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ABSTRACT 
Optimal eon tro! of general dynamic systems under realistic constraints on inputsignals a nd 
state variables is an important problem area in control theory. Many practical control 
problems can be formulated as optimization tasks,and this leads toasignificantdemand for 
efficient numerical solution algorithms. 

Several such algorithms have been developed, and they are typically derived from a 
dynamic programming view point. ln this thesis a differentapproach is taken. The discrete
time dynamic optimization problem is fomrnJated as a static one, witb the inputs as free 
variables. Newton's approach to solving such a problem with constraints, also known as 
Wilson's method, is then consistently pursued, and a algorithm is developed that isa true 
Newton algorithm for the problem, at the same time as the inherentstructure is utilized for 
efficient calculations. An advantage witb such an approacb is that global and local conver
gence properties can be studied in a familiar framework. 

The algorithm is tested on several examples and comparisons to other algorithms are 
carried out. T hese show that the Newton algorithm perfonns well and is competitive with 
other methods. It handles state variable constraints in a directand efficient manner, and its 
practical convergence properties are robust 

A general algorithm for !arge scale static problems is also developed in the thesis, and it is 
tested on a problem with load distribution in an electrical power network. 
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l. INTRODUCTION 

Optimal control problems arise in many fields in industry, engi

neering and science . The theory of optimal control has seen a 

considerable development over the past thirty years, highlighted 

by Bellman ' s Dynamic Programming Bellman, (1957) and Pontryagin' s 

Maximum Principle, Pontryagin et a l , (1962) . This theory has 

mostly been formulated for continuous-time problems, but paralle

ling results for discrete-time systems have also been given (for 

a survey of these results, see Bryson and Ho (1969) and Jacobson 

a nd Mayne (1970). 

In view of the practical significance of optimal control, an 

equally important development of algorithms for solving optimal 

control problems has taken place. Important such algorithms have 

been presented, e.g. in Jacobson and Mayne (1970), Polak (1973) 

Bryson and Ho (1969), Ohno (1978) among others. 

These algorithms are mostly developed for continuous time prob

lems and have their roots in the Bellman equation. Differential 

Dynamic Programming (DOP) is the perhaps be st known algorithm of 

this kind. 

The " classical" algorithms are typically capable of handling 

terminal constraints, and mixed input and state constraints, 

while pure state constraints have proved more difficult to cope 

with. Approximate techniques, such as penalty functions and 

MSrtensson's (1973) constraining hyperplane techniques have, 

however, been developed . Similar algorithms for discrete-time 

systems have been described in Jacobson and Mayne (1970) and 

Canon, Callum and Polak (1970) . 

In this thesis we shall consider algorithms for optimal control 

of discrete-time systems and for optimal sampled-data control of 

continuous-time systems . The guiding idea o f the thesis is to 

regard the optimal control problem as a pure non-linear control 

problem rather than as a solution to the Bellman partial diffe

rence equation. This point of view gives a number of advantages: 
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o The whole, well-developed field of non- linear programmi ng be

comes avai lable for direct applications. We set out to deve

lop a true Newton a lgorithm for the problem in such a frame

work. 

o Convergence, both local and global, can be investigated 

within a familiar and well-understood framework . 

o Pure state constraints no longer lead to special problems. 

Constraints of all kinds can be handled with common tech

niques. 

A drawback of the me thod is however that the number of these 

constraints must not be too ! arge. Therefore an alternative 

me thod for many simple constraints is also discussed. 

Our me thod is actually a Newton method applied to the Kuhn-Tucker 

necessary conditions for the problem; solved iteratively. At each 

iteration a quadratic s ub-problem with linear constraints is 

constructed. How this construction is done is shown in chapter 4. 

In chapter 5 we give sufficient conditions for this subproblem to 

have a unique solution and also an algorithm for solving this 

sub-problem. In chapter 6 we discuss methods for modifying the 

problem if the sufficient conditions are not satisfied. In chap

ter 7 t he convergence oE our a l gorithm is investigated and in 

section 8 we give a method to handle the case of many simple 

constraints on the controls . A summary of the algorithm and a 

brief description of the computer programs based on thi s a l go-

ri thm is given in chaper 9. I n chapter 11 , we demonstrate the 

algorithm with some examples. In the appendix we give the ne

cessary equations when we use discrete time control on a con

tinuous time system. 

I n chapter 2 we derive how Newton's method is applied to non

linear constrained programming problems. This results in a con

strained quadratic programming problem and this problem is sparse 

if it for instance originates from an optimal control problem. 

Here, sparsity means that t he Hessian of the Lagrangian and the 

Jacobian of the constraints contain a h i g h proportion of zero ele 
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ments. A method for solving such sparse linearly constrained 

quadratic programming problems is given in chapter 3 . A computer 

program desig ned for solving no~linear constrained programming 

problems is described in section 9.5, and in chapter 10, we use 

this program for solving an optimal electrical power distribution 

problem. 

1.1 Notations 

In this thesis we assume that all vectors are column vectors, 

except derivatives which are row vectors. Derivatives are 

indicated by subscripts. We also use the following notations or 

conventions when nothing else is indicated 

i,j 

k 

indices of vector elements or matrix e l ements 

iteration counter. This index will usua l ly be 

suppressed for the subproblems. 

f(x(t) ,u(t) ,t) the transition func tion for the discre t e time 

systern 

f(t) 

g(z) 

h(z) 

J. ( z) 

J. ( t) 

short notation for f(x(t),u(t),t) . When we use 

this notation we assume that u(p), p=O, .. . ,N-1 is 

a certain control sequence and x(p),p=O, . . ,N are 

the corresponding states 

equality constraints for a nonlinear prograrnrning 

probl em 

inequality constraints for a nonlinear programming 

problem 

inequality constraint for the optimal control 

problem evaluated at (x(t. ),u(t. )) 
l 1 

objective function for a nonlinear programming 

problem 

cost function in the optimal control problem 

evaluated at (x(t),u(t)) or (x(N)) 



J ( u) 

n 
X 

p 

s 

t 

u(t) 

u 

V( t) 

W{ t) 

x(t) 

z 

z ( t) 

z ( 0) 
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The total cost when the control sequence u is 

used. 

the number of states 

the number of controls 

integer, usually being the number of inequality 

constra ints sometimes also used as time index 

time variable both for discrete time and 

continuous time 

integer, time index 

time variable 

control varaible 

the sequence u(t);t=O, .•. ,N-1 and sometimes a l so 

the correspond ing states (e.g . J(u)) 

the cost generated when starting at state x(t) and 

us ing a given control sequence u(p);p=t, •• . ,N-1 

the second order Taylor expansion o f V(t} around 

the point (x( t ),z(t)) 

the s tate variable 

vector of variables in a nonlinear programming 

problem 

T T T 
t he c ontrols (u (N-1), ••• ,u (t)) 

same as u 



A ( t) 

µ 

y(t) 

I ( t) 
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Lagrange multiplier for equality constraints 

Lagrange multipliers for the optimal control 

problem corresponding to the transition 

function 

Lagrange multiplier for inequality 

constraints 

the i:th component of the Lagrange multiplier 

µ at iteration k. 

i 
E (µk) .h (t) 

iEI(t) 1 

(i:t.=t} . Indices for the inequality 
1 

constraints at time t 

vx{t),!x(t) ,fx(t) when x,u,z appear as subscripts it means the 

derivative of the function with respect to the 

varaible 

I · I the usual Euclidian norm 

nx 

E 
i=l 

EU öU.{t) 
n 2 ) 1/2 

i=l 
1 

oV(t+l) i 
0 X • rE +r f • f X X ( ( t ) , u { t ) I t ) 

1 
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2. OPTIMIZATION PROBLEMS AND OPTIMIZATION ALGORITHMS 

A larqe number of questions in science and decision- making lead 

to optimization problems . To get a flavour of typical situations 

where an optimization formulation is natural, let us consider 

two simple examples. 

Example 2 . 1. A simple e l ectric power- network problem . 

Consider the problem of supplying two consumers with power from 

two different qenerators. The qenerators and the consumers are 

connected in a network as shown in fiqure 2.1 

I z 
.5G/ 5Gz 

Y1z 

.501 5oz 

r, Yz 

Fig. 2.1. An electrical network with two nodes and one line. 

Let us introduce the following notation 

5 Gi: 

Soi : 

Y. : 
l 

y 12: 

Ci (SGi) : 

vi 

Power qenerated at node i , i=l,2 

Power demand at node i, i = 1,2 

Conductance between node i and earth , i =1,2 

Conductance between nodes l and 2 

The cost of qeneratinq the pcwer SGi at node 

Voltage at node i, i=l,2. 

i, i =l,2 

It is customary to describe the electrical quantities usinq 
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complex numbers ; the power is thus split into a rea l a nd an 

reactive part i n t he following way: 

Here PGl is the active power and QGl is the r eactive power. 

Similar expressions also hold for sG2 ' s 01 and s 02 • 

The complex vol t ages and conductances can i n an analogous way 

be represented us ing amplitude (V
1

) and phase angle (~ 1 ), i.e. 
- i~ -v

1
=V

1
• e 1. For v

2 
a similar representation can be introduced; 

the conductances will be represented analogously , using öi 

for t he correspond ing phase a ngles . 

The probl em is to satisfy the power demands a t the two nodes , 

and at the same time gener a t e t he powe r as cheaply as poss i b l e . 

The l a tter cond ition is expressed as to minimize a criterion 

( 2 .1 ) 

There a r e also a number of physical constraints associated with 

this problem . At each nod e there must be a power balance . This 

means that the following constraints must be met at node 1 : 

( 2. 2) 

where * means complex conjugate. 

Simi l arly for node 2 we have 

(2.3) 

Also, the capacities of t he genera tors are limited , wh ich means 

t hat constraints of the follow ing t ype 

i=l, 2 ( 2. 4) 
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must be included . Similarly, the voltage amplitudes must lie 

within certain bounds: 

V <V. <V 
.l- i- u 

i=l, 2 ( 2 . 5) 

The requirement that the network must be stable corresponds to 

a condition on the difference be tween the phase angles : 

1t 
<-

2 
( 2. 6) 

Finally, we must introduce a constraint on the heat developed 

in the line, assuring that it does not melt down . Such a con

dition corresponds to 

( 2 . 7) 

The problem of generating power in the simple network in a sen

sible way has now been formalized as an optimization problem , 

namely to minimize (2.1) subject to the constraints (2 . 2)-

( 2 . 7) • 

0 

Example 2 . 2 . Housing maintenance. 

