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Abstract. In 1986, Irvine, Marin, and Smith proposed a Newton-type method for shape-
preserving interpolation and, based on numerical experience, conjectured its quadratic convergence.
In this paper, we prove local quadratic convergence of their method by viewing it as a semismooth
Newton method. We also present a modification of the method which has global quadratic conver-
gence. Numerical examples illustrate the results.
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1. Introduction. Given nodes a = t1 < t2 < · · · < tN+2 = b and values
yi = f(ti), i = 1, . . . , N + 2, N ≥ 3, of an unknown function f : [a, b] → R, the
standard interpolation problem consists of finding a function s from a given set S of
interpolants such that s(ti) = yi, i = 1, . . . , N +2. When S is the set of twice contin-
uously differentiable piecewise cubic polynomials across ti, we deal with cubic spline
interpolation. The problem of cubic spline interpolation can be viewed in various
ways; the closest to this paper is the classical Holladay variational characterization,
according to which the natural cubic interpolating spline can be defined as the unique
solution of the following optimization problem:

min ‖f ′′‖2 subject to f(ti) = yi, i = 1, . . . , N + 2,(1)

where ‖ · ‖ denotes the norm of L2[a, b]. With a simple transformation, this problem
can be written as a nearest point problem in L2[a, b]: find the projection of the origin
on the intersection of the hyperplanes{

u ∈ L2[a, b] |
∫ b

a

u(t)Bi(t)dt = di, i = 1, . . . , N

}
,

where Bi are the piecewise linear normalized B-splines with support [ti, ti+2] and di
are the second divided differences.
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Since the mid ’80s, after the ground-breaking paper of Micchelli et al. [15], the
attention of a number of researchers has been attracted to spline interpolation prob-
lems with constraints. For example, if we add to problem (1) the additional constraint
f ′′ ≥ 0, we obtain a convex interpolation problem; provided that the data are “con-
vex,” then a convex interpolant “preserves the shape” of the data. If we add the
constraint f ′ ≥ 0, we obtain a monotone interpolation problem. Central to our analy-
sis here is a subsequent paper by Irvine, Marin, and Smith [11], who rigorously defined
the problem of shape-preserving spline interpolation and laid the groundwork for its
numerical analysis. In particular, they proposed a Newton-type method and, based
on numerical examples, conjectured its fast (quadratic) theoretical convergence. In
the present paper we prove this conjecture.

We approach the problem of Irvine, Marin, and Smith [11] in a new way, by
using recent advances in optimization. It is now well understood that, in general,
the traditional methods based on standard calculus may not work for optimization
problems with constraints; however, such problems can be reformulated as nonsmooth
problems that need special treatment. The corresponding theory emerged already in
the ’70s, championed by the works of R. T. Rockafellar and his collaborators, and is
now becoming a standard tool for more and more theoretical and practical problems.
The present paper is an example of how nonsmooth analysis can be applied to solve
a problem from numerical analysis that hasn’t been solved for quite a while.

Before stating the problem of shape-preserving interpolation that we consider in
this paper, we briefly review the result of nonsmooth analysis which provides the basis
for this work.

For a locally Lipschitz continuous function G : Rn → Rn, the generalized Jaco-
bian ∂G(x) of G at x in the sense of Clarke [2] is the convex hull of all limits obtained
along sequences on which G is differentiable:

∂G(x) = co

{
lim
xj→x

∇G(xj) | G is differentiable at xj ∈ Rn

}
.

The generalized Newton method for the (nonsmooth) equation G(x) = 0 has the
following form:

xk+1 = xk − V −1
k G(xk), Vk ∈ ∂G(xk).(2)

A function G : Rn → Rm is strongly semismooth at x if it is locally Lipschitz and
directionally differentiable at x, and for all h → 0 and V ∈ ∂G(x + h) one has
G(x+ h)−G(x)− V h = O(‖h‖2).

The local convergence of the generalized Newton method for strongly semismooth
equations is summarized in the following fundamental result, which is a direct gener-
alization of the classical theorem of quadratic convergence of the Newton method.

Theorem 1.1 (see [16, Theorem 3.2]). Let G : Rn → Rn be strongly semismooth
at x∗ and let G(x∗) = 0. Assume that all elements V of the generalized Jacobian
∂G(x∗) are nonsingular matrices. Then every sequence generated by the method (2)
is q-quadratically convergent to x∗, provided that the starting point x0 is sufficiently
close to x∗.

