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Abstract

In recent years researchers have investigated a growing number of weighted heteroge-

neous networks, where connections are not merely binary entities, but are proportional to

the intensity or capacity of the connections among the various elements. Different degree

centrality measures have been proposed for this kind of networks. In this work we propose

weighted degree and strength centrality measures (WDC andWSC). Using a reducing fac-

tor we correct classical centrality measures (CD) to account for tie weights distribution. The

bigger the departure from equal weights distribution, the greater the reduction. These mea-

sures are applied to a real network of Italian livestock movements as an example. A simula-

tion model has been developed to predict disease spread into Italian regions according to

animal movements and animal population density. Model’s results, expressed as infected

regions and number of times a region gets infected, were related to weighted and classical

degree centrality measures. WDC andWSC were shown to be more efficient in predicting

node’s risk and vulnerability. The proposed measures and their application in an animal net-

work could be used to support surveillance and infection control strategy plans.

Introduction

Network analysis has been used as an explanatory tool to describe the evolution and spread of

ideas and innovations in societies [1]; observed social dynamics can often be understood

through the analysis of the social networks that underlie them. A network is a set of nodes

(actors), that could be individuals, organizations, holdings, administrative units, connected by

a set of ties, that can refer to friendship or communications or animal movements or trade.

Attention has been given to the nature of connections, particularly to properties such as

symmetry and transitivity (whether the friend of a friend is a friend), which together provide

measures of social cohesion [2,3]. In addition, measures of the importance of individuals have

also been derived, from the simplest (such as the number of connections) to the highly complex

(number of paths between other actors in which an individual features) [3,4].
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Ties between nodes can be considered in different ways when analyzing network structures.

A great number of studies have been conducted to find measures about the strength of connec-

tions and a variety of centrality measures (CM) have been developed for the quantification of

the interconnectedness of actors [5–11]. Degree centrality (DC) represents the simplest CM

and determines the number of direct contacts as an indicator of the a network node's intercon-

nectedness. The advantage of DC is the relatively easy interpretability and communicability of

the results [12]. It can be easily calculated because only what happens around a focal node is

needed.Other measures of centrality have been proposed to consider global network structure,

namely betweeness and closeness [6,13].

Most of the previous measures only concern networks based on the presence or absence of a

tie between two nodes (binary network), and when applied on weighted networks (in which an

attribute is used to weight the tie between nodes), a loss of information occurs [3,14].

An increasing number of studies have been focused on finding appropriate measures for

weighted networks [5,15,16].

In weighted networks the degree centrality is calculated as the sum of weights assigned to the

node’s direct connections and represents the node strength (Strength Centrality—SC). It is then

based on tie weights and not on the number of ties. The disadvantage is that two nodes with the

same strength, can be linked to a different number of nodes, and the initial information caught

by DC is lost when SC is calculated. To overcome this disadvantage a tuning parameter has

been defined to give relevance either to tie weights or number of ties alternatively [10].

In this work a new weighted DC (WDC) has been developed to account for tie weights dis-

tribution. This new measure has been applied to an animal movement network in Italy, where

nodes are administrative units (NUTS 2 level) and ties are animal movements. Considering the

same amount of links and the same amount of animals moved, in such a network it is possible

to find different situations: an ‘equal’ number of animals is dispatched to linked nodes; a high

number of animals is dispatched to a single linked node and only a few animals are distributed

among others. While the DC is the same in these two cases, the developedWDC is lower in the

last case providing a more proper measure of connectedness.

A number of studies have been carried out to analyse the networks of animal movements in

order to predict the spread of diseases or to optimise the control and surveillance strategies in

an outbreak situation [17–22]. These works showed the degree centrality measure (among the

known classical network centrality measures) to have a better ability to detect the central role

of holdings in the network of animal movements.

In this paper a disease spread has been simulated through the animal movement network,

testing how WDC (both in terms of in-degree and out-degree) led to a better estimate of nodes’

vulnerability and infecting capacity (risk) than DC values.

Material and Methods

To illustrate the concept underlying the new WDC calculation, three different situations with

the same DC and SC are illustrated: three focal nodes (X, Y, Z) may be connected to the same

number of nodes (DC = 5) with the same nodes’ strength (SC = 100), see Fig 1. But the strength

of each focal node can be distributed among linked nodes in different ways: uniformly (in case

of X node) or privileging only a fewer number of nodes (in case of Y and Z nodes). It is intuitive

the need to reduce the degree of Y and Z nodes in relation to the fact that 85% and 96% of the

weights concerns a relationship with only three and one of the linked nodes respectively.

