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A new wavelet family based
on second-order LTI-systems

Tariq Abuhamdia1, Saied Taheri1 and John Burns2

Abstract

In this paper, a new family of wavelets derived from the underdamped response of second-order Linear-Time-Invariant

(LTI) systems is introduced. The most important criteria for a function or signal to be a wavelet is the ability to recover

the original signal back from its continuous wavelet transform. We show that it is possible to recover back the original

signal once the Second-Order Underdamped LTI (SOULTI) wavelet is applied to decompose the signal. It is found that

the SOULTI wavelet transform of a signal satisfies a linear differential equation called the reconstructing differential

equation, which is closely related to the differential equation that produces the wavelet. Moreover, a time-frequency
resolution is defined based on two different approaches. The new transform has useful properties; a direct relation

between the scale and the frequency, unique transform formulas that can be easily obtained for most elementary signals

such as unit step, sinusoids, polynomials, and decaying harmonic signals, and linear relations between the wavelet

transform of signals and the wavelet transform of their derivatives and integrals. The results obtained are presented

with analytical and numerical examples. Signals with constant harmonics and signals with time-varying frequencies are

analyzed, and their evolutionary spectrum is obtained. Contour mapping of the transform in the time-scale and the time-

frequency domains clearly detects the change of the frequency content of the analyzed signals with respect to time.

The results are compared with other wavelets results and with the short-time fourier analysis spectrograms. At the end,
we propose the method of reverse wavelet transform to mitigate the edge effect.
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1. Introduction

Wavelets provide a powerful tool to analyze signals

and extract information from them. They are capable

of extracting frequency, time, and nonharmonic infor-

mation. These potentials lured many scholars to use

them in the analysis of dynamic systems. Scholars

have used wavelets for system identification, system

modeling, system response solution, and even control

design. For broad and extensive survey on the use of

wavelets in systems and control, the reader is referred

to Abuhamdia and Taheri (2015).

Mathematically, the wavelet transform is an inner

product between a function and a set of basis functions

which are all derived from a single function called the

mother wavelet. It measures how much parallelism

exists between the analyzed function and the set of

basis functions. Therefore, if we seek to extract some

features from a signal, then the analyzing wavelet

family should also have these features. This is similar

to the way we measure the periodicity of a signal by

making inner product with the harmonic functions

because of their periodicity.

This idea also implies that if we want to use time-

frequency analysis on a dynamic system by analyzing

its response, a better understanding can be developed if
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the analyzing wavelet is close in characteristics to sys-

tems responses and behaviors.

This observation led to investigating the character-

istics of the underdamped second-order response of

Linear Time-Invariant (LTI) systems to find if it can

serve as a mother wavelet. The underdamped second-

order impulse response of LTI systems is oscillatory

and decaying exponentially, and it dies out to effective

zero well within the defined period. Furthermore, its

frequency domain representation is a second-order

filter that can effectively extract certain frequency

bands from the signals.

It was intuitive to try to construct families of wave-

lets from the building blocks of systems responses, espe-

cially LTI systems. Such families of wavelets could be

useful in systems characterization and provide new per-

spective for understanding systems and how their

responses evolve. It was a remarkable coincidence

that Robinson (1962) called the response of a second-

order LTI systems a wavelet. However, the closest

point in this track was using the response of second-

order LTI-systems as pseudo wavelets (Freudinger

et al., 1998; Hou and Hera, 2001). They were con-

sidered pseudo wavelets because they failed to satisfy

the reconstruction conditions, namely the inverse

wavelet transform was not possible. In addition to

those efforts, Newland (1993) proposed the harmonic

wavelets which possess the important advantages

of being orthogonal and having excellent frequency

localization. Moreover, they can be viewed as per-

fect band-pass filters. Jezequel and Argoul (1986)

used a transfer function in the frequency domain

(ratio of zeros and poles) as a kernel for an integral

transform that transforms signals from the frequency

domain to another two-dimensional domain whose

axes represent some parameters of the model repre-

sented by kernel.

The response of second-order systems had been

used before to analyze signals for different purposes

and under different names but as a pseudo wavelet or

dictionary of wavelets. Freudinger et al. (1998) defined

the Laplace wavelet, by

 ð f, �, �, tÞ ¼ Ae
��
ffiffiffiffiffiffi

1��2
p 2�#ðt��Þ

e�j2�#ðt��Þ t 2 �, � þ Ts½ �
0 else

(

ð1Þ

where � represents the damping ratio, # is the fre-

quency, and Ts is the effective duration of the wavelet

that defines the effective compact support. They formed

a dictionary of wavelets but not a basis or frame. Hou

and Hera (2001) used the the magnitude of second-

order LTI systems response in the frequency domain

as a pseudo wavelet and defined it by

�ð!,!0, �0Þ ¼
�

!2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð!2�!2
0
Þ2þð2�0!0!Þ2

p ! � 0

0 !5 0

8

<

:

ð2Þ

and used the continuous wavelet transform but in the

frequency domain to identify the parameters of

dynamic systems by mapping the match between the

system frequency response and the pseudo wavelet.

In the following section, we show that it is possible

to construct a family of wavelets from the response of

Second-Order Underdamped LTI (SOULTI) systems

that we call, for brevity, the SOULTI wavelets. We

show that their inverse continuous wavelet transform

exists and define the basic properties an analyst needs

to perform time-scale or time-frequency analysis.

In Section 2, we define the SOULTI wavelet families.

Section 3 constructs and proves the existence of the

inverse wavelet transform for the SOULTI wavelets.

Section 4 explores the basic properties of the

SOULTI wavelet and the associated transform and

lists the SOULTI wavelet transform for elementary sig-

nals. Section 5 defines the time and the frequency prop-

erties of the wavelet and derives different definitions

for the time-frequency resolution of the wavelet trans-

form. Section 6 presents an application with numerical

examples for analyzing signals with different frequency

characteristics, and Section 7 addresses the edge effect

and proposes a solution to reduce its influence on the

analysis.

2. Second-order underdamped LTI

wavelets

Second-order LTI systems are very common in most

dynamic fields of science. The mechanical mass-spring-

damper system, shown in Figure 1(a), and the

RLC-electrical circuit, shown in Figure 1(b), are typical

examples of such systems. The response of the SOULTI

system in Figure 1, for the impulse input !2
n �ðtÞ is

given by

hðtÞ ¼ !n
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �2
p

 !

e��!nt sinð!n

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �2
p

tÞuðtÞ ð3Þ

where � < 1 is the damping ratio, !n is the natural

frequency and u(t) is the Heaviside step function.

