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ABSTRACT

Motivation: Increased availability of various genotyping techniques

has initiated a race for finding genetic markers that can be used in

diagnostics and personalized medicine. Although many genetic risk

factors are known, key causes of common diseases with complex

heritage patterns are still unknown. Identification of such complex

traits requires a targeted study over a large collection of data.

Ideally, such studies bring together data from many biobanks.

However, data aggregation on such a large scale raises many privacy

issues.

Results: We show how to conduct such studies without violating priv-

acy of individual donors and without leaking the data to third parties.

The presented solution has provable security guarantees.
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1 INTRODUCTION

Genome-wide association studies (GWAS) are one of the driving

reasons behind the formation of nationwide and privately funded

gene banks. Many chronic diseases and various cancer types are

known to have genetic disposition factors (Chakravarti and

Little, 2003; Lander and Schork, 1994). Although many under-

lying genetic signatures have been successfully identified for

Mendelian disorders (Hamosh et al., 2005), not many genetic

risk factors for complex diseases have been discovered and con-

firmed. GWAS have identified some risk factors for type II dia-

betes (Prokopenko et al., 2008) and for a few other common

diseases (Manolio et al., 2008; Wellcome Trust Case Control

Consortium, 2007). GWAS have been modestly successful in

pharmacogenetics (Grant and Hakonarson, 2007) and cancer

research (Varghese and Easton, 2010). The size and structure

of a study cohort are the main limiting factors in such studies,

as the individual impact of genomic differences is usually small.

Larger sample sizes increase the sensitivity of statistical tests and

make it possible to apply a wide range of data-mining methods

(Moore et al., 2010; Szymczak et al., 2009).
Ideally, studies should use nationwide and continent-wide pa-

tient cohorts. Formation of such cohorts is becoming feasible as

genotyping costs are rapidly decreasing (Hayden, 2010;

Pettersson et al., 2009). In addition to nationwide biobanks,

e.g. the UK Biobank, several personal genomics companies,

such as 23andMe and Navigenics, already possess large and di-

verse patient cohorts. Biobanks are also forming large collabor-

ation networks, such as P3G and HuGENet, to combine their

patient cohorts and improve study quality. Privacy of individual

gene donors is one of the biggest concerns in such projects. In

many countries, genotype data are classified as sensitive data that

can be handled by complying with specific restrictions, e.g.

HIPAA in the USA and the Data Protection Directive in the

European Union. These restrictions are justified, as a leak of

genetic information can cause genome-based discrimination

when more health-related patterns have been discovered.
Standard anonymization methods are not applicable to geno-

type data, as the data themselves are an ultimate identity code.

Only 30–80 out of 30 million single-nucleotide polymorphisms

(SNPs) are needed to uniquely identify a person (Lin et al., 2004).

Moreover, the size of online genotype databases for genealogy

studies, such as SGMF and YHRD, has made re-identification

of anonymized genotype data a real threat (Gymrek et al., 2013).

Re-identification attacks (Malin and Sweeney, 2000, 2002) based

on combining inferred phenotypes with public data become prac-

tical, as the list of known associations between genotype and

phenotypic traits (Hindorff et al., 2009) evolves. Finally,

Homer et al. (2008) showed that even aggregated pools of gen-

omic data can leak private information. Although follow-up stu-

dies (Visscher and Hill, 2009) softened initial claims, the threat

remains.

These findings created a debate whether one can promise priv-

acy of genotype data in consent forms at all (P3G Consortium

et al., 2009). In the following, we show how to set up an infra-

structure where the genotype data can be stored and processed so

that none of the peers involved in the process can reconstruct the

data, and thus the risk of accidental leaks and malicious data

abuse is greatly reduced. The data analysis algorithms are exe-

cuted in an oblivious manner so that only the desired outcome

is revealed to the user and nothing else. Differently from

well-known data perturbation and masking techniques

(Machanavajjhala et al., 2007; Sweeney, 2002), security guaran-

tees are cryptographic. These guarantees depend on the compu-

tational complexity of well-established mathematical problems

and not on the background knowledge of potential attackers.