In the remaining part of the introduction we review the method of Irvine, Marin,
and Smith [11] for shape-preserving cubic spline interpolation and also briefly discuss
the contents of this paper. Let {(ti, yi)}N+2

1 be given interpolation data and let
di, i = 1, 2, . . . , N , be the associated second divided differences. Throughout the
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paper we assume that di �= 0 for all i = 1, . . . , N ; we will discuss this assumption
later. Define the following subsets Ωi, i = 1, 2, 3, of [a, b]:

Ω1 := {[ti, ti+1]| di−1 > 0 and di > 0},
Ω2 := {[ti, ti+1]| di−1 < 0 and di < 0},
Ω3 := {[ti, ti+1]| di−1di < 0}.

Also, let

[t1, t2] ⊂
{
Ω1 if d1 > 0,
Ω2 if d1 < 0,

[tN+1, tN+2] ⊂
{
Ω1 if dN > 0,
Ω2 if dN < 0.

The problem of shape-preserving interpolation as stated by Micchelli et al. [15] is as
follows:

minimize ‖f ′′‖2(3)

subject to f(ti) = yi, i = 1, 2, . . . , N + 2,

f ′′(t) ≥ 0, t ∈ Ω1, f ′′(t) ≤ 0, t ∈ Ω2,

f ∈ W 2,2[a, b].

HereW 2,2[a, b] denotes the Sobolev space of functions with absolutely continuous first
derivatives and second derivatives in L2[a, b]. The inequality constraint on the set Ω1

(resp., Ω2) means that the interpolant preserves the convexity (resp., concavity) of
the data; for more details, see [11, p. 137].

Micchelli et al. [15, Theorem 4.3] showed that the solution of the problem (3)
exists and is unique, and its second derivative has the following form:

f ′′(t) =

(
N∑
i=1

λiBi(t)

)
+

XΩ1(t)−
(

N∑
i=1

λiBi(t)

)
−
XΩ2(t)(4)

+

(
N∑
i=1

λiBi(t)

)
XΩ3(t),

where λ = (λ1, . . . , λN )
T is a vector in RN , a+ = max{0, a}, (a)− = (−a)+, and

XΩ is the characteristic function of the set Ω. This result can also be deduced, as
shown first in [4], from duality in optimization; specifically, here λ is the vector of
the Lagrange multipliers associated with the equality (interpolation) constraints. For
more on duality in this context, see the discussion in our previous paper [5]. In short,
the optimality condition of the problem dual to (3) has the form of the nonlinear
equation

F (λ) = d,(5)

where d = (d1, . . . , dN )
T and the vector function F : RN → RN has components

Fi(λ) =

∫
[ti,ti+2]∩Ω1

(
N∑
l=1

λlBl(t)

)
+

Bi(t)dt−
∫

[ti,ti+2]∩Ω2

(
N∑
l=1

λlBl(t)

)
−
Bi(t)dt
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+

∫
[ti,ti+2]∩Ω3

(
N∑
l=1

λlBl(t)

)
Bi(t)dt, i = 1, 2, . . . , N.(6)

Irvine, Marin, and Smith [11] proposed the following method for solving equation
(5): Given λ0 ∈ RN , λk+1 is a solution of the linear system

M(λk)(λk+1 − λk) = −F (λk) + d,(7)

where M(λ) ∈ RN×N is the tridiagonal symmetric matrix with components

(M(λ))ij =

∫ b

a

P (λ, t)Bi(t)Bj(t)dt.

Here

P (λ, t) :=

(
N∑
l=1

λlBl(t)

)0

+

XΩ1(t) +

(
N∑
l=1

λlBl(t)

)0

−
XΩ2

(t) + XΩ3
(t),(8)

where

(τ)0+ :=

{
1 if τ > 0,
0 otherwise,

(τ)0− := (−τ)0+.

Since the matrix M resembles the Jacobian of F (which may not exist for some λ,
and then M is a kind of “directional Jacobian,” more precisely, as we will see later,
an element of the generalized Jacobian), the method (7) has been named the Newton
method. It was also observed in [11] that the Newton-type iteration (7) reduces to
M(λk)λk+1 = d; that is, no evaluations of the function F are needed during iterations.

In our previous paper [5], we considered the problem of convex spline interpola-
tion, that is, with Ω1 = [a, b], and proved local superlinear convergence of the corre-
sponding version of the Newton method (7). In a subsequent paper [6], by a more
detailed analysis of the geometry of the dual problem, we obtained local quadratic
convergence of the Newton method, again for convex interpolation. In this paper, we
consider the shape-preserving interpolation problem originally stated in Irvine, Marin,
and Smith [11] and prove their conjecture that the method is locally quadratically
convergent. As a side result, we observe that the solution of the problem considered
is Lipschitz continuous with respect to the interpolation values. In section 3 we give
a modification of the method which has global quadratic convergence. Results of
extensive numerical experiments are presented in section 4.

As for related results, the conjecture of Irvine, Marin, and Smith [11] was proved
in [1] under an additional condition which turned out to be equivalent to smoothness
of the function F in (5). Also, a positive answer to this conjecture without additional
assumptions was announced in [10], but a proof was never made available to us.