(This example is adapted from Luenberger (1979), pp 433). Con

sider a rental house, and suppose that its state can be charac

terized by a single quality measure x(k) at time k . A simple 

mode l for how this quality measure develops can then be given 

as 

u
2

(k) x(k+l)=cxx(k)+u(k)- --- k=O, •.• , N- 1 
x- x(k) 

( 2. 8) 

here the number a is subject to O<cx<l, describing the decay of 

the house with time . The maintenance expenditure during time 

period k is u(k) and the value x=x>O corresponds to "perfect 

conditions". 
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The rent of the house i s supposed to be proportional to the 

guality measure x. The problem we consider, i s that of a land

lord who wishes to determine a maintenance policy, so as to 

maximize a discounted net profit up to a cer t ain time instance 

N, when he plans to sell the house. For mally, he wishes to maxi

mize 

N 
J=13 C x(N)+ 

N-1 
r (px(k)-u(k))l3k 

k=O 
( 2 . 9) 

where p>O , 0<13< l. The guantity C x(N) i s the sales price a t time 

N and the guantity p x(k) is the rental income . At the begi nn ing 

of t he time period considered, the q uality of t he house is 

supposed to be 

(2.10) 

The optimization problem is then to f ind the seguence u( O), .• . , 

u(N- 1) such that the expression (2.9) is maximized when x(k) , 

k=O, ••. ,N satisfies the const r aints (2.8) and (2.10). 

0 

The problems considered in exampl e 2.1 and 2 . 2 are quite diffe 

rent. Still , they coul d both be described by the follow ing for

mulation 

minimize .l(z) (2.lla) 

subject to g (z)=O ( 2. ll b) 

h( z )2_0 ( 2 . llc) 

In example 2.1 we could let the vector z consist of t he para

meters v1 , ö 1 , v 2 , ö 2 , PGl ' QGl ' PG 2and QG 2 . The functional .l 

then corresponds to the functions c
1 

and c
2 

in ( 2 . 1) . The 

equality cons t raints g correspond to eguations (2.2) and (2.3), 

while the inequality co nstraints h in (2. llc ) have their 

counterparts in the relations (2.4) - (2 . 7). 
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In example 2.2 the vector z consists of the states x(t), 

t=O, ... , as well as the control variables u(t), t=O, .. , N-1. The 

function ~ (which often will be ca l led the objective function) 

is defined by (2.9) and the equality constraints correspond to 

(2 . 8) and (2.10) In this example there are no inequality con

straints. 

In example 2.2 it is possible to arrive at a slightly different 

Eormulation by el i minating the states x(k) in (2 . 9) using equa

tions (2.8) and (2.10). These two equations define the sequence 

x(k) , k=O, . .. , N uniquely from the sequence u(k) , k=O, . . . , N- 1 . 

Then J in (2.9) will be a Eunction of the control signals u(k), 

k=O, •.• , N-1 on l y. In this example (which isa simple case of an 

optimal control problem) we thus have the option of considering 

both u and x as free variables, subject to a constraint (corres 

ponding to (2.8)) or to eliminate t he intermedia t e variables x, 

and let the vector z in (2 . 11) consist of the control signals 

only. In this thesis we shall work with both these variants, 

choosing one or the other depending on the situation . 

The problem (2 . 11) is the standard Eormulation of the general 

nonlinear programming problem. Many algorithms have been pro

posed for solving this problem, and considerable efforts have 

been made to find efficient algorithms for a variety of situa

tions. What constitutes an efficient algorithm for a particular 

case , will be highly dependent on the structure and the com

plexity of the functions ~' g and h . Important properties are, 

for instance, whether these functio ns are linear or non l inear 

and if they are differentiable or not. In this thesis we shall 

assume throughout that the functions involved are at least twice 

continuously dif f erentiable and not necessarily linear. We also 

asswne that all second derivatives are Lipschitz continuous. 

For unconstrained problems, i.e. problems where (2 . llbc) do not 

apply, the most common methods are 

Steepes t Descent Method 

Newtons ' s Method 

Conjugate Oirec t ion Method 

Quasi-Newton Methods. 
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(See, for example, Luenberger (1973) and Fletcher (1980)). All 

these methods generate a sequence of points, zk, which under 

suitable conditions converges to a local minimum of the 

criterion (2.lla). This sequence of points is then generated as 

(2.12) 

where 0 <ak~l is chosen so that a suitable decrease is obtain

ed in the objective function (2.lla). For the Steepest Descent 

Method, the vector dk in (2.12) is t he negat ive gradient, i.e. 

For Conjugate Direction Methods, dk is chosen as a certain 

linear combination of the gradient ~;(zk) and the previous 

direction d k-l' In Newton ' s Method, dk is chosen as the solution 

of 

where H(zk) is the Hessian of the objective Eunction , i.e. 

The calculation of H(zk) and dk may be computationally costly. 

Therefore some methods use 

where Hk is an approximation of H(zk). Th is approximation is 

changed at each step . Such methods are called Quasi-Newton 

Methods. 

For constrained programming problems {i.e. problems where 

(2 . llbc) apply), well known methods are (see Luenberger 

(1973) and Fletcher (1981)): 

Penal ty and Barrier Methods 

The Reduced Gradient Method 



Augmented Lagrangian Methods 

Feasible Direction Methods 

Wilson ' s Method (Wilson, 1963) 
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Quasi-Newton versions of Wilsons Method (Powell (1979), Han 

(1975, 1977), and Chamberlain et al. (1979)). 

In this thesis we shall concentrate on algor ithms developed from 

Wilson' s Method. (Described for instance in Bertsekas (1982) 

pp. 252-256.) This method was proposed in 1963 . Since second 

order derivatives are required in this algorithm, it is rather 

time consuming. Therefore it is not very useful . For sparse 

problems (such as those we are to encounter in the later chap

ters) the computational work may be reasonable. We shall here 

give a short motivation and desc ription of Wilson ' s Mehtod. 

First, we assume that there are no inequality c onstraints, i.e. 

the problem is defined by (2.llab). The Lagrangian of the prob

lem is t hen given by 

T 
L(Z,A) =~( z)+A g(z). ( 2 .13) 

The Kuhn-Tucker necessary conditions (see p. 242 in Luenberger 

(1973)) then state that if z* is the solution of (2.11) then 

there exists a multiplier A* such t ha t 

(2.14a) 

g(z*)=O (2.14b) 

The relations (2.14) f orm a system of nonlinear equations in the 

variables z .and A, Assume that we have a good estimate (zk,Ak) 

of the solution to (2.14). This estimate could then be improved 

using Newton - Raphson's method (see Dahlquist and Björck (1974), 

pp. 249) . Then a new estimate ( zk+l, Ak+l) to the solution of 

(2.14) is constructed as follows: 
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Noting that 

we can write the equations as 

The above equations can however be interpreted as Kuhn- Tucker 

necessary conditions for the following optimization problem : 

minimize 

zk+l 

The above equat ion is a q uadrat i c minimization problem with 

linear constraints for determining zk+l from zk' ~k. If we had 

included inequality constraints (2.llc) we would similarly have 

been led to the problem 

minimize 
dk 

(2.15a) 

(2.15b) 

(2.15c) 

Here µk are the Lagrangian mul t ipliers to the i nequality con

straints. With dk determined from (2.15) we then calculate 

zk+l using (2 . 12). S ince the described calculations consi-

tute Newton- Raphson steps for solving (2.14) , the sequence zk 

will converge quadratically to z* locally , provided ak=l in 

(2.12). To assure global convergence, it is sometimes necessary 

to let the step length parameter ak be less than unity. Cham-
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berlain et al. (1979) g ive a useful way to ca l culate ak, which 

guarantees both global convergence and fast l ocal conve rgence 

under suitable conditions. 

In quasi-Newton versions of Wi l son's method, the Hessian of the 

Lagrangian in (2.15a), i.e. L
22

(zk,Ak,µk), is replaced by an 

approximation Hk. 

When the non- linear optimization probl em (2 . 11) is generated by 

a discrete-time optimal control problem, such as the one in 

example 2.2, special methods have been developed to utilize the 

particular structure in question . Methods particularly designed 

for solving discrete-time optimal control prob l ems can be found 

in Bryson and Ho (1969), Dyer and McReynolds (1970), Jacobson 

and Mayne (1970), Bellman and Dreyfus (1962) and Ohno ( 1978) . 

We shall in th is thesis demonstrate how Wilson's me thod can be 

adapted to take the special structure of discrete time - optimal 

control problems into account. 

For !arge problems, that is when the number of elements in z is 

more than, say, 100 , the choice of algorithm for solving the 

problem (2.11) is very important indeed. The algorithm must 

converge fast and it must be numerically stable. For such prob

lems it is necessary to take the particular structure of the 

problem into account so that suitable decomposi tion t e chniques 

can be applied (Lasdon 1970). 

A common example of such !arge probl ems is r e a l -li fe power net

work problems (such as !arge network variants o f example 2. 1 ). 

These networks usually have more than 100 nodes, whic h may l ead 

to more than 500 unknown parameters . Optimal control problems 

similarly lead to !arge optimization prob l ems i f the number o f 

time points is large and there are several state variables and 

control signa l s . 
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3. SOLVING SPARSE QUADRATIC SUBPROBLEMS 

3 . 1 Introduction 

In chapter 2 we discussed the algori t hm known as Wi l son ' s Met

hod. In that algorithm one must solve quadratic problems of the 

type 

min 
z 

subject to 

T l T 
b z+

7 
z B z , 

g +Gz=O , 

h+Hz<O , 

(3 . la) 

(3.lb) 

( 3 . le) 

where z,b,g and h are column vectors of dimensions n , n,m
1 

and 

m
2 

respectivley, while B,G and H are matrices of appropriate 

dime ns ions , with B symmetric . In order to have a uniq ue solution 

of (3 . 1) and to ensure that the algorithm will find this solu

tion, we make the following assumptions about the matrices B, G 

and H. 

Al: The ma t rix B is positive definite on the null space of G, 

i. e. 3 o:> O: 
T 2 

Gz=O => z Bz..'.'._o: J I z I \ · 

A2: The rows of G and H are linearly independent, i.e . the only 

solution (~ , µ) of 

T T 
G A+H µ=O 

is ~=O and µ=O . 

Several rnethods for solving problem (3 . 1) have been given (see 

e . g . Gill and Murray (1978)) but few of them can utilize a 

sparse structure of the matrices B, G and H. 
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3.2 An algorithm for solving quadratic problems 

In this section we will g i ve the basic steps o f an algorithm 

proposed by Goldfarb (1975}, which can utilize sparsity in the 

matrices B, G and H. The Lagrangian of the problem (3.1) is 

T 1 T T T 
L(Z ,A, µ )=b z+~ z BZ+A (g+Gz)+µ (h+Hz} ' 

and the Kuhn- Tucker necessary conditions are 

T T 
b+Bz+G A+H µ=0 , 

g+Gz=O , 

h+Hz<O , 

µ~0 and 

T µ (h+Hz)=O 

(c f pp. 233 in Luenberger (1973)). 

( 3. 2) 

( 3. 3a) 

( 3. 3b) 

(3.3c) 

(3.3d) 

(3.3e) 

Lemma 3.1: If the matrices B, G and H satisfy assumptions Al and 

A2, then there exists a unique point (Z,A,µ) that satisfies the 

conditions (3.3a-e}. 