As such, the presented methodology is applicable to protecting
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2 APPLICATION SCENARIOS

2.1 Privacy threats in medical studies

There are four principal groups of stakeholders in a typical med-

ical study: data donors, data collectors, data analysts and super-

visory organizations. Data donors consent to give their tissue

samples and record other types of medical data, e.g. various

questionnaires covering health issues. Data collectors are respon-

sible for gathering and storing the data and keeping the donors’

confidentiality. The baseline requirements are forced by the laws,

e.g. by the Genetic Information Nondiscrimination Act of 2008

in the USA. However, more stringent privacy guarantees can

reduce data donors’ fears about data abuse and increase the

participation rate.
Data collectors and supervisory organizations must guarantee

that the data analysts (researchers) meet privacy restrictions. The

confidentiality problem is somewhat smaller if the data analysts

are from the same institution as the data collectors. If the ana-

lysts are not part of the organization, usually confidentiality

agreements are signed between the parties. In most cases, col-

lected data are stored in several databases so that direct personal

information is not accessible to researchers. Instead, each patient

gets a (pseudo) random barcode that links different databases

together (De Moor et al., 2003). On rare occasions, databases are

merged either to identify specific persons or to form datasets

needed for medical research.

All such solutions provide only partial security guarantees for

data donors. Even if genetic data are stored separately and are

not directly accessible, they must be (partially) released before

the actual data analysis is carried out. Hence, a single fault by a

data analyst or an insider attack might effectively obliterate all

privacy guarantees. Therefore, compromises in confidentiality

are needed for the creation of worldwide data banks for the

scientific community.

These privacy issues are often alleviated with data perturb-

ation and agglomeration techniques. For instance, the National

Institutes of Health in the USA published the ratio of SNP alleles

of various case–control studies (Couzin, 2008) because it is es-

sentially impossible to split a DNA mixture back to individual

genotypes. However, it turned out that it is possible to detect

whether a specific person is in the mixture or not (Homer et al.,

2008). As case–control groups are often based on sensitive infor-

mation, the data had to be removed.
Such unexpected security breaches are common for ad hoc

perturbation or agglomeration methods because one often over-

looks the effect of potential background knowledge to security.

Although for certain problems perturbation and agglomeration

methods can provide provable security, their overall applicability

is limited and there are many known impossibility results

(Dwork, 2011).

2.2 A novel solution based on distributed storage

In this work, we propose a data collection system where sensitive

data are secret shared among several independent entities. In

brief, secret sharing assures that each party gets completely

random-looking data. However, when all parties pool the data

together sensitive values can be restored (see Fig. 1 for an ex-

ample of how secret sharing works). Depending on the exact

nature of the used secret sharing scheme, the privacy of shared

values is preserved even if some of the parties holding shares

collude (discussed further in the methods section). Hence, data

can be shared without the fear of unexpected disclosure.

Moreover, with the use of specific multi-party computation tech-

niques, computations on secret shared data can be carried out

without leaking any information (Bogdanov et al., 2008;

Damgård et al., 2009). As a result, one can deploy a distributed

computation environment that securely collects the data, does

oblivious computations and returns the desired end results.

Such systems have been successfully used for securing auctions

(Bogetoft et al., 2009) and analyzing financial data (Bogdanov

et al., 2012).
There are other cryptographically secure computation tech-

niques, e.g. (fully) homomorphic encryption. However, these

techniques are significantly slower and less feasible on the large

genome databases.
Figure 2 depicts the overall workflow of secure GWAS. The

core of such a system consists of three or more dedicated data

centers (hosts) that are assumed to be independent organizations.