The impulse input is scaled by !2
n to simplify the deriv-

ation of the frequency properties in Sections 4 and 5.

The damped frequency !d of the underdamped system

is given by

!d ¼ !n

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �2
p

ð4Þ
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so equation (3) can be rewritten in terms of !d as

hðtÞ ¼ !d

1� �2

� �

e
�� !d

ffiffiffiffiffiffi

1��2
p t

sinð!dtÞuðtÞ ð5Þ

Let the reciprocal of the damped frequency, defined in

equation (4), be the scaling parameter as

s ¼ 1

!d

ð6Þ

Substitute equation (6) into equation (5) to get

hðtÞ ¼ s�1

1� �2

� �

e
��

t
s
ffiffiffiffiffiffi

1��2
p

sin
t

s

� �

uðtÞ ð7Þ

which is the impulse response in terms of the scaling

parameter s where s 2 ð0,1Þ. Now, the SOULTI wave-

let can be defined as

 
s,�
� ¼  �

t� �
s

� �

¼ s�p

1� �2

� �

e
��
ffiffiffiffiffiffi

1��2
p t��

sð Þ
sin

t� �
s

� �

uðt� �Þ

ð8Þ

which represents the real part of the Laplace wavelet

defined by Freudinger et al. (1998). The parameter p is

used to give the wavelet a preservation property. For

example, when the wavelet is scaled, its energy content

is also scaled, so to preserve the energy of the L2 norm

under scaling we use p¼ 1/2. However, to preserve the

L1 norm of the wavelet, namely

Z 1

�1
 �

t

s

� ��

�

�

�

�

�dt ¼
Z 1

�1
j �ðtÞjdt ð9Þ

we use p¼ 1. Figure 2 graphs the SOULTI wavelet

versus time showing its time properties. The wavelet

function defined in equation (8) represents more than

one family of wavelets, where each family is linked to a

single value of �, where 0<�< 1. It retains the LTI

second-order response characteristics completely.

Suppose that J � ða,1Þ � R, and let f ðtÞ : J ! R

and f ðtÞ 2 L1 and is exponentially bounded, see section

(2.1). The SOULTI wavelet transform of f(t) can be now

defined by the generic continuous wavelet transform

definition

W�ff ðtÞg ¼ ~f�ð�, sÞ ¼
Z 1

�1
f ðtÞ �

t� �
s

� �

dt, � 2 ð�1,1Þ

ð10Þ

The SOULTI wavelet transform in equation (10) offers

a measurement of similarity between any signal and the

response of second-order LTI systems for characteriza-

tion and identification purposes. In addition, The

SOULTI wavelet gives a direct and simple relationship

between scale and frequency as shown in equation (6),

where the frequency is the reciprocal of the scale.

2.1. Region of convergence

The region of convergence of the SOULTI transform

defines the region � � S�T, where s 2 S ¼
ð0,1Þ, � 2 T ¼ ð�1,1Þ, in which the transform in

equation (10) converges to a finite value. Before explor-

ing such region, notice that f(t) has to be exponentially

bounded in order for the transform in equation (10) to

converge.

Exponential boundedness is defined in the following;

define J � ða,1Þ � R, and let f ðtÞ : J ! R, if 9�, k 2 R
such that j f ðtÞj � jke�tj8t 2 J, then f(t) is exponentially

bounded.

If f(t) is exponentially bounded, then the SOULTI

transform is convergent in the scale region defined by

05 s5
�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �2
p ð11Þ

When the time domain is considered for convergence,

i.e. considering the values of the time shift � that ren-

ders the transform convergent, we have to be careful

about the uniqueness of the transform because

Figure 1. (a) Mass-spring-damper system; (b) RLC electrical circuit.
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the transform on finite time interval could be identical

for two different functions on a set of measure greater

than zero. Therefore, the time region has to be expli-

citly indicated on the transform, and uniqueness is not

achieved in this case. In the next section, we will define

the inverse continuous wavelet transform with respect

to the SOULTI wavelet.

3. SOULTI wavelet inverse transform

Notice that equation (10) represents an inner product in

the time domain, which is equivalent to the inner prod-

uct in the frequency domain according to Plancherel’s

theorem (Yoshida, 1965). Applying Plancherel’s the-

orem to equation (10) yields

~f�ð�, sÞ ¼ hf ðtÞ, �,s� i ¼ 1

2�
hFð!Þ,��,s

� ð!Þi ð12Þ

where ��,s
� ð!Þ is the Fourier transform of  �,s� , and using

the Fourier transform shift and scale properties it can

be expressed in terms of the Fourier transform of the

mother wavelet, ��ð!Þ, as

F  
�,s
�

� 	

¼ se�j!�
��ðs!Þ ð13Þ

Using Plancherels theorem, equation (10) becomes

~f�ð�, sÞ ¼
s

2�

Z 1

�1
ej!���ðs!ÞFð!Þd! ð14Þ

where the conjugate of se�j!���ðs!Þ is substituted in the

inner product. Note that the integral in the right side of

equation (14) represents the inverse Fourier transform

of ��ðs!ÞFð!Þ. Applying the Fourier transform to equa-

tion (14) yields

Z 1

�1
e�j!� ~f�ð�, sÞd� ¼

s

2�
��ðs!ÞFð!Þ ð15Þ

In general, we cannot divide both sides by s��ðs!Þ
because it could vanish at some values of ! or s.

However, in our case s��ðs!Þ is given by

s��ðs!Þ ¼

s1�p

1� �2

�!2s2 þ 1
1��2 � j

2�!s
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �2
p

ð16Þ

which does not vanish for any value of ! or s 2 (0,1).

Figure 3 shows the wavelet spectrum magnitude,

which is equivalent to its conjugate spectrum

Figure 2. The SOULTI mother wavelet time function at �¼ 0.3, s¼ 1, and p¼ 1.
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magnitude. The curve never crosses the zero axis and

decays asymptotically to zero. Consequently dividing

by s��ðs!Þ is a legitimate operation. Therefore, we

can solve for F(!) in equation (15) to get

Fð!Þ ¼ 1

s��ðs!Þ

Z 1

�1
e�j!� ~f�ð�, sÞd� ð17Þ

To retrieve f(t), take the inverse Fourier transform of

equation (17), so the inverse wavelet transform with

respect to the SOULTI wavelet becomes

W�1
� f ~f�ð�, sÞg ¼ f ðtÞ ¼

Z 1

�1

Z 1

�1

ej!t

s��ðs!Þ
e�j!� ~f�ð�, sÞd�d!