The idea is to calculate a reducing factor (R) that doesn’t change the DC value when weights

(w) are uniformly distributed (node X) and reduces the original DC value accordingly to the

shift from the uniform condition (nodes Y and Z).
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The calculation method of the reducing factor (R) originates from the cumulative distribu-

tion of the percentage weights (Fc), for X, Y and Z nodes as illustrated in Fig 2.

The area under the Fc (AUC) decreases accordingly with the deviation from equal weight

distribution. Under uniformly distributed weights (node X) Fc is a straight line, with constant

slope equal to 1/DC and with AUC reaching the maximum. As Fc deviates from this straight

line, the AUC drops down consequently.

The behavior of Fc allows to calculate R as the ratio between the AUCFc and AUCmax:

R ¼ AUCFc

AUCmax

WDC ¼ R � DC
In such a way, when weights distribution is uniform AUCFc is equal to AUCmax, R becomes

1 and WDC is equal to DC.

In this way the original number of links is reduced and a more reliable number of links is

associated to each focal node.

As both SC and WDC can vary independently, the WSC is defined as their geometricmean,

so that if SC (or WDC) remains constant and WDC (or SC) rises, then WSC assumes a higher

value and vice versa:

WSC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SC �WDC
p

Formulas in AUCmax and AUCFc calculation

AUCmax is the area under the straight line with equation Fc ¼ x
DC

, with x ranging from 0 to DC,

thus:

AUCmax ¼
Z DC

0

x

DC
dx ¼ DC=2

Fig 1. Three examples of networks where classical measures of degree and strength give same results. Three different situations
with the same DC and SC are illustrated: three focal nodes (X, Y, Z) are connected to the same number of nodes (DC = 5) with the same
nodes’ strength (SC = 100). The strength of each focal node is distributed among linked nodes in different ways: uniformly (X node) or to a
fewer number of nodes (case Y and Z nodes).

doi:10.1371/journal.pone.0165781.g001
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The AUCFc is the sum of the areas AUCFc(i) under segments with different slopes for each

link i:

AUCFc ¼
X

DC

i¼1

AUCFcðiÞ

To calculate the area AUC Fc(i) the equation of each segment (line) is needed: A straight

line passing for 2 known points {(i-1); Fc(i-1)} and {i;Fc(i)}, is:

FcðxÞ � Fcði � 1Þ
FcðiÞ � Fcði � 1Þ ¼ x � ði� 1Þ

i� ði� 1Þ

Than solving for Fc(i):

FcðxÞ � Fcði � 1Þ ¼ ðx � iþ 1Þ
1

� ðFcðiÞ � Fcði � 1ÞÞ

Considering that:

FcðiÞ ¼
X

i

J¼1

fj

Fig 2. Empirical cumulative weights’ distribution (Fc) for nodes X, Y, Z.Graphical representation of the Area Under the Curve
AUCFc of weights relative to nodes X, Y and Z of Fig 1. The AUCFc(3), the area related to the first 3 links of Y node is highlighted in grey.

doi:10.1371/journal.pone.0165781.g002
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where:

fj ¼
wj

PDC

i¼1
wi

The previous equation becomes:

FcðiÞ �
X

i�1

J¼1

fj ¼ ðx � iþ 1Þ �
X

i

J¼1

fj �
X

i�1

J¼1

fj

 !

FcðxÞ ¼ ðx � iþ 1Þ � fi þ
X

i�1

J¼1

fj

Thus

AUCFcðiÞ ¼
Z i

i�1

ðx � iþ 1Þ � fi þ
X

i�1

J¼1

fj

 !

dx

¼ fi
2
þ
X

i�1

J¼1

fj

And

AUCFc ¼
X

DC

i¼1

AUCFcðiÞ ¼
X

DC

i¼1

fi
2
þ
X

i�1

J¼1

fj

 !

¼ 1

2

X

DC

i¼1

fi þ
X

DC

i¼1

X

i�1

J¼1

fj ¼
1

2
þ
X

DC

i¼1

X

i�1

J¼1

fj

As
XDC

i¼1
fi ¼ 1

And being

X

DC

i¼1

X

i�1

J¼1

fj ¼
X

DC�1

i¼1

X

i

J¼1

fj

AUCFc ¼
1

2
þ
X

DC�1

i¼1

FcðiÞ

To compute the new weighted degree measure, a custom function in R [23] has been

developed.