For a worldwide study, these can be biobanks of different coun-

tries, regulatory authorities and patient interest groups. None of

them have to be unconditionally trusted as long as too many of

them do not collude with others. In particular, a successful attack

against one or two of the data centers leaks no information and

there even exists a recovery procedure from such attacks.
Genomic data are entered into the system by primary data

collectors, e.g. wetlabs or different biobanks who collect and

process the biological samples and who want to make joint ana-

lyses on shared data. For this operation, standard clinical proto-

cols for genotyping are sufficient for security. At the end of the

Compute
t1 = r1 + s1 mod 232

1) Take secret value x
2) Randomly generate r1

3) Randomly generate r2

4) r3 = x - r1 - r2 mod 232

1) Take secret value y
2) Randomly generate s1

3) Randomly generate s2

4) s3 = y - s1 - s2 mod 232

A
B

2 3

Compute
t3 = r3 + s3 mod 232

C Compute

result = t1+ t2+ t3 = (r1 + s1) + (r2 + s2) + (r3 + s3) mod 232

          = (r1 + s1) + (r2 + s2) + (x - r1 - r2 + y - s1 - s2) mod 232

          = (r1 - r1) + (s1 - s1) + (r2 - r2) + (s2 - s2) (r1 - r1) + (s1 - s1)

          + x + y mod 232  = x + y mod 232

r1
s3s2

s1
r2

r3

Compute
t2 = r2 + s2 mod 232

t1 t2 t3

1

Fig. 1. This figure illustrates how players A and B use a 3-out-of-3 addi-

tive secret sharing scheme to distribute two 32-bit integer values x and y

to shares. The shares are sent to three servers that use the homomorphic

property of the scheme to securely compute the sum of x and y. The

shares of the sum are sent to player C, who reconstructs the result

887

Privacy in large-scale genome-wide association studies

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/29/7/886/253610 by guest on 20 August 2022



stage, the data are secret shared and transferred securely to the

hosts.
Clinical data can be entered into the system either by the data

donors themselves or by primary data collectors. The data are

sent to the secure phenotype database in secret shared form to

ensure confidentiality. In the analysis stage, the data analyst

specifies the algorithm to be run on the secret shared data and

waits for the results. For GWAS, the analyst first forms case and

control groups. Next, the algorithm computes the necessary stat-

istics and, finally, it releases the loci that show a statistically

significant differentiation according to the specified case–control

groups. If the analyst wants to further examine a secured input

value, all parties hosting the system must agree to disclose the

respective shares.

2.3 Potential advantages and drawbacks

We acknowledge that standard security measures are sufficient

when the data are collected and analyzed by a single organiza-

tion. Still, long-term projects can benefit from distributed data

storage. First, a break-in into a data center yields no usable in-

formation. Second, splitting the data among independent organ-

izations gives additional guarantees for the data donors, e.g.

participants of commercial studies have no way of knowing

what happens to their data if the project goes bankrupt. If one
core center belongs to the state, participants know with greater

certainty that their data cannot be abused. Third, other sources

of private data can be incorporated into the analysis without
privacy leaks. In particular, medical institutions can use their

patient records to enhance analysis. The proposed solution pro-

vides a way to conduct the analysis so that neither the gene bank
nor the medical institution releases their data.

The benefits of our approach are evident in collaborative stu-
dies between independent biobanks. As nothing beyond the

desired test results are revealed during the computation, the so-

lution provides superior privacy guarantees compared with alter-
natives based on meta-analysis techniques (Wolfson et al., 2010),

where each biobank first computes local summaries that are col-

laboratively merged into a final result. As a result, only a few
summary values are disclosed. However, it is impossible to tell

what exactly can be inferred about concealed values. Moreover,

leakages of individual studies can cumulate as in DNA pools,
where aggregation of minuscule effects on SNP frequencies

allows us to make strong conclusions.
The biggest technical drawback of our solution is computa-

tional efficiency. As the data are secret shared between core
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Fig. 2. Secure GWAS consists of three major stages: data acquisition, formation of case–control groups and statistical testing. Panel (A) depicts how

these three stages are linked. Data are gathered and sent in securely coded shares to be stored. For statistical tests, case and control info is securely coded