ð18Þ

Equation (18) forms the inverse wavelet transform with

respect to the SOULTI wavelet or the reconstruction

formula of the original wavelet definition shown in

equation (10). If f(t) is differentiable, we can use a sim-

pler and probably more practical inverse formula to

retrieve f(t) back from its wavelet transform.

Theorem 1. Let J � ða,1Þ � R, and let f(t): J ! R be

differentiable and exponentially bounded, and let

the SOULTI wavelet transform of f(t) be given by equa-

tion (10), then the inverse wavelet transform satisfies the

identity

f ðtÞ ¼ W�1
� f ~f�ðt, sÞg ¼ s p�1 ð1� �2Þs2

d2 ~f�ðt, sÞ
� �

dt2

2

4

� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �2
p

�s
d ~f�ðt, sÞ
� �

dt
þ ~f�ðt, sÞ

3

5

ð19Þ

Proof. Substituting s��ðs!Þ from equation (16) into

equation (18) gives

f ðtÞ ¼
Z 1

�1

ej!t 1� �2

 �

s1�p
�!2s2 þ 1

1� �2 � j
2�!s
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �2
p

 !

�
Z 1

�1
e�j!t ~f�ðt, sÞdtd!

ð20Þ

Note that � is substituted by t inside the second inte-

gral. Using the operator notation for the Fourier trans-

form, equation (20) becomes

f ðtÞ ¼ sp�1F�1 �!2s2 1� �2

 �

þ 1� j
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �2
p

2�!s
� �

F ~f�ðt, sÞ
n on o

ð21Þ

Figure 3. SOULTI wavelet in the frequency domain with the mean frequency !CG�, the standard deviation-based frequency window

��SD, and the (half-power)-based frequency window ��BW. �¼ 0.5, s¼ 1, and p¼ 1.
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Applying the linear operators properties (Naylor and

Sell, 2000) to equation (21) gives

f ðtÞ ¼ sp�1F�1 �!2s2 1� �2

 �

F ~f�ðt, sÞ
n on o

þ sp�1F�1 F ~f�ðt, sÞ
n on o

� sp�1F�1 j
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �2
p

2�!sF ~f�ðt, sÞ
n on o

ð22Þ

and after applying the Fourier transform differentiation

property to equation (22) we arrive at equation (19). #

This provides a simple and direct method in the time

domain to calculate the inverse wavelet transform with

respect to the SOULTI wavelet. However, in order for

the formula in equation (19) to apply, ~f�ð�, sÞ has to be

at least twice differentiable with respect to time. When

considering the transform that defines ~f�ð�, sÞ in equa-

tion (10), we find that ~f�ð�, sÞ is twice differentiable with
respect to time if f(t) is differentiable. So if f(t) is expo-

nentially bounded and f ðtÞ 2 C1, then its SOULTI

wavelet transform is unique and f(t) can be retrieved

using equation (19).

Equation (19) also provides information about the

uniqueness of the SOULTI wavelet transform. The

inverse wavelet transform given by equation (19) is a

linear second-order differential equation, which we will

call the Reconstructing Differential Equation. The ori-

ginal function f(t) is the input function and its wavelet

transform at scale s is a solution or part of the response.

However, the other conditions must be satisfied in

order for equation (19) to server as inverse formula

for the SOULTI wavelet transform.

Corollary 2. Let J � ða,1Þ � R, and let f ðtÞ : J ! R

be differentiable and exponentially bounded, then the

SOULTI wavelet transform with respect to the wavelet

family  �
t��
s


 �

of f(t) at scale s is a solution of the fol-

lowing nonhomogeneous differential equation

f ðtÞ ¼ sp�1 ð1� �2Þs2 d
2ð yðtÞÞ
dt2

� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �2
p

�s
d ð yðtÞÞ

dt
þ yðtÞ

� 

ð23Þ

Proof. The proof follows by direct substitution. Fix s,

so it can be treated as a constant. Now, suppose that a

solution of equation (23) is given by

ypðtÞ ¼ ~f�ðt, sÞ ð24Þ

Substitute yp(t) back into the right side of equation (23)

to get

Gðt, sÞ ¼ sp�1 ð1� �2Þs2 d2

dt2
~f�ðt, sÞ
� �

�

�2
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �2
p

�s
d

dt
~f�ðt, sÞ
� �

þ ~f�ðt, sÞ
 ð25Þ

but we just proved by Theorem 1 that G(t,s)¼ f(t). #

4. SOULTI transform of elementary

signals and its properties

Let us examine the validity of equation (19) with an

example. Let f ðtÞ ¼ e��t, then its SOULTI wavelet

transform is given by

~f�ð�, sÞ ¼
s�p

1� �2
Z 1

��
e��te

��
ffiffiffiffiffiffi

1��2
p t��

sð Þ
sin

t� �
s

� �

dt ð26Þ

Figure 4. SOULTI Wavelet transform surface of the decaying exponential function at �¼ 0.7 and �¼ 2.
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which can be evaluated using the integration by parts

technique to give

~f�ð�, sÞ ¼ e���
s1�p

ð1� �2Þ�s2 þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �2
p

��sþ 1
ð27Þ

which represents an analytical formula in terms of the

scale s, the time shift �, and the wavelet damping ratio

�, in addition to the decay rate �.

Note that the transform of e��t in equation (27) con-

sists of a multiplication of two functions, a function of

time and a function of scale. Note also, that the trans-

form is very similar to the Laplace Transform of a

delayed and scaled function. Figure 4 shows the wavelet

transform of the exponential function as described in

equation (27).

Let us now evaluate the SOULTI inverse transform

by using the formula in equation (19). Differentiating

equation (27) with respect to time twice and substitut-

ing the result into the right hand side of equation (27)

and substituting � by t yields

sp�1 ð1� �2Þs2�2e��t þ e��t þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �2
p

��se��t
� �h

� s1�p

ð1� �2Þ�s2 þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �2
p

��sþ 1

 !#

¼ e��t=#

ð28Þ

We can use the result in equation (27) to find the

SOULTI wavelet transform for the sinusoidal func-

tions. Table 1 lists the SOULTI wavelet transform for

some elementary signals. Figure 5 shows the wavelet

transform scalogram of the cos(!t) function.