Proof: Exi s t e nce : Because of A2 we know that there exists at 

least one point that satisfies the constraints (3.lb) and 

(3.lc). Because of Al there is then a solution of (3.1). ror 

this solution the theorem on page 233 in Luenberger (1973} gua

rantees t he existence of multipliers A and µ such that the con

ditions (3.3) are satisfied. 

Uniqueness: Assume that we have two different points, (z
1

,A
1

,µ
1

} 

and (z
2

,A
2

, µ
2

) , t hat satisfy the conditions (3.3). If z
1

=z
2

, 

then assumption A2 and the condition (3.3a) imply that A
1

=A
2

and 

µ
1

=µ
2 

so we can assume that z
1
1z

2
• from (3.3b} we get 

G(z
1

-z
2

}=0. Hence z
1

- z
2

is in the null space of G. Similarly 

(3.3a) gives 
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Using this together with Al gives 

In the last equality we used the conditions (3 . 3e) for z1 and 

z2. The above expression contradicts the conditions (3 . 3c) and 

(3.3d), which proves that we have at most one point that satis

fies the conditions (3 . 3) . 

0 

We will now consider ways of so l ving the problem defined by 

(3 . la-c). Let the i:th element of h be de noted h. and let the 
l 

i : th row of H be denoted H . • Let J be a given set of distinct 
l 

positive integers j (J is the set of supposed ac tive con-

straint s), s uch that j~ m 2 and define hand Has 

jiEJ, i= l , ... ,p' 

A way of finding the solution of (3 . 3) is given by the following 

algorithm. 

I . Let z
0 

be an initial approximation of the solution . Let J 

consist of the integers j such that h.+H.z
0
>o. Let k=O and go to 

J J 
step IL 

II . Solve t he system 
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( 3. 4 ) 

Denote the solution by z ' , A', µ ' 

II I . I f h+Hz ' <O t hen go t o s t ep I V, o therwise l eta be t he 

largest number, such that h.+H . (zk+a(z ' -zk))<O for all integers 
J J -

j t hat are not yet in J . Add one integer j , for which 

hj+Hj(zk+a(z '- zk))=O, t o the index set J. Put zk+l=zk +a(z ' - zk ). 
Put k=k+l and go back t o step Il. 

IV. Put zk+ l=z ' , k=k+l. 

If µ!>O for al l j t hen go to V, else de l ete the index j f r om J 
]-

for which µ! is mos t negative, and t o back t o step I . 
J 

V. zk is the solution. 

This way to choose active constraints is basically the same as 

that given i n Gi l l a nd Murray (1978 ) and Powell (1981) . Note 

that we do not start to delete any constraints from t he active 

set before we have found a point zkthat satisfies h+ Hz k ~O. After 

tha t , every genera t ed point will satisfy this constra i nt a nd the 

algorithm will find the solution t o (3.3) af t er a fini t e number 

of steps according to section 7 of Gill and Murray (1978) . I f 

the a l gorithm fails to f i nd a solution, tha t is if the algor ithm 

starts cycling or the matrix in (3 . 4) becomes singular , then the 

c o ns t raints are eithe r linearly dependent or t he ma t ri x B i s not 

positive definite on the nul l space o f 6. Examples of methods 

fo r solving the system (3 . 4) can be found in section 5.3 in 

Bartels et al. ( 1970) , in Bunch and Kaufman ( 1980) and in Paige 

and Sanders (1975). 

3.3 How to utilize the sparsity 

If we have an initial value z
0

, that generates a correct or 

almost correct set o f active co nstraints , then we us ua l ly need 
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to solve the system (3 . 4) only a few times . This i s , however, 

not always the case. If n is large, it is very expensive to 

solve (3.4) in a straightforward way every time. Only one column 

and one row of the system matrix in (3 . 4) is included or removed 

f rom one iteration to another. Therefore, we ought to use the 

previous solution when calculating the next. We cannot use the 

technique proposed by Powell (1981), if we want to utilize the 

sparsity of the problem . Assume, however, that the solution 

(z', A1
, µ.) of (3.4) can be written in the followi ng way 

z ' =z+Z µ. 
( 3. 5) 

A1 =A+Aµ ' , 

where Z and A are matrices of proper dimensions, and z and A are 

solutions of 

( 3. 6) 

Then Z and A are given as the solution of 

{ 3 . 7) 

andµ. is given by the solution of 

Aµ I =d , { 3 • 8) 

where 

A=-HZ , ( 3. 9) 

and 

d=h+ttz (3 . 10) 
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The matrix A is symmetric and positive definite if the assump

tions Al and A2 hold, as will be shown in section 3.5. However, 

A is usually not sparse . 

The systems (3.6) and (3.7) could be solved with the methods 

l isted at the end of section 2, but the choice here depends very 

much on the type of sparsity in the matrices B and G. Since we 

solve systems with the same left hand side system matrix several 

times, the method should be of a factorization type. We thus 

assume that we have an algorithm that can factorize the left 

hand side matrix o f (3. 6) eff iciently by utilizing the sparsity 

of B and G. 

The idea is now to utilize the fact that the system matrices are 

t he same in (3.6) and (3.7). One may therefore use the same 

factorization when calculating Z and Å as when calculating z and 

A. We then get the following modification of the algorithm given 

in section 3.2: 

I. Find a factorization of the left hand side matrix of (3.6), 

wi th a routine for sparse f actorization. Find the vectors z and 

A defined from (3.6). The rest of t his step is the same as step 

I in the algorithm give n in section 3.2. 

Il . F ind Z and A defined by (3.7), using the factorization ob

tained in step I . Calcu l ate A and d defined by (3.9) and (3.10). 

Find µ• by solving (3.8), and calcul ate z' and A1 using (3.5). 

III. Same as step III in section 3.2. 

IV. Same as step I V in section 3.2. 

V. Same as step V in sect ion 3.2. 

If we add a constraint to the active set J in step III, we only 

need to ca l culate one new column in z and A. Th e other columns 

are known f rom earlier ste ps. I n step IV, if we delete one con

straint from the active set , we only need to delete the cor

r espond ing column in the curre nt matrices z and A. This also 

appl ies to t he matrix A and the vector a. How to uti lize this 

l ast fac t i s described in the next section. 
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Remark 3.1. z in (3.6) is the solution o f problem (3 . 1) wh en the 

inequality constraints are ignored and the i : th column of A is 

generated by the solution of the problem 

minimize 
z 

l T 
-H i z+ "'2 z Bz 

Gz =O 

This will be utilized in Section 5.5. 

Remark 3.2. When we have found the solution);• to (3.8) we do 

not necessarily have to use (3.5) to obtain z ' and A' · From 

(3.4) we see that z' and A' can be obtained as the solution of 

(3 . 11 ) 

Thus if we want to save computer memory, we can find the solu

tion of (3.4) without storing the matrices Z and A. Instead we 

have to solve the system (3 . 11) to get the values of z ' and A1
• 

Remark 3 . 3. Since the matrix A in (3.8) is positive defi nite, we 

can solve equation (3.5) using a conjugate gradient method. 

Using this method it is not necessary to store the matrix A 

explicitly. 

3.4 Updating algorithms for the A matrix . 

In step II of the algorithm given in section 3 . 3 we solve equa

tion (3 . 8). Between iterations, on l y one row and one column are 

inserted into or deleted from the matrix A. All the other ele

ments are unchanged. We now show how the LDLT-factorization of A 

is updated from one iteration to the next. 

A constraint is added to the active set. 

Let A be the previous matrix and A be the new ma trix . Assume 
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also that the new elements are stored in the last row and las t 

column of A, i.e. 

- (A A = 
aT 

where a and o; are the new elements wi th a a vector and o: a 

scalar. 

Assume also that we have the LDL T-factorization of A, i .e. 

LDLT=A 

Then 

LÖLT A 

where 

E= GT ~ ) D ( D ~ ) 0 

and 

.R. = (LO) - l a 

d o:-.R.TD.R. 

A constraint is deleted from the ac tive set. 

-Assume that we delete row k and column k from A and get A, i.e. 

A 

We also have 

T 
LDL = A, 

where 

A 
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0 

- ---T - - -
We want to find matrices L, D such that LDL = A. Th e n L and D 

are given by 

L ( Lll 
L21 ~,,) - (Dl D = 

0 ~J 
where L22 and 02 are given by 

L22 
-T T 1T (3 .12) 02 L22 = L22 02 L22+ d 12 2 

How to update t he factorization (3.12) is shown in Gill e t al. 

(1974) 

From p. 516 in Gill et al. (1974) we have, that g ive n L
22

, o
2

, 

d, and L
2

, then 1
22 

and ö
2 

in (3.12) could be calculated by the 

followi ng algorithm: 

2. For j=l, 2, ... , n compute 

P .= W • ( j) I 

J J 

a ·+i=d .a ./d., 
J J J J 



L . +~. w(j+l} 
rJ J r 
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, r = j+l , ... ,n 

where d. are the diagonal eleme n ts in o2 and ä. are the diagonal 
J - J 

e l emen ts in o2 . Lrj are the elements in L22 and Lrj are the 

e l ements in E22 • 

3.5 Positive definiteness of t he A matrix 

Theorem 3.1. If z i s linearly i ndependent of t he columns in GT 

and if assumptions Al and A2 hold, then 

0 

In order to prove this theorem we need some lemmas. First we 

introduce the following notation 

V(A}={x: x=Az for some z} (the range space of A) 

N(Al={y: Ay=O} (the null space o f A) 

{u.} n-m 
Lemma 3 .2. Let the vectors be abasis in N(G}. Let u be 

1 i=l 
the matrix t ha t has ui as its i:th column, i=l, .•• , n-m, i.e. 

U= { u l' ... ' u n-m} 

Then, if Al and A2 ho ld, the matrix UT B U is positive 

definite. 

T 
Proof. Leta = (a1 , ... , crn-m} be an arbitrary vector. 

Then UcrE N(G}. We then get 
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T T 2 2 
crU BUcr~a l! Ucrjl ~a'l\crll ' 

where a ' >O. The first inequality follows from Al and the last 

inequality from the fact that the columns of U are linearly 

independent. Because a was arbitrary, it follows that UT B U is 

posit ive definite. 

Cl 

Lemma 3 . 3 If Al and A2 hold, then for every z there exist vec

tors u and v such that 

Gu 0 . 

Also, the vectors u and v are unique. 

. 
Proof. Let u be qiven by u=Ua, where a is the unique solution to 
-T-- T T 
U BUa=U z. Then v (z-Bu)=O if vEN(G), because N(G) is spanned by 

the columns of u and UT(z-Bu)=O . 

Because dim N(G)=n-m and dim V(GT)=m (G has full rank by A2) and 

because V(GT) and N(G) are orthoqonal we then have 

Since the columns of GT form a basis in V(GT) there exists a 
. h T un1que v such t at z - Bu=G v. 

Proof of theorem 3.1 . 