Dataset and network representation

Data on cattle trade movement used in the present study are obtained from the Italian National

Bovine Database (NBD). The database contains detailed data about movement of each animal.

Each movement record reported the unique identification code of the animal, the code of the

origin and destination holdings, and the date of movement. In addition the following attribute

for each holding were exported from the database: the holding type (farm, slaughterhouse,

market etc.), number of animals at the beginning of the year and the address. The dataset refers

to the year 2009.

The network was built from the data movement by aggregating at region level. Movements

towards slaughterhouses and to and from foreign countries have been removed from the dataset.

The resulting directedweighted network (IT2009) consists of 21 nodes (Italian regions) and

369 ties, where tie weight is defined by the number of live cattle moved from/to a region during

the year. The network has been represented by an adjacency matrix A whose elements [A]j,k
indicate whether pairs of nodes are adjacent or not in the network. In the special case of a finite
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weighted network, the adjacency matrix stores directly edge weights [24]. A is a 21x21 matrix.

An example of weighted network and the related weighted adjacency matrix is shown in Fig 3.

In Table 1 the symbology adopted throughout the text to define a generic matrix A is reported.

Model description

The disease spread on the network is modelled using a simple Susceptible-Infectious (SI) com-

partmental model [17,21,25]. Regions are the units of the process and are labelled as Suscepti-

ble or Infectious according to the stage of the disease. All regions are considered susceptible at

the beginning of the simulations, except for the single seeding node whose prevalence of ani-

mals moved (percentage of infected animals moved) is set to 5%.

The considered model is a stochastic process where an infectious node can transmit the dis-

ease along its outgoing ties to its neighboring susceptible nodes that in turn become infected.

The model uses a daily framework and movements are supposed to be uniform through the

year, hence daily number of animals moved are approximatively constant.

Defined the 21x2 matrix M, whose element [M]j,c represents the number of outgoing ani-

mals from region j, with sanitary state c (where c = 1 for infected an c = 2 for susceptible ani-

mals), infectedmoved animals [M]j,1 from node j is supposed to be binomial distributed at

each time-step t:

½M�j;1 � Binomial mj;
ij

Nj

 !

Fig 3. An example of weighted network and the related weighted adjacency matrix and transitionmatrix. The transition matrix
shows how the number of animals that come out from a node is distributed to the nodes with which it is connected.

doi:10.1371/journal.pone.0165781.g003

Table 1. Symbology adopted throughout the text to define a generic matrix A.

Symbol Definition

A Matrix A

[A]i,j Element in row i and column j of matrix A

Ai Row i of matrix A

Aj Column j of matrix A

doi:10.1371/journal.pone.0165781.t001
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And

½M�j;2 ¼ mj � ½M�j;1

Where:

mj is the number of moved animals from node j

ij is the number of infected animals in node j

Nj = sj + ij is the number of animals of node j derived from the total of susceptible (sj) and

infected (ij) animals in node j. Nj is the population at 01/01/2009 for the first time step.

The number of infected animals moved from a node j towards its neighbors is calculated by

a multinomial distribution of the number of infected animals moved from j towards a destina-

tion node and the percentage reported into the transition matrix T:

Ij � Multinomialð½M�j;1;TjÞ

Where I is the matrix whose elements [I]j,k represents infected animals moved from region j to

region k, and T is the row-standardized adjacency matrix ([T]j,k = [A]j,k /sum(Aj)). T reflects

how the number of animals outgoing from a node j is distributed to other nodes. An example

of transition matrix is shows in Fig 3.

Similarly for susceptible animals moved:

Sj � Multinomialð½M�j;2;TjÞ

At each time step, population dynamic of node j is describedby the following ODE’s sys-

tem:

dsj

dt
¼ sumðSjÞ � ½M�j;2

dij

dt
¼ sumðI jÞ � ½M�j;1

8

>

>

<

>

>

:

Each simulation was iterate 100 times and repeated for 21 scenarios, using a different region

as seeding node per each scenario and 365 time steps.

Measures evaluation in terms of vulnerability and risk

The classical and the new weighted centrality measures have been calculated on the IT2009

network. Considering that the network is direct, both in and out degree measures have been

calculated.

