i.e. without riding waves.

Furthermore, the signals have to be symmetrical with respect to the zero mean.

Thus, the method is limited to simple, free vibrations. Although Prime &

Shevitz (1996) and Feldman (1997) have used it to identify some of the nonlinear

characteristics through the frequency modulation in a nonlinear structure, the

limitation of the data renders the method of little practical application in both

identifying and locating the damage. The real value of the Hilbert transform had

to wait to be demonstrated until Huang et al (1998a) introduced the empirical

mode decomposition (EMD) method, which is based on the characteristic scale

separation. The EMD method was developed to first operate on the data being

processed and to then prepare it for the Hilbert transform. Therefore, we will

discuss the time scale problem next, since this concept is central to this new

approach.
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THE CHARACTERISTIC SCALES

According to Drazin (1992), the first method of time series analysis is inspection

by eye. This approach is, of course, subjective. But a trained eye can detect

many trends and patterns of the data that are hard to quantify. Even to the

untrained eye, there are certain properties of the data that are easy to pick up.

Let us take, for example, the stationarity, the periodicity, the overall trend,

and various scales defined by the time lapses between specific types of points.

Valuable as these insights are, inspection by the eye alone is too subjective to

be of any serious use. Of the various quantities the eye can pick up, the time

scale is one that can be quantified most easily.

In interpretation of any physical data, the most important parameters are the

time scale and the energy distribution with respect to it. There is no difficulty

in defining the local energy density, but up until now, no clear definition of the

local time scale has ever been given. In Fourier analysis, the time scales are

defined as the periods of the continuous and constant-amplitude trigonometric

components. As discussed in Huang et al (1998a), such a definition gives only

a global averaged meaning to the energy and time scales. As such, these scales

are totally divorced from the reality of time variations of either the amplitude

or the frequency.

Statistical definitions of the time scale have been made by Rice (1944, 1945),

who computed the expected numbers of zero-crossings, and the extrema for any

data under linear, stationary, and normal distributed assumptions. Mathemati-

cally, the time scales are defined for any data, x(t), as follows: The locations

of t for

x(t) = 0 (5)

are defined as the points of zero-crossings. The time spacing between successive

zero-crossing is the zero-crossing time scale. The locations of t for

Ẋ(t) = 0 (6)

are defined as the points of the extrema. The time spacing between successive

extrema is the extrema time scale.

Under the linear, stationary, and normal distribution assumptions, the ex-

pected number of zero-crossings and the expected number of extrema can be

computed from Rice’s formulae. But those definitions offer only a global mea-

sure, which cannot be applied to real nonlinear and nonstationary data. Because

of the limitations set forth in Rice’s assumptions, his results have also created

a paradox: in many data, the number of expected extrema computed from his

formula becomes unbounded. If most data are linear and stationary, then why

can we not apply the formula to them? This is because the Fourier power spec-

tra usually have asymptotic power law forms. For example, if the spectrum has
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422 HUANG ET AL

a −3 power law, then m2 is unbounded. For a white noise or a delta function,

the spectrum is white and then even the zero-crossing is undefined. Take ocean

wave data as an example. The asymptotic form of the frequency spectrum has a

power law form with the power between −4 and −5 (see, for example, Phillips

1958, Toba 1973, Phillips 1977, Kitaigorodskii 1983, Banner 1990, Belcher

& Vassilicos 1987). Then, according to Rice’s formula, the expected number

of extrema is unbounded. Yet we can certainly count the extrema without any

difficulty. This dilemma, however, has not yet caused most investigators to

question the formulae and the assumptions involved, but it has led them to re-

ject any formula that involves moments higher than the 4th. Such an approach

has limited the statistical measure of time scales to the computation of the zero-

crossings only. Hence the statistics of the zero-crossings are too crude to be of

any real use.

The spacing of the extrema certainly offers a better measure of time scale,

because this approach can measure wide-band data with multiple riding waves.

It certainly agrees with our intuition of the time variations of the data. Refined

as the extrema criterion is, it is not always precise enough. If one examines

the data more closely, one will find that even the spacing of the extrema can

miss some subtle time-scale variations, because there are weak oscillations

that can cause a local change in curvature but not create a local extremum, a

phenomenon known as hidden scales. To account for this type of weak signal,

we introduce still another type of time scale based on the variation of curvature.

Mathematically, this is equivalent to finding extreme values of

Ẍ

(1 + Ẋ
2
)

3
2

. (6a)

Dynamically, the curvature is equivalent to the measure of the weighted accel-

eration. Any change of sign of the curvature indicates a change of the sign of

the force. As such, the curvature variation indeed has strong dynamic signifi-

cance. As we see, if the extrema statistics have already encountered difficulties

in models, the extreme values of the curvature would involve the 8th moment of

the spectrum from the data. Trying to compute it under the linear and station-

ary assumption is impossible. Fortunately, this difficulty is but a mathematical

artifact, a consequence of the linear and stationary assumptions invoked. We

certainly can compute the curvature and its extrema, and then count them.

Consequently, the failure of Rice’s formulae is another indication of what we

believe to be the falsehood of the commonly invoked assumptions of linearity

and stationarity.

We now have three methods of measuring the time scales: the time between

successive zero-crossings, the time between successive extrema, and the time

between successive curvature extrema. In each case, the time span is a local
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measure of the time variation of events. In the case of extrema and curvature

spans, the local time scale counts all the waves, whether they cross the zero line

or not. The aim is to define a local time scale of oscillation that will change

from one extreme (by the restoring force through the zero point) to the other

extreme of the opposite sign. This is the characteristic time scale. It is local,

and it represents only one mode of oscillation. So we regard it as the intrinsic

scale of the oscillation.

Zero-crossing is a very crude measure of the data. Unless the data are truly

narrow band, there might be many extrema between two consecutive zero-

crossings. Our eyes are much more sensitive to the variations of the spacing

between extrema, and these variations offer a more detailed measure of the

given phenomena. Yet the time lapses between extrema have been problem-

atic. The fourth moments for many phenomena are not convergent, so the ex-

pected number of extrema is impossible to compute, even though it might be

easily counted. This paradox is easily resolved by considering a bold concept:

The Fourier power-law spectra of most data are artificial. Most of the high-

frequency components are from the spurious harmonics from either nonlinearity

(singular points, such as corners, and cusps in the data train), or nonstationarity.

Following Huang et al (1998a), the time scale between extrema is the key and

therefore will be used as the time scale in the decomposition.

THE EMPIRICAL MODE DECOMPOSITION METHOD:

THE SIFTING PROCESS

As discussed by Huang et al (1996, 1998a), the empirical mode decomposition

method is necessary to deal with both nonstationary and nonlinear data. Unlike

almost all the previous methods, this new method is intuitive, direct, a posteriori,

and adaptive, with the basis of the decomposition being derived from the data.

The decomposition is developed from the simple assumption that any data

consist of different simple intrinsic modes of oscillations. Each mode may or

may not be linear, and will have the same number of extrema and zero-crossings.

Furthermore, the oscillation will also be symmetric with respect to the “local

mean.” The term local mean is an oxymoron. Any mean will involve a time

scale to define it. Here, however, the mean is defined through the envelopes

without resorting to any time scale. (Its precise definition is given below.) With

this definition of local mean, modes of different time scales can be separated

by their characteristic scales, defined as the time lapses between the successive

extrema. At any given time, there might be many different coexisting modes of

oscillation, each superimposed on the others. The final complicated data results.

Once separated, each mode should be independent of the others; they have no

multiple extrema between successive zero-crossings. Thus each is designated
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424 HUANG ET AL

as an intrinsic mode function (IMF) by the following definitions: (a) in the

whole data set, the number of extrema and the number of zero-crossings must

either equal or differ at most by one; and (b) at any point, the mean value of

the envelope defined by the local maxima and the envelope defined by the local

minima is zero.

An IMF represents a simple oscillatory mode as a counterpart to the simple

harmonic function, but it is much more general. With the definition, one can

decompose any function as follows: (a) Identify all the local extrema, then

connect all the local maxima by a cubic spline line as the upper envelope;

(b) Repeat the procedure for the local minima to produce the lower envelope.

The upper and lower envelopes should cover all the data between them. Their

mean is designated as m1, and the difference between the data and m1 is the

first component, h1, i.e.

X (t) − m1 = h1. (7)

The procedure is illustrated in Huang et al (1998a).

Ideally, h1 should be an IMF, for the construction of h1 described above

should have required it to satisfy all the requirements of an IMF. Yet, even if

the fitting is perfect, a gentle hump on a slope can be amplified to become a

local extremum in changing the local zero from a rectangular to a curvilinear

coordinate system. After the first round of sifting, the hump may become a

local maximum. New extrema generated in this way recover the proper modes

lost in the initial examination. In fact, the sifting process can recover signals

representing low-amplitude riding waves with repeated siftings.

The sifting process serves two purposes: to eliminate riding waves, and to

make the wave profiles more symmetric. While the first condition is absolutely

necessary for separating the intrinsic modes and for defining a meaningful

instantaneous frequency, the second condition is also necessary in case the

neighboring wave amplitudes have too large a disparity. Toward these ends,

the sifting process has to be repeated as many times as is required to reduce the

extracted signal to an IMF. In the subsequent sifting process steps, h1 is treated

as the data; then

h1 − m11 = h11. (8)

After repeated sifting, i.e. up to k times, h1k becomes an IMF, that is

h1(k−1) − m1k = h1k; (9)

then it is designated as

c1 = h1k, (10)

the first IMF component from the data.

A
n
n
u
. 
R

ev
. 
F

lu
id

. 
M

ec
h
. 
1
9
9
9
.3

1
:4

1
7
-4

5
7
. 
D

o
w

n
lo

ad
ed

 f
ro

m
 a

rj
o
u
rn

al
s.

an
n
u
al

re
v
ie

w
s.

o
rg

b
y
 C

A
L

IF
O

R
N

IA
 I

N
S

T
IT

U
T

E
 O

F
 T

E
C

H
N

O
L

O
G

Y
 o

n
 0

9
/0

8
/0

5
. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

.