and applied to the securely stored data so that statistical analyses can be carried out. Panel (B) describes two alternative scenarios that can be used for

secure storage of genotype and phenotype data. Scenario 1 depicts a situation where genotype data are entered into secure storage by the wetlab and

phenotype data are entered by the donors themselves. Scenario 2 depicts a case where different gene banks send selected genotype and phenotype data to

secure storage so they can make joint analyses on more data. Panel (C) describes how case and control groups can be formed. In the simplest case,

researches have unrestricted access to phenotype data and can thus form case and control groups by themselves. In more complex settings, researchers do

not have rights to access phenotype data, and hosts must use secure multi-party computations to construct case and control groups based on inclusion

criteria
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centers and each oblivious computation step requires network

communication, secure algorithms are several magnitudes

slower than their insecure counterparts. Hence, we set up a con-

trolled experiment to show that GWAS are feasible in our

setting.

Finally, note that legal restrictions can form a major obstacle,

as secret sharing is not as widely used as data encryption.

However, legal issues are out of our scope as we analyze only

the technological feasibility and potential advantages.

3 METHODS

3.1 Single-point analysis

The first step in GWAS is splitting individuals into case and control

groups. These groups are formed based on phenotypic traits, such as

presence and severity of disease. Although all four nucleotides can be

located in a SNP site, it is common to consider two alleles, where the

first one corresponds to the reference sequence and the other represents

potential mutations. Table 1 depicts the 2� 2 contingency table for allele

counts in case and control groups, where an allele is counted twice if it is

present in both DNA strands (is homozygous). The test statistic for the

standard �2 test is expressed as

T1 ¼
ðaþ bþ cþ dÞðbc� adÞ2

ðaþ bÞðaþ cÞðbþ dÞðcþ dÞ
ð1Þ

and the test statistic for equiproportionality of the allele A in both groups

is

T2 ¼
2ðbþ dÞðbc� adÞ2

bðaþ cÞ2d
ð2Þ

For reasonable sample sizes, both test statistics are distributed according

to �2 distribution with one degree of freedom. See the work of Visscher

and Hellard (2003) for further details.

These tests are accurate if the Hardy–Weinberg equilibrium condition

is satisfied for a particular SNP, whereas the Cochran–Armitage test for

trend can be used without this assumption. First, one must assemble the

2� 3 contingency table depicted in Table 2 and then compute the tests

statistic as

T3 ¼
N

m1m2
�

½
P2

i¼0

�iðrim2 � sim1Þ�
2

N �
P2

i¼0

�2i ni � ð
P2

i¼0

ni�iÞ
2

ð3Þ

where the weights �0,�1,�2 are chosen according to the suspected influ-

ence mechanism (usually �i ¼ i is an appropriate choice). As before, T3 is

approximately distributed according to �2 distribution with one degree of

freedom (Armitage, 1955; Sasieni, 1997).

Transmission disequilibrium test (TDT) is applicable only if the data

consist of parent–child trios. The test measures whether one homozygous

genotype is more over-represented than the other among affected children

with heterozygous parents. For that we must first select trios where both

parents have heterozygous genotype. Let u be the count of AA and v be

the count of BB genotypes among children. Then the corresponding

statistic

T4 ¼
ðu� vÞ2

uþ v
ð4Þ

is again approximately distributed according to �2 distribution with one

degree of freedom (Spielman et al., 1993). Compared with previous tests,

TDT is less sensitive to sampling artefacts but it also requires more

structured data.

3.2 Essentials of secure computing using secret sharing

A secure computation program is similar to a standard computer pro-

gram. The difference between the two is in how the data are stored and

processed. In a standard program, all values are processed publicly,

whereas in a secure computation program, it is possible to specify

which values are publicly visible and which are stored using techniques

like secret sharing. These values can be used in computations without

leaking their contents.

