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ABSTRACT

In this paper, we describe a voice transformation meth-od
which changes source speaker's acoustic features to those of
a target speaker. The method developed here, acoustic fea-
tures are divided into two parts, linear and nonlinear parts.
Linear parts are characterized by LPC cepstrum coe�cients
which are obtained from LP analysis. As for nonlinear part,
which represent the excitation signal, is modelled by the
long-delay nonlinear predictor using a neural net. Conver-
sion rules for excitation signal are generated by the average
pitch ratio and the mapping codebook, and those for LPC
cepstrum coe�cients are based on the orthogonal vetctor
space conversion. In addition, the spectral envelope com-
pensation is proposed to correct spectral distortion in the
transformed speech. A listening test shows that the pro-
posed method makes it possible to convert speaker's indi-
viduality while maintaining high quality.

1. INTRODUCTION

Voice transformation is a process of changing voice person-
ality; i.e. speech uttered by a source speaker is modi�ed to
sound as if a target speaker had uttered it. This technique
has numerous applications that include personali�cation of
text-to-speech synthesis system, preprocessing for speech
recognition, improving the e�ectiveness of foreign language
training system, and so on [5][8][9][10].

Voice transformation is performed in two steps. In train-
ing stage, acoustic parameters of the speech signals uttered
by both source and target spearkers are computed and ap-
propriate rules mapping the acoustic space of the source
speaker onto that of the target speaker are obtained. In the
transformation stage, the acoustic features of the source sig-
nal are transformed using the mapping rules such that the
synthesized speech possesses the personalities of the target
speaker.

It is well known that the vocal tract transfer function is
the dominant factor in specifying speaker individuality [7].
For this reason, previous methods have mainly been dedi-
cated to the transformation of vocal tract transfer function
which is represented by the linear prediction coe�cients
[5][8][9][10]. We have proposed a conversion method for vo-
cal tract transfer function which is based on vector space
approach [5]. According to this approach, transformation

is applied only to the principle components of speech sig-
nal. The performance of transformation was acceptable,
while feaure vector undergoes a dimensionality reduction.
However, there exist some spectral discrepancies between
transformed signal and target signal due to the incomplete
transformation of excitation signal. To solve this problem,
a spectral envelope compensation method is proposed in
this paper.

On the other hand, LP-residual is an important fator
in preserving naturalness of transformed speech [7]. Be-
cause pitch complexes in the residual after LPC analysis of
voiced speech are highly nonlinear [1], the transformation
method based on linear model would yield a some "hollow"
and "mu�ed" quality sound. To overcome this drawback,
we use nonlinear predictor for modelling excitaion signal.
Recent studies have shown that nonlinear prediction can
be implemented with time-delay neutal net (TDNN) [2]. In
this paper, we take advantage of the nonlinear prediction
capability of TDNN and apply it to the developement of
the excitaion signal transformation method.

The outline of the paper is as follows. Section 2 presents
the methods of modelling and transformation of the exci-
tation signal. In section 3, LPC cepstrum transformation
method is presented. In section 4, experiments and the re-
sults of proposed method are described. Finally, conclusions
are made in section 5.

2. MODELLING AND TRANSFORMATION OF

EXCITATION SIGNAL

2.1. Modelling the excitation signal

The speech signal contains more or less non-linearities, as
that are typically found in LP residual [1]. To cope with
these properties, several nonlinear predictors have been pro-
posed; such as 2nd order volterra �lter [1][3], radial basis
functions (RBF) [4] , and time delay neural net (TDNN)
[1][2].

Among these, neural net-based predictors can be used
for modelling data without any speci�c prior assumption
about the form of nonlinearity [2]. Other advantages of
neural net predictor are that the number of �lter coe�cients
grows slowly with the prediction order, and the analysis
�lter and the synthesis �lter are always stable [1].

We apply the neural net predictor to modelling the exci-
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Figure 1: Long delay neural net predictor.

tation signal. A neural net model of a nonlinear long delay
predictor is shown in Figure 1. It consists of three layers,
which contain three, two and one units in the input, hid-
den and output layers, respectively. This predictor can be
described by the following equations:

ê(n) =

2X

j=1

wjf(

1X

i=�1

vjie(n� P � i))