NONLINEAR WAVES: THE HILBERT SPECTRUM 425

As described above, the process is indeed like sifting: to separate the finest

local mode from the data first, based only on the characteristic time scale. To

guarantee that the IMF components retain enough physical sense of both ampli-

tude and frequency modulations, the number of times the sifting process repeats

has to be limited. Too many sifting cycles could reduce all components to a

constant-amplitude signal with frequency modulation only. Then, the compo-

nents would lose all their physical significance. A simple criterion for stoppage

is when the number of extrema equals the number of zero-crossings. The

original Cauchy-like convergence criterion introduced by Huang et al (1998a)

should be used with great care, because the deviations between successive

siftings are controlled primarily by the appearance of new extrema from their

previously hidden state. Such problems can be resolved now with curvature

sifting. Therefore, the criterion for stoppage can be simplified, as proposed

here.

Overall, c1 should contain the finest scale or the shortest period component

of the signal. We can separate c1 from the rest of the data by

X (t) − c1 = r1. (11)

Since the residue r1 still contains longer-period components, it is treated as the

new data and subjected to the same sifting process as described above. This

procedure can be repeated for all the subsequent r j ’s, and the result is

r1 − c2 = r2,

· · · (12)

rn−1 − cn = rn

The sifting process can be stopped by any of the following predetermined

criteria: either when the component cn or the residue rn becomes so small that

it is less than the predetermined value of substantial consequence, or when the

residue rn becomes a monotonic function from which no more IMF can be

extracted. Even for data with zero mean, the final residue still can be different

from zero. If the data have a trend, the final residue should be that trend. By

summing up Equations (11) and (12), we finally obtain

X (t) =

n
∑

j=1

c j + rn. (13)

Thus, one can achieve a decomposition of the data into n-empirical modes, and

a residue rn , which can be either the mean trend or a constant. As discussed

here, to apply the EMD method, a mean or zero reference is not required; EMD

needs only the locations of the local extrema. The zero references for each

component will be generated by the sifting process. Without the need of the
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zero reference, EMD avoids the troublesome step of removing the mean values

for the large DC term in data with non-zero mean, an unexpected benefit.

To illustrate the sifting process, we will use a set of length-of-the-day data

covering the period from 1978 to 1988. The data are given in Figure 2a. Clearly,

the data are quite complicated, with many local extrema but no zero-crossings,

because the time series represents all positive numbers. Although the mean

can be treated as a zero reference, defining it is hard, for the whole process

is transient. This example illustrates the advantage of adopting the successive

extrema for defining the time scale; it also illustrates the difficulties of dealing

with nonstationary data: Even a meaningful mean is impossible to define, but

for the EMD method, this difficulty is eliminated. Figure 2b summarizes all the

IMFs obtained from this repeated sifting process. Figure 2b illustrates a total

of 7 components plus a residue term. In comparison to the traditional Fourier

expansion, one can immediately see the efficiency of EMD.

The components of EMD are usually physical, for the characteristic scales

are physical. In Figure 2b, we can see the yearly cycle clearly as the fifth com-

ponent C5. The first two are semi-monthly and monthly tidal modulation of the

rotation speed of the earth. Different from the Fourier analysis, each compo-

nent still retains both frequency and amplitude modulations. For example, the

amplitude of the annual fluctuation is slightly larger at 1982, which happens to

be an unusually strong El Niño year.

To demonstrate the completeness of the decomposition, the IMF components

can be added back one by one to form the original data. Figure 3a shows the

data in a dotted line and the residue term in a solid line. By itself, the residue

is not an impressive running mean of the data. It should not be, for the last

IMF is not a mean; it is only the residue after all the oscillatory terms have

been separated from the signal. In this sense, it could be a trend. By adding the

longest period IMF component, the sum gives a sense of a much better running

mean, as in Figure 3b. The third component gives the annual cycle. The sum

immediately shows the fluctuation of the length of the day by year in Figure 3d.

By successively adding all the components, we eventually get Figure 3h, which

is indistinguishable from the original data. The numerical difference between

the sum of the IMFs and the original data is given in Figure 3i. The magnitude

is only of the order of 10−15. It is the round-off error for the computer. Thus,

the completeness of the expansion is proven numerically.

To use the unique definition of instantaneous frequency, we have to reduce an

arbitrary data set into IMF components from which an instantaneous frequency

value can be assigned to each IMF component. Consequently, for complicated

data, we can have more than one instantaneous frequency at a time locally. After

decomposing the data into IMFs, and after operating on these with the Hilbert

transform, we can then present the result, which we call the Hilbert spectrum.
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Figure 3 Reconstruction of the original data from the IMF components. The difference between

the reconstructed and the original data is only 10−9 microsecond.

Intermittency Test

The sifting process described above seems straightforward. Yet straightforward

application of the sifting method may run into difficulties when the data contain

intermittency, which will cause mode mixing. We discuss this phenomenon in

more detail below.

Let us consider the data given in Figure 4a, where there is a train of large-

amplitude sine waves with another train of small-amplitude sine waves oc-

curring intermittently. With application of the straightforward sifting, we will

obtain the components as shown in Figure 4e–h, in which the first two IMF

components contain seriously mixed modes, that is, modes of very different

periods. Take the component in 4e as an example. The small wave train is

clearly identified. Wherever the small waves are identified, the underlying
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Figure 4 Effect of intermittency criterion in the EMD sifting process invoked to eliminate mode

mixing. Sequence b–d with intermittency check; sequence e–h without intermittency check.

large waves will not be included in this IMF component. On the other hand,

wherever there is no small-wave component, the large waves are retained as

part of the component. As a result, there is a great disparity in the periods of

the first IMF component. This is mode mixing; it is caused by intermittency

occurring in part of the signal.

To overcome the mode mixing, a criterion based on the period length is

introduced to separate the waves of different periods into different modes. The

criterion is set as the upper limit of the period that can be included in any given

IMF component. With this criterion introduced, the result is shown in Figure

4b–d. Clearly, the intermittent small wave was separated from the large waves.

Any additional criterion introduced in the sifting process implies an inter-

vention with a subjective condition. Such intervention could cause severe bias

in the final result; therefore, the introduction of any additional condition should

be justified with clear and strong arguments. As a rule, data should be pro-

cessed first without any added conditions. The intermittency criterion should
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be introduced only when the sifted results clearly show the problem of mode

mixing. Mode mixing cannot be justified from physical grounds, for any oscil-

lator cannot have great disparity in its periods.

THE HILBERT SPECTRUM

Having obtained the intrinsic mode function (IMF) components, one will have

no difficulty in applying the Hilbert transform to each of these IMF components

and computing the instantaneous frequency according to Equation (4). After

performing the Hilbert transform to each IMF component, the original data can

be expressed as the real part (RP) in the following form:

X (t) = R P

n
∑

j=1

a j (t)e
i
∫

ω j (t)dt
. (14)

Here we have left out the residue rn on purpose, for it is either a monotonic

function or a constant. Although the Hilbert transform can treat the monotonic

trend as part of a longer oscillation, the energy involved in the residual trend

could be overpowering. In consideration of the uncertainty of the longer trend,

and in the interest of information contained in the other low-energy but clearly

oscillatory components, the final non-IMF component should be left out. It

could be included, however, if physical considerations justify its inclusion.

Equation (14) gives both amplitude and frequency of each component as

functions of time. The same data, if expanded in the Fourier representation,

would be

X (t) = R P

∞
∑

j=1

a j e
iω j t , (15)

with both a j and ω j constants. The contrast between Equations (14) and (15)

is clear: the IMF represents a generalized Fourier expansion. The variable

amplitude and the instantaneous frequency have not only greatly improved the

efficiency of the expansion, but also enabled the expansion to accommodate

nonstationary data. With the IMF expansion, the amplitude and the frequency

modulations are also clearly separated. Thus, we have broken through the re-

striction of the constant amplitude and fixed frequency imposed by the Fourier

expansion, and arrived at a variable amplitude and frequency representation.

Now let us illustrate the difference between the two expressions graphically

in the frequency-energy-time space. Figure 5a (see color figure at end of

volume) represents a set of highly transient data. In the Fourier expansion,

the frequency and amplitude are not time dependent; therefore, all Fourier
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components are represented by rectangular blocks with thickness of dω, as in

Figure 5c. Consequently, the only information is the projection of the blocks on

the frequency-energy plane. This is why the Fourier spectra can be meaningful

only for stationary data. The same data, if expanded in terms of IMF, will

produce the result as given in Figure 5b. As the frequency of each component

is a function of time, it is a curve on the time-frequency plane. Furthermore,

because the amplitude (or the energy) of each component is also a function of

time, the final energy representation is a curve in the three-dimensional space

of frequency-energy-time. This frequency-time distribution of the amplitude

is designated as the Hilbert amplitude spectrum H(ω, t), or simply the Hilbert

spectrum. If amplitude squared is preferred to represent energy density, then

the squared values of amplitude can be substituted to produce the Hilbert energy

spectrum just as well.

Various forms of the Hilbert spectra presentations can be made: color-coded

maps and contour maps all with or without smoothing. The Hilbert spectrum

in the color map format for the length-of-the-day data is given in Figure 6a

(see color figure at end). The Hilbert spectrum appears only in the skeleton (or

line) form with emphasis on the frequency variations of each IMF, while the

wavelet analysis result usually gives a smoothed energy contour map with a rich

distribution of higher harmonics. The skeleton presentation is more desirable,

because it gives more quantitative results. Bacry et al (1991) have tried to extract

the wavelet skeleton as the local maximum of the wavelet coefficient, but even

that approach is encumbered by the harmonics. If more qualitative results are

desired, a fuzzy view can also be derived from the skeleton presentation by using

two-dimensional smoothing. We will discuss the significance of the difference

between the Hilbert and wavelet presentations further on in this review.

With the Hilbert spectrum defined, we can also define the marginal spectrum,

h(ω), as

h(ω) =

∫ T

0

H(ω, t)dt. (16)

The marginal spectrum offers a measure of the total amplitude (or energy)

contribution from each frequency value. It represents the cumulated amplitude

over the entire data span in a probabilistic sense. In Figures 5d and 6b, the

solid lines give the corresponding marginal spectrum of the Hilbert spectrum

given in Figures 5b and Figure 6a, respectively. The lack of harmonics is clearly

demonstrated. Furthermore, Figure 5d showed a much richer energy content in

the low-frequency range than the corresponding Fourier spectrum in Figure 5e.

This is usually the case, for the constant amplitude and frequency Fourier

representation would never be able to depict the true energy content. It should
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be pointed out that the marginal spectra should not be used for any nonstationary

data, for the marginal spectra are the projections rather than the substance of

the real frequency-energy-time distribution.