In our proposed solution, the data are secret shared between three or

more hosts. The hosts themselves are not able to understand the values

stored in their databases because each value looks like random noise

owing to secret sharing. However, it is not trivial to perform computa-

tions on secret shared values as special secure multi-party computation

protocols are required. The secure computation protocols used by the

hosts preserve the privacy of the data during computation. The genotype

data remain secure as long as the hosts do not share their databases of

shares with each other. Figure 1 shows how secure multi-party compu-

tation works with secret sharing.

Secure computation can be used to perform most data processing op-

erations. However, current solutions have some important differences

compared with standard programming: (i) floating-point operations are

significantly slower; (ii) comparison operations are slower than multipli-

cation and addition; (iii) parallel execution of several operations is faster

than sequential execution. Further details can be found in the

Supplementary Data and in the articles by Bogdanov et al. (2008);

Damgård et al. (2009) and Geisler (2010).

3.3 Secure storage of genotype data

Allele-level descriptions of genotypes are commonly stored as sequences

of pairs where each pair is encoded as AA, AB, BB or NN, corresponding

to a specific SNP. In GWAS, such data are converted into contingency

tables as described in Tables 1 and 2 depending on the analysis method

being used.

This kind of counting, however, requires the use of string comparison

operations that we would like to avoid, as they tend to be relatively slow

in the case of share computing. Therefore, we represent each SNP as a

pair of integers ðA,BÞ, where A counts the occurrences of the first allele

and B the occurrences of the second allele in that SNP. That is, pairs AA,

AB, BB, NN are encoded as (2,0), (1,1), (0,2), (0,0), respectively.

Table 2. Contingency table for the Cochran–Armitage test for trend

Group Allele AA Allele AB Allele BB Total

Cases r0 r1 r2 m1

Controls s0 s1 s2 m2

Total n0 n1 n2 N

Table 1. Contingency table for the standard �2 test

Group Allele A Allele B

Cases a c

Controls b d
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During the data collection phase, data donors, wetlabs or gene banks

must first convert genotypes into the form described above and then

secret share them between data hosts. As a result, we get a secret

shared database where each column corresponds to an individual

donor and there are two rows for each SNP (one for A and one for B).

For each donor, we also store an ID value that uniquely identifies them.

3.4 Secure formation of case–control groups

To hide the identities of case and control group members, secret shared

index vectors are used to specify the groups. An index vector x is a

zero-one vector, where xi corresponds to the i-th column in the database

and xi ¼ 1 if and only if the i-th person is a member of the group that

vector represents.

The two principal ways of how to construct case–control groups can be

seen in Figure 2 Panel C. In the first scenario, analysts have direct access

to clinical data for a set of donors and, thus, are able to select case and

control groups and construct index vectors. In the second scenario,

phenotype data are also stored in secret shared form. In this case, there

exists a secret shared database of phenotype attributes that consists of

boolean attributes (e.g. has diabetes) and integers (e.g. age, blood pres-

sure, height). To construct case and control groups, the analyst has to

specify a logical expression based on which the hosts perform the neces-

sary comparisons and output the two index vectors in secret shared form.

For simple inclusion criteria, such as the one we used for experiments

½ðage459 ^ age591Þ ^ bp � 160 ^ hasdiabetes ¼ yes�, the correspond-

ing secure comparison protocol is rather efficient.

3.5 Secure assembly of contingency groups

Let x and y be index vectors for case and control groups, respectively. Let

A and B be database columns for a particular SNP. Then the allele counts

needed for tests (1) and (2) can be expressed as

a ¼
Xn

i¼1

xiAi b ¼
Xn

i¼1

yiAi c ¼
Xn

i¼1

xiBi d ¼
Xn

i¼1

yiBi: ð5Þ

Data hosts can securely compute shares of a, b, c, d for each SNP.