2. Local quadratic convergence. For notational convenience, we introduce a
“dummy” node t0 with corresponding λ0 = 0 and B0(t) = 0; then, for every i, the

sum
∑N

l=1 λlBl(t) restricted to [ti, ti+1] has the form λi−1Bi−1(t)+λiBi(t). Our first
result concerns continuity and differentiability properties of the function F defined in
(6).

Lemma 2.1. The function F with components defined in (6) is strongly semi-
smooth.
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Proof. The claim is merely an extension of [6, Proposition 2.4], where it is proved
that the functions∫ ti+1

ti

(
N∑
l=1

λlBl(t)

)
+

Bi(t)dt,

∫ ti+2

ti+1

(
N∑
l=1

λlBl(t)

)
+

Bi(t)dt,

and ∫ ti+2

ti

(
N∑
l=1

λlBl(t)

)
+

Bi(t)dt

are strongly semismooth. Hence the function

∫
[ti,ti+2]∩Ω1

(
N∑
l=1

λlBl(t)

)
+

Bi(t)dt

is strongly semismooth by noticing that

[ti, ti+2] ∩ Ω1 ∈ {[ti, ti+1], [ti+1, ti+2], [ti, ti+2], ∅} .
We note that the function∫

[ti,ti+2]∩Ω3

(
N∑
l=1

λlBl(t)

)
Bi(t)dt

is linear and therefore is strongly semismooth. Since either [ti, ti+2] ∩ Ω1 = ∅ or
[ti, ti+2] ∩ Ω2 = ∅, Fi is given either by

Fi(λ) =

∫
[ti,ti+2]∩Ω1

(
N∑
l=1

λlBl(t)

)
+

Bi(t)dt(9)

+

∫
[ti,ti+2]∩Ω3

(
N∑
l=1

λlBl(t)

)
Bi(t)dt

or by

Fi(λ) = −
∫

[ti,ti+2]∩Ω2

(
N∑
l=1

λlBl(t)

)
−
Bi(t)dt(10)

+

∫
[ti,ti+2]∩Ω3

(
N∑
l=1

λlBl(t)

)
Bi(t)dt.

A composite of strongly semismooth functions is strongly semismooth [8, Theorem
19]. Hence the function Fi by (9) is strongly semismooth. If Fi is given by (10), then

Fi(λ) = −
∫

[ti,ti+2]∩Ω2

(
−

N∑
l=1

λlBl(t)

)
+

Bi(t)dt+

∫
[ti,ti+2]∩Ω3

(
N∑
l=1

λlBl(t)

)
Bi(t)dt.

Again from [8, Theorem 19], the first part of Fi is strongly semismooth, which in turn
implies the strong semismoothness of Fi. We conclude that F is strongly semismooth
since each component of F is strongly semismooth.
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If the integral over [a, b] of the piecewise linear function (
∑N

l=1 λlBl(t))+ in λ were
piecewise smooth, then one would automatically obtain that F is strongly semismooth.
Furthermore, in this case quadratic convergence of the Newton method would follow
directly from [13]. The following example of dimension 2 shows that such an argument
does not work. Let

f(λ1, λ2) =

∫ 1

0

((1− t)λ1 + tλ2)+ dt.

Direct calculation shows that f is continuously differentiable everywhere except at
the origin (0, 0). A result due to Rockafellar [17] says that any function from Rn to
R with n ≥ 2, which is continuously differentiable everywhere but one point, could
not be piecewise smooth. Hence the function above is not piecewise smooth.

In order to apply Theorem 1.1, we next prove thatM(λ) ∈ ∂F (λ) for any λ ∈ RN

and that V is nonsingular for any V ∈ ∂F (λ∗), where λ∗ is the unique solution of (5).
Lemma 2.2. For any λ ∈ RN , M(λ) ∈ ∂F (λ).
Proof. Let λ ∈ RN be arbitrarily chosen (but fixed) and let

T (λ) :=

{
t ∈ Ω1 ∪ Ω2 |

N∑
l=1

λlBl(t) = 0

}
, T̄ (λ) := (Ω1 ∪ Ω2) \ T (λ).

Suppose [ti, ti+1] ⊂ Ω1 ∪ Ω2 for some i. Due to the form of Bi, the restriction of

(
∑N

l=1 λlBl(t)) to [ti, ti+1] becomes (λi−1Bi−1(t) + λiBi(t)), i.e.,

N∑
l=1

λlBl(t)
∣∣
[ti,ti+1] = λi−1Bi−1(t) + λiBi(t).