As pointed out by Huang et al (1996), the frequency in either h(ω, t) or

h(ω) has a totally different meaning from the Fourier spectral analysis. In

the Fourier representation, the existence of energy at a frequency ω means that

a component of a sine or a cosine wave persisted through the time span of

the data. Here, the existence of energy at the frequency ω means only that

in the whole time span of the data, there is a higher likelihood for such a

wave to have appeared locally. In fact, the Hilbert spectrum is a weighted non-

normalized joint amplitude-frequency-time distribution. The weight assigned

to each time-frequency cell is the local amplitude. Consequently, the frequency

in the marginal spectrum indicates only that the likelihood of an oscillation with

such a frequency exists. The exact time of that oscillation is given in the full

Hilbert spectrum.

Having defined the Hilbert spectrum, we thus have a real frequency-energy-

time representation of the data that is quantitative. With it, Huang et al (1998a)

have defined the degree of stationarity (DS) as

DS(ω) =
1

T

∫ T

0

(

1 −
H(ω, t)

h(ω)/T

)2

dt. (17)

This definition of degree of stationarity is very similar to the intermittency

used in the wavelet analysis proposed by Farge (1992). A degree of statistical

stationarity is also defined by Huang et al (1998a). The instantaneous energy,

IE, can also be defined as

IE(t) =

∫

ω

H 2(ω, t)dω. (18)

VALIDATION AND CALIBRATION

OF THE HILBERT SPECTRUM

Through empirical mode decomposition and the associated Hilbert spectral

analysis, we obtained the probabilistic Hilbert spectrum representation of the

nonlinear and nonstationary data. Now we will validate the approach and the

results, and calibrate its fidelity against the best existing method, wavelet

analysis.

Let us first consider the following mathematical model:

X (t) = cos(ωt + ε sin 2ωt). (19)
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According to the classic wave theory, this expression is a clear case of intra-wave

frequency modulation. The frequency, �, at any time is simply

� = ω(1 + 2ε cos 2ωt). (20)

Yet from Equation (19), it is easy to show that

X (t) =

(

1 −
ε

2

)

cos ωt +
1

2
cos 3ωt + . . . , (21)

which is similar to the second-order approximation of the Duffing equation

through perturbation analysis. The Hilbert and wavelet spectra for these are

given in Figure 7a (see color figure). Here we have two views for the same math-

ematical expression. Both representations can be used to construct the original

curve, but they convey very different physical meanings. Clearly, the one based

on classical wave theory is the more physical one, for it is how we define the

function. From this example, we can see that there are two types of frequency

modulations, inter-wave and intra-wave. The first type is familiar to us; the

frequency of the oscillation gradually changes as do the waves in a dispersive

system. Technically, in dispersive waves, the frequency also changes within

one wave, but that was not emphasized either for convenience, or for lack of a

more precise frequency definition. The second type is less familiar, but it is also

a common phenomenon: if the frequency changes from time to time within

a wave, its profile can no longer be described by simple trigonometric func-

tions. Therefore, any wave profile deformation from the simple sinusoidal form

implies intra-wave frequency modulation. In the past, such phenomena were

treated as harmonic distortions. The purpose of the harmonics is not to repre-

sent the true frequency distribution, but rather to represent the waveform. The

marginal spectra of the Hilbert and wavelet spectra together with the Fourier

spectrum are shown in Figure 7b. Here the Hilbert spectrum clearly depicts the

modulation of the frequency as shown by Equation (19). Wavelet analysis again

gives a poor frequency resolution. Thus, we show in detail that most waveform

deformations are better viewed as intra-wave frequency modulations. This is

the core of the Hilbert view: it is more physical.

This simple example again illustrates that the instantaneous frequency, with

intra-wave frequency modulation defined by the EMD and Hilbert spectrum,

does make physical sense. In fact, such an instantaneous frequency presentation

reveals more details of the system: it reveals the variation of the frequency

within one period, a view never seen before.

The above examples have not only validated the EMD and the Hilbert spec-

trum representation, but also clarified the conditions under which spurious
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harmonics are generated in Fourier-based analysis: nonlinearity and nonsta-

tionarity. In the past, this crucial problem has not been examined carefully.

Typically, perturbation analysis gives a solution in series expansion. Each term

is the solution of a linear equation. Although infinite series expansion is so pow-

erful that it can approximate some transient phenomena with uniform amplitude

components, their physical meaning has never been examined critically. The

mathematical success has obscured our physical insights. With these ideal-

ized examples, we have established the validity and the limitations of Hilbert

spectral analysis. Next, we will present some applications in both numerically

computed results from low-dimensional nonlinear equations, and some data

from observations.

CLASSIC NONLINEAR SYSTEMS

The advantage of studying classic nonlinear systems is their simplicity, yet

they contain all the essentials of the possible nonlinear effects. All these sys-

tems have been studied extensively; therefore, although most of their dynamic

characteristics are familiar, their detailed physics may not be. We cite two ex-

amples: the Duffing equation and the Rössler equation, both used by Huang

et al (1998a).

The Duffing Equation

We use the classic Duffing equation to illustrate intra-wave frequency modula-

tion. The Duffing equation is

d2x

dt2
+ x − εx3 = b cos υt, (22)

in which ε is a small parameter. This equation can be written in a slightly

different form as

d2x

dt2
+ x(1 − εx2) = b cos υt, (23)

where we have factored out x and (1 − εx2). This equation can be viewed as a

nonlinear spring with a variable spring constant (1 − εx2). If ε is zero, this is

a simple oscillator with constant period. If ε is not zero, the spring constant is

no longer a constant; it becomes a function of position. The period is longest

when the position is near the origin, and the shortest when the position is at the

maximum displacement. Thus, this nonlinear oscillator has variable frequency

within one cycle of oscillation. Clearly, this is a case of intra-wave frequency

modulation.
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Traditionally, this problem has been treated by perturbation methods. If one

uses the straightforward perturbation method, one gets the secular term as

x(t) = cos t + ε

(

3

4
t sin t +

1

32
(cos t − cos 3t)

)

. (24)

The homogeneous solution of Equation (22) is given in Drazin (1992) as

x(t) = a cos ωt +
1

32
εa2(cos ωt − cos 3ωt) + O(ε2a5) (25)

and

ω = 1 −
3

8
εa2 + O(ε2a4) as ε → 0. (26)

The above solutions work only for small ε. If we adopt the initial values

[x(0), x′(0)] = [1, 1]; and a = 1, b = 0.1, ε = 1, υ = 1/25 Hz, we cannot use

the solution to evaluate the functional value of x anymore, for ε is now finite.

The full solution of Equation (22) subject to the initial conditions given here

has to be computed numerically. The numerical solution is given in Figure 8a.

The waveform is far from sinusoidal. All the deformations indicate nonlinear

effects, traditionally represented by harmonics. The full solution in the phase

plane is given in Figure 8b, and we see that the locus of the solution tends to

bunch into three distinguishable paths. This suggests that the motion within

this time period contains a period-three oscillation in addition to the forcing

function and the intrinsic oscillation time scales. These data, when subjected

to the empirical mode decomposition method, yield four components and a

residue, as shown in Figure 8c.

The first component is the intrinsic oscillation of the system subject to the

forcing, the second component is the forcing function, and the third compo-

nent is the period time scale. All of these components are physical. With

these intrinsic mode functions, the Hilbert spectrum can be constructed as in

Figure 9a (see color figure) together with the original data. The most inter-

esting component is the intrinsic oscillation term. In the Hilbert spectrum, it

is represented by an oscillatory line indicating the frequency change from one

instant to another. A detailed comparison between the Hilbert spectrum and the

data shows the uneven frequency variations from one wave to the next and is a

faithful and detailed representation of the fact that the motion has a different fre-

quency within one oscillation. The intrinsic frequency shows strong intra-wave

frequency modulation, which is presented as a variable frequency oscillating

between 0.06 and 0.16 Hz, with a mean around 0.11 Hz, the averaged frequency

as predicted by the Hamiltonian method. The detailed variations of the intrinsic

frequency indicate that it contains both inter- and intra-wave frequency modu-

lations. The forcing function is also clearly shown with the expected frequency.
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Figure 8 Data, phase diagram, and IMF components for the solution of the Duffing equation.

Trajectories of motion show clear bunching at the preferred paths, indicating additional time scales.

The long-period component is the low-frequency and low-amplitude signal. It

represents the slow, aperiodic wobbling of the phase depicting the period-three

bunching of the paths. It is real. If we compute a longer time series, there will

be still longer-period motions. As the motion is already chaotic, the path may

never repeat itself.

A wavelet representation of the same data is given by Huang et al (1998a).

Because the Morlet wavelet used here is Fourier based, the variation of the

frequency has to be represented by harmonics. The marginal Hilbert spectra

together with the Fourier spectrum of the data are given in Figure 9b. Here, the

lack of harmonics in the Hilbert spectrum is clearly shown. This is a totally

different view of the nonlinear system. It tracks the instantaneous change of

the waveform by small changes of frequency rather than by using harmonics.

Although both the Fourier and the Hilbert representations show the same ef-

fect of waveform deformations, the physical meaning is very different: The

Hilbert representation gives a true physical interpretation of the dynamics by
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indicating the instantaneous value of the frequency, and thus the Hilbert view

is much more physical.

The Rössler Equation

The nonlinear effect can also be represented by another classical example in

the Rössler equation as

dx

dt
= −(y + z),

dy

dt
= x +

1

5
y,

dz

dt
=

1

5
+ z(x − µ),

(27)

in which µ is a constant parameter. The numerical value of x computed with

µ = 3.5 is given in Figure 10a with its phase diagram in Figure 10b. This is the

Figure 10 Data, phase diagram, and IMF components for the solution of the Rössler equation.

This is the case of period doubling, which indicates two time scales.
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case of period doubling, when, starting from any point, one needs to spend twice

the simple oscillation time to return to the original state. Obviously, there must

be two time scales. The empirical mode decomposition method indeed gives

precisely two components and a numerically insignificant residual error term

in Figure 10c. As this is the period doubling case, we should only expect two

time scales, as shown in the IMFs. The same case will require many harmonics,

but the harmonics fail to give any indication of period doubling, because the

harmonics represent the waveform deformation instead of the period doubling.