From Lemma 3 . 3 we h ave that the ma trix 

and that 

Cl 

(~ GOT) is nonsinqular 



T ( z , 0} ( ~ 
if 

T 
Bu+G v= z 

Gu 0 . 
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T ( z, T z u 

T T T T T 2 
Now z !(' V(G ),,.\lfO . But uE N(G)""Z u=u (Bu +G v)=u Bu~o:/ l u ll , 

0 

Theore m 3.3 . If Al and A2 ho l ~ then the matrix A in ( 3 . 8 ) is 

pos i tive de finite . 

Proof . Let z be a linear comb ination o f the columns in HT, t hat 
--~ T 

is z=H µfor same µ~O . Then from Theorem 3 . 2 we have 

O< 
T~ 

( µ H, 0} ( ~ ~T ) - 1 ( ~Tµ) 

T ~ ( ~ ff
1 ( ~T ) T Aµ µ (H,0} µ =µ 

He nce A is positive definite. 

0 
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4. NONLINEAR OPTI MAL CONTROL PROBLEMS 

4.1 Problem definition 

In this chapter we will consider optimal control of discrete 

time dynamical systems, described in s t ate space form . At time 

instant t, the system is desc ribed by a state vector x (t) of 

dimens ion n and a control vector u(t), of d imens ion n . Over 
X U 

t he time horizon t=O , l , .. . ,N the system is assumed to be 

d escribed by the difference equation 

x(t+l)=f(x(t ),u(t ) ,t ), t=O, . .. ,N-1 . ( 4 .1 ) 

Here f is a vector function of di mens ion nx. The initial state 

o f t he system is given by 

( 4 . 2) 

we want to choose the sequence of input vectors u(t), t=O, ... , 

N- 1 so that the s ystem behaves i n some desired man ner. Suppose 

that we can measure how well the system satisfies our objec t ives 

by the performance inde x 

N-1 
J(u)=1(x(N),N)+ E 1(x(t) ,u( t) , t) 

t=O 
( 4 . 3) 

whe re the f unc tions 1 are sca l ars. Fr om equations (4 . 1) and 

(4 . 2) we see that the sequence.of sta t e vectors, x(t), i s uni

quely de t ermined , once we have chosen the control variable s 

u(t) . Hence the performance index ( 4. 3) is a function of t he 

centrals u(t) . Th i s fac t is stressed by the argument u in J(u) . 

For safe operation of the system, it might be requ ired that its 

states rema i n within certain limits , that may depend on t i me . 

Also , the input variable may be restricted in same way. To in

corporate t h is situation in the formal description, we add th e 

following cons traints 
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hi(x( t.) , u(t.) )<0 ,i=l , ••. ,p, 
1 1 -

( 4. 4) 

to the system description. Here ti are integers satisfy ing 

O..::_ti~ N and hi are scalar functions. The number of con

straints at a given time instant may vary from instant to 

instant, that is , the t. :s in (4 . 4) need not be different. In 
1 

(4.4) we may also easily incorporate terminal constraints , 

involving the state x(N) only . 

The functions f, 1 and hi in (4.1) , (4.2) and (4.4) are all 

supposed to be twice continuously differen t iable with respect to 

x and u. Furthermore , the second order der i vatives are supposed 

to be Lipschitz con t inuous in x and u. 'lhe optimal control prob

lem is now t o select the control variables u(t), t=O ,l ••• , N-1 so 

t hat the performance index (4.3) is minimized, whi l e t he con

straints (4.4) are satisfied. We r ecognize the housing main

t e nance problem , example 2. 2 , as a simple example of t his 

general problem formulation. 

4.2 Optimal control methods 

Many computational me thods have been designed to solve the opti

mal control problem defined in the previous section . Mast of 

these methods use dynamic programming techniques. In dynamic 

programming , the optimal value function v0 (x(t) ,t) is defined 

as 

0 
V (x(N) ,N)=.t(x(N) , N) (4.Sa) 

v0 
(X ( t ) , t ) =min { .t ( X ( t) 'u ( t) 't ) + v0 

( f ( X ( t) ' u ( t ) 't ) , t + 1 ) } • ( 4 . 5 b) 
u( t) 

The basic idea behind the methods proposed in Mayne (1966) and 

Dyer and McReynolds (1970) is to use (4.Sb) to find the incre

ment u(t) that minimizes the second order Taylor expansion of 

the expression within curly brackets in (4.Sb). In order to 

accomplish that , the first and second order derivatives of v0 

with respect to x are assumed to exist. 
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The perhaps best known method for solving optimal control prob

lems is the d i fferential dynamic programming (DDP-method) pro

posed by Jacobson and Mayne (1970). Th is method employs a global 

minimization with respect to u(t), after which the right hand 

side of (4. 5b) is expanded to second order around this control. 

Another, very similar, algorithm is described in Mitter (1966), 

and McReynolds and Bryson (1965). This latter method requires 

the solution of an extra set of vector difference equations. The 

method is very c l osely related to the one that we will derive in 

section 4.3.1. 

None of these methods is very good at handling constraints of 

the type (4.4). However, if these constraints are explicit func

tions of u( t), then they can be handled by a method proposed by 

Ohno (1978). This method is based on the fact that the Kuhn

Tucker conditions must be satisfied (pointwise in time) for t he 

minimizing values in (4.5b), subject to the constraints (4 . 4) . A 

comprehensive survey of the methods for optimal control is given 

by Polak (1 973), and the reader is referred to this reference 

for further details. 

4.3 Newton ' s method for optimal control problems 

As we remarked earlier, the performance index (4.3) isa func

tion of the control variables u(t), since the sequence of state 

vectors is uniquely determined as functions of u(t) . The same is 

of course true also for the constraints (4 . 4) . This means that 

the optimal control program (4.1)-(4.4) is a problem of the type 

(2.11), where the inputs u(t),t=O, ... ,N-1 are the unknown para

meters. When we applied Wilson' s ( 1963) method to the problem 

(2.11), we ended up with the quadratic subproblem (2.15). Here, 

we shall derive the corresponding quadratic subproblem, when 

Wilson ' s method is applied to the optimal control problem. The 

case with no constraints is handled in section 4 . 3.1. Section 

4 . 3.2 deals with a case when there is only one constraint of the 

type (4.4), whi l e t he general case is deferred to section 

4.3.3. 
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i~~~! - ~~~!~~~!~~-~~-~~~ - 9~~~~~ ~!~-~~~e~~~ !~~ ~- !~~-~~~~-9~-~Q-
cons t r a in t s . 

Le t the vector z(t) contain all the control variables from time 

t up to time N-1 : 

T T T T z ( t) = ( u ( N- 1) , u ( N- 2) , .•• , u ( t) ) ( 4. 6) 

Note t hat z(t) satisfies the recursion 

T T T 
z(t) =(z (t+l),u (t)) ( 4. 7) 

Let us also introduce the function V( x (t) ,z(t) ,t ) which is t h e 

cost from time t up to time N when starting in state x( t) and 

using the control z( t ) . These f unctions can formally be written 

as 

V( x(t ) , z( t) ,t )=.l(x(t) ,u (t) ,t)+V( f(x(t) , u( t) ,t) , z(t+l) ,t+l) 

( 4. 8) 

Notice the diff e r ence betwee n v0 
in (4.5) and V in (4.8 ). V is a 

function of z(t) whereas v0 
is the infimum of this function with 

respect to z(t) for t he same x(t). Clearly, mi n imi zing the per

formance i ndex (4.3) , subject to (4.1)-(4 . 2) is the same problem 

as t hat of minimizing V(
0

, z(0) , 0) with r espect to z(O). Conse 

quently , by t he introduction of the functions V in (4 . 8) we have 

rewritten the optimal control p roblem (4.1)-(4. 3) as an uncons t

rained minimization problem for the fu nctions V(x
0

,z (0) , 0) in 

the variable z( O). Let us s o lve this problem using Wi l s on' s 

(1963 ) method . Wilson ' s method reduces to Newton ' s me t hod, whe n 

applied toan unconstrained problem (see Luenberger (1973) , p . 

1 55) . The method is thus as follows : Le t Zk( O) be an approxi

mation to the solution. Let W(t.z(O) , 0) be the second order 

Taylo r expansion of V(O) around this point , i.e. 
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3 
V(x 0 ,zk(O)+llz(O) ,o, )=W(llz(O) ,O)+O( \llz(OJ I ) 

or 

A better approximation to the solution is now found by mini 

mizing (4 . 9) with respect to llz(O) and adding the minimizing 

argument to zk(O), i.e. 

where 

To improve the convergence properties, eq . ( 4 . 10) is usually 

modifi ed to 

where ak is a scalar in the interval (0,1]. In chapter 8, we 

shall discuss how this scalar should be chosen . Por convenience, 

we have suppressed th e arguments x
0 

and zk (0) in the above ex

press ions . We shall do so al so in the sequel , when there is no 

risk of confusion . 

The expression (4.10) contains t he first and second order deri

vatives of V(O) with respect to z (O) . The following lemma 

guarantees that these derivativeB exist. 

Lemma 4 . 1 . Suppose that that the Eunctions E and~ in (4.1) and 

(4. 3) are twice continuously differentiable with respect to x 

and u, and that the second derivatives are Lipschitz continuous 

in x and u . Then t he functions V(x(t) ,z(t ),t) in (4 . 8) are tw i<:e 

continuously differentiable with respect to x and z, and the 

second order derivatives are Lipschitz continuous in x and z . 
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Proof. The lemma follows trivially by induction on (4.8) and 

from Theorem 9.12 in Rudin (1964). 

0 

From the lemma it also f o llows that the following derivatives 

exist : 

V (N)=i (x(N)) 
X X 

(4.12a) 

V (N)=i (x(N)) 
XX XX 

(4.l2b) 

which fol l ows from (4.8a). From ( 4. 8b) and (4.7) we further get 

(4.12c) 

V (t)=(V (t+ l ), 1 (t) +V ( t+l) f ( t )) 
Z Z U X U 

(4. 1 2d) 

T 
V (t)=~ (t)+V (t+l)f (t)+f (t)V (t+l) f (t) 

XX XX X XX X XX X 
(4.12e) 

V (t)=(fT( t )V (t+l ),1 ( t )+V (t+l)f (t)+fT(t)V (t+l )f (t)) 
XZ X XZ XU X XU X XX U 

(

V ( t+l ) 
V ( t)= zz 

zz f ~(t)Vx 2 (t+ l ) 

(4.12f) 

V (t+l )f (t} ) zx u 

1 (t}+V (t+l)f (t)+fT(t)V (t+l)f (t) 
UU X UU U XX U 

( 4. l 2g) 

These derivates are all evaluated at the point (x( t ) , z(t)) , 

where x(t) satisfies (4.l) and (4.2) for all t , and u(t) is 

given by z ( 0 ) . 