For the second contingency table, AðA� BÞ ¼ 0 for allele combin-

ations AB, BB and NN. Similarly, BðB� AÞ ¼ 0 for AA, AB and NN

and A½4� ðA� BÞ2� ¼ 0 for AA, BB and NN. We can express counts as

4r0 ¼
Xn

i¼1

xiAiðAi � BiÞ 4s0 ¼
Xn

i¼1

yiAiðAi � BiÞ

4r1 ¼
Xn

i¼1

xiAi½4� ðAi � BiÞ
2
� 4s1 ¼

Xn

i¼1

yiAi½4� ðAi � BiÞ
2
�

4r2 ¼
Xn

i¼1

xiBiðBi � AiÞ 4s2 ¼
Xn

i¼1

yiBiðBi � AiÞ

ð6Þ

For TDT, we need to construct an index vector z for detecting heterozy-

gous parents, i.e. zi ¼ 0 if at least one parent is homozygous and zi ¼ 1

otherwise. As A � B ¼ 0 for homozygous allele combinations, we compute

zi ¼ ðAmother � BmotherÞ � ðAfather � BfatherÞ: ð7Þ

To get shares of u and v, we can combine z with counts of AA and BB.

3.6 Secure statistical testing

To determine whether a SNP is significant, one must check whether a

P-value that is associated with a test statistic is below a pre-described

significance level. Let � be the desired significance level and let T� be such

that PrðT � T�Þ ¼ � when T is distributed according to �2 distribution

with one degree of freedom. A SNP is significant only if the correspond-

ing test statistic is T�.

Direct evaluation of formulae (1)–(4) requires floating-point arith-

metic, which we would like to avoid. Hence, we must rewrite the equation

Ti � T� in terms of integer operations. Let T� be represented as a fraction

p/q and the test statistic as a fraction m/n. Then the condition Ti � T� is

equivalent to the condition mq � np. Both sides of this inequality can be

securely computed and the inequality can be evaluated by using secure

comparison operation, after which we can publish the comparison results

to find out which SNPs are significant.

The significance level must be determined considering the multiple

testing issue. The simplest way is to use Bonferroni correction, which is

a conservative measure. It is also possible to perform privacy-preserving

FDR correction. We estimate that the secure version of the standard

FDR procedure takes about 10 min to complete for 262 264 SNPs.

However, there are alternatives to the original algorithm that are signifi-

cantly faster; see the Supplementary Data for further details.

4 RESULTS

To demonstrate the feasibility of our approach, we used the

SHAREMIND multi-party computation platform (Bogdanov
et al., 2008) to implement core algorithms for GWAS. Our

choice was mainly motivated by the efficiency and ease of use

of the SHAREMIND platform. Alternative platforms [Viff

(Damgård et al., 2009) and FAIRPLAYMP (Ben-David et al.,

2008)] should give similar results.
We used 270 genotypes from the HAPMAP project

(International HapMap Consortium, 2003) measured with the
Affymetrix Mapping 500K Array as the main data source. In

each experiment, we divided the data randomly into case and

control groups and performed genome-wide search for highly

differentiated SNPs. For that we used cryptographically secure
counterparts of standard statistical tests used in GWAS: two �2

tests for independence (Visscher and Hellard, 2003), Cochran–

Armitage test for trend (Sasieni, 1997) and TDT (Spielman et al.,

1993). As our algorithms return exactly the same outputs as
original algorithms, we report only performance results for vari-

ous sub-tasks. To show the variability of running times, we

report the mean and standard deviation of four independent

runs.
Each of the donors has 262264 measured SNPs. First, we ran

the algorithm on the data of 270 donors, and then we went on to

test the data of 540, 810 and 1080 donors. We performed the
experiments on three servers running SHAREMIND. Each server

was an off-the-shelf server-grade machine with 48 GB RAM of

which less was used, twelve 2.93GHz Intel Xeon (Westmere)

cores of which two were used and a 1Gb/s local area network
(LAN) connection. At the moment, the network connection is

the bottleneck in terms of algorithm running time; however,

SHAREMIND has been successfully used in real applications

(Bogdanov et al., 2012).
The time spent on data acquisition and secure storage does not

depend on the statistical test used later on. It depends only on the
number of SNPs and the number of gene donors. The average

time it takes to encode and share the SNPs for the described case

can be seen in Table 3. Note that secret sharing and uploading

data are done only once for each dataset; hence, this is a single-
time cost.