The spread model has been applied to the network to simulate infection across the regions.

At each simulation the number of infected nodes (seeding site excluded) and the number of

infected animals per region have been registered.

The model was run assuming two different population and movement conditions to better

evaluate differences between classical and new measures in terms of risk and vulnerability:

1. in the first condition we assume that all nodes have the same population size (using a fixed

value for each node set to 100000) and move the same number of animals (equal to 3,65% of

population) and model results are used for WDC and DC evaluation (when nodes have the

same strength the difference betweenWDC and DC is more evident and the ability of the

new measure to capture the role of the node based only on the network structure is

evaluated).

WDCMeasure for Animal Disease Epidemics
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2. in the second condition the model employs real values of population and number of moved

animals and model results are used for WSC and SC evaluation. Similarly a randomized net-

work, obtained by randomizing (network) structure and by conserving the node's weight,

was considered. Correlation between centrality measures and epidemic model results was

evaluated through non-parametric Kendall’s Tau correlation coefficient.

Results and Discussion

The classical and the new weighted centrality measures calculated on the IT2009 network data-

set revealed different patterns when compared. The new weighted measures showed a signifi-

cant difference in terms of nodes’ roles, not highlighted by the classical measures. In the case of

a high network density, as IT2009, these differences are particularly evident (density values of

region and holding level networks are 0.88 and 0.0000207 respectively),.

Fig 4 shows the spatial distribution of DCIN and WDCIN values. The WDCIN shows a

greater variability between regions than DCIN (the variation coefficient of WDCIN is 0.36 and

DCIN is 0.16). Moreover the differences between northern and southern regions arise.

For example the Friuli-Venezia-Giulia region is one of the regions in which DCIN and

WDCIN are particularly different (DCIN = 17 and WDCIN = 1.73). The WDCIN value reflects

that only few links cumulate up to 99% of the weights (just one link, Veneto region, has the

82% of the total weights).

As expected the correlation of the two measures is low as showed in Fig 5; for example, 5

regions that have the same value of 19 for out-degree, present a wide range of weight degree

values between 2 and 7.

Fig 4. DCIN andWDCIN values for IT2009 data. TheWDCIN (on the right) shows a more evident variability among regions than DCIN (on the left).
The scale bars report the DCIN andWDCIN values for each region. In case of Friuli-Venezia-Giulia region, in the north-east part of Italy, the two
measures are particularly different (DCIN = 17 andWDCIN = 1.73). Arrows representing in-going links are reported (17 regions), but only 5 regions
already cover the 99% of the weights (fi values are reported on the corresponding region).

doi:10.1371/journal.pone.0165781.g004
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Fig 6 shows the correlation values betweenmodel results and degree centrality measures

when it is assumed that all nodes have the same population size (first condition).

In the Fig 6(a) and 6(b) the correlation between the average number of infected nodes

(node’s risk) and DCOUT and WDCOUT is showed; the last two graphs (c) and (d) report the

correlation between the average number of times a node becomes infected (node’s vulnerabil-

ity) and the DCIN and WDCIN.

Fig 7 shows the correlation values betweenmodel results and the strength centrality mea-

sures when real values of population and number of moved animals (second condition) are

used. The correlation values are greater for the weighted measures in both risk of infection (Fig

7(b)) and vulnerability (Fig 7(d)) comparisons (0.8 and 0.85 respectively).

Table 2, following the example in Fig 4, reports data about incoming movements to Friuli

Venezia Giulia region for years 2008–2010 (percentage values) Both in previous and successive

years, the region tends to be related to the same regions and with the same intensity.

Although Italian regions tend over time to trade with same regions and the same number of

animal, at the least in percentages, the randomized network was considered and analyzed

Fig 5. Correlation between the twomeasures DC andWDC of the IT2009 network. The correlation shows a moderate agreement
between DC andWDC (0.55 ‘in’ and 0.31 ‘out’). For example, in 5 regions the same value of 19 for out-degree, is associated to a weighted
out degree range of 2–7 and vice-versa 5 regions with values of weighted out-degree between 2 and 2.5, have values of out-degree
ranging from 9 to 19.

doi:10.1371/journal.pone.0165781.g005
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Fig 8 shows the correlation values betweenmodel results and the strength centrality mea-

sures for the randomized network (second condition). The correlation values are greater for

the weighted measures in both risk of infection (Fig 8(b)) and vulnerability (Fig 8(d)) compari-

sons (0.7 and 0.45 respectively). It is worth to note that the correlation between the vulnerabil-

ity and the measures of centrality (both classical and weighted) is lower than the association

between the risk of infection and the weighted degree.