Let W(t)=W ( öx(t),öz(t} , t) be the second order Taylor e xpansion 

of the f unc t ion V(t) around the point (x(t) , z(t)), i.e. 
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V ( X ( t ) +ti X ( t) I z ( t) +ti z ( t) It) =W ( t) +O ( I~;~ ~ ~ 13 
) ( 4 . 13) 

or 

(4.14) 

If we now substitute V(t), Vx(t), Vz(t), Vxx(t), Vxz(t), V
22

(t) 

and z(t) in (4.14) using the expressions (4.Sb), (4.12c) - (4 . 12g) 

and (4.7) we get 

+ ~ (6XT(t)(.t (t)+V (t+l)f (t)+fT(t)V (t+l)fx(t))t.x(t) + 
L. XX X XX X XX 

+26xT(t)(.t (t)+V (t+l)f (t)+fT(t)Vxx(t+l)fu(t))t.u(t)+ 
XU X XU X 

+t.zT(t+l)V (t+l)6z(t+l)+26uT(t) fT(t)V (t+l)t.z(t+l)+ zz u xz 

(4 . 15) 

By rearranging the terms in (4. 1 5) and introducing the aux iliary 

variable D(t+l) as 

D(t+l) =fx(t)6x(t)+fu(t)6u(t), ( 4 .1 6) 

we can write (4 . 15) as 

W(t)=V(t+l )+V (t+l)D(t+l)+V ( t+l )6Z(t+l)+ 
X Z 
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+özT(t+l)V (t+l)öz(t+l)) +l(t)+l (t)öx(t)+ 
ZZ X 

+26xT(t)(l (t)+V (t+l)f ( t))öu(t)+ 
XU X XU 

+öuT(t)(l (t)+V (t+l)f (t))öu(t)) 
UU X U U 

Here we can identifiy the first part (cf (4.14)) as 

W(D(t+l), öz(t+l) , t+l) . 

Hence 

W(öx(t) , öz(t) ,t)=W(D(t+l) , öz( t+l),t+l )+l(t)+l (t)öx(t)+ 
X 

+l (t)öu(t)+ 1
2 

(öxT(t)(l (t)+V (t+l) f (t))öx(t)+ 
U XX X XX 

(4.17) 

( 4 .18) 

where D(t+l) is given by (4.16). Notice that this auxiliary 

variabl e satisfies the dynamics of (4.1) , when linearized around 

(x(t) , u(t) ). Therefore we shall hencefort h use t he natural nota

tion öx(t+l) instead of D(t+l). (See eq. (4 .20b) below.) Let us 

also introduce t he notation 

(4.19a) 

Q (t)=l (t)+V (t+l )f (t) 
XX XX X XX 

(4.19b) 

Q (t) =l (t)+V (t+l) f (t) 
XU XU X XU 

(4. 19c) 
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Q (t)=! (t)+V (t+l ) f (t), 
UU UU X UU 

(4 . 19d) 

where Vx(t) is defined by (4 . 12a) and (4 . 12c) . 

El iminating W(t) for t =O, .. ,N-1 in (4.9) using (4.18) we obtain 

N-1 
+ E 

t=O 
{i (t)llx(t)+! (t) llu(t)+; (llxT(t)Q (t)llx(t)+ 

X U It. XX 

+2llxT(t)Q (t)llu(t)+lluT(t)Q (t)llu(t)J ) . 
xu uu 

The aux iliary va r iables llx(t) ,t=O, ... ,N must satisfy 

ll x(O)=O 

With 

T T T 
llz(O) =(llu (N - 1) , . . . , llu (0)) . 

( 4 . 20a ) 

(4 . 20b) 

(4 . 20c) 

We notice that the expression ( 4 . 20) is the same as ( 4 . 9) . Con 

seguently , mi nimization of (4 . 20a) under th e constraints 

(4.20 bc) will give the same sequence llu(t) ,t=O , .. ,N-1 as 

( 4 . 10) . 

In the li t erature , the problem (4.20) is usually called t he 

linear-quadratic control problem , since the dynam i cs is linear 

in ll x( t) and llu ( t), and the performance index is quadratic in 

these variables . The standard linear-quadra tic control pr0blem , 

however , con t ains no linear terms in the pe rformance index 

(4.20a) . For further details see Kwakernaak and Sivan (1972), p . 

490, Dyer and Mc Reynolds (1970), p . 42 or Bryson and Ho (1969) 

p . 46 . 

We shall discuss two different approaches to solving (4. 20) . In 
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chapter 5 , we shall solve the eguations t ha t correspond to the 

Kuhn -Tucker necessary condit i ons for (4.20). In this section, we 

shall solve the problem by introducing a seguence of sub

prob l ems . These subproblems are : 

minimize 
t.z ( t) 

1 T 
J(t,x (t), t,z{ t ))=lx (N)t,x{N)+ 7 t,x (N)Qxx(N)t,x{N)+ 

N-1 
+ E {1 (s) t.x(s) +l (s)t,u(s)+ 1 (6xT(s)Q (s)t.x(s) + 
s=t X U °2 XX 

T T } +2t. x (s)Qxu{s)t.u{s)+t,u {s)Quu{s)6u{s)) . 

Subject to 

6 X ( s+ 1 ) = f X ( s) t, X ( s) + f u ( s) t, u ( s) , s= t , .• . , N-1 

( 4. 2l a) 

( 4. 21 b) 

Let J*(t,x(t) ,t) be the value of the objective function in 

(4 . 21a) corresponding to the optimal control sequence 

t.u(s) ,s=t, •• ,N-1. We s hall now proceeed to show that this 

function is guadratic in t.x( t) , i.e. 

J*(t,x ( t) ,t) =a (t)+W ( t )t,x(t)+ ! t,xT(t)W (t)t,x{t) X ~ XX {4.22) 

for some a(t) ,Wx(t) and Wxx(t). Cl early, t his holds for t=N, 

since 

J*( t,x{N) ,N) =lx(N)•t,x (N)+ l 6XT{N)Q (N) t,x (N) 
7 XX 

( 4. 23) 

Hence 

a(N) =O (4.24a) 

W (N )=1 (N) 
X X 

{4.24b) 

{4.24c) 

Suppose now that (4.22) holds for t =N , .• . ,p+l. Then 
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1 T 
J*(6x(p) , p)=min {1 (p)6x(p)+1 (p)6u(p)+ ~ (6X (p)Qxx(p)6x(p)+ 

6 u ( p) X U "' 

+26xT(p)Q (p ) 6u(p)+6uT(p)Q (p)6u(p) )+ 
xu uu 

+J*(f (p)6x(p) +f (p)6u(p) , p+l) } (4.25) 
X U 

The 6u(p) that minimizes the right hand side of (4 . 25) is given 

by 

( 4 . 26) 

Substi t uting 6u(t) in (4.25) by the expr ession (4.26) we find 

that J*(6x(p) ,p) is also quadratic in 6x(p) and that the co

efficients are given by 

1 
a(p)=a(p+l)- 2 (1u(p)+Wx(p+l)fu(p))(Quu(p)+ 

T -1 T 
+fu(p)Wxx(p+l)fu(p)) • (1u(p)+Wx(p+l)fu(p)) ( 4. 27a) 

W (p)=1 (p)+W (p+l)f (p)-(1 (p)+W (p+l )f (p))• 
X X X X U X U 

(4 . 27b) 

(4.27c) 

By induction, we have consequently proved that (4 . 22) holds and 
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tha t t he coeff icients in these functions are given by (4. 24) and 

(4.27). Notice that (4 .27 c) is the discrete-time matrix Riccati 

equa tion. 

For convenience we introduce the fo llowing notation: 

ÖU( t)=-( Q ( t)+fT(t)W (t+l)f (t) Jl( ~ (t)+W (t+l)f (t))T (4.28) 
UU U XX U U X U 

and 

( 4. 29) 

With this notation, equation (4 . 26) can be rewritten as 

6u (t)=öu(t) - /:ltÄX (t). ( 4 . 30) 

The above shows that the problem (4. 20) can be solved iterative

l y by sol ving t h e subproblems (4. 21). The value of the perfor

mance index at the solution to these subproblems is given by 

(4.22) where t he coefficients are give n by (4.24) and (4 . 27). 

Finally, the solution to (4.20 ) is given by (4.30) where tix(t) 

is given by (4.20bc). 

We are now ready to summarize the minimization of the performan

ce index (4.3) using Newton ' s method, when no constraints (4.4) 

are present . 

Algorithm 4.1. 

I . Let an initial control sequence z
0

(0) be given (where z(O) 

is defined in (4 . 6)) , and pu t k=O. 

II. Calculate and store the states x(t), t =O, ... ,N for zk(O) 

accoi:-ding to (4 . 1) and (4. 2) . Calculate and store the 

va lue o f the objective function (4.3). 
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III. For t =N, ... ,O solve eguations (4 . 12c) and (4.27) with the 

initial values (4.12a) and (4.24) respectively . During 

these calculations compute and store ou (t} and ~ t given 

by (4.28) and (4.29) . 

IV. ( 

N-1 
If E 

t=O 
number, 

) 

1/2 
cSu( t) j 2 < er where e is a small positive 

go to step VII. 

v. Let the elements t. u(t) in t.zk(O) be given by (4 . 30) , in 

which t.x(t) satisfies (4.20b) and (4 . 20c) . 

VI. Put zk+l{O)=zk(O)+akt.zk(O), where ak is chosen in the 

interval (0,1 ) such that a sufficient reduction is 

obtained in the performance index (4.3) whe n using the 

control zk+l(O) instead of zk(O). Let k=k+l and go back to 

step I I. 

VII. Stop. zk(O) is close to a local minimum point . 

Remark 4 . 1 . In the above algorithm we assumed that the matrices 

Q (t)+fT(t)W {t+l)f (t), t=O, .. • ,N-1 are positive definite for 
UU U X X U 

all k. In chapter 6 we shall discuss how to modify the algorithm 

if this is not the case . 

Remark 4 . 2. It i s not trivial to chose ak in step VI. 

Different choices will be discussed in chapte r 7 . 

a 

a 

We are now able to campare the method presented here with some 

of those mentioned in section 4.2. Let us start with some com

ments on the results of Mitter (1966) {cont i nuous time) and 

McReynolds (1 966) (as described in Bryson and Ho (1969)). Both 
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these authors have derived the same results as those given here, 

but they propose that the control shoul d be given by 

(4.31) 

instead of (4.30). In (4.31) the state xk+l(t) is the result of 

the control uk(t)+6u(t). (For simplicity we assume that ak=l.) 

This modification saves computer time, since it is no longer 

necessary to solve (4 . 20bc). However, with (4.31) we no longer 

take a Newton step towards the solution (cf equations (4.9) and 

( 4 . 10)). 

The methods proposed by Mayne ( 1966) and Dyer and McReynolds 

(1970) differ from the method discussed here in the following 

way. First they use (4.31) instead of (4.30). Second , they use 

the vectors W (t) given by (4.24b) and (4.27b) instead of the 
X 

vectors Vx(t) given by (4.llad), when calculating the matrices 

Q (t), Q (t) and Q (t) in (4.19). With this change it is not 
XX XU UU 

necessary to solve the difference equation (4.l l d), and hence 

less computer work is required. But again, the method is no 

longer the true Newton method (as claimed in Dyer and McReynolds 

(1970) , p. 69). Close to the solution z*(O) these differences 

are marginal since 

(4.32) 

and 

(4.33) 

as zk(O) + z*(O). 