The time needed to form case–control groups depends on the

application scenario. When the analyst has direct access to
phenotype data and can form case and control groups by her-

self/himself, then there is no computational overhead. In more

involved cases, the case and control groups must be constructed
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based on secret shared phenotype attributes. In this case, the

overhead depends on the complexity of inclusion criteria for

case and control groups. Filtering results presented in Table 3

show that formation of such groups can be done in seconds for

typical inclusion criteria that consist of simple comparison oper-

ations mixed with logical conjunctives.
The time needed to perform the statistical test depends on the

test, but in all cases it can be broken down into counting allele

frequencies and evaluating test statistic. As Tables 4 and 5 clearly

show, the main performance bottleneck is frequency counting,

which scales linearly w.r.t. the total number of SNP measure-
ments. As our encoding is optimized for �2 test, a better encod-

ing will enhance the performance of the Cochran–Armitage tests

but not beyond �2 results. The total duration of the analysis is

the sum of the frequency analysis and evaluation, as the other

parts have a negligible duration.
The presented results clearly show that cryptographically

secure evaluation of statistical tests on genome-wide scale is prac-

tically feasible. The expected running time is hours instead of a

few minutes when computed non-securely. However, the latter is

not a significant slowdown compared with the time needed to

acquire the data if the secure analysis method is not used.

5 DISCUSSION

Although the results prove the practical feasibility of crypto-

graphically secure GWAS, the solution is also notably more re-

source demanding than the alternatives. We have to analyze

further whether potential benefits outweigh costs. We consider

three potential application scenarios and contrast our approach

with the alternatives.

5.1 Collaboration between hospitals and biobanks

By now many countries have national or state-funded biobanks.
There are more than 40 state-governed biobanks in Europe (Zika

et al., 2010) and many others in Asia and America (Swede et al.,

2007). Thus, there is a huge potential for collaborative studies

between biobanks, hospitals and pharmaceutical companies. For

example, if a clinical study indicates that a treatment is ineffective

for a certain group of people, a genome-wide association study

can indicate whether a particular set of SNPs can be used to

predict efficacy of a treatment. In particular, GWAS have

shown that certain SNP mutations influence efficacy of treat-

ments for asthma, inflammatory bowel disease, coronary heart

disease and cancer (Grant and Hakonarson, 2007).
Privacy issues are the major obstacle in such studies: neither

biobanks nor research institutions can give out data without

explicit consent from the patients or explicit decision by a rele-

vant ethics committee. In such scenarios, secure GWAS can be

used as a pilot study for assessing potential benefits of combined

studies. In particular, there is no reason to merge the data for

further analysis if a secure GWAS reveals no differentially ex-

pressed SNPs. Because such a study can be conducted in a few

hours, it can significantly speed up pharmacogenetic studies and

the results can be used by ethics committees to make more sea-

soned decisions.

5.2 Servicing study data without privacy breaches

In many state-funded studies, collected data must be made ac-

cessible for public use by submitting them to a central repository.

The NIH example shows a direct publication of GWAS data

may cause unintended consequences even if the data are pre-

sented to the public in aggregated form (Couzin, 2008). One

potential solution is to set up an online web service for conduct-

ing GWAS: a researcher just posts inclusion criteria for case and

control groups and all computations are done by the host. In

most cases, such a solution is adequate without cryptographic

countermeasures. Privacy issues emerge only if researchers want

to pool together data from several different repositories to detect

weak associations or the inclusion criteria must remain private.

In these cases, secure GWAS methodology can be applied by

combining methods for international consortium studies with

phenotype-based filtering (see Fig. 2).