Lemma 3. Let J � ða,1Þ � R, and let xðtÞ : J ! R be

differentiable and exponentially bounded as defined in

Theorem 1, and the SOULTI wavelet transform of

x(t) be given by equation (10), then the SOULTI wave-

let transform of _xðtÞ is given by

~_x�ð�, sÞ ¼
e

��
ffiffiffiffiffiffi

1��2
p 	

s
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �2
p ~x�ð� þ s	, sÞ

	 ¼ tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �2
p

�

 !
ð29Þ

Proof. Substitute _x(t) in equation (10) to have

~_x�ð�, sÞ ¼
Z 1

�

_xðtÞ �
t� �
s

� �

dt, � 2 ð�1,1Þ ð30Þ

which can be evaluated by the integration by parts tech-

nique to obtain

~_x�ð�, sÞ ¼
s�p

1� �2 xðtÞe
��
ffiffiffiffiffiffi

1��2
p t��

sð Þ
sin

t� �
s

� ��

�

�

1

�

� �

� s�p

1� �2
Z 1

�

xðtÞ
s
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �2
p e

��
ffiffiffiffiffiffi

1��2
p t��

sð Þ
sin 	 � t� �

s

� �

dt

 !

ð31Þ

Table 1. SOULTI wavelet transform for basic signals.

# f(t) ~f�ð�, sÞ

1 u(t) s1�p

2 tu(t) s1�p 2�s
ffiffiffiffiffiffiffiffi

1��2
p þ 1

1��2 �

� �

3 t2uðtÞ s1�p 2ð2�2 � 1Þð1� �2Þs2



þ4�
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �2
p

s� þ ð1� �2Þ�2
�

4 e��t e��� s1�p

ð1��2Þ�s2þ2
ffiffiffiffiffiffiffiffi

1��2
p

��sþ1

5 sin(!t)

s1�p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2 þ B2
p sinð!� þ 
Þ


 ¼ tan�1 A

B

� �

Aðs,!Þ ¼ 1� ð1� �2Þs2!2

Bðs,!Þ ¼ 2�
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �2
p

s!

6 cos(!t)

s1�p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2 þ B2
p cosð!� þ 
Þ


 ¼ tan�1 B

A

� �

Aðs,!Þ ¼ 1� ð1� �2Þs2!2

Bðs,!Þ ¼ 2�
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �2
p

s!

7 e��t cosð!tÞ
s1�p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2 þ B2
p e��� cosð!� þ 
Þ


 ¼ tan�1 B

A

� �

Aðs,!Þ ¼ 1þ ð1� �2Þð�2 � !2Þs2

þ 2�
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �2
p

�s

Bðs,!Þ ¼ 2 ð1� �2Þ�!s2 þ �2
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �2
p

!s
� �

8 e��t sinð!tÞ
s1�p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2 þ B2
p e��� sinð!� þ 



 ¼ tan�1 B

A

� �

Aðs,!Þ ¼ 1þ ð1� �2Þð�2 � !2Þs2

þ 2�
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �2
p

�s

Bðs,!Þ ¼ 2 ð1� �2Þ�!s2 þ �2
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �2
p

!s
� �
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where 	 is given by

	 ¼ tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �2
p

�

 !

ð32Þ

Since x(t) is exponentially bounded, the first term in

equation (31) vanishes, so equation (31) becomes

~_x�ð�, sÞ ¼
e

��
ffiffiffiffiffiffi

1��2
p 	

s
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �2
p

� s�p

1� �2
Z 1

�

xðtÞe
��
ffiffiffiffiffiffi

1��2
p t�ð�þs	Þ

sð Þ
sin

t� ð� þ s	Þ
s

� �

dt

� �

ð33Þ

but the part inside the parenthesis is equal to

~x�ð� þ s	, sÞ, hence equation (33) is equivalent to equa-

tion (29). #

Lemma 4. Let J � (a,1) � R, and let x(t): J ! R be

exponentially bounded as defined in Theorem 1, and

the SOULTI wavelet transform of x(t) be given by

equation (10), then the SOULTI wavelet transform of

�(t), defined by

�ðtÞ ¼ XðtÞ � XðaÞ ¼
Z t

a

xðrÞdr ð34Þ

is given by

~��ð�, sÞ ¼ s
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �2
p

e
�
ffiffiffiffiffiffi

1��2
p 	

~x�ð� � s	, sÞ � s1�pXðaÞ

	 ¼ tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �2
p

�

 ! ð35Þ

Proof. Since xðtÞ ¼ dXðtÞ
dt

, substitute x(t) in place of _x(t),

and X(t) in place of x(t) in equation (33), and the result

can be written as

Z 1

�

xðtÞ �
t� �
s

� �

dt ¼ e
��
ffiffiffiffiffiffi

1��2
p 	

s
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �2
p

Z 1

�

XðtÞ �
t� ð� þ s	Þ

s

� �

dt

� �

ð36Þ

make the substitutions �(t)þX(a)¼X(t) and ¼ �þ s	

into equation (36), then equation (35) follows.

5. The time-frequency resolution and

properties

The time-frequency resolution is an important property

of the wavelet transform. The time-frequency

Figure 5. SOULTI wavelet transform of f(t)¼ cos(!t), at �¼ 0.7.
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resolution is defined by

� ¼ �T�� ð37Þ

where �T is the time resolution or the time window and

�� is the frequency resolution or frequency window.

The time window represents the time interval that a

frequency can be identified within, while �� represents

the range of frequencies within a time interval. There

are different ways to define the time and frequency reso-

lutions. One possible way is to use the standard devi-

ation definition, in which the resolutions are defined by

�TSD

2

� �2

¼
R1
�1 ðt� tCG�Þ2j �ðtÞj2dt

R1
�1 j �ðtÞj2dt

ð38Þ

��SD

2

� �2

¼
R1
�1 ð!� !CG�Þ2j��ð!Þj2d!

R1
�1 j��ð!Þj2d!

ð39Þ

where tCG� and !CG� represent the center of mass of the

signal in time and frequency respectively, and they are

given by

tCG� ¼
R1
0

tj �ðtÞj2dt
R1
0

j �ðtÞj2dt
ð40Þ

!CG� ¼
R1
0
!j��ð!Þj2d!