Clearly when the dynamics (4 . 1) is linear in the variables x and 

u, all the described algor ithms are identical. 
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constraint. 

Now assume that we have one constraint of the type (4.4) and 

that this constraint is active at time t=s : 

h(x(s) ,u(s) )20, (4.34) 

where h is a scalar function. As remarked earlier we can view 

x(s) as a function of x
0 

and z(O) , where z(O) is de f ined by 

(4.6). To find these functions and derivatives we proceed as 

with V(t) in (4.8). Consequently, introduce the functions 

H(x(t) ,z(t) ,t) through 

H (X ( t) , z ( t) , t) =O, t>s (4.35a) 

H(x(s) ,z(s) ,s)=h(x(s) ,u(s)) (4 . 35b) 

H (X ( t) , Z ( t) , t) =H ( f (X ( t) , U ( t) , t) , Z ( t + l) , t + l) , t < S. (4.35c) 

As in Lemma 4.1 it follows that these functions are twice diffe

rentiable and that they are given, for t=s, by 

(4.36a) 

H (s)=(O,h (s)) 
z u 

(4 . 36b) 

H (s)=h (s) 
XX XX 

(4.36c) 

(4 . 36d) 

(4 . 36e) 

and for t <s by 

( 4. 36f) 



52 

H (t)=(H (t+l) ,H (t+l)f (t)) 
Z Z X U 

(4.36g) 

(4 .36 h) 

H (t)=(fT(t)H (t+l),H (t+l)f (t)+fT(t)H (t+l)f (t)) (4.36i) 
XZ X XZ X XU X XX U 

(

H (t+l) 
H (t)= zz 

ZZ fT(t)H (t+l) 
u xz 

(4.36j) 

Our problem now is to fina the value of z(O) that minimizes 

V(x 0 ,z(O) ,O) subject to the constraint 

where V(O) is given by (4.8) and H(O) by (4 .35) . (Recall our 

convention of supressing the arguments xo and z(O).) This isa 

problem of the type (2.11) . For our problem, Wilson's method 

(corresponding to equations (2.15)) takes the form 

(4.37a) 

(4.37b) 

where the matrix Vzz(O) is given by 

(4.38) 

and µ is the Lagrange multiplier corresponding to the constraint 

(4.34). We shall now reformulate the problem (4.37) in the same 

way as we did in the previous s ubsection where (4.9) was re

written as (4.20). We start by introducing the func tions W(t) 

which are analagous to W(t) in (4.14). They are defined by 
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( 4. 39) 

whei:-e 

~ {t)=V (t) + µH (t) 
XX XX XX 

(4.40a) 

(4.40b) 

( 4 . 40c) 

and V(t ) is given by (4.8). The mati:-ices on the i:-ight hand side 

of (4 .40) ai:-e eithei:- given by (4 . 12) oi:- by (4.36) . Foi:- t>s the 

functions W(t) and W(t) ai:-e identical . Foi:- t<s we shal l now i:-e

wi:-ite W(t) in the same way as W{t) was i:-ewi:-itten in (4.18). Fi:-om 

( 4.40) and (4 . 39) we have 

U s i ng { 4 • 7 ) , { 4 • 8 ) , ( 4 • 12 ) and { 4 • 3 6 ) we ge t 

7
1 {6xT(t)(l (t)+V (t+l)f (t)+fT(t)V (t+l)f (t)+ 

XX X XX X XX X 

+µH (t+l)f (t)+µfT(t)H (t+l)f (t)) 6x(t)+ 
X XX X XX X 

+26xT( t )fT(t)(V (t+l)+µH (t+l ))6z(t+l)+26XT(t)(l (t)+ 
X XZ XZ XU 

+V ( t+l) f ( t )+fT(t)V (t+l)f (t)+ 
X UU X XX U 
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+özT(t+l)(V (t+l)+µH (t+l))6z(t+l)+26zT(t+l)(V (t+l)+ 
zz zz xz 

+µH (t+l))f (t)6u(t)+6UT(t)(..t (t)+ 
zx u uu 

+V (t+l) f (t)+fT(t)V (t+l)f (t) + 
X UU U XX U 

Again we introduce the auxiliary variable D(t+l) as (4.16) and 

then let öx(t+l)=D(t+l). The above equat ion could then be 

written 

W(t)=..t(t)+W(t+l)H (t)öx(t)H (t)öu(t)+ 
X U 

+ ! 6XT(t)(..t (t)+(V (t+l)+µH (t+l))f (t))öx(t)+ 
.:. XX X X XX 

+26xT(t)(..t (t)+(V (t+l)+µH (t+l))f (t))öu(t)+ 
XU X X XU 

(4.41) 

Performing the same calculations for t=s gives 

W(s)=..t(s)+W(s+l)+..tx(s)6x(s)+..tu(s)6u(s)+ 

(4.42) 

From (4 . l2c) and (4.36f) we have 
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= .l ( t ) + ( V ( t + l ) + µH ( t +l ) ) f ( t ) 
X X X X 

for t<s and for t=s we have 

Now introduce the row vec tors Vx(t) and the matrices 

axx(t) ,axu(t) and ~uu(t) as 

and 

tls 

( 4 . 43) 

( 4. 44) 

( 4 . 45a) 

(4.45b) 

(4.45c) 

( 4. 46a) 

(4 .46b) 

(4. 46c) 

(4. 46d) 

(4.46e) 

(4.46f) 

(4.46g) 

From equations (4.41)-(4.46) we see that W(O) can be written 
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W(O)=V(0)+1x(N)6x(N)+ 1 6xT(N)Q (N)6x(N)+ 
7 XX 

N- 1 
+ E (1 (t)öx(t)+1 (t)6u(t)+ ~ (6xT(t)Q (t)öx(t)+ 

t=O X U L. XX 

( 4. 4 7) 

where the auxiliary variabl e 6x(t) satisfies (4.20bc). 

Hence solving the problem (4.37) will give the same 6U(t) as the 

so l ution to: 

minimize 1x(N)6x(N)+ ~xT(N)Qxx(N)6x(N)+ 
öu(t) 

N- 1 
+ E {1 (t)6x(t)+1 (t)öu(t)+; (öxT(t)Q (t)öx(t)+ 

t=Q X U L. XX 

subject to 6x(t+l)=fx(t)6x(t)+fu(t)6u(t) 

öx ( 0) =0 

( 4 . 48a) 

(4.48b) 

( 4. 48c) 

(4.48d) 

!~~~~-Q~E~~~~i2~_2f_!b ~-9~~~E~!l~-§~~eE2~!~~ ~-~b~-~~~~ - ~!-
severa1 constraints. -------------------
We shall now generalize the results of t he previous subsection 

to the case of several cons traints of the type (4 . 4). To ao this 

we need some instruments to indicate which constraints that are 

associated with a particular time instant. Therefore we intro

duce the sets I(t) as 

I(t)={ i : t.=t}. 
l 

( 4. 4 9) 
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This definition of I(t) is illustrated by the following 

example . 

Example 4.1 . Let the constraints be given by 

l 
h (x(2),u(2)).:_0 

2 
h (x(2) , u(2)).:_0 

and let N=3. Then I(O)=I(l)=!1, !(2)={1,2} and I(3)o:{3} . 

we also introduce the functions 

i 
y(t)=y(x(t) , u(t),µ,t)= E µ.h (x(t.),u(t.)). 

iEI(t) 1 1 1 

where µ now isa vector with the compon e nts µ .. 
l 

0 

( 4. 50) 

In section 4 . 3 . 2 we found that the objective function in (4 . 20a) 

was cha nged to (4.48a) in case of one constraint. This con

straint changed the calculation of Vx(t) in (4.12c) to the 

calculation of Vx(t) in (4.45). Also the calculation of Qxx(t), 

Q (t) and Q (t) changed from (4.19) to (4 . 46) . If we examine 
xu uu 

these changes we see that they are linear. Hence adding more 

constraints will only result in linear changes in V(t),Q (t), 
XX 

Qxu(t) and Quu(t). Hence in case of several constraints we then 

let V ( t ) be given by 
X 

V (N)=t (N)+y (N) 
X X X 

( 4. 5la) 

v ( t l = t ( t l + v < t + l l t < t l +y ( t l 
X X X X X 

( 4 . 5lb) 
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( 4. 52a) 

o (t)=-t (t)+v (t+l)f (t)+y (t) 
XX XX X XX XX 

(4. 52b) 

( 4. 52c) 

o (t)=-t (t>+v (t+llf (t>+r (t) 
UU UU X UU UU 

(4. 52d) 

If we use Wilson's method to fina the z(O) that minimizes the 

performance index (4.3) while satisfying t he constraints (4.4) 

the increments in zk(O) are given by 6z(0) in which 6u(t) is 

given by the solution to 

1 T ~ 
minimize ,lx(N)6x(N)+ 7 6x (N)Qxx(N)6x(N)+ 

6u(t) 

N-1 
+ E {-t {t)6x(t)+-l (t)6u(t)+ 1 (6xT(t)Qxx(t)6x(t)+ 

t =O X u ""2 

+2llxT(t)Q (t)llu(t)HuT(t)Q (t)6u(t)) } 
xu uu (4.53a) 

( 4 . 53b) 

6x(0)=0 (4.53c) 

(4 .53d) 

where Q (t), Q (t) and Q (t) are given by (4.51) and (4.52). 
XX XU UU 

In chapter 5 we shall dicuss one method fo r f inding the solution 

to (4.53) as well as the values of the corresponding multipliers 

µi · If this method to calculate the increments in z( 0), con

verges , then the convergence will be of second order. This 

follow s since Newton's method is of second order. 
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4.4 Summary 

The long and technical calculations in this chapter can be 

summarized in the fo llowing theorem : 

Theorem 4.1. Suppose that the solution to (4 .5 3) exists and is 

unique. Let this solution be denoted by öu (t) . Then öu(t) is the 

update that is assigned to the control variable u(t) when 

Wilson ' s method is applied to the optimal control problem (4.1) 

( 4. 4) • 

0 

The existence of a unique solution to (4 . 53) will be investi

gated in t he next chapter. 
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5 . ON THE CONSTRAINED LINEAR QUADRATIC PROBLEM 

5 . 1 Introduction. 

At the end of chapter 4 we discussed how to compute a Newton 

direction in the control space, for minimizing the performance 

index {4 .3) subject to the co ns t raints (4 . 1), (4.2 ) and (4 .4 ) . 

We showed that it could be found by solving (4.53) , which isa 

constrained linear quadratic problem. In t his chapter, we wi ll 

investigate under which conditions a solution to {4 .53) exists . 