5.3 Faster and more secure consortium studies

One of the main hurdles in GWAS is the sample size. For rare

diseases, there are not enough genotyped patients to form a big

enough case group. Also, over- and under-representation of

sub-populations can cause spurious associations. Larger studies

Table 4. Performance results for three different frequency analyses

Number of donors �2 tests Cochran–Armitage TDT

270 donors 34� 5min 94� 2min 28� 6min

540 donors 69� 12min 204� 9min 58� 7min

810 donors 102� 15min 284� 16min 91� 11min

1080 donors 144� 34min 432� 50min 120� 11min

1080 donors

(non-secure)

14 s 35 s 11 s

Table 5. Performance results for four test evaluation methods

Number of donors �2 test 1 �2 test 2 Cochran–

Armitage

TDT

270 donors 26� 3 s 29� 3 s 57� 7 s 33� 8 s

540 donors 28� 5 s 28� 3 s 62� 4 s 55� 31 s

810 donors 30� 4 s 31� 3 s 55� 5 s 65� 29 s

1080 donors 35� 17 s 39� 19 s 63� 9 s 46� 9 s

1080 donors (non-secure) 21ms 20ms 49ms 11ms

Table 3. Performance results for data upload and filtering

Number of donors Upload Filtering

270 donors 12.0min 0.51 s

540 donors 17.3min 0.59 s

810 donors 23.2min 0.63 s

1080 donors 29.4min 0.68 s
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involving several international biobanks can diminish the impact

of such problems.
Two competing alternatives to our solution in this setting are

federated database systems with additional security mechanisms

and hierarchical aggregation of the data.

A federated database system offers middleware that automat-

ically binds together several sources and allows users to make

various queries without knowing how the data are organized. As

such, a federated database system does not solve privacy issues.

Hence, one needs an honest broker—a dedicated server with

strengthened security measures that assembles the data and pro-

cesses all queries (Boyd et al., 2007). The latter introduces a

single point of failure—nothing can be done if the security of

the honest broker is breached. Also, as the data are sent directly

to the honest broker, all biobanks must have explicit clearance

for releasing the data.
Hierarchical data aggregation is applicable when results of

individual studies can be combined with some meta-analysis

technique (e.g. Wolfson et al., 2010). In such cases, the honest

broker must access only aggregated summaries of individual data

sources to produce the desired result. Consequently, we get

stronger privacy guarantees, as the broker receives only a limited

amount of information. However, unexpected privacy breaches

can still occur because aggregation methods provide no explicit

security guarantees and it is extremely difficult to assess how

much information is leaked through summaries. Also, the ap-

proach cannot be used when members of case and control groups

must be kept secret.

In a nutshell, while the alternatives are faster than our solu-

tion, they are also much more vulnerable to various attacks, and

thus, privacy concerns can prevent their usage or considerably

delay the initial setup time. Moreover, hierarchical data aggre-

gation techniques can be combined with our solution. Namely,

our solution can be used to replace the honest broker—biobanks

secret share the aggregated results, and thus, fewer operations

must be done on shares. For the analysis part of GWAS,

the resulting hybrid algorithm will only take the time given in

Table 5 plus a little overhead, making the computation time

�30 s to 1 min as the filtering of case and control groups and

computation of contingency tables are done locally.

5.4 Long-term security in a personal genomic project

The rapid decrease of genotyping costs and moderate success in

genetic diagnostics have sparkled interest in personal genomics.

Companies, such as 23andMe, deCODEme and Navigenics,

offer personalized genotyping services. Although participants

have a right to withdraw their data at any moment, this right

is enforced only by physical and organizational methods. As a

consequence, a single successful outsider or insider attack can

obsolete all privacy guarantees. Numerous data leakages in

other areas have shown that this is an irreversible procedure.

Once data have leaked, there is no way to recall them. On a

shorter timescale, such events are highly improbable. However,

such projects need privacy guarantees that last more than 100

years to protect participants and their offspring. In such settings,

distributed storage based on secret sharing is one of the best

cryptographic alternatives, as a successful breach of security of

a single facility yields no information and it is possible to recover

from such events.
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