Then

T (λ)
∣∣
[ti,ti+1] =

{
[ti, ti+1] if λi−1 = λi = 0,
t∗i otherwise,

(11)

where t∗i is a point in [ti, ti+1]. Hence T (λ) contains closed intervals of the form
[ti, ti+1] and finitely many isolated points. For i = 1, . . . , N , define

F−
i (ξ) :=

∫
T (λ)∩Ω1

(
N∑
l=1

ξlBl(t)

)
+

Bi(t)dt−
∫
T (λ)∩Ω2

(
N∑
l=1

ξlBl(t)

)
−
Bi(t)dt,

F+
i (ξ) :=

∫
T̄ (λ)∩Ω1

(
N∑
l=1

ξlBl(t)

)
+

Bi(t)dt−
∫
T̄ (λ)∩Ω2

(
N∑
l=1

ξlBl(t)

)
−
Bi(t)dt

+

∫
Ω3

(
N∑
l=1

ξlBl(t)

)
Bi(t)dt,

and let F−(ξ) := (F−
1 (ξ), . . . , F

−
N (ξ))

T , F+(ξ) := (F+
1 (ξ), . . . , F

+
N (ξ))

T . Then for any
ξ ∈ RN , we have

F (ξ) = F−(ξ) + F+(ξ),

and it follows from (11) that F+ is continuously differentiable in a neighborhood of
λ, say U(λ). From the definition of the generalized Jacobian we obtain that for any
ξ ∈ U(λ),

∂F (ξ) = ∂F−(ξ) +∇F+(ξ),(12)
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where ∇F+(ξ) is the Jacobian of F+ at ξ ∈ U(λ) given by

(∇F+(ξ)
)
ij
=

∫
T̄ (λ)



(

N∑
l=1

ξlBl(t)

)0

+

XΩ1(t) +

(
N∑
l=1

ξlBl(t)

)0

−
XΩ2(t)


Bi(t)Bj(t)dt

+

∫ b

a

Bi(t)Bj(t)XΩ3(t)dt.(13)

Since

N∑
l=1

λlBl(t) = 0 for all t ∈ T (λ),

(13) becomes

(∇F+(λ)
)
ij
=

∫ b

a

P (λ, t)Bi(t)Bj(t)dt.(14)

We will next prove that every element in ∂F−(λ) is positive semidefinite. In
particular, the zero matrix belongs to ∂F−(λ). Define θ : RN → R as

θ(ξ) :=
1

2

∫
T (λ)∩Ω1

(
N∑
l=1

ξlBl(t)

)2

+

dt+
1

2

∫
T (λ)∩Ω2

(
N∑
l=1

ξlBl(t)

)2

−
dt.

The function θ is a continuously differentiable convex function, and its gradient is
equal to F−(ξ). Then the positive semidefiniteness of the elements of ∂F−(λ) follows
from the fact that any matrix in the generalized Jacobian of the gradient of a convex
function must be symmetric and positive semidefinite. Because isolated points make
no contribution to θ(ξ), we assume without loss of generality that T (λ) contains only
intervals of the form [ti, ti+1]. Let

I1 := {i ∈ {1, . . . , N}| [ti, ti+1] ⊂ T (λ) ∩ Ω1},
I2 := {i ∈ {1, . . . , N}| [ti, ti+1] ⊂ T (λ) ∩ Ω2}.

Then

θ(ξ) =
1

2

∑
i∈I1

∫ ti+1

ti

(ξi−1Bi−1(t)+ξiBi(t))
2
+dt+

1

2

∑
i∈I2

∫ ti+1

ti

(ξi−1Bi−1(t)+ξiBi(t))
2
−dt.

Now define e = (e1, . . . , eN )
T by

ei−1 = ei = 1 for i ∈ I1, ei−1 = ei = −1 for i ∈ I2,

and zero for the remaining components. We note that e is well defined since for any
i ∈ {1, . . . , N}, [ti, ti+2]∩Ω1 = ∅ or [ti, ti+2]∩Ω2 = ∅. Then F−(λ−τe) is differentiable
for all τ > 0 because

N∑
l=1

(λ− τe)lBl(t)

{
< 0 for t ∈ T (λ) ∩ Ω1 and τ > 0,
> 0 for t ∈ T (λ) ∩ Ω2 and τ > 0.
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Hence

lim
τ→0

∇F−(λ− τe) = 0 ∈ ∂F−(λ).

We are ready to complete the proof of the lemma. From (14) we have ∇F+(λ) =
M(λ). Since the zero matrix belongs to ∂F−(λ), we get M(λ) ∈ ∂F (λ) from
(12).

If λ∗ is the solution of (5), we are able to show a stronger result about the
generalized Jacobian of F at λ∗.

Lemma 2.3. If λ∗ is the solution of (5), then every element of ∂F (λ∗) is positive
definite.