We will also apply the method proposed in chapter 3 for fi nding 

this solution. Hence we will con sider t he follow i ng problem : 

N-1 
minimize E {qi( t )x(t)+q;(t)u(t)+ 

t=O 

l T T + ~ (x {t)Q 1(t)x(t)+2x (t)Q12 (t)u(t) 

T T 1 T 
+u {t)Q2(t)u(tl)}+ql(N)x(N)+ ~X (N)Ql{N)x(N) 

subject to x ( t+l)=F(t)x(t) +G(t)u(t) 

x(O)=x 0 

(5.la) 

(5 . lb) 

(5 . lc) 

(5 . ld) 

Here Q
1
(t), Q12 (t) ,Q 2 (t) , F(t) and G(t) are given matrices o f 

proper dimensions . The ma t rices Q1 (t) and Q2 (t) are symmetr i c : 
l The c<;>lumn vectors q 1 (t) , q 2 ( t) a nd x 0 , a~d the row vectors h1 

i . d h 1 . 1 and h2 are also assumed to be g i ven an are g i ven sca ars. 

The problem (5. 1 ) is the same as (4 . 53) but we have rewri tten it 

in order to simplify the no t ation. From now on we will refer to 

(5 . 1) as the CLQ- problem {the constrained linear quadratic 

problem) . We wi ll sometimes address problem (5.1) without the 

constraints (5 . ld). This problem will be called the LQ-problem. 

The CLQ- problem isa problem of the type (3 . 1). To see th i s we 

let z be formed by the state vec t ors x(t) and the control 
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vectors u(t) such that 

T T T T T T 
z =(x (N),u (N-1 ) ,x (N-1) , .. , u (0), X (0)) . ( 5. 2 ) 

Note that in chapter 4 we considered only the controls u( t ) to 

be free variables . Doing this we could (at least implicitly) 

eliminate the state variables. 

In this chapter however, we consider both the controls and the 

sta t es as being free, because then it is easier to see the re

lationsh i p between the problems (3.1) and (5.1). Using (5 . 2) and 

comparing (5.la) with (3.la) gives the relationships 

B= 

and 

Ql ( N) 

0 

0 

0 

0 

0 

0 

Identifying 

0 

Q2 (N-l) 

Ql2(N-l) 

0 

0 

0 

0 

0 
T 

Ql2(N-l) 

Q
1 

( N-1) 

0 

0 

0 

0 

( 3. lb) with ( 5. lb) 

- I G(N-1) F(N-1) 0 
0 0 - I G(N-2) 

G= 

0 0 0 0 
0 0 0 0 

and 

0 

0 

0 

Q2(1) 

0 12(l) 

0 

0 

0 

0 

0 

" T 
012(1) 

Ql(l) 

0 

0 

and ( 5. l e) gives 

0 0 
F(N-2) 0 

0 -I 
0 0 

0 

0 

0 

0 

0 

Q2 ( 0) 

0 12(0) 

0 
0 

G(O) 
0 

0 
0 

0 

0 

0 

( 5. 3} 

( 5. 4) 

F ( 0) 
-I 

( 5 . 5) 
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g=(O,O, ••. ,O,-xo> 
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( 5. 6) 

where in (5.5), I is the nxxnx unit matrix. The constraints 

(5.ld) determine the vector hand the matrix H in (3.lc) for the 

CLQ- problem, but we can only write H explicitly when the 

sequence t
1

, t
2

, .. ,tp in (5 . ld) is known . 

In chapter 3 we found that the problem (3.1) had a unique solu

tion if the assumptions Al and A2 were satisfied . Here we are 

going to investigate what these assumptions mean in the CLQ 

case. In section 5.2 we take a closer look at assumption Al and 

in section 5.3 we look at assumption A2 . In chapter 3 a method 

for solving the problem (3.1) was proposed. In section 5.4 we 

will present a factorization algorithm, based upon the Riccati 

equation, that is needed when using this method on the CLQ-prob

lem. In section 5.5 we show how the rest of the method applies 

to the CLQ-problem. 

5.2 Assumption Al in the CLQ case. 

Assumption Al states that the matrix B is positive definite on 

the null space of G. For the CLQ case we then have the following 

result. 

Theorem 5.1. If B is given by (5 . 3) and G by (5.5) then B is 

positive definite on the null space of G if the matrices 

Q
2

(t)+GT(t)P(t+l)G(t), t =O , . .. , N-1 ( 5 . 7) 

are positive definite, where P(t) is the solution of the Riccati 

equation 

(5.8a) 
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(5.8b) 

0 

Proof : We start by constructing a basis for the null space of G 

in (5.5). Note that the basis consists of column vecto r s of t he 

type (5.2) in which x(O)=O and the other elements satisfy 

(5 . lb). It is easily seen that we can satisfy Gz=O fo r every 

choice of u(t), t=O, ••• , N-1 by just choosing the values of 

x( t) ,t=l, ••• ,N so that they satisfy (5. lb). He nce Gz=O leaves 

u(t), t=O, ••• ,N-1, as free variables and therefore the dimension 

of the null-space of G is at l east N•nu. 

Def ine the ma tr ices z ( t) 

T T T T T T z ( t) = c xt c N) , ut ( N-1) , xt c N-1) , ... , ut ( o) , xt ( o l ) ( 5. 9) 

where the matrices Xt(t) and Ut(t) al l have nu columns and are 

given b y 

Ut(s)=O, s=O, ... , t-1 (5.lOa) 

Xt(s)=O, s=O, ... ,t (5.lO b) 

(5 .lOc) 

(5.lOd) 

(5.lOe) 

xt (s+l )=F( s)Xt (s) , s=t+l, .. . ,N-1 (5.lOf) 

where r is the nnxnu un it mat r ix , ~t is given by 
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( 5 . 11) 

and F(t ) i s de f ined as 

F(t) = F{t )-G(t)~t ( 5 .12) 

In words, the i: t h column of Z(t) (cf (5 . 2)) is generated by 

starting at state zero using zero control up to time t-1. At 

time t we let t he i:th control signal be 1. Afte r that we use 

the feedbac k law u(s)= - ~s x(s). From this way of cons tructing 

Z( t ) it is obvious that GZ(t)= O, t=:O, . . . ,N- 1 when G is given by 
T 

( 5 . 5). Let a: {t)=(a 1 (t), •.. , a nu{t)) be a vec tor . Then any vector 

of the type 

N-1 
z= E Z(t)a(t} 

t=O 
( 5 .1 3 ) 

i s a vector in t he null space of G. On the other ha nd le t z be a 

given vector in the null space of G. Then we ca n choose a:(t) , 

t =O, ... ,N-1 so tha t (5.1 3 ) hols . Also al l the columns in the 

matrices Z(t) are linearly independent so these columns f orm a 

basis in the null space of G. 

An al t ernative way of writing (5. 10) is 

Ut ( s)=O , s=O , ... ,t-1 (5. 14a) 

Xt(s)=O , s= O, . . . ,t (5.14b) 

{5. 14cl 

X t ( t + 1 ) =G ( t ) I (5.14d) 

Ut (s)=-~sF{s-1) . .. Ei(t+l)G(t), s>t (5. 14e) 

- - -
Xt(s+l)=F{s ) F(s - 1) .. . F(t+l)G(t), s>t (5 .14f) 
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I f z is given by (5.13) we have 

N-1 N-1 
zTBz= E E aT(s)ZT(s)BZ(t)a(t). (5.15) 

t=O s=O 

The term ZT(s)BZ(t) has the following property. From (5.3) and 

(5.14) we have 

-T -T -T -T T 
BZ ( t) = (X t ( N) , Ut ( N-1) , ••. , Ut ( 0) , Xt ( 0) ) ( 5 . 16) 

where Xt(t) and Ut(t) are given by 

xt (N)=Q
1 

(NJ °F(N-1) ••. r( N-1, ••• r( t+1 )G( t) (5. l 7a) 

(5.17b) 

x t 'P' = , Q 1 'P '-Q 12 , P) ~ p) r, p-1 , . .• r, p-1 > ••• 'F ( t + 1 , G, t > p>t (5.17c) 

(5.17d) 

(5.17e) 

Ut(p)=O p< t (5 . 17f) 

Xt(p)=O p~t (5 . 17g) 

For s>t we then have 

T T T T 
Z (s)BZ(t)= (Q

12
(s}+G (s)P(s+l)F(s)-(Q

2
(s)+G (s)P(s+l)G(s))~s)-

- -
•F(s-2) . . . F(t+l)G(t)=O. (5 . 18) 

For s=t we have 

(5.19) 
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and for s< t we have 

To obtain (5.18)-(5-20) we have used (5 . 8) and (5.11). 

Hence (5 . 15) reduces to 

N-1 
zTBz= E aT(t)(Q

2
(t)+GT(t)P(t+l)G(t))a(t) 

t=O 

( 5. 20) 

(5.21) 

and we finally conclude that zTBz> 0 if zfO and Gz=O and if 

the matrices Q2 (t)+GT(t)+GT(t)P(t+l)G(t) are positive definite . 

D 

If the LQ problem (5 . la-c) was constructed to obtain a Newton 

direction to the constrained optimal control problem (4 . 1 )

(4 . 3), we have the following result. 

Corollary 5 . 1 . The matrix vzz(O) given by (4.13) is positive de 

finite if the matrices 

are positive definite . 

D 

Pr oof: The statement follows from theorem 5 .1 and from theorem 

4.1, which says that 6z(O) given by (4 . 10) is algebraically 

identical to 6u(t), t=O, .•. ,N-1, which minimizes (4 . 20a) under 

the constraints (4 . 20c) . 

0 
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5.3 Assumption A2 in the CLQ case. 

Assumption A2 is a constraint qualification for the quadratic 

programming problem. In the CLQ case it is a l so c l osel y related 

to the concept of controllability as will be shown later in this 

section. For the CLQ problem, assumption A2 has the following 

equivalent formulation. 

Assumption A2: µi=O, i=l, ••. ,p and A.(t)=O, t=O, . .. ,N, is the 

only solution of 

i T 
A.(N)= E ~t.(h 1 (N)) (5.22a) 

id(N) 1 

T i T O=G (t)f..(t+l)+ E µ.(h
2
(t)) ; t=O, .•• ,N-1 (5.22b) 

ie:I(t) 1 

T i T A.(t) =F (t)A(t+l)H µ.(h
1
(t)) ,t=O, .•• ,N-1 (5.22c) 

iEI(t) 1 

where I(t) are defined by 

I(t) = {i: t .=t} 
l 

(c f (4.49)), 

(5.23) 

For the general case it is very diff icult to decide whether or 

not (5.22a-c) have non-zero solutions in A. and µ. For some 

special cases however it is possible to reformulate equations 

(5.22) into a more practical condition. When there are no con

straints at all we have the f ollowing resul t. 

Proposition 5.1 . If there are no constraints of the type (5.ld) 

defined by problem (5 .la-d) t hen the equations (5.22a-c) have 

the unique so l ution A.(t)~O, t=O, •. ,N. 

0 

Proof. If we ha ve no constraints , then the sums in ( 5. 22) are 

all zero. Hence (5.22a) gives A.(N)=O and (5.22c) shows that 
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A.(t+l)=O implies A.(t) =O. The proof then follows by induction. 