The identification of a new weighted degreemeasure arises from the need to consider the

number of ties and tie weights simultaneously in order to correctly estimate the centrality of

each actor within a weighted network. Opsahl et al 2010 proposed measures including a tuning

parameter to control the relative importance of these two aspects. This parameter, varying

from 0 to 1, needs to be subjectively set to give more importance either to the number of ties or

Fig 6. Correlation between simulationmodel results and degree centrality measures in the assumption that all
nodes have the same population size. In the upper side of the figure the correlation between the node’s risk (the mean
number of infected nodes) and DCOUT (a) andWDCOUT (b) is showed; the last two graphs report the correlation between
node’s vulnerability (the mean number of times a node gets infected) and the DCIN (c) andWDCIN (d).

doi:10.1371/journal.pone.0165781.g006
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to tie weights. To overcome the subjectivity of the use of this parameter, the new proposed

weighted degree measure is objectively calculated. In the case study proposed in this work, the

weighed degree is a number of ties that includes, on average, the 90% of the animals moved.

The worst case in terms of equal weight distribution occurs when all weights are equal to 1

for DC-1 links. The equation becomes:AUCFc ¼ 1

2
þ 1

SC
�
XDC�1

i¼1
i

Fig 7. Correlation betweenmodel results and the strength centrality measures in the assumption that real values
of population and number of moved animals are adopted. In the upper side of the figure the correlation between the
node’s risk (the mean number of infected nodes) and SCOUT (a) andWSCOUT (b) is showed; the last two graphs report the
correlation between node’s vulnerability (the mean number of times a node gets infected) and the SCIN (c) andWSCIN(d).

doi:10.1371/journal.pone.0165781.g007

Table 2. Animals moved to Friuli-Venezia-Giulia region (percentages) in years 2008 to 2010.

VENETO LOMBARDY SOUTH TYROL TRENTINO PIEDMONT OTHER REGIONS

2008 81% 5% 7% 2% 2% 3%

2009 82% 8% 7% 1% 1% 1%

2010 81% 8% 6% 3% 1% 1%

doi:10.1371/journal.pone.0165781.t002
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This highlights that varying SC and DC in their domain, different R values can be obtained,

as reported in Table 3. When DC is equal to 2 the reduction factor R has a range between 0.5

and 0.8, never getting values less than 0.5; when DC approaches infinity, R approaches 0, this

being the maximum difference between the standard and new weighted centrality measure.

Therefore the new weighted measure best captures the characteristics of a node in a highly

connectedweighted network.

As shown in Fig 5, the differences between the weighted and classical measures are even

more pronounced for higher DC values. WDC could be used for the detection of high-risk

holdings, both for contracting and spreading an infectionwithin the network, and their

removal, e.g. by trade restrictions or selective vaccination or culling, can efficiently change the

network structure decomposing it into fragments so that infection chain is interrupted.

Fig 8. Correlation betweenmodel results and the strength centrality measures for the randomized network. In
the upper side of the figure the correlation between the node’s risk (the mean number of infected nodes) and SCOUT (a)
andWSCOUT (b) is showed; the last two graphs report the correlation between node’s vulnerability (the mean number of
times a node gets infected) and the SCIN (c) andWSCIN(d).

doi:10.1371/journal.pone.0165781.g008
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Although the region level network has been used throughout the paper, the Italian holding

level network has been considered to evaluate node targeted selection based on proposed mea-

sures. Italian network at holding level consists of 122,702 nodes. In case of a disease control

strategy based on targeted selection, centrality measures can be used. The selection of the

nodes with degree value greater than the 95% percentile leads to 6,530 nodes using DC and

6,136 using WDC selection. The number of nodes common to both the measures are 5,148

nodes that correspond to a potential reduction of 21%.

A centrality measure that takes into account the heterogeneity of the connections within a

real network of animal movements, allows then a more precise and accurate identification of

the crucial nodes for the spread of an epidemic disease. This identification leads to a targeted

surveillancewith consequent reduction of costs and a better allocation of resources.
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