Proof. We have already shown in the preceding proof that

∂F (λ∗) = ∂F−(λ∗) +∇F+(λ∗),

and every element in ∂F−(λ∗) is positive semidefinite. Thus, it is sufficient to prove
that ∇F+(λ∗) is positive definite; that is, M(λ∗) is positive definite. We use a result
from [11, p. 138] which says that if P (λ) does not vanish identically on any [ti, ti+2],
i = 1, . . . , N , then M(λ) is positive definite. On the contrary, suppose that P (λ∗)
vanishes on, say, [ti, ti+2]. Then [ti, ti+2] ∩ Ω3 = ∅ and

0 �= di = Fi(λ
∗) =

∫
[ti,ti+2]∩Ω1

(
N∑
l=1

λ∗lBl(t)

)
+

Bi(t)dt

−
∫

[ti,ti+2]∩Ω2

(
N∑
l=1

λ∗lBl(t)

)
−
Bi(t)dt = 0.

The obtained contradiction completes the proof.
By combining the above lemmas and applying Theorem 1.1, we obtain the main

result of this paper which settles the question posed in [11].
Theorem 2.4. Let λ∗ be the solution of (5), and let all second divided differences

di be nonzero. Then the method (7) is well defined, and the sequence generated by
this method converges quadratically to λ∗ if the starting point λ0 is sufficiently close
to λ∗.

Proof. The method (7) is a particular case of the generalized Newton method (2)
for (5) inasmuch asM(λ) ∈ ∂F (λ) (Lemma 2.2). Moreover, F is strongly semismooth
at λ∗ (Lemma 2.1), and every element in ∂F (λ∗) is nonsingular (Lemma 2.3). Hence
all conditions in Theorem 1.1 are satisfied, and we obtain the claim.

Remark 2.5. As a side result, from Lemma 2.3 and the Clarke inverse function
theorem [2, Theorem 7.1.1], we obtain that the solution of the problem (3) is a Lip-
schitz continuous function of the interpolation values yi. Indeed, since the generalized
Jacobian ∂F (λ∗) is nonsingular, where λ∗ is the optimal multiplier associated with the
solution f∗, the map F−1 is, locally around d∗ = F (λ∗), single-valued and Lipschitz
continuous. Thus for d close to d∗ there exists a unique solution λ(d) to (5), and the
function d �→ λ(d) is Lipschitz continuous. It remains to observe that d is linear in
y and, from (4), f ′′ is a Lipschitz continuous function of λ in the supremum norm of
C[a, b]. Thus the mapping “interpolation values y �→ solution of (3)” is a Lipschitz
continuous function from y ∈ RN+2 to the space C2[a, b] equipped with the supremum
norm. This result could be further strengthened with respect to differentiability of
the solution, but we shall not go into this here.
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3. Global convergence. In this section we give a damped version of algorithm
(7) by using the following merit function:

L(λ) =
1

2

∫ b

a

(
N∑
l=1

λlBl(t)

)2

+

XΩ1(t)dt+
1

2

∫ b

a

(
N∑
l=1

λlBl(t)

)2

−
XΩ2(t)dt(15)

+
1

2

∫ b

a

(
N∑
l=1

λlBl(t)

)2

XΩ3(t)dt−
N∑
l=1

λldl.

From the very definition, this function is convex and continuously differentiable, with
∇L(λ) = F (λ)− d.

Recall that a function ϕ : RN → R is coercive (also called inf-compact) if for
every c ∈ R its level set

Lϕ(c) = {x ∈ RN | ϕ(x) ≤ c}

is bounded. In the proposition below we will show that the function L in (15) is
coercive. To begin with, we define three index sets

I+ := {i ∈ {1, . . . , N}| [ti, ti+1] ⊂ Ω1},
I− := {i ∈ {1, . . . , N}| [ti, ti+1] ⊂ Ω2},
I0 := {i ∈ {1, . . . , N}| [ti, ti+1] ⊂ Ω3}

and associate with them the following function:

L̂(λ) :=
1

2

∑
i∈I+

∫ ti+1

ti

(
N∑
l=1

λlBl(t)

)2

+

dt+
1

2

∑
i∈I−

∫ ti+1

ti

(
N∑
l=1

λlBl(t)

)2

−
dt

+
1

2

∑
i∈I0

∫ ti+1

ti

(
N∑
l=1

λlBl(t)

)2

dt−
N∑
l=1

λldl.

Observe that, from the definition of the sets Ωi, i = 1, 2, 3, for any i ∈ {1, . . . , N}, we
have [ti, ti+2] ∩ Ω1 = ∅ or [ti, ti+2] ∩ Ω2 = ∅. For a fixed i this implies

i ∈ I+ =⇒
{

i− 1 ∈ I+ or i− 1 ∈ I0,
i+ 1 ∈ I+ or i+ 1 ∈ I0

(16)

and

i ∈ I− =⇒
{

i− 1 ∈ I− or i− 1 ∈ I0,
i+ 1 ∈ I− or i+ 1 ∈ I0.