The Hilbert spectrum of the result is presented in Figure 11a (see color figure),

in which the frequency of the first component fluctuates over a considerable

range. But nowhere is the frequency value higher than 3 Hz. The wavelet spec-

trum for the same case would have harmonics for very high frequency, as shown

in Huang et al (1998a). If we compute the marginal spectrum and plot them

together with the Fourier spectrum in Figure 11b, the difference is also clear:

The lack of harmonics in the representation increases the clarity of the final

result. Furthermore, the main peak of the Fourier spectrum represents only a

global weighted mean frequency. Its does not represent any true value during

the oscillation.

With these examples, we have demonstrated that the new idea of intra-wave

frequency modulation can easily depict the minute variations of the waves in

the IMF component and the data. Again, with the Hilbert spectrum as a guide,

the unevenness of the intra-wave frequency variation can be shown to have

one-to-one correspondence with the variations of the waveform in the data.

Comparison with the Hamiltonian Solution

From the above examples, one can see that Hilbert spectral analysis offers

more detailed information than the Hamiltonian system, in which the averaged

frequency is defined as

∂ J

∂t
= 0, and ω =

∂θ

∂t
=

∂ H(J )

∂ J
, (28)

with J as the averaged action density, defined by

J =
1

2π

∫∫

dp dq, (29)

in which θ is the angular variable and H is the total Hamiltonian in terms of

the action density variable. In these canonical expressions, the most important

parameter is the averaged period or frequency, based on which the Poincaré

section and the modern topological view of the dynamic system are built. With

such a view, the shape of the phase plane is not as important as the time needed

to trace a full cycle. As long as they are closed curves, they are topologically
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equivalent. Yet the different shapes of the phase curves represent different details

of the oscillations. Such details can be represented only by the instantaneous

frequency, as shown above. The motion described by nonlinear equations clearly

requires the instantaneous frequency variation to specify its full physical details.

Thus, the Hilbert view is preferred over the previous view of classical nonlinear

mechanics. We will now use the new method to view nonlinear water wave

problems.

WATER WAVE PROBLEMS

Now we will turn to real physical phenomena, the problem of water waves.

All water waves are nonlinear (Whitham 1974); therefore, harmonic analysis

has always been an inseparable part of wave phenomenon studies. Yet such

an approach offers a confused view: As water waves are dispersive, waves of

different frequencies will propagate at different phase velocities. In terms of

harmonics, however, we are forced to separate the waves into two categories:

free waves and bounded waves. Harmonic components do not obey the dis-

persive relationship. Consequently, for a given wave component of certain

frequency and wave number, one must first determine whether it is a free or

a bounded wave before discussing its propagating properties. For a random

wave field, the simple, direct, and logical way to represent it is through its spec-

trum. The harmonics in the Fourier spectrum, however, create a real problem

in spectral analysis of how to determine which component is free and which

is bounded. In the traditional Fourier view, the typical spectrum has a rather

narrow peak and a wideband tail. Near the peak region, the waves are mostly

free waves, which propagate according to the dispersion relationship. Toward

the tail, the waves are mostly harmonic in nature, but even here, free waves are

still possible. Therefore, for any given frequency or wave number, the waves

can either be free or bounded harmonics of other free waves. As bounded har-

monics, a particular wave can be the harmonic of the free fundamental waves

with 1/n times its frequency. Thus, the true nature of any component in a wave

spectrum can never be exactly determined. This is the consequence of using

Fourier analysis.

Thus we must point out here that the harmonics are a mathematical artifact.

The characteristics of nonlinear water waves are represented in the deforma-

tion of the wave form. Now, we will examine the nonlinear wave problem with

Hilbert spectral analysis. The central idea is to use intra-wave frequency modu-

lation to explain wave form deformation. Using the nonlinear wave phenomena

as examples, we can contrast the different views and gain new insights, which

will also help us in interpreting more complicated cases in natural phenomena

with high degrees of freedom. We will start with the classic Stokes wave.
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The Stokes Wave

The Stokes wave is one of the first successes of a mathematical description of

natural phenomena (Stokes 1847). The classical Stokes wave profile reveals the

nonlinearity by its sharpened crests and rounded-off troughs. Longuet-Higgins

(1963), Huang et al (1983, 1984, 1990a,b) and Shen et al (1994) have modeled

the asymmetric form, which gives the skewness in the water surface eleva-

tion distribution. In those attempts, harmonics were used as a mathematical

tool. As they are modeling the waveform deformation, that approach is per-

fectly legitimate. All the harmonics, however, can model only the up-and-

down asymmetry. Front and back asymmetry is known to exist and has been

modeled by Longuet-Higgins (1982). We will see what the Hilbert view can

reveal.

A short section of the wave record used by Huang et al (1998a) is reproduced

in Figure 12. Applying the EMD to these data produced eight components.

The most important one is the second component, which accounts for almost

all the energy of the data. Its Hilbert spectrum is given in Figure 12a, while

the corresponding Morlet wavelet spectrum is given in Figure 12b, all with the

wave profile superimposed on them. Clearly, the waves are nonlinear, for the

Hilbert spectrum shows instantaneous frequency modulation, the hallmark for

nonlinear effects. The fluctuation of the frequency is not exactly symmetric

with respect to the wave profile, but exhibits a slight phase shift toward the

wave front, as shown in the detailed plot of the Hilbert spectrum. The highest-

frequency part of the wave was always seen to be aligned with the wave front,

indicating that this part of the wave has a higher instantaneous frequency, or

a sharper change in its phase. The lowest-frequency part of the wave always

aligned with the wave back and the trough. This is in general agreement with

the sharpened crest and rounded-off trough profile, but the description is even

more exact: The Hilbert spectrum also pointed out the front-back asymmetry

as modeled by Longuet-Higgins (1982). In that study, Longuet-Higgins also

invoked a shifted phase for the harmonics. The front-back asymmetry can also

be seen from the corresponding wavelet spectrum shown in Figure 12b, in which

the harmonics are concentrated slightly in the front of the wave crest. Such a

detail could never have been detected with standard Fourier spectral analysis.

This also indicates that the traditional Stokes wave model does not give a true

description of the water waves.

The marginal spectra from both the Hilbert and the wavelet spectra are shown

in Figure 12c, together with the Fourier spectrum. This comparison again shows

the difference between the Hilbert and Fourier views: In the Hilbert view, there

are no harmonics, but there are many sub-harmonics. This, too, serves as an

indicator of nonlinearity. The frequencies of the waves are modeled by fluctua-

tions in frequency from time to time in the Hilbert view, while the same change
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NONLINEAR WAVES: THE HILBERT SPECTRUM 441

is modeled as superimposed constant frequency and amplitude sinusoidal com-

ponents in the Fourier view. These Fourier components are a mathematically

correct decomposition for the data, but they do not make physical sense, because

pure sinusoidal waves are not a solution for any equation governing water sur-

face motions. The wavelet spectrum, while correctly depicting the front-back

asymmetry, gives very poor frequency resolution. By comparison, the Hilbert

view gives an overall superior representation of the phenomena for both time

variations and frequency resolution. Now let us move to the wave evolution

problem.

Wave Evolution: Fusion

In nonlinear wave dynamics, there is an intriguing problem regarding wave

evolution. In numerous controlled experiments (Lake et al 1977; Lake & Yuen

1978; Melville 1982; Su et al 1982; Chereskin & Mollo-Christensen 1985; and

Huang et al 1996) the main frequency is seen to shift to a lower frequency, a

downshift. This innocent phenomenon presents a serious conflict with wave

theory.

According to the kinematics of wave trains, the movement of a constant phase

is given by

θ(x, t) = constant t (30)

in which θ(x, t) is a slowly varying phase function of position and time. The

wave number k and frequency n can be defined as

k = ∇θ, n = −
∂θ

∂t
. (31)

Both the wave number and frequency are also assumed to be slowly varying

functions of time and position. From Equation (31), one can immediately obtain

the kinematic conservation equation of the waves as

∂k

∂t
+ ∇n = 0. (32)

From Equation (32), the frequency of a stationary wave train should be con-

stant. The laboratory setting is precisely the stationary case, yet the frequency

downshift has been observed routinely.

Theoretical study of the downshift problem has developed almost in parallel

with the experimental side. The first attempt to model the downshift was based

on the nonlinear Schrödinger (NLS) equation (Yuen & Ferguson 1978a,b). The

results produced by this approach, however, predict only cyclic recurrence of

downshift and upshift. Later, the problem was studied with the modified non-

linear Schrödinger (MNLS) equation, derived by Dysthe (1979) with the added
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slow drift term and used by Lo & Mei (1985); the wideband case of the nonlin-

ear Schrödinger equation derived by Trulsen & Dysthe (1996); the Zakharov

integral equation used by Caponi et al (1982); and the exact hydrodynamic

equations used by Dold & Peregrine (1986). All the studies found recurrence

in two-dimensional wave trains. Yet, by adding a simulated wave-breaking term,

Trulsen & Dysthe (1990) were able to obtain permanent downshift. By adding

wind and eddy viscosity, Hara & Mei (1991) also found downshift. With these

results, most investigators believed that the dissipation mechanism must be im-

portant. Such a conclusion was further supported by studies by Hara & Mei

(1994); Poitevin & Kharif (1991, 1992); Skandrani et al (1996); Uchiyama &

Kawahara (1994); and Kato & Oikawa (1995), all with some type of damping.

Recently, Trulsen & Dysthe (1997) extended the investigation to three-

dimensional cases, and found that a downshift is possible by allowing oblique

sideband perturbations. A quantitative analysis of past results showed that all

are within the possible range of three-dimensional perturbations. With one ex-

ception (Huang et al 1996), in all those studies, theoretical or experimental, the

results were obtained through Fourier analysis. The downshift was defined as the

shift of the peak frequency of the spectrum. As shown by Huang et al (1996),

the Fourier spectrum is a very poor way to analyze either the downshift pheno-

menon or the shift of the peak frequency of the spectrum; indeed, it is an inade-

quate way to quantify the downshift. Yet, Trulsen (1998) still tried to explain

the downshift (crest pairing) as a consequence of beating in linear dispersion

among different Fourier modes. Any such beating or modulation will have to be

reversible, but the downshift in water wave evolution is irreversible. There are

many unsolved difficulties in the present Fourier view of the downshift problem.