R1
0

j��ð!Þj2d!
ð41Þ

Table 2 lists the results of calculating � for some values

of 0<�< 1 at p¼ 1. The values of � do not depend on

the scale value and they satisfy the Heisenberg principle

(Kaiser, 1994). Using the standard deviation, the reso-

lution satisfies the inequality �> 1/4� (Kaiser, 1994).

!CG� is proportional to the scale s, while tCG� is inver-

sely proportional to s. However, the standard deviation

does not offer meaningful time and frequency windows

of resolution. The SOULTI wavelet is not symmetrical

neither in time nor in frequency. Moreover, it has no

compact support neither in time nor in frequency.

So we would question the significance of the standard

deviation window about the signal center in time

and the significance of the frequencies included in the

standard deviation window and weather that is really

what is accentuated in the time-scale or time-frequency

analysis.

We can attain an alternative definition for the

SOULTI wavelet time-frequency resolution based on

systems dynamics and control theory. The system

response is considered settled when it enters the 2%

margin of the final value and never leaves it again.

Therefore, we can use the 2% settling-time value to

define the time window, namely �T2% ¼ 2%tst.

In the frequency domain, the frequency correspond-

ing to attenuating the input power by a half is con-

sidered the frequency bandwidth of the system or the

cut-off frequency, so we can use the bandwidth to

define the frequency window.

The 2% settling time, tst is reached when the

enveloping function enters within 2% of the final

value. Therefor, for a scaled wavelet, it is given by

tst ¼ � s
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �2
p

�
logð0:02Þ ’ 4s

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �2
p

�
ð42Þ

On the other hand, the wavelet bandwidth is the fre-

quency at which the frequency spectrum of a scaled

wavelet satisfies

js�ðs!Þj2 ¼
s2�2p

1��2

�s2!2 þ 1
1��2

� �2

þ 2�!s
ffiffiffiffiffiffiffiffi

1��2
p
� �2

¼ 1

2
ð43Þ

Solving for ! gives the bandwidth by

!jjs�ðs!Þj2¼1
2
¼ ��BW

¼ 1

s
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2�2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2s2�2p � 4�2 þ 4�4
p

q

ð44Þ

Table 2. Time-frequency resolution based on the standard

deviation definition at p ¼ 1.

z tCGz oCGz �TSD ��SD �

0.05 20.075 0.48531 39.85 0.24577 9.794

0.1 10.149 0.47298 19.704 0.33949 6.689

0.15 6.8878 0.46292 12.896 0.40724 5.252

0.2 5.2909 0.45506 9.4305 0.46191 4.356

0.25 4.3571 0.44939 7.3101 0.5088 3.719

0.3 3.7522 0.44595 5.8715 0.55084 3.234

0.35 3.3322 0.44484 4.8325 0.58997 2.851

0.4 3.0245 0.44625 4.0534 0.62763 2.544

0.45 2.7882 0.45046 3.4579 0.66502 3

0.5 2.5981 0.4579 3 0.7033 2.11

0.55 2.4372 0.46922 2.6493 0.74366 1.970

0.6 2.2933 0.48537 2.3828 0.78752 1.877

0.65 2.157 0.50783 2.1798 0.83668 1.824

0.7 2.02 0.53899 2.0203 0.89372 1.806

0.75 1.8741 0.58291 1.8838 0.96259 1.813

0.8 1.71 0.64715 1.7483 1.05 1.836

0.85 1.5153 0.74778 1.5888 1.1692 1.858

0.9 1.2689 0.927 1.3714 1.3512 1.853

0.95 0.92196 1.3553 1.0296 1.7057 1.756
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Substitute equation (42) and equation (44) into equa-

tion (37) gives the resolution as

� ¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2�2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2s2�2p � 4�2 þ 4�4
p

q

�
ð45Þ

Equation (45) gives us a way to determine an appro-

priate value for p based on the time-frequency reso-

lution shape. In order for � to be independent of s,

we must have p¼ 1, which yields

�ð�Þ ¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2�2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2� 4�2 þ 4�4
p

q

�
ð46Þ

which indicates that the 2%tst � BW resolution defin-

ition depends only on � thus on the wavelet family  �,

so we may write the resolution as �( �).

Now, let us investigate the values of � in range

0<�< 1. When � ! 0, we have

lim
�!0

�ð�Þ ¼ 1 ð47Þ

while when � ! 1 we get

lim
�!1

�ð�Þ ¼ 2:65 ð48Þ

Since d�
d�

5 0 8 � 2 ð0, 1Þ, then

�

4
5 2:655�ð�Þ51 ð49Þ

which means that the 2%tst � BW definition satisfies

the Heisenberg principle when p¼ 1. Another advan-

tage of having p¼ 1, is preserving the wavelet frequency

function peak constant. This is sometimes useful since it

guarantees that all the frequency bands are amplified at

the same level, see Figure 6. This functions as a normal-

izing factor though it does not preserve the wavelet

energy. Figure 2 shows the standard deviation-based

and the 2%tst time windows, while Figure 3 illustrates

the standard deviation-based and the half-power band-

width-based frequency windows for the SOULTI

wavelet.

The 2%tst � BW gives a better meaning for the time-

frequency resolution of the SOULTI wavelet, but when

� is small, � < 0.4, the definition suffers from two prob-

lems. First, the variation in the frequency response

magnitude varies significantly within the bandwidth,

which requires better focus on the resonance range.

Secondly, as s decreases, the bandwidth of  ðt
s
Þ contains

all the bandwidths corresponding to larger s,

i.e.��BWð�, s2Þ � ��BWð�, s1Þ when s1< s2.