(17)

Also, observe that

L̂(λ) =
1

2

∫ tN+1

a

(
N∑
l=1

λlBl(t)

)2

+

XΩ1
(t)dt+

1

2

∫ tN+1

a

(
N∑
l=1

λlBl(t)

)2

−
XΩ2

(t)dt

+
1

2

∫ tN+1

a

(
N∑
l=1

λlBl(t)

)2

XΩ3(t)dt−
N∑
l=1

λldl ≤ L(λ).
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Thus, if we show the coercivity of L̂, the coercivity of L will follow. In the proposition
below we use the index set

Ī0 := {1, . . . , N} \ ∪i∈I0{i− 1, i}
and the following four sets in RN :

V0 := {v ∈ RN | vi−1 = vi = 0 for all i ∈ I0},
V+ := {v ∈ RN | vi ≤ 0 for all i ∈ I+ ∩ Ī0},
V− := {v ∈ RN | vi ≥ 0 for all i ∈ I− ∩ Ī0}, V := V0 ∩ V+ ∩ V− .

Proposition 3.1. The function L is coercive.
Proof. In view of the above, it is sufficient to prove that the level sets

L(c) := {λ ∈ RN | L̂(λ) ≤ c}
are bounded for every c ∈ R. Note that, for every c ∈ R, the set L(c) is closed and
convex. Assume on the contrary that L(c0) is unbounded for some c0 ∈ R and let,
without loss of generality, c0 > 0. We first show that there exists a vector s ∈ RN ,
s �= 0, such that βs ∈ L(c0) for every β ≥ 0. Suppose that for every s ∈ RN there
exists βs ≥ 0 such that βss �∈ L(c0). From the convexity of L(c0) and 0 ∈ L(c0), it
follows that βs �∈ L(c0) whenever β ≥ βs. Let

β(s) := max{β | β ≥ 0, βs ∈ L(c0)}.
Then β(s) < ∞ since L(c0) is closed and β(·) is an upper semicontinuous function
over RN . Then

β∗ := sup{β(s) : ‖s‖ = 1} < ∞.

Hence L(c0) is contained in a ball centered at the origin with radius β∗ + 1. This
contradiction establishes the existence of a vector s ∈ RN , s �= 0, such that βs ∈ L(c0)
for all β ≥ 0. Now for such s we define

κ(β) := L̂(βs) =
1

2

∑
i∈I+

∫ ti+1

ti

β2

(
N∑
l=1

slBl(t)

)2

+

dt+
1

2

∑
i∈I−

∫ ti+1

ti

β2

(
N∑
l=1

slBl(t)

)2

−
dt

+
1

2

∑
i∈I0

∫ ti+1

ti

β2

(
N∑
i=1

slBl(t)

)2

dt− β

N∑
l=1

sldl.

A more explicit form of κ(β) is

κ(β) =
1

2

∑
i∈I+

∫ ti+1

ti

β2(si−1Bi−1 + siBi)
2
+dt+

1

2

∑
i∈I−

∫ ti+1

ti

β2(si−1Bi−1 + siBi)
2
−dt

+
1

2

∑
i∈I0

∫ ti+1

ti

β2(si−1Bi−1 + siBi)
2dt− β

N∑
l=1

sldl.

Now we consider the following cases.
Case 1. s ∈ V . Consider three subcases corresponding to the three quadratic

terms of κ(β), respectively.
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Subcase 1.1. i ∈ I0. By the definition of V0, we have si−1 = 0, si = 0.
Subcase 1.2. i ∈ I+. It follows from (16) that (i − 1) ∈ I+ or (i − 1) ∈ I0, and

(i+ 1) ∈ I+ or (i+ 1) ∈ I0. In particular, we have from s ∈ V and the definitions of
V0 and V+ that

i− 1 ∈ I0 =⇒



si−1 = 0,
i ∈ I+ ∩ Ī0 =⇒ si ≤ 0 if i+ 1 ∈ I+,
si = 0 if i+ 1 ∈ I0

and

i− 1 ∈ I+ =⇒



i− 1 ∈ I+ ∩ Ī0 =⇒ si−1 ≤ 0,
i ∈ I+ ∩ Ī0 =⇒ si ≤ 0 if i+ 1 ∈ I+,
si = 0 if i+ 1 ∈ I0.