This will be illustrated through an examination of the experimental evidence.

The laboratory data were collected by Huang et al (1996) in the NASA

Air-Sea Interaction Research Facility located at Goddard Space Flight Cen-

ter’s Wallops Flight Facility, Wallops Island, Virginia. The wind-wave tank is

91.5 cm wide, 122 cm high, and 1830 cm long, with an operational water depth

of 75 cm. For a complete description of the facility and its capabilities, see

Long (1992). For this example, waves were generated by a programmable wave

maker set at 2.5 Hz. Wave data were collected at eight stations along the tank

covering the fetch from 3 to 15 meters. The raw data of the wave elevations and

the corresponding Fourier spectra can be found in Huang et al (1996). They fur-

ther showed that the Fourier spectra offered a very poor indicator for frequency

downshift. If we adopt the definition of the peak frequency as the measure of

frequency downshift, the only station that reported a downshift is station 8. If

one used peak frequency as a measure, then what spectral resolution should

one use? Take the data from stations 7 and 8 of the laboratory experiment as

an example. Huang et al (1996) identified the downshift based on the spectral

peak method to be between these two stations. Let us re-examine this approach
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NONLINEAR WAVES: THE HILBERT SPECTRUM 443

Figure 13 Fourier spectra for two stations with different frequency resolutions, to demonstrate

that downshift of the spectral peak depends on frequency resolution.

carefully. The spectra of these two stations with various frequency resolutions

are given in Figure 13. Starting with the full data length of 6000 points, the

spectra are marked p7 and p8 in Figure 13. The spectra with 3000 points are

marked with p71 and p81; the spectra with only 1000 points are marked with

p72 and p82. The spectral pair, p7 and p8, does not show the peak downshift.

The pair p71 and p81 show a tie. Only the pair with the lowest resolution showed

downshift. Yet counting the real numbers of the waves through their total phase

angle variations has shown downshift long before the waves reach station 8,

as shown in Huang et al (1998a). The downshift started long before the peak

frequency changed. This raises a question about the definition of downshift. Is

the peak frequency change a good measure of downshift? Or is Fourier spectral

analysis a good tool for studying downshift? The answer to both these questions

is no.

Another complication arises for the spectral peak measure. Granted the peak

criterion, the downshift occurs at station 8. Yet Huang et al (1996) have counted

the waves in the laboratory data through the total phase changes. They found that

waves started to disappear at station 5. The number of waves missed increases

with the distance from the wave maker. Then what will be the state of the waves

at stations 5, 6, and 7? There should be no downshift based on spectrum peak,
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444 HUANG ET AL

but clearly the total number of waves has decreased. This decrease, however,

occurs only at certain very local regions. Such local change makes the data

nonstationary, the condition Fourier analysis is ill-equipped to deal with. As

shown above in the Rössler equation, the Fourier spectral peak represents only

the global mean frequency. It is not sensitive to the local change of frequency

as in the local and discrete downshift phenomena. Therefore, we conclude that

the spectral peak is not a good measure for downshift.

Huang et al (1996) opted for the use of Hilbert analysis, with which variation

of frequency can be defined much more precisely and locally. Phase variation

can be presented in two ways: first, the total phase value changes with respect

to the reference station, e.g. station 1. This revealed that the decrease of the

total phase values was an integer multiple of 2π . Secondly, the relative phase

variation can be presented in a joint distribution with the elevation. The selected

results are shown in Figure 14a–d. The discrete location of the phase variation is

Figure 14 Joint distribution of phase and amplitude and waves at different stations all relative to

the first station. Phase variation is discrete.
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Figure 15 Fusion of two waves into one also coincides with a phase jump. Magnitude of phase

jump at 49 seconds is exactly 2π .

a sharp deviation from the traditional picture of slowly varying phase, frequency,

and amplitude. It was further shown that the wave evolution process is similar

to that of fusion, in which two waves fused into one locally and discretely at the

point where the phase jump occurred. A detailed example given in Huang et al

(1998a) is reproduced here in Figure 15, in which fusion is vividly illustrated

near the 49-second location on the time axis.

To summarize the findings on nonlinear wave evolution from the experimen-

tal study by Huang et al (1996), we have to emphasize that the wave frequency

downshift in the evolution indeed seems to be not a slowly varying process, but

rather a sudden jump. This presents a difficulty to theoretical analysis too, for

all of the theoretical models, such as NLS, MNLS, and others, are based on

the slowly varying phase, frequency, and amplitude. The process observed is

local, and the variation noted is discrete. Waves are lost in the process in which

n waves are fused into n−1 waves. This is the phenomenon of the “missing
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crest” as observed by Lake et al (1977), “crest paring” observed by Ramamon-

jiarisoa & Mollo-Christensen (1979), and “fusion” observed by Huang et al

(1996). To reconcile this experimental observation with theoretical models is

a critical subject for future wave studies.

We must break with the earlier paradigm of wave analysis, and emphasize

again that Fourier analysis is not a good method for studying waves. The reasons

are many: water waves are nonlinear; therefore, we should not expect to use a

linear expansion and be able to represent it. With the Fourier expansion, the

harmonics have only a mathematical significance, but no physical meaning.

Furthermore, as the wave evolution is local, Fourier expansion simply cannot

represent this nonstationary process. As shown in the Rössler equation above,

the only way the Fourier method can represent a local frequency change is

through harmonics. But such a representation is no longer local. With these

concerns, we can examine random wave problems next.

Random Ocean Wind Waves

The logical measure of a random wave field is its various statistical measures

(Huang et al 1990a) and spectra (Huang et al 1990b). Traditionally, the spectral

representations are all Fourier based. Huang (1995) and Huang et al (1996,

1998a) proposed the Hilbert spectral analysis, which offers a new view of the

wave spectra. The data used by them were collected at a coastal tidal station at the

rate of 1 Hz. With Hilbert spectral analysis, a section of the result is presented

in Figure 15, in which the corresponding wavelet spectrum is presented in

a colored contour and the wave profile is also shown. By comparison, the

sharpness of the Hilbert spectrum is again evident; it can track minute variations

of the energy and frequency. In this comparison, the Hilbert spectrum indeed

gives a quantitative indication of energy and frequency variation with time. The

frequency variation is especially interesting, for this is the first time that any

method has revealed how fast frequency can change with time in a wave train.

When marginal spectra are computed from both the wavelet and Hilbert

spectra, the results reveal properties similar to those seen in the Fourier spec-

trum. Therefore, all three of the spectra are plotted in Figure 16b (see color

figure). The comparison is clear: The leakage of wavelet analysis causes such

smoothing that the result ceases to have any quantitative value. It seems that

the wavelet spectrum indeed resolves the nonstationarity to a certain degree,

but it has the poorest uniform frequency resolution.

Another interesting point is that the Hilbert spectrum contains almost no

energy beyond 0.25 Hz, while the Fourier spectrum has a power law tail to

the limit of the Nyquist limit. The form of the spectral tail has been studied

extensively (see, for example, Huang et al 1990b). In reality, energy in this high-

frequency range is heavily contaminated by harmonics (Huang et al 1981). As
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a result, the functional form could be a mathematical artifact. Once the true

energy content of the free wave is known, the dilemma of determining the

expected number of extrema from wave spectrum moments could be resolved

easily. As discussed above, the expected number of extrema is proportional

to the ratio of the fourth to the second moment of the spectrum. For most of

the Fourier spectra, the power law form of the spectral tail makes the fourth

moment unlimited. The Hilbert spectrum gives a practical cut-off frequency,

an elusive limit that for some time has bothered many investigators working on

statistical representations of the wave field.

Other than the cut-off limit, the experimental verification of the form of the

equilibrium range originally proposed by Phillips (1958) should now also be

re-examined in light of the new Hilbert view. As the Hilbert spectrum is truly

based on the local scale without contamination of the harmonics, it should be

used in testing the theoretical result based on the local scale dynamics. Whether

the spectral form should be slightly modified from that used in the more re-

cent proposals by Phillips (1985); Toba (1973); Phillips (1977); Kitaigorodskii

(1983); Banner (1990); and Belcher & Vassilicos (1987) is a problem that needs

to be resolved with more studies.

In addition to the spectral form, the wave train properties can also be studied

by Hilbert transform as shown by Huang et al (1996), in which they found

a strong indication of the discrete characteristics of the wave field. Such an

observation was supported indirectly by the studies of Shen & Mei (1993). This

is another problem needing further study.

TURBULENCE DATA

Turbulent flow is both nonstationary and nonlinear. Several heuristic models

are presently competing to represent the flow. A first hypothesis assumes the

turbulence fields consist of superimposed waves; then turbulence is the result

of exchanging energy among the waves of comparable wave numbers. A sec-

ond hypothesis assumes the turbulence fields consist of localized vortices that

are locally coherent. These vortices are highly nonlinear, yet they could also

maintain their identities without significant interactions among them. A third

hypothesis assumes the turbulence fields consist of superimposed wave packets

like eddies. This is the wave model with intermittence. And finally, a fourth hy-

pothesis assumes the turbulence is characterized as pure noise. These views are

consistent with the more rigorous mechanical approach presented in Sagdeev

et al (1988), where the flow fields are divided into weak and strong turbulence.

In weak turbulence, flow can be represented by weak interactions among waves

of comparable wave numbers, while in strong turbulence, the nonlinearity of

the waves is strong even if the interactions among them are weak. To identify
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the basic building block is an elusive goal (Pullin & Saffman 1998). In fact,

most phenomenological studies of turbulence are confined to probabilistic and

spectral properties as reviewed by Farge (1992) and Nelkin (1994).

Traditionally, most turbulence data have been analyzed by Fourier-based

methods. As pointed out by Farge (1992), a great risk of uncritical use of the

analysis is to misinterpret the functions used in the analysis as characteristic

of the phenomena. Turbulence is nonlinear and nonstationary; Farge (1992)

hence rightfully argued that a localized expansion should be preferred over the

space-filling trigonometric functions used in Fourier analysis. Consequently,

she proposed wavelet analysis as the solution (see, for example, Meneveau

1991). Farge’s objection is the same as that of Huang et al (1998a) on the

application of Fourier spectral analysis to nonlinear and nonstationary data.