For � < 0.4, another definition of the time-frequency

resolution, that better reflects the data on the time-scale

or the time-frequency analysis domain can be provided

Figure 6. Wavelet amplitude in frequency domain for different values of the scale s at �¼ 0.2.
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based on the quality factor half-power bandwidth

definition. The quality factor is the peak value of the fre-

quency response. For small �, the quality factor for LTI

second-order system can be approximated by

(Meirovitch, 1997)

Q ¼ 1

2�
ð50Þ

The half power points, q1 and q2 are the points when

j�ðs!Þj ¼ Q
ffiffi

2
p , see Figure 7. The bandwidth of the fre-

quency response is

��Q ¼ !2 � !1 ð51Þ

where !1 is the corresponding frequency to q1, and !2

is the corresponding frequency to q2, as shown in

Figure 7. To find !1 and !2, we have to solve the wave-

let power in equation (52) for ! where p¼ 1

j�ðs!Þj2 ¼ 1

ð�s2!2ð1� �2ÞÞ2 þ 2�!
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �2
p

s
� �2

¼ 1

8�2

ð52Þ

From equation (52) we find

!2
1 ¼

1� 2�

s2ð1� �2Þ ð53Þ

!2
2 ¼

1þ 2�

s2ð1� �2Þ ð54Þ

Using the approximation !1 þ !2 ’ 2

s
ffiffiffiffiffiffiffiffi

1��2
p

� �

, which is

valid for small values of �, it is easy to show that

��Q ¼ !2 � !1 ¼
2�

s
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �2
p ð55Þ

Substituting equations (42) and (55) into equation (37),

the new time-frequency resolution definition becomes

� ¼ �T�� ’ 4s
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �2
p

�

2�

s
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �2
p ¼ 8 ð56Þ

Equation (56) shows a very interesting result where the

time-frequency resolution is constant and does not

Figure 7. j�(s!)j for different values of � showing the quality factor and the half-power bandwidth.

Abuhamdia et al. 11

 at University Libraries | Virginia Tech on October 19, 2016jvc.sagepub.comDownloaded from 

http://jvc.sagepub.com/


depend on �. Note that this approximation is valid for

values of � < 0.4, for larger values the quality factor is

smaller, hence the time-frequency resolution defined by

equations (45) and (46) would be more meaningful and

suitable to adopt. Of course one may require a wider

bandwidth than the half-power quality factor band-

width, which will make the time-frequency resolution

coarser. For example, if instead of the Q
ffiffi

2
p bandwidth

limit we use Q/x, where x<Q, then the bandwidth

and the time-frequency resolution become

��Q ¼’ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � 1
p

�

s
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �2
p ð57Þ

� ¼ 8
ffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � 1
p

ð58Þ

The frequency at Q represents the frequency at which

the wavelet filter is centered at. Moreover, it is easy to

predict where the wavelet frequency is centered because

the scale is directly linked to frequency as stated by

equation (6). The peak occurs at (Meirovitch, 1997)

!Q ¼ !n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2�2
p

ð59Þ

For small � we have

!Q ¼ !n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2�2
p

’ !n

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �2
p

¼ !d ð60Þ

which with equation (6) shows that we can easily

approximate to a good accuracy the wavelet peak fre-

quency by the relation

!Q ’ 1

s
ð61Þ

Figure 6 shows clearly the accuracy of equation (61) for

the  0:2ðtsÞ SOULTI family with different scaling values.

For larger values of �, i.e. � >¼ 0.4, the approximation

in equation (61) is not valid and we have to use the

exact relation

!Q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2�2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �2
p

1

s
ð62Þ

The SOULTI wavelet has �(0)¼ 1 when p¼ 1. For

other values of p, the wavelet magnitude depends on

s1�p. Moreover, we have

Z 1

0

j��ð!Þj2
!

d! ¼ 1 ð63Þ

which implies that the SOULTI wavelet does not satisfy

the admissibility condition stated in equation (64) but

it has an inverse

05

Z 1

0

�ð!Þ
�

�

�

�

2

!
d! ¼ C51 ð64Þ

6. Application: Frequency identification

and spectrogram

To validate the capability of the SOULTI wavelet in

detecting features of signals, we produce the frequency

evolution or the scale evolution with respect to time of

some signals using the SOULTI wavelet. We present

some examples of SOULTI wavelet analysis of finite

time signals with white noise added to them at different

Signal to Noise Ratio (SNR) levels.

It is important to emphasize that the continuous ver-

sion of the wavelet transform is performed in these

examples, where the transform integral is performed

numerically. In all the examples, �¼ 0.1 is used because

it gives the wavelet a large quality factor value as shown

in Figure 6.

6.1. Identifying constant frequencies in

time-invariant frequency signals

First, two noisy signals with the same frequency are tested.

The first has SNR¼ 15dB, and the second has SNR¼
7.5dB. Figure 8 shows the two signals. Figure 9 shows

the contour map of the two signals wavelet transform.

We notice that in both cases the ridges and the

peaks are distinctly recognized at s ¼ 1
2
, which corres-

ponds to !¼ 2 rad/s by the scale-frequency relation in

equation (6). The ridge of the wavelet transform is

the set of points in the time-scale domain �, where

the wavelet integral has stationary points (t,s) 2 �

such that ts(t,s)¼ s, where ts is a stationary point, i.e.
d ~f�ð�, sÞ

ds

�

�

ts
¼ 0 (Tchamitchan and Torresani, 1992).

Notice also that at the end of the signal the transform

is distorted and the peaks diminish due to the edge

effect. Also notice that since the SOULTI wavelet is

causal the edge effect appears at the end of the time

scale of the signal only and the noisy signal with

SNR¼ 7.5 dB has slightly worse edge effect.

In the second test, a signal carrying two different fre-

quencies is analyzed. The signal has SNR¼ 15dB and is

graphed in Figure 10. Figure 11 shows two mappings. The

first maps the contours on the time-scale domain and it

shows clearly two ridges that stretch along two lines of

constant scale s¼ 0.125 and s¼ 0.5, parallel to the time

axis. The second plots the contours on the time-frequency

domain. The scale-frequency conversion is performed

using equation (6). The ridges stretch along the constant

frequency values !¼ 2 rad/s and !¼ 8 rad/s.

12 Journal of Vibration and Control

 at University Libraries | Virginia Tech on October 19, 2016jvc.sagepub.comDownloaded from 

http://jvc.sagepub.com/


6.2. Identifying the instantaneous frequency

in time-varying frequency signal

The advantage of the time-scale or time-frequency ana-

lysis over classic frequency analysis is that it is more

useful in analyzing time-varying and nonlinear oscilla-

tions. In this example, we analyze a signal consisting of

a combination of constant harmonics with linear chirp

as a time-varying frequency component. White noise is

added to the signal with SNR¼ 20 dB. The signal is

Figure 9. Contour mapping of the SOULTI wavelet Transform of a harmonic signal of frequency¼ 2 rad/s; (a) SNR¼ 15 dB,

(b) SNR¼ 7.5 dB.