= F (W;V; e(n)) (1)

where ê(n) is predictive exctiation signal and wj , vji are
weight values for output and iternal hidden layer, respec-
tively. In this paper, we de�ne f(:) as the commonly used
sigmoid function, and P is the estimated pitch period for
current frame. The weighs wj , vji are trained to minimize
the square of predictive residual, jje(n) � ê(n)jj2 using the
backpropagation algorithm [2]. In the method proposed, a
nonlinear predictive vector quantizer (NLPVQ) [2] is used
to reduce the computational loads in parameter estimation
process and represent the exctation signal with a limited
number of parameters. This consists of a set of predictors
fF (Wk;Vk; e(n)); k = 1; :::; Kg which minimize the power
of predictive residual. During quantization, each frame of
excitation signal is successively applied to all the predictors
in the VQ codebook. The predictor with the least predic-
tive error is then selected to quantize the current frame.
The total distortion is given by

Dtot =

NX

n=1

argminkjje(n)� F (Wk;Vk; e(n))jj
2

(2)

In NLPVQ design process, LBG algorithm [6] which is
widely used as VQ training method leads to poor perfor-
mance. This is mainly because averaging and using the
Euclidean distance measure is unsuitable for neural net.

To improve the vector quantizer design for neural net
predictor, modi�cation of obvious LBG algorithm are in-
troduced. Instead of minimizing distortion between orignal
vectors and coded vectors in LBG algorithm, we minimize
the cost function be the sum of the residual energies, Dtot

in (2). and that the updating equations becomes:
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The performance of the proposed neural net predictor is
summarized in table 1. The results in table 1 were calcu-
lated over a total of 1000 frames from one speaker. The pre-
diction gain of neural net predictor with 64 predictors is 6.15
dB, which is 1.5 dB greater than that of 3 tap long-delay
linear predictor. Inspecting the nonlinear predictive resid-
ual, it can be seen that residual contains a small amount of
pitch pulses which are often found in the linear predictive
residual. These results con�rm that most information in
the excitation signal can be represented by the nonlinear
neural net predictor.

Table 1. Prediction gain of two predictors.
No. of predictor Prediction Gain (dB)

Nonlinear Linear

32 5.98 4.03

64 6.15 4.62

2.2. Transformation of the excitation signal

The transformation of excitation signal is accomplished by
changing pitch period P in (1), and mapping the codebooks
[8] of the two speaker. This process is depicted in Figure 2.
The average pitch period of one speaker contribute a great
deal to speech individuality [7]. Hence, source speaker's
pitch period is modi�ed by the average pitch modi�cation
factor �ave; de�ned by

�ave =
P source

P target

(5)

where P source, P target are the average pitch periods of the
source and target, respectively.

The mapping codebook describes a mapping rule be-
tween two vector spaces that are obtained from source and
target speaker's neural net nonlinear predictors, respec-
tively. These are constructed by following training pro-
cess. First, both source and target speakers pronounce the
same training word set. For each word, the correspondence
between vectors obtained from the two speakers is deter-
mined using Dynamic Time Warping (DTW). And the vec-
tor correspondences between two speakers are accumulated
as histogram. Finally, the mapping codebook for nonlinear
predictor is de�ned based on the maximum occurrence in
the histogram. As a result, all vectors in the source code-
dook have one-to-one corresponding vectors in the target
codebook. After determining the average pitch ratio and
the mapping codebook, the transformed excitation signal is
synthesize by the equation:

êt(n) =

2X

j=1

ŵkjf(

1X

i=�1

v̂kjiêt(n� �aveP � i)) + r(n)

= F (Ŵk; V̂k; êt(n)) + r(n) (6)
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Figure 2: Blockdiagram of excitation transformation.

where r(n) is predictive residual of source excitation signal
given by

r(n) = es(n)� F (Wk;Vk; es(n)) (7)

and Ŵk; V̂k are the target vectors corresponding to the
source vector Wk;Vk, respectively. Pitch peroid is mean-
ingful in the voiced frames, transformation of the excitation
signal is applied only to the voice part.

3. TRANSFORMATION OF LPC CEPSTRUM

The mapping rule of the LPC cepstrum coe�cients is based
on the orthogonal vector space conversion [5]. The under-
lying principle is to represent one speaker's LPC cepstrum
vector as a signal vector in his(or her) own orthogonal vector
space. The vector set of these space is composed of eigen-
vectors whose eigenvalues are greater than given threshold.
Thus, LPC cepstrum vector can be represented by a re-
duced number of coe�cients while preserving the detailed
structure of the spectral envelope. Voice personality trans-
formation is implemented by substituting the vector space
of the source speech with that of the target speech, and
moving all the vectors in the source vector space to desired
points in the target vector space. According to this model,
source and target LPC cepstrums, Cs

i , C
t
i are expressed as

a weighted sum of the principle eigenvectors, esm, e
t
m.