Based on Huang et al (1998a) and the argument presented above, Hilbert spectral

analysis should be a better tool. Hilbert spectral analysis has already been

applied to a section of wind data measured with a Pitot tube over the water

surface during the initial stage of wind-wave generation. But the data rate is too

low to be useful in investigation of turbulence. We present some recent results

using the Hilbert spectrum approach on the universal equilibrium subrange of

turbulence.

According to Kolmogorov (1941), at infinite Reynolds number, all possible

symmetries should be restored locally, and all turbulent flows are self-similar.

At this stage, the small-scale statistics are uniquely and universally determined

by the mean energy dissipation rate, ε, and a scale, I. Then, through a dimen-

sional argument, he postulated that the energy spectrum, E(k), at this range

should be

E(k) ∝ ε2/3 k−5/3, (33)

in which k is 1/I. This is the famous −5/3 law. Numerous observations have

confirmed this formula (Frisch 1995). Yet problems still exist. On the theo-

retical side, this theory did not include small-scale eddy intermittence effects,

which were observed first by Batchelor & Townsend (1949). During the last 50

years different models were proposed successively, but not one of them has been

firmly proven to be even a good approximation up to now. Among these mod-

els, the first was proposed independently by Kolmogorov (1962) and Obukhov

(1962). They conjectured that the energy transfer to small scales was a self-

similar cascade with an associated multiplicative process that was approached

by a lognormal distribution of the dissipation rate. Novikov & Stewart (1964)

proposed another multiplicative process, which is usually called the black and

white model. Mandelbrot (1974) conjectured that in the regions where this pro-

cess takes place, the energy dissipations are a self-similar fractal subset, and

that outside this fractal subset there is no dissipation. This model is essentially
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the same as that of Novikov & Stewart (1964). Parisi & Frisch (1985) modi-

fied Mandelbrot’s fractal subset to a multifractal subset where the dissipation

is strong in one section and weak in another section for any given scale, rather

than absolutely null. The corresponding model resulting from this is named the

multifractal model (Meneveau & Sreenivasan 1991).

On the experimental side, all confirmations to date are based on the Fourier

spectrum. As the scale is strictly local and the flow nonlinear, and because

the Fourier spectrum is more global and linear, it would certainly be more

desirable to have a more local measure of the scales to test the theory. This

desire apparently prompted Farge (1992) to propose wavelet techniques as an

alternative. Unfortunately, wavelet analysis lacks scale resolution, and is also

linear. Consequently, wavelet analysis has not produced any definite answer

despite numerous attempts. With the introduction of EMD and Hilbert spectral

analysis, we now have a method to accurately visualize the characteristic scale

at any given location. The method can also help us resolve the hierarchical

structure of smaller and larger eddies. The data shown in Figure 17a (see color

figure) were taken in the turbulent boundary layer of a hot plate in a wind

tunnel. The mean axial speed is 13 m/s with a Reynolds number of 3.12 × 106.

Sampled at a rate of 20 kHz, the total data length is 8192 points. With the EMD

decomposition, this data set produced 11 IMF components. All the components

are of comparable magnitude, and the velocities seen are highly intermittent.

Two typical short sections of the data are plotted in detail in Figure 18a–b.

Two types of events stand out in Figure 18a: First, there are large regions

of intermittency (marked by A). Second, the intermittent region violated the

assumption of the curdling process as required in the multifractal model (marked

by B). On detailed examination, we found that events A cover over only a small

portion of the data length, but event B occurs as a rule rather than an exception.

In Figure 18(b), the cascade model seems to work well. Events A and B imply

that turbulence is most likely not a multifractal process.

With these IMFs, the Hilbert spectrum is constructed with the same frequency

resolution as the Fourier spectrum as shown in Figure 17b. The energy distribu-

tions are uniform throughout the time-frequency space, but also are intermittent.

The marginal Hilbert together with the Fourier spectra are shown in Figure 17d.

The Fourier spectrum follows a curved trend. If a −5/3 straight line is drawn,

it seems to fit only a small section of about one decade of around 1000 Hz

frequency range. The Hilbert spectrum shows a very broad, constant sloping

base covering about three decades. It then is seen to bend into a larger negative

slope around 5000 Hz, the frequency at which the viscous effect is becoming

dominant. Since the Hilbert spectral analysis does not admit harmonics, the

appearance of the marginal Hilbert spectrum represents motions of the physical

scale locally. The dominant range is similar to the inertia range proposed by
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Figure 18 Selected sections of the intrinsic mode function expansion of the turbulence data.

Events A and B show the conflict with the fractal hypothesis.

Kolmogorov (1962). The slope of the spectrum, however, is slightly higher

than the −5/3 power. The meaning of this difference needs to be examined.

Finally, there are an increasing number of investigators (Parisi & Frisch

1985; Saddeev et al 1988; Meneveau & Sreenivasan 1991) who have proposed

to describe turbulence as a fractal process. This has prompted Aurell et al (1992)

to point out that a spurious multifractal result is a possibility. In fact, when the

data used here were processed in the same way as by Meneveau & Sreenivasan

(1991), the resulting singularity spectrum shown in Figure 17c also suggested

a multifractal conclusion. But detailed examination of the decomposed data

in Figure 18a offered some contradiction to the curdling process. Thus, the

multifractal state could indeed be spurious.

All these studies, however, are phenomenological. The results here are used

primarily to highlight the new method for data analysis. The real dynamics need
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to be studied through an approach totally different from these cited here (see

Pullin & Saffman 1998).

DISCUSSION

Through various numerical and real data we have shown that the new Hilbert

view indeed provides a clearer picture of the underlying physical processes.

Influenced by the omnipotent perturbation methods of the past for weakly non-

linear phenomena, data analysis has been dominated by Fourier-based analy-

sis. A few more remarks on Fourier analysis are necessary here. Although

the Fourier transform is valid under extremely general conditions (see, for ex-

ample, Titchmarsh 1948), to use it as a method for physical interpretation of

frequency-energy distribution was not the original intention. The Fourier ex-

pansion was originally proposed to approximate any function to any degree

of accuracy mathematically. In such an expansion, each component certainly

serves its mathematical function in the approximation, but no more. In spectral

analysis, the Fourier spectrum has indeed provided a general method for exam-

ining the global energy-frequency distributions; however, in this application,

additional physical meanings are assigned to the components, an extension

whose physical meaning has never been clearly established. For Fourier spec-

tral analysis to be meaningful, there are some crucial restrictions: the data

must be linear, and strictly periodic or stationary. Furthermore, to have good

resolution, the data have to be long. Few of the data sets, from either natural

phenomena or artificial sources, can satisfy all these strict conditions of station-

arity. Additionally, most of the natural systems are nonlinear. Almost all the

data we face will have one or more of the following problems: the total data

span is too short; the data are nonstationary; and the data represent nonlinear

processes. Facing such data, Fourier spectral analysis is of limited use. For lack

of alternatives, however, Fourier spectral analysis is still applied. As a result,

the term spectrum has become almost synonymous with the Fourier transform

of the data. The uncritical use of Fourier spectral analysis and adoption of the

stationary and linear assumptions may give misleading results. The problems

can be illustrated by the following arguments:

First, Fourier spectral analysis transfers the data from the time to the fre-

quency domain with constant amplitude and frequency trigonometric terms. In

the frequency domain, the relationship with time is totally lost. Thus Fourier

spectral analysis suffers an inherited defect for representing nonstationary data.

As the Fourier spectrum utilizes uniform harmonic components globally, it

therefore needs many additional harmonic components to simulate either the

nonstationary or the nonlinear variations of the data. To illustrate the above

point, let us consider a delta function that has a phase-locked white Fourier
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spectrum. Here, many Fourier components are added to simulate the nonsta-

tionary nature of the data in the time domain, but their existence diverts energy

to a much wider frequency domain. Constrained by the energy conservation

principle, each component will have a relatively low energy content. The total

energy is uniformly distributed over the whole time domain, which is not phys-

ical for a nonstationary process. Thus, the Fourier spectral components might

make mathematical sense, but they make no physical sense.

Second, Fourier spectral analysis uses linear superposition of trigonometric

functions; therefore, it needs additional harmonic components to simulate the

deformations in wave profiles. Most of the deformations, as will be shown

later, are the direct consequence of intra-wave frequency modulations through

nonlinear effects. Thus the harmonics give a misleading energy-frequency rep-

resentation for nonlinear data.

There are other variations of the Fourier-based methods, such as the spectro-

gram (see, for example, Oppenheim & Schafer 1989); wavelet analysis for time

series (see, for example, Chan 1995, Farge 1992, and Long et al 1993a), and

two-dimensional images (Spedding et al 1993); the Wigner-Ville distribution

(see, for example, Claasen & Mecklenbräuker 1980 and Cohen 1995); the evo-

lutionary spectrum (see, for example, Priestley 1965); the empirical orthogonal

function expansion, also known as the principal component analysis, or singular

value decomposition method; and some miscellaneous methods such as least

square estimation of the trend, smoothing by moving averaging, and differenc-

ing to generate stationary data. All the above methods are designed to modify

the global representation of the Fourier analysis, but they all failed in one way

or the other, as discussed by Huang et al (1998a) and demonstrated here.

Finally, let us turn to the problem of nonlinearity. It has always been con-

troversial to use the term nonlinear in association with “data”. The most con-

vincing objection to the term nonlinear data is that all data can be decomposed

into Fourier series. Since the Fourier series is a linear decomposition, and each

component is also the solution of a linear differential equation, then it follows

that the data are the superposition of linear solutions; therefore, they should be

regarded as linear. This is the typical Fourier view. With this logic, of course,

all data are linear. There are various tests proposed by Priestley (1988), Bendat

(1990), and Tong (1990). Unfortunately, these tests give only necessary condi-

tions. The view advanced here, to link the intra-wave frequency modulation as

an indicator for nonlinearity, also has difficulties. If one examines the classic

nonlinear system as given in Equations (22) and (27), one finds that the solu-

tion forms a nonlinear equation that has a particular characteristic, intra-wave

frequency modulation. Therefore, a nonlinear signal should have phase-locked

harmonics, while a linear signal should have only uniformly distributed phase.