Figure 8. Top: single harmonic with white noise of SNR¼ 15 dB. Bottom: single harmonic with white noise of SNR¼ 7.5 dB.
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given by equation (65)

xðtÞ ¼ 10 sinð0:4t2Þ þ 5 cosð2tÞ þ 8 sin tþ �
7

� �

þDðtÞ

ð65Þ

where D(t) represents the white noise or the disturbance

term. Figure 12 plots the signal in the time domain.

Performing Fourier analysis to the signal does not

reveal the instantaneous frequency change in the

signal. Figure 13 shows the Fast Fourier Transform

(FFT) and the Welch averaging of the frequency spec-

trum. While the FFT identifies the constant harmonics

with peaks at !¼ 1 and !¼ 2, it is not possible to dis-

tinguish the instantaneous frequency change from the

FFT. The Welch averaging does not identify the con-

stant harmonics because of the interference from the

frequency-changing component.

Figure 14 shows the SOULTI wavelet transform of

the signal. The transform distinctly traces the instant-

aneous frequency with respect to time, where the

dashed lines represents ridgelines that trace this

Figure 11. SOULTI wavelet transform for the two harmonics signal in Figure 10. (a) Time-scale contour mapping. (b) Time-

frequency contour mapping.

Figure 10. Sum of two harmonics with white noise. !1¼ 2 rad/s, !2¼ 8 rad/s, and the SNR¼ 15 dB.
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frequency along time. When examining the time vary-

ing component in equation (65) we find that the instant-

aneous frequency is given by !(t)¼ 0.8 t, which is the

equation of the dashed line on the time-frequency

wavelet mapping shown in Figure 14(b). The dashed

curve in Figure 14(a) is the inverse of the line

!¼ 0.8 t, namely s(t)¼ 1/0.8 t, which conforms to the

scale-frequency relation in equation (6). Notice also,

that the other two constant frequencies are identified

along ridgelines of almost constant scales at s¼ 0.5 and

s¼ 1 in Figure 14(a) and along ridgelines of almost

constant frequency at !¼ 1 and !¼ 2 in Figure 14(b).

On 14(a), the parabolic dashed line, which traces the

instantaneous change of the chirp frequency, intersects

the s¼ 1 and the s¼ 0.5 lines at times t¼ 0.26 s and

t¼ 1.6 s respectively.

As a comparison between the SOULTI wavelet and

other wavelets in resolving frequencies with respect to

Figure 13. Frequency spectrum of the signal described in Figure 12. (Dashed line) FFT. (Solid line) Welsh spectrum averaging.

Figure 12. Two constant harmonics with a time varying frequency component signal.
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Figure 15. Scalograms of the signal described in Figure 12 using different wavelets. (a) By Morlet wavelet; (b) by Complex Shannon

wavelet (fb¼ 1, fc¼ 1); (c) by Mexican hat wavelet; (d) by Frequency B-Spline wavelet (order¼ 2, fb¼ 1, fc¼ 1). fb: bandwidth fre-

quency. fc: wavelet center frequency.

Figure 14. SOULTI wavelet transform for the chirp signal described in Figure 12 and shown in Figure 12. (a) Scalogram (Time-scale)

contour mapping (b) Spectrogram (Time-frequency) contour mapping.
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time, the same chirp signal is analyzed with four differ-

ent wavelets, Morlet, complex Shannon, Mexican hat

and the frequency B-Spline. The four wavelets scalo-

gram graphs are shown in Figure 15. Notice that the

four are able to resolve the chirp into curves parabolic

in shape with different ridge widths. However, the

curves are not the reciprocal of the instantaneous fre-

quency. In addition, the constant scale ridges are not at

scales that can be easily matched to frequencies.

The Mexican hat wavelet gives the best match to the

parabolic curve, but when resolving the constant fre-

quencies in the signal it shows large shifts. It is difficult

to infer the accurate frequencies in the signal from

these wavelets scalogram maps, though one can infer

qualitative information about the shape of the instant-

aneous frequency change with respect to time. For each

wavelet, the relation between the scale and the fre-

quency along the ridgeline is different, but one can

argue that it is the reciprocal of some function of the

instantaneous frequency.

From the previous discussion, we conclude that it is

difficult to construct a spectrogram for each scalogram

shown in Figure 15. However the SOULTI wavelet

scalogram can be directly transformed into spectro-

gram by applying the scale-frequency change in equa-

tion (6).

To evaluate the SOULTI wavelet spectrogram, we

compare it to the Short Time Fourier Transform

Figure 16. Spectrograms of the linear chirp signal in Figure 12 at different Window widths (samples). (a) W¼ 8 (b) W¼ 16

(c) W¼ 32 (d) W¼ 64 (e) W¼ 128 (f) W¼ 256.
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(STFT) spectrograms. Six spectrograms based on the

STFT were computed for different window sizes (W),

where the size is measured by the number of samples.

To make the comparison compatible with the continu-

ous wavelet transform, the window overlap is set as

(W� 1) to perform window sweep over the time

vector of the signal. Figure 16 plots the spectrograms

with the three straight lines that represent the instant-

aneous frequencies imposed on it. Note that the narrow

windows (W� 64) are better in resolving the linear

chirp than resolving the constant frequencies, while

the wider windows (W� 128) are better in resolving

the constant frequencies.

However, notice that when applying the STFT the

wider the window the less time resolution is obtained,

the more end effect occurs and the more time trunca-

tion from both sides of the signal is taken. For example,

Figure 16(f) only shows frequency information for the

time period 12.8� t� 17.2 s of the signal. Frequency

information for periods 0� t< 12.8 s and 17.2< t� 30 s

is not available, while the SOULTI wavelet spec-

trogram provides information for the duration of the

signal as shown in Figure 14(b). Moreover, the

SOULTI spectrogram resolves both the linear chirp

and the constant harmonics, and its direct link between

frequency (spectrograms) and scale (scalograms) allows

checking the results for small or close frequencies.

7. Edge effect mitigation

Edge effect in harmonic and wavelet analysis of finite

duration signals is caused by many factors. First, the

measured signals are finite in duration and we do not

have information about the signal after or before the

times of recording. Second, many wavelets do not have

compact support rather they have an effective window.

Third, at the beginning of the analysis, (�¼ 0), the

wavelet window is defined for negative and positive

range of time, t5 0 and t4 0, but the analyzed

signal is defined only for t4 0, so the inner product is

computed between the signal and part of the wavelet.