C
s
i =

MsX

m=1

s
i
me

s
m ; C

t
i =

MtX

m=1

t
i
me

t
m (8)

where Ms and Mt are the number of principle vectors for
source and target speeches, respectively. The transformed
LPC cepstrum is given by

Ĉ
t
i =

MtX

m=1

t̂
i
me

t
m (9)
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Figure 3: Spectral envelope, Left : from the transformed
LPC cepstrum, Right : from the transformed speech signal.

where t̂im is a tranformed weighting value, and is obtained
from the equation

t̂
i
m =

MsX

n=1

hmns
i
n + om ; m = 1; 2; :::;M

t
(10)

and hmn, om are determined in training procedure, by min-
imizing MSE between t̂im and tim. Although source LPC
cepstrum is transformed by (10), the spectral envelople of
transformed speech is not excatly same as the spectral en-
velope obtained from the transformed LPC cepstrum. As
shown in Figure 3, distinct di�erence is found in the high
frequency region. This is mainly because the 
atness of the
transformed excitaion signal is not guaranteed. To correct
this problem, a spectral envelope compensation is intro-
duced in this paper. De�ning the spectral envelopes from
the transformed speech and transformed LPC cepstrum as
Ĥt(!) and Ĥc(!), respectively, the compensated STFT of
transformed speech is given by

Ŝc(!) =
Ĥt(!)

Ĥc(!)
Ŝt(!): (11)

The �nal transformed speech is constructed by IDFT of
Ŝc(!). As the higher order formant frequencies play an
important role in interspeaker variability [7], the quality
of speech signal obtained from the above method is more
similar to that of the target speech.

4. EXPERIMENTS AND RESULTS

Experiments were performed to evaluate the performace of
the proposed voice transformation method. The database
used in order to train the mapping rules consists of the 61
words of the korean language uttered by two di�erent male
speakers. Speech signals were digitized at 10KHz sampling
frequency and the order of LPC cepstrum was set to 20.
Two evaluation tests for the proposed method were carried
out, the capability of converting excitation signal, and the
quality of transformed speech.

In �gure 4, source, target, and transformed excitation
signals are shown. Results in this �gure shows the capa-
bility of proposed excitation transformation method. The
most voiced parts of source speech signal exhibited this
good result, but somewhat "buzzy" quality or click noise are
noticeable in regions of speech which contain mixed voicing.
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Figure 4: Excitation signals of source (upper), target (mid-
dle), and transformed (bottom). Both target and tran-
formed signals are time-aligned.

The major reason for this degradations is due to the incom-
plete pitch estimation and voice/unvoice decision. Thus, it
should be mentioned that the performance improvement is
possible by employing more robust pitch esitmation and
voiced/unvoiced decision algorithms.

We presented 4 utterances to 10 listeners for a subjec-
tive listening test. The �rst two utterances were the original
source and target signals. The third one is the tranformed
speech obtained from excitation spectrum scaling method
[9] and no spectrum compensation . And fourth one is
generated by proposed method. These two speeches are
obtained from the same vocal tract transformation method
[5]. Subjective listening test was consisted in two categories.
We checked out whether each listener correctly identi�es the
transformed speech as a target speechs and which utternce
are more preferable to each listener. The preference test
are performed in the region of voice part. The two methods
exhibited the equal correct identi�cation ratio. However,
the preference test showed superior performance of the pro-
posed method. Among the ten listeners, seven judged that
the proposed method produce more natural-quality trans-
formed speech. Another listeners said that both kinds of
transformed speech were not signi�cantly di�erent. These
results indicate that the e�ectiveness of the proposed trans-
formation method.

5. CONCLUSION

We proposed a new voice transformation method based on
the codebook mapping of nonlinear predictor and vector
space conversion of LPC cepstrum coe�cients. The pro-
posed meth-od showed its ability in both changing speaker
personality and preserving naturalness. In the method pro-
posed, excitation signal is modelled by the nonlinear pre-
dictor using a long delay neural net. Although the excita-

tion siganl contains less speaker's individuality than LPC
cepstrum, manipulating the excitation signal is important
factor to obtain natural quality sound. Experimental re-
sults were certi�ed this fact. Thus, to obtain the transfom-
red speech sound as if a target speaker had really uttered,
the excitaion signal should be modelled and transformed
by more improved method. This work remains as a future
study.
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