Unfortunately, this condition is also only a necessary but not a sufficient one.
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Many intra-wave frequency modulation cases could also be the solutions of

variable coefficient linear differential equations. Equation (19) is an example,

as discussed by Huang et al (1998a), and Mathieu’s equation is another. Those

variable coefficient linear differential equations can exhibit all kinds of non-

linear behavior, including the generation of chaos. A foolproof definition will

have to wait for a better understanding of nonlinear systems. For the time being,

the term is used as a means of convenience as well as an attempt to describe data

with different characteristics. Its use is very similar to that in Bendat (1990)

and Tong (1990).

CONCLUSIONS

The empirical mode decomposition (EMD) method and the associated Hilbert

spectral analysis indeed offer a powerful method for nonlinear, nonstationary

data analysis. Central to the present approach is the sifting process to pro-

duce IMFs, which enables complicated data to be reduced into amplitude- and

frequency-modulated form so that instantaneous frequencies can be defined.

These IMFs form the basis of the decomposition and are complete and practi-

cally orthogonal. The expansion in terms of the IMF basis has the appearance

of a generalized Fourier analysis with variable amplitudes and frequencies. It

is the first local and adaptive method in frequency-time analysis.

A great advantage of EMD and Hilbert spectral analysis is effective use of the

data. In EMD, we have used all the data in defining the longest-period compo-

nent. Furthermore, we do not need a whole wave to define the local frequency,

for the Hilbert transform gives the best-fit local sine or cosine form to the local

data; therefore, the frequency resolution for any point is uniformly defined by

the stationary-phase method or local derivative of the phase. This advantage

is especially valuable in extracting low-frequency oscillations. Unlike wavelet

analysis, instantaneous frequency can still be localized in time even for the

longest period component without spreading energy over wide frequency and

time ranges. Still another advantage of EMD and Hilbert spectral analysis is

its application to transient data without zero or mean references; the trend or

the DC term is automatically eliminated.

Other than the practical aspect, the most important conceptual innovation

of the present study is the physical significance assigned to the instantaneous

frequency for each mode of a complicated data set. By adopting the instanta-

neous frequency, we can clearly define both the inter- and intra-wave frequency

modulations in a wave train. Such frequency modulations are totally lost in

Fourier spectral analysis, and only the inter-wave frequency modulation can be

vaguely depicted in wavelet analysis. Yet, both the inter-wave and the intra-wave

frequency modulations are critical in interpretation of oscillatory phenomena.
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The former explains the wave form deformation by nonlinear effects, which

traditionally has been taken as the harmonic distortion; the latter explains the

dispersive propagation of waves. Intra-wave frequency modulation offers new

insight into nonlinear oscillation systems in more detail than the modern topo-

logical treatment. By adopting the instantaneous frequency, we have eliminated

the need of not only higher harmonics to simulate nonlinearly deformed waves,

but also spurious harmonics to simulate nonstationary data. We believe this

new method can give us new physical insight in all other nonlinear and nonsta-

tionary phenomena. Instantaneous frequency can be defined only through the

IMF, which is defined here based on local properties of the data rather than the

global restrictions proposed before.

Hilbert spectral analysis is also a tool. Its use in exploring the full physical

meanings of complicated data is only now beginning, and associated properties

of the marginal spectra need to be explored.
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The Wigner distribution—a tool for time-
frequency signal analysis. Part I: Continuous
time signals 35:217–50; Part II: Discrete time
signals 35:276–300; Part III: Relations with
other time-frequency signal transformations.
Philips J. Res. 35:372–89

Cohen L. 1995. Time-Frequency Analysis. En-
glewood Cliffs, NJ: Prentice-Hall

Dold JW, Peregrine DH. 1986. Water-wave
modulation. In Proc. Intl. Cong. Coastal En-
gineering, Taipei, ed. BL Edge, Vol. 1, 163–
175, ASCE.

Drazin PG. 1992. Nonlinear Systems. Cam-
bridge, UK: Cambridge Univ. Press

Dysthe KB. 1979. Note on a modification to
the nonlinear Schrödinger equation for ap-
plication to deep water waves. Proc. R. Soc.
London Ser. A 369:105–14

Farge M. 1992. Wavelet transforms and their
applications to turbulence. Annu. Rev. Fluid
Mech. 24:395–457

Feldman M. 1991. Method for determination
of vibratory system modal parameters using
Hilbert transform. Application for Patent no.
098985, Israel, 28 July 1991.

Feldman M. 1994a. Nonlinear system vibration
analysis using Hilbert Transform: I. Free-
vibration analysis method, FREEVIB. Mech.
Syst. Signal Processing, 8:2:119–27

Feldman M. 1994b. See Feldman 1994a. II.
Forced vibration analysis method, FORCE-
VIB. 8:2:309–18

Feldman M. 1997. Nonlinear free-vibration
identification via the Hilbert Transform. J.
Sound Vib. 208(3):475–89

Feldman M, Braun S. 1995. Identification of
nonlinear system parameters via the in-
stantaneous frequency: application of the
Hilbert Transform and Wigner-Ville tech-
niques, Proc. Int. Modal Analysis. Conf. 13th
637–42

Frisch U. 1995. Turbulence. Cambridge, UK:
Cambridge Univ. Press

Hara T, Mei CC. 1991. Frequency downshift
in narrowbanded surface waves under the

influence of wind. J. Fluid Mech. 230:429–
77

Hara T, Mei CC. 1994. Wind effect of the
nonlinear evolution of slowly varying gravity
capillary waves. J. Fluid Mech. 267:221–50

Huang NE, Long SR, Tung CC, Yuan Y, Bliven
LF. 1981. A unified two-parameter wave
spectral model for a general sea state. J. Fluid
Mech. 112:203–24

Huang NE, Long SR, Tung CC, Yuan Y, Bliven
LF. 1983. A non-Gaussian statistical model
for surface elevation of nonlinear random
wave fields. J. Geophys. Res. 88:7597–606

Huang NE, Long SR, Bliven LF, Tung CC.
1984. The non-Gaussian joint probability
density function of slope and elevation for
a nonlinear gravity wave field. J. Geophys.
Res. 89:1961–72

Huang NE, Tung CC, Long SR. 1990a. Wind-
Wave Spectrum. In The Sea, Vol. 9, pp. 197–
238

Huang NE, Tung CC, Long SR. 1990b. The
probability structure of the ocean surface. In
The Sea, Vol. 9, pp. 335–66

Huang NE, Long SR, Tung CC, Donelan MA,
Yuan Y, et al 1992. The local properties
of ocean surface waves by the phase-time
method. Geophys. Res. Lett. 19:685–88

Huang NE, Long SR, Tung CC. 1993. The local
properties of transient stochastic data by the
phase-time method. In Computational Meth-
ods for Stochastic Processes, pp. 253–79, ed.
AH Cheng, CY Yang. Ashurst, UK: Compu-
tational Mechanics Publications

Huang NE. 1995. Nonlinear Evolution of Wa-
ter Waves: Hilbert’s View. In Proc. Int. Symp.
Experimental Chaos, 2nd, ed. W Ditto et al
327–41. World Scientific

Huang NE. 1996. Computer implicated empir-
ical mode decomposition method, appara-
tus, and article of manufacture. U.S. Patent
Pending

Huang NE, Long SR, Shen Z. 1996. The mech-
anism for frequency downshift in nonlin-
ear wave evolution. Adv. Appl. Mech. 32:59–
111

Huang NE, Shen Z, Long SR, Wu ML, Shih HH,
et al 1998a. The Empirical Mode Decomposi-
tion and Hilbert Spectrum for Nonlinear And
Nonstationary Time Series Analysis. Proc. R.
Soc. London Ser. A 454:903–95

Huang W, Shen Z, Huang NE, Fung YC. 1998b.
Engineering analysis of biological variables:
an example of blood pressure over 1 day.
Proc. Natl. Acad. Sci. USA. 95:4816–21

Kato Y, Oikawa M. 1995. Wave number down-
shift in modulated wavetrain through a non-
linear damping effect. J. Phys. Soc. Japan.
64:4660–69

Kitaigorodskii SA. 1983. On the theory of the
equilibrium range spectra of wind generated

A
n
n
u
. 
R

ev
. 
F

lu
id

. 
M

ec
h
. 
1
9
9
9
.3

1
:4

1
7
-4

5
7
. 
D

o
w

n
lo

ad
ed

 f
ro

m
 a

rj
o
u
rn

al
s.

an
n
u
al

re
v
ie

w
s.

o
rg

b
y
 C

A
L

IF
O

R
N

IA
 I

N
S

T
IT

U
T

E
 O

F
 T

E
C

H
N

O
L

O
G

Y
 o

n
 0

9
/0

8
/0

5
. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

.



456 HUANG ET AL

gravity waves. J. Phys. Oceanogr. 13:816–27
Kolmogorov AN. 1941. The local structure of

turbulence in incompressible viscous fluid
for very large Reynolds number. Dokl. Akad.
Nauk SSSR 30:9–13 (reprinted in Proc. R.
Soc. Lond. A 434:9–13, 1991).

Kolmogorov AN. 1962. The refinement of pre-
vious hypothesis concerning the local struc-
ture of turbulence in incompressible viscous
fluid at high Reynolds number. J. Fluid Mech.
13:82–85

Lake BM, Yuen HC. 1978. A new model for
nonlinear gravity waves. Part I. Physical
model and experimental evidence. J. Fluid
Mech. 88:33–62

Lake BM, Yuen HC, Rungaldier H, Ferguson
WE. 1977. Nonlinear deep-water waves: the-
ory and experiments, Part 2: Evolution of a
continuous wave train. J. Fluid Mech. 83:49–
74

Lo E, Mei CC. 1985. A numerical study of
water-wave modulation based on a higher-
order nonlinear Schrödinger equation. J.
Fluid Mech. 150:395–416

Long SR. 1992. NASA Wallops Flight Facility
Air-Sea Interaction Research Facility, NASA
Ref. Pub. No. 1277, 36 pp.