Similarly, at the end of the analysis, the wavelet effect-

ive window will move out of the signal range and only

part of it will take part in the inner product with the

signal. This partial inner product gives inaccurate

results at both edges.

The SOULTI wavelet is a right sided wavelet or

signal, i.e. the mother wavelet is zero for t< 0.

Therefore, when performing the wavelet transform, the

effective wavelet window sets fully inside the range of the

signal at the beginning of the analysis when �¼ 0.

However, at the end of the analysis, the effective

window moves out of the signal range and the inner

product is performed between the signal and part of

the effective window. Therefore, though the SOULTI

wavelet solves naturally the edge effect at the beginning

it does not solve the problem at the end, which makes

the analysis at the end inaccurate and distorted.

As a solution for the end edge effect, we propose in

this section performing a Reverse Wavelet Transform

(RWT) analysis starting from the end of the signal. So

the mother wavelet is reflected about t¼ 0, then it is

shifted to the end of the signal, and the wavelet analysis

is performed end-to-start. Then, we reflect the results

Figure 17. Reverse wavelet transform of the signal in Figure 10. (a) Scalogram, time-scale contour. (b) Spectrogram, time-frequency

contour mapping.
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back with respect to time. The same result can be

obtained by just reflecting the signal, performing the

wavelet analysis as usual and then reflecting the

results back.

Figure 17 shows the RWT of the signal in Figure 10

and Figure 18 shows the RWT of the signal in

Figure 12. Note that at the end of the analysis there

are clear ridges in both the scalograms and the spectro-

grams whereas the beginning shows distortions. This

result gives an indication that the distortion of

the ridges at the end of the studied signals is due to

the edge effect.

Figure 18. Reverse wavelet transform of the signal in Figure 12. (a) Scalogram, time-scale contour mapping. (b) Spectrogram, time-

frequency contour mapping.

Figure 19. Average of FWT and RWTof the linear chirp in Figure 12. (a) Scalogram, time-scale contour mapping. (b) Spectrogram,

time-frequency contour mapping.
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Instead of producing two scalograms or spectro-

grams for each signal, the average of the Forward

Wavelet Transform (FWT) and the RWT can be com-

puted and mapped to give refined results at both ends

of the signal. Figure 19 shows the average of the FWT

and RWT. The edges are better resolved and the dis-

tortion at the edges almost disappeared. However, a

slight reduction in the ridges amplitude is notices.

8. Remarks and conclusions

It is shown that the impulse response of SOULTI sys-

tems can be used as a wavelet to obtain time-scale and

time-frequency analysis directly. We also proved that

the transform can be reversed to obtain the original

signal, hence an inverse wavelet transform for the

SOULTI wavelet exists. A region of convergence can

be defined for the transform on the scale domain. This

region defines in which range of scales the SOULTI

wavelet transform converges.

Moreover, it is shown that the original signal can be

retrieved back by substituting the transform into the

conjugate differential equation. The SOULTI wavelet

can be evaluated for most elementary functions and

basic signals. In addition, there is a direct relation between

the SOULTI wavelet transform of a signal and the trans-

form of its derivative or integral. For a wavelet scaling

power p¼ 1, we found that the time-frequency resolution

is preserved constant using the three definitions for com-

puting the time-frequency resolution, the standard devia-

tion based, the -3dB bandwidth based, and the Q-factor

bandwidth based.

The important result that the reconstruction differ-

ential equation shows is extending the notion that the

wavelet transform is the output of a filter bank from

digital wavelets to crude noncompactly supported

wavelets. The reconstruction differential equation in

equation (19) shows that the SOULTI wavelet trans-

form at scale s is part of the output (particular solution)

of the second-order system modeled by the differential

equation itself.

The RWT can reveal whether the distortion at the end

of the time range on scalograms and spectrograms is due

to the edge effect or not. Moreover, taking the average

between the FWT and RWT is a practical and simple

method to eliminate the edge effect on both edges.

The SOULTI wavelet transform formula provides

an analytical tool for time-frequency or time-scale

representation of basic signals. It also preserves all

the important characteristics and parameters that

exist in the time domain to the time-scale or time-fre-

quency domain.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with

respect to the research, authorship, and/or publication of this

article.

Funding

The author(s) received no financial support for the research,

authorship, and/or publication of this article.

References

Abuhamdia T and Taheri S (2015) Wavelets as a tool for

systems analysis and control. Journal of Vibration and

Control. Published online before print 16 December

2015. DOI: 10.1177/1077546315620923.

Freudinger LC, Lind R and Brenner MJ (1998) Correlation

filtering of modal dynamics using the Laplace wavelet. In:

International modal analysis conference, volume 2,

California (CA), Bethel, Connecticut (CT), USA, 2–5

February, pp.868–877. Santa Barbara, CA: SEM.

Hou Z and Hera A (2001) A system identification technique

using pseudo-wavelets. Journal of Intelligent Material

Systems and Structures 12(10): 681–687.

Jezequel L and Argoul P (1986) New integral transform for

linear systems identification. Journal of Sound and

Vibration 111(2): 261–278.

Kaiser G (1994) A Friendly Guide to Wavelets. Boston, MA:

Birkhauser.

Meirovitch L (1997) Principles and Techniques of Vibrations.

Vol. 1, Upper Saddle River, New Jersey: Prentice Hall.

Naylor AW and Sell GR (2000) Linear Operator Theory in

Engineering and Science. New York: Springer Science &

Business Media.

Newland DE (1993) Harmonic wavelet analysis. Proceedings

of the Royal Society of London. Series A: Mathematical

and Physical Sciences 443(1917): 203–225.

Robinson EA (1962) Random Wavelets and Cybernetic

Systems. Vol. 9, New York: Hafner Publishing Company.

Tchamitchan P and Torresani B (1992) Ridge and skeleton

extraction from the wavelet transform. In: Ruskai MB,

Gregory B and Ronald C (eds) Wavelets and Their

Applications. Boston, MA: Jones and Bartlett Publishers,

pp. 123–153.

Yoshida K (1965) Functional Analysis. Vol. 123, 1st ed.

Heidelberg: Springer–Verlag.

20 Journal of Vibration and Control

 at University Libraries | Virginia Tech on October 19, 2016jvc.sagepub.comDownloaded from 

http://jvc.sagepub.com/