Hence for this subcase we have si−1 ≤ 0, si ≤ 0.
Subcase 1.3. i ∈ I−. Then it follows from (17) that (i − 1) ∈ I− or (i − 1) ∈ I0

and (i + 1) ∈ I− or (i + 1) ∈ I0. In particular, we have again from s ∈ V and the
definitions of V0 and V− that

i− 1 ∈ I0 =⇒



si−1 = 0,
i ∈ I− ∩ Ī0 =⇒ si ≥ 0 if i+ 1 ∈ I−,
si = 0 if i+ 1 ∈ I0

and

i− 1 ∈ I− =⇒



i− 1 ∈ I− ∩ Ī0 =⇒ si−1 ≥ 0,
i ∈ I− ∩ Ī0 =⇒ si ≥ 0 if i+ 1 ∈ I−,
si = 0 if i+ 1 ∈ I0.

Hence for this case we have si−1 ≥ 0, si ≥ 0.
It follows from the three subcases that the first three terms of κ(β) (the quadratic

part) vanish. Taking s ∈ V into account, we have

κ(β) = −β
N∑
l=1

sldl = −β
∑

l∈I+∩Ī0

sldl − β
∑

l∈I−∩Ī0

sldl.

Note that dl > 0, sl ≤ 0 for any l ∈ I+ ∩ Ī0, and dl < 0, sl ≥ 0 for any l ∈ I− ∩ Ī0.
Hence the fact that there exists at least one sl �= 0 (this l must belong to I+ ∩ Ī0 or
I− ∩ Ī0) implies κ(β)→ +∞ as β → +∞, contradicting L̂(βs) ≤ c0.

Case 2. s �∈ V .
From the analysis of Case 1, for each i, at least one of the conditions si−1si = 0

for i ∈ I0, (si−1 ≤ 0, si ≤ 0) for i ∈ I+, and (si−1 ≥ 0, si ≥ 0) for i ∈ I− is violated.
Hence

r :=
1

2

∑
i∈I+

∫ ti+1

ti

(si−1Bi−1(t) + siBi(t))
2
+dt+

1

2

∑
i∈I−

∫ ti+1

ti

(si−1Bi−1(t) + siBi(t))
2
−dt

+
1

2

∑
i∈I0

∫ ti+1

ti

(si−1Bi−1(t) + siBi(t))
2dt > 0.

Then, κ(β) = rβ2 − β
∑N

l=1 sldl → +∞ as β → +∞, contradicting L̂(βs) ≤ c0. This
completes the proof.
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Since L(λ) is convex and coercive and ∇L(λ) = F (λ) − d, finding a solution of
(5) is equivalent to solving the following unconstrained optimization problem:

min
λ∈RN

L(λ).(18)

Now we apply the following damped Newton method to the problem (18), which uses
the Newton direction given by (7).

Algorithm 3.2.
(S.0) Choose λ0 ∈ RN , ρ ∈ (0, 1), σ ∈ (0, 1/2), and tolerance tol > 0. k := 0.
(S.1) If εk = ‖F (λk)− d‖ ≤ tol, then stop. Otherwise, go to (S.2).
(S.2) Let sk be a solution of the linear system

(M(λk) + εkI)s = −∇L(λk).(19)

(S.3) Choose mk as the smallest nonnegative integer m satisfying

L(λk + ρmsk)− L(λk) ≤ σρm∇L(λk)T sk.(20)

(S.4) Set λk+1 = λk + ρmksk, k := k + 1; return to step (S.1).
Assume that tol = 0 and Algorithm 3.2 never stops at (S.1) (otherwise, λk would

be the solution of (5)). The matrix M(λk) is always positive semidefinite because
M(λk) ∈ ∂F (λk), F is monotone, and every element of the generalized Jacobian
of the monotone function is positive semidefinite [12, Proposition 2.3(a)]. Hence
M(λk) + εkI is always positive definite for εk > 0, and therefore the linear system
(19) is uniquely solvable and sk �= 0. Moreover,

(sk)T∇L(λk) = −(sk)T (M(λk) + εkI)s
k ≤ −εk‖sk‖2 < 0;

that is, sk provides a descent direction for the function L. Hence the line search
criterion (20) is always satisfied for some integer m. Since L is coercive, the sequence
generated by the algorithm is bounded and therefore converges quadratically to the
solution of (18). The proof of the latter is in line with the standard argument in
these circumstances. Specifically, since locally the unit steplength is accepted, our
algorithm eventually reduces to the following iteration:

M(λk)sk = −(F (λk)− d) + rk, λk+1 = λk + sk,

where rk = −εksk is the residual which measures the inaccuracy in the Newton
equation

M(λk)∆λk = −(F (λk)− d).