Long SR, Lai RJ, Huang NE, Spedding GR.
1993a. Blocking and trapping of waves in an
inhomogeneous flow. Dyn. Atmos. Oceans.
20:79–106

Long SR, Huang NE, Tung CC, Wu ML, Lin
RQ, et al 1993b. The Hilbert techniques: an
alternate approach for non-steady time series
analysis. IEEE Geosci. Remote Sensing Soc.
Lett. 3:6–11

Longuet-Higgins MS. 1963. The effect of non-
linearities on the statistical distributions in the
theory of sea waves. J. Fluid Mech. 17:459–
80

Longuet-Higgins MS. 1982. On the skewness
of sea-surface slopes. J. Phys. Oceanogr. 12:
1283–91

Mandelbrot B. 1974. Intermittent turbulence in
self-similar cascades: divergence of high mo-
ments and dimension of the carrier. J. Fluid
Mech. 62:331–58

Melville WK. 1982. The instability and break-
ing of deep-water waves. J. Fluid Mech.
115:165–85

Meneveau C. 1991. Analysis of turbulence in
the orthonormal wavelet representation. J.
Fluid Mech. 232:469–520

Meneveau C, Sreenivasan KR. 1987. Sim-
ple multifractal cascade model for fully en-
veloped turbulence. Phys. Rev. Lett. 59:1424–
27

Meneveau C, Sreenivasan KR. 1991. The multi-
fractal nature of turbulent energy dissipation.
J. Fluid Mech. 224:429–84

Nelkin M. 1994. Universality and scaling in

fully-developed turbulence. Adv. Phys. 43:
143–81

Novikov EA, Stewart RW. 1964. The inter-
mittency of turbulence and the spectrum of
energy dissipation. Izv. Akad. Nauk. SSSR,
Ser. Geoffiz. 408–13

Obukhov AM. 1962. Some specific features
of atmospheric turbulence. J. Fluid Mech.
13:77–81

Oppenheim AV, Schafer RW. 1989. Digital
Signal Processing. Englewood Cliffs, NJ:
Prentice-Hall

Parisi G, Frisch U. 1985. Fully developed turbu-
lence and intermittency. In Proc. Int. School
on Turbulence and Predictability in Geophys-
ical Fluid Dynamics and Climate Dynamics,
ed. M Ghil, R Benzi, G Parisi, pp. 71–88.
Amsterdam: North-Holland

Poitevin J, Kharif C. 1991. Subharmonic transi-
tion of a nonlinear wave train on deep water.
In Mathematical and Numerical Aspects of
Wave Propagation Phenomena, ed. GC Co-
hen, L Halpern, P Joly. pp. 567–76. SIAM.

Poitevin J, Kharif C. 1992. Subharmonic tran-
sition of a nonlinear short wave train on deep
water. In Proc. Nonlinear Water Waves Work-
shop, ed. DH Peregrine, pp. 54–63. Bristol
UK: Univ. Bristol

Phillips OM. 1958. The equilibrium range in the
spectrum of wind-generated waves, J. Fluid
Mech. 4:426–34

Phillips OM. 1985. Spectral and statistical prop-
erties of the equilibrium range in wind gener-
ated gravity waves. J. Fluid Mech. 156:505–
31

Phillips OM. 1977. The Dynamics of the Upper
Ocean. Cambridge, UK: Cambridge Univ.
Press

Priestley MB. 1965. Evolutionary spectra and
non-stationary processes. J. Roy. Statist. Soc.
B 27:204–37

Priestly MB. 1988. Non-Linear and Non-
Stationary Time Series Analysis. London:
Academic

Prime MB, Shevitz DW. 1996. Linear and non-
linear methods for detecting cracks in beams.
In Proc. Modal Analysis Conf., 14th: pp.
1437–43

Pullin DI, Saffman PG. 1998. Vortex dynamics
in turbulence. Annu. Rev. Fluid Mech. 30:31–
51

Ramamonjiarisoa A, Mollo-Christensen E.
1979. Modulation characteristics of sea sur-
face waves. J. Geophys. Res. 84:7769–75

Rice SO. 1944. Mathematical analysis of ran-
dom noise. Bell Syst. Tech. J. 23:282–310.
Part II. Power spectrum and correlation func-
tions. Bell Sys. Tech. J. 23:310–32

Rice SO. 1945. Mathematical analysis of ran-
dom noise. Part III. Statistical properties of
random noise currents. Bell Sys. Tech. J.

A
n
n
u
. 
R

ev
. 
F

lu
id

. 
M

ec
h
. 
1
9
9
9
.3

1
:4

1
7
-4

5
7
. 
D

o
w

n
lo

ad
ed

 f
ro

m
 a

rj
o
u
rn

al
s.

an
n
u
al

re
v
ie

w
s.

o
rg

b
y
 C

A
L

IF
O

R
N

IA
 I

N
S

T
IT

U
T

E
 O

F
 T

E
C

H
N

O
L

O
G

Y
 o

n
 0

9
/0

8
/0

5
. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

.



NONLINEAR WAVES: THE HILBERT SPECTRUM 457

24:46–108. Part IV. Noise through nonlinear
devices. Bell Sys. Tech. J. 24:109–56

Sagdeev RZ, Usikov Da, Zaslasvsky GM.
1988. Nonlinear Physics: From the Pendu-
lum to Turbulence and Chaos. Chur, Switz:
Harwood

Shen Z, Mei L. 1993. Equilibrium spectra of
water waves forced by intermittent wind tur-
bulence. J. Phys. Oceanogr. 23:2019– 26

Shen Z, Wang W, Mei L. 1994. Fine structure of
wind waves analysis with wavelet transform.
J. Phys. Oceanogr. 24:1085–94

Skandrani C, Kharif C, Pointevin J. 1996. Non-
linear evolution of water surface waves: the
frequency downshift phenomenon. Contemp.
Maths 200:157–71

Spedding GR, Browand FK, Huang NE, Long
SR. 1993. A 2-D complex wavelet analysis
of an unsteady wind-generated surface wave
field. Dyn. Atmos. Oceans. 20:55–77

Stokes GG. 1847. On the theory of oscillatory
waves. Trans. Camb. Pril. Soc. 8:441–55

Su MY, Bergin M, Marler P, Myrick R. 1982.
Experiments on nonlinear instabilities and
evolution of steep gravity-wave trains. J.
Fluid Mech. 124:45–72

Titchmarsh EC. 1948. Introduction to the The-
ory of Fourier Integrals. Oxford: Oxford
Univ. Press

Toba Y. 1973. Local balance in the air-sea
boundary processes. III. On the spectrum of
wind waves. J. Oceanogr. Soc. Japan 29:209–
20

Tong H. 1990. Non-Linear Time Series: A
Dynamical System Approach. Oxford, UK:
Clarendon

Trulsen K, Dysthe KB. 1990. Frequency down-
shift through self modulation and breaking.
In Water, Wave Kinematics, ed. A Torum,
OT Gudmestad, pp. 561–572, Kluwer: Dor-
drecht

Trulsen K, Dysthe KB. 1996. A modified
nonlinear Schrödinger equation for broader
bandwidth gravity waves on deep water. Wave
Motion 24:281–89

Trulsen K, Dysthe KB. 1997. Frequency
downshift in three-dimensional wave trains
in a deep basin. J. Fluid Mech. 352:359–
73

Trulsen K. 1998. Crest pairing prediction by
modulation theory. J. Geophys. Res. 103:
3143–47

Uchiyama Y, Kawahara T. 1994. A possible
mechanism for frequency down-shift in non-
linear wave modulation. Wave Motion 20:99–
110

Whitham GB. 1974. Linear and Nonlinear
Waves. John Wiley, New York: Wiley & Sons

Yuen HC, Ferguson WE. 1978. Fermi-Pasta-
Ulam recurrence in the two-space dimen-
sional nonlinear Schrödinger equation. Phys.
Fluids 21:2116–18

Yuen HC, Ferguson WE. 1978. Relationship
between Benjamin-Fier instability and recur-
rence in the nonlinear Schrödinger equation.
Phys. Fluids 21:1275–78

A
n
n
u
. 
R

ev
. 
F

lu
id

. 
M

ec
h
. 
1
9
9
9
.3

1
:4

1
7
-4

5
7
. 
D

o
w

n
lo

ad
ed

 f
ro

m
 a

rj
o
u
rn

al
s.

an
n
u
al

re
v
ie

w
s.

o
rg

b
y
 C

A
L

IF
O

R
N

IA
 I

N
S

T
IT

U
T

E
 O

F
 T

E
C

H
N

O
L

O
G

Y
 o

n
 0

9
/0

8
/0

5
. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

.



           Annual Review of Fluid Mechanics

          Volume 31, 1999

CONTENTS

Linear and Nonlinear Models of Aniosotropic Turbulence, Claude 

Cambon, Julian F. Scott
1

Transport by Coherent Barotropic Vortices, Antonello Provenzale 55

Nuclear Magnetic Resonance as a Tool to Study Flow, Eiichi Fukushima 95

Computational Fluid Dynamics of Whole-Body Aircraft, Ramesh 

Agarwal
125

Liquid and Vapor Flow in Superheated Rock, Andrew W. Woods 171

The Fluid Mechanics of Natural Ventilation, P. F. Linden 201

Flow Control with Noncircular Jets, E. J. Gutmark, F. F. Grinstein 239

Magnetohydrodynamics in Materials Processing,  P. A. Davidson 273

Nonlinear Gravity and Capillary-Gravity Waves, Frédéric Dias, 

Christian Kharif
301

Fluid Coating on a Fiber, David Quéré 347

Preconditioning Techniques in Fluid Dynamics, E. Turkel 385

A New View of Nonlinear Water Waves: The Hilbert Spectrum, Norden 

E. Huang, Zheng Shen, Steven R. Long
417

Planetary-Entry Gas Dynamics, Peter A. Gnoffo 459

 VORTEX PARADIGM FOR ACCELERATED INHOMOGENEOUS 

FLOWS: Visiometrics for the Rayleigh-Taylor and Richtmyer-Meshkov 

Environments, Norman J. Zabusky

495

Collapse, Symmetry Breaking, and Hysteresis in Swirling Flows, 

Vladimir Shtern, Fazle Hussain
537

Direct Numerical Simulation of Free-Surface and Interfacial Flow, Ruben 

Scardovelli, Stéphane Zaleski
567

A
n

n
u
. 
R

ev
. 
F

lu
id

. 
M

ec
h
. 
1
9
9
9
.3

1
:4

1
7
-4

5
7
. 
D

o
w

n
lo

ad
ed

 f
ro

m
 a

rj
o
u
rn

al
s.

an
n
u
al

re
v
ie

w
s.

o
rg

b
y
 C

A
L

IF
O

R
N

IA
 I

N
S

T
IT

U
T

E
 O

F
 T

E
C

H
N

O
L

O
G

Y
 o

n
 0

9
/0

8
/0

5
. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

.