Using the uniform nonsingularity of M(λk) near solution λ∗, it is easy to see that

sk = O(‖F (λk)− d‖).
According to [3, Theorem 2.2], the accuracy ‖rk‖ = O(‖F (λk)− d‖2) is sufficient for
the local quadratic convergence of the inexact Newton method. Since εk = ‖F (λk)−
d‖, we have

‖rk‖ = εk‖sk‖ = O(‖F (λk)− d‖2).

For more discussion of the inexact Newton method, we refer to [3, 7, 14].
Summarizing, we have the following theorem.
Theorem 3.3. Let the sequence {λk} be generated by Algorithm 3.2 starting

from an arbitrary λ0 ∈ RN . Then the sequence {λk} converges quadratically to the
solution λ∗.
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Fig. 2. Example 4.2.

4. Numerical results. In this section, we report on some numerical experience
with Algorithm 3.2 and demonstrate its global convergence from arbitrary starting
points. The typical starting point in shape-preserving algorithms is sign(d), the sign
vector of d; see [11]. We report results with the starting point e, the vector of all ones
in RN , which is commonly selected as a starting point in algorithms for convex best
interpolations; see [11, 6]. We also test the influence on Algorithm 3.2 of the standing
assumption di �= 0, i = 1, . . . , N .

We implemented Algorithm 3.2 in MATLAB and tested it on a DEC George
Server 8200 with the termination criterion ‖F (λk)−d‖ ≤ tol and the following values
of the parameters: ρ = 0.5, σ = 0.1, tol = 10−12. In our implementation, εk =
min{δ, ‖F (λk) − d‖} with δ = 0.01. The integrals involved are evaluated exactly
using Simpson’s rule. The testing problems are collected from the literature and are
described in details as follows.

Example 4.1. This problem is from [11] and has the following data:

ti = 0.0 0.05 0.1 0.2 0.8 0.85 0.9 1.0.
yi = 0.0 0.7 1.0 1.0 0.3 0.05 0.1 1.0.

Example 4.2. This problem is again from [11] and has the following data:

ti = 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.8 1.0.
yi = 0.0 0.9 0.95 0.9 0.1 0.05 0.05 0.2 1.0.

Example 4.3. This problem is from [9] and has the following data:

ti = 0 4 6 10 12 14 18 20.
yi = 3 4 9 10 9 5 4 3.

Example 4.4. This problem is from [4]: t1 = 0, t2 = 0.1, t3 = 0.4, t5 = 0.8, t6 = 1,
t7 = 1.166, t8 = 1.333, t9 = 1.5, t10 = 1.666. yi = 1/((0.05+ti)(1.05−ti)), i = 1, . . . , 4,
y5 = 10, y6 = 5, y7 = y8 = y9 = 4, y10 = 10.

In Figures 1–5, the dashed line is for the resulting shape-preserving cubic spline
(using the data obtained with the starting point λ0 = sign(d)); the solid line is for
the natural spline (using the MATLAB SPLINE function), and “o” stands for the
original given data. In Table 1 for results of the numerical experiments we use the
following notation:
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Fig. 5. Example 4.4 (y9 = 4.1).

Table 1
Numerical results with Algorithm 3.2.

Problem λ0 It Nf ‖F (λf )− d‖
4.1 e 11 17 8.57e-15

sign(d) 9 10 1.06e-14

4.2 e 11 15 3.02e-14
sign(d) 10 11 1.03e-14

4.3 e 8 11 4.59e-16
sign(d) 7 8 2.91e-16

4.4 e 30 31 1.43e-01
(y9 = 4) sign(d) 30 31 1.43e-01

4.4 e 24 44 2.39e-13
(y9 = 4.1) sign(d) 23 39 1.95e-13

4.4 e 12 13 1.01e-13
(y9 = 5) sign(d) 12 13 1.43e-13

Problem: name of the test problem.
λ0: starting point.
It : number of iterations.
Nf : number of evaluations of the function f(λ).
‖F (λf )− d‖: value of ‖F (λ)− d‖ at the last iteration.
From Table 1, we observe that Algorithm 3.2 converges rapidly to the solution
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from both starting points for all problems except Example 4.4 (y9 = 4), to which the
algorithm within 30 iterations failed to produce an approximate solution meeting the
required accuracy. A close look at the example shows that d7 = 0, which violates our
theoretical assumption di �= 0, i = 1, . . . , N . To avoid such a degeneracy in Example
4.4, we increase the value y9 from 4 to 4.1; Algorithm 3.2 now finds an approximate
solution within accuracy 10−13, but using a relatively large number of Newton steps
(≥ 20). When we further increase the value y9 to 5, the number of Newton steps
needed for the assumed tolerance is reduced considerably. These observations indicate
that how far away from zero each divided difference is may make a big difference in
the numerical performance of the algorithm. This is perhaps related to a property
that can be regarded as conditioning. The problem is, however, nonsmooth, and here
we are entering a new territory.
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