0 

Note that another way to formulate proposition 5.1 is to say 

that the matrix G given by (5.5) has full rank . 

If assumption A2 holds, then there exists at least one point 

that satisfies the constraints. For the CLQ-problem it is ob

vious that we have a feasible point of the constraints (5.lb)

(5.ld) if the constraints (5.ld) are explicit functions of u(t) 

and that we for allt could satisfy (5.ld) iEI(t) by just 

choosing a proper u(t) . This fact suggests the following theo

rem. 

i 
Theorem 5 . 1 . If I(N)=~ and if for each t the vectors h 2 , 

iEI(t) are linearly independent, then A2 holds. 

0 

Proof. rrom (5.22a) and I(N)=~ we have A.(N)=O. Assume that we 

have A. ( t)=O and µi =O, iEI(t) for t=N, .. . , p+l . By usi ng (5 . 22b) 

for t=p we then get 

( 5. 2 4) 

But because the vectors h;,icI(p) are linearly indepe ndent , 

(5 . 24) implies µi=O, icI(p) . The equation ( 5 .22c) the n reduces 

to 

T 
A.(p)=r (p)A.(p+ll 

X 

But A.(p+l)=O and hence A.(p)=O. 

The result then follows from induc tion. 

( 5 . 25) 

0 
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The most inte r esting case , however, is when we have some pure 

state constraints, i.e. h;=o. In order to hand l e this type of 

problem we conside r the co nc ept of controllability. We define 

the t r.ansit ion matrix $(t,s), t~s, and t he controllability 

ma trix W(t , s) , t> s , as 

$(t+l,s} =F( t) $(t , s ) , t ~s, $(s , s)=I 

and 

t - 1 
W(t,s}= E $(t,p+l)G (p)GT(p)$T(t,p+l) 

p=s 

(5 .26} 

( 5 . 27} 

If we have only one constraint which is a s t ate constraint 

relating to the time ti, the n we have t he following resul t. 

Theore m 5.2. Suppose that we have only one constraint and that 

h
2

=0 for this co nstraint. Suppose also that W(t 1 ,t 0 J , defined by 

(5.27) is nonsingular for some t 0 such that O~ t 0 < t 1 ~ N. Then A2 

holds if hi,Fo. 

0 

Proof : From (5. 22) and (5.26) we have 

i-. ( t) =O, t =t
1

+1 , ... , N (5.28a) 

(5 .28b) 

and from (5.22b) we then ge t 

(5.29) 

This could also be written 

(5.30) 
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where C is the matrix 

( 5 . 31) 

But CTC=W(t
1
,t

0
). Hence, multiplying (5 . 30) by CT we get 

( 5 . 3 2} 

Because W( t
1 
,t

0
) is nonsingular and hilO , (5. 32) impl ies µ

1 
=O 

and from (5.28b) it follows that >-..(t) =O, t=O, . .. ,N . 

0 

If we have several s t ate constraints but they all relate to 

different times, the following corollary follows from theorem 

5. 2 . 

Corollary 5 . 1 Let the times ti' i=O, ... ,p satisfy 

O<t
0

<t
1

<... <t <N . If the matrices W(t. ,t. 
1

J are nonsingular-- . p- ]. ].-
and h~IO for i=l, .• ,p then A2 holds. 

0 

Now consider- the time invariant case with one t i me invar-iant 

state constraint r-elated to each time. 

The orem 5.3. Let the dynamics in (5.lb) be time invariant such 

that F(t)=F and G(t)=G, t=O, ... , N- 1 and let the constraints in 

(5.ld) be time invariant s t ate constraints such that 

(5 . 33) 

(h 1IO) where t .> n ,Vi and t.lt. if ilj . Suppose that the 
1 - X l J 
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matrix C given by 

n -1 
- -- - X - T 

C=(G,FG, ... ,F G) (5.34) 

has full rank. Then A2 holds. 

D 

Proo f : Without loss of generality we assume that t.=n +i - 1. 
1 X 

Let k be the sma llest nonnegative integer such tha t 

- k-
h l ( F} GtO. (5.35) 

That this k exis ts follows f rom (5.34) and the fact that C has 

full rank and h
1
fO. 

From ( 5. 22) we get 

N 
- T s-t T 

A(t}= E µs -n +1 1Fx ) (h l ) ' n < t<N 
s = t X 

x- - (5.36a) 

N 
+l (FT}s-t(h l} T , A( t )= E µs-n O< t<n -1 - - X s=n X 

X 

(5.36b) 

Now using (5.22b} f or t=N-k gives 

- T - T - T T 
O=G A( N-k)=µN-n +lG (F )(h 1 ) ( 5 . 37) 

X 

The second equa l i ty follows from (5. 36) and the fact that 

h1 (F)PG=O if p< k. He nce from (5 . 37) we have 11 N- n +l=O. Assume 
X 

t hat µN 
1

= .. . =µ 
2

=0. Then us i ng this 
-nx + p -nx + 

fact a nd (5.22b) for 

t =p-k gives 

( 5. 38) 

which says that µ +l =O . Hence by i nduct ion we have µ. =O , 
p - n x i 
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i=l, ... ,N-nx+l , and from (5.36) it follows that 

A(t) =O, t=O, .• ,N. 

0 

5.4 Factorization and the Riccati equation 

As we have already mentioned, the problem (5.1) isa problem of 

the type defi ned by (3.1). Therefore we can use the method pro 

posed in chapter 3 to find the solution to (5 . 1) . When using 

thi s method we need an efficient method for factorizi ng the 

matrix o f (3.6) when B a nd G are given by (5 . 3) and ( 5.5) . We 

will show here that such a factorization method is obtained when 

the Riccati equation is solved . Therefore we first solve the 

problem neglecting the cons t raints {3.lc), which in our case 

corresponds to the constraints (5 . ld). We have already pre

sented a method for finding the solut ion to the LQ-problem in 

section 4 . 3 . 1. In this chapter we will aga in present the same 

method but derive it in a diffe r e nt way. We do this for two 

reasons . The first reason i s that we want to stress that solving 

the Riccati equation is a factorization me thod and the second 

reason is that it is easier to see what matrices define this 

factorization . Hence consider the LQ-problem (5 . la)-(5 . lc). The 

Lagrangian for t his problem is 

T l T T 
L ( X , u , A ) =q l ( N ) X ( N ) + "2 X ( N ) Q l ( N ) X ( N ) +A ( 0 ) ( X O - X ( 0 ) ) + 

T T 
+2 x (t)Q

12
(t)u(t)+u {t)Q

2
(t)u(t))+ 

H. T ( t + 1 ) ( F ( t) x ( t) +G ( t) u ( t) - x ( t + 1 ) } (5. 39) 

If x(t), t=O , ... ,N and u(t), t=O, ..• ,N-1 is the solution to the 

LQ-problem, then the Kuhn-Tucker necessary conditions state that 

there exist multipliers ~(t) , t=O, . . . ,N such that 0 ~tt)=O, 



74 

~~ (t)=O, t=O, .. . ,N and ~~(t)=O, t =O, ••• , N where the derivatives 

of L are evaluated for t he arguments x(t), ~( t ) and u(t ) . We 

t hen get t he following equat ion for x(tl, u(tl and ~(tl 

bL 

oun:> 
bL 

oxrn 

-x(t+1i+G(t}u(tl+F(tlx(t) =o 

where the equalities (5.40 bcd) hold for t =O, ••• ,N-1. 

(5. 40a) 

(5. 40b) 

( 5. 40c) 

(5.40d) 

(S.40e) 

By merging the vectors A(t) , x(t) and u (t) into ~ s uc h that 

- - T -T - T -T -T -T - T - T T 
' = (A (N),x (N),u (N- 1),A (N-1),x (N- 1), .•. ,u (0),A (O)x (0)), 

(5.41) 

we could write the conditions (5.40) as 

(5.42a) 

where 

T T T T TT 
b = (-q

1 
(Nl , o ,-q

2 
(N- 1) , •. • , o ,-q

2 
(O l ,-q

1 
co l , - x

0 
l ( 5. 43b) 

and 
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0 

0 

0 

where I i s the n xn 
X X 

unit ma tr ix, .fi-t, 

(2nx+nu)x(4nx+nu ) matrices g i ven by 

( ~T(t) -I G(t) 0 

/1 = 0 Q2(t) 0 
t 

FT(t) 0 Ql2( t) -I 

~=(-I,Q l (N}} . 

(5.43) 

t=O I •• • I N-1 are 

F(t) ) 
or2(t) ( 5 . 44) 

Ql(t) 

( 5 . 45} 

The matrix./1-in (5.43) is hence a block diagonal matrix with 

rectangular block s where t h e width of the d iagonal is 5 blocks. 

The matrixA-is the same matr ix as 

( ~ ~) 

where B a nd G are given by (5.3} and (5.5) but where we have re

ordered the co lurnns and the rows in a certain wa y . This reorder

ing has been done so that i f ass umtion Al ho lds (cf section 5 . 2) 

then it is possible to obtain a LU-factorizat ion o f the matrix 

withou t performing any pivoti ng . We have the following result . 

Theorem 5 . 4 . If assumption Al holds for the LQ- pro blem and A- is 

given by (5 . 43), then t here e x ists a lowe r block triangular 

matrixi' and an upper triangular matrix U with ones on the dia

gonal suc h tha t 

( 5 . 4 6) 

The matrix :L is given by 



1-=-1-, 0 0 
I I 
Id[- - -, 0 
L - ..N;:l.-' - - 1 

O I ~ N- 2 -----L 
0 0 0 

0 0 0 

0 

0 

0 

0 

0 

0 
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0 

0 

0 

-,~ --- , 0 
L_...Q __ L _ _ 

0 0 - I I 
L_...J 

-I 

GT(t) P (t+l) 

0 

Q
2

(t )+GT(t}P(t+l)G(t) 

FT(t) P ( t+l) 0
12

(t)+FT(t)P(t+l)G(t) 

The matrix ?L is given by 

0 

0 

where Utis 

U,· (: 

0 

0 

0 

0 

0 

0 - , 
I 

0 

0 

(2n +n )x(3n +n ) matrices 
X U X U 

-G ( t) 0 
I 0 

0 I 

0 0 

0 0 

0 0 

-u- - --, 
- .0.. - - -1 
0 I_ _ ~I 

given by 

- F(t) ) 
~t 

- P(t) 

( 5. 4 7) 

~) (5.48) 
-I 

(5.49) 

(5.50) 

The mat rices P(t) and ~t in (5.48)-(5.50} a r e given by (5.8) and 

( 5.11). 

0 

Proof. From multiplication o f X and U and from (5. 8} a nd (5.11) 

the theorem f ollows t rivially . 

0 

The sol ution of (5. 42 a} i s ob t ained by firs t solving 

( 5. 51) 
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and then solving 

U ~=C' ( 5 . 52) 

Solving (5.51) gives 

I T T T T T TT c =(W (N) , O,u o (N-1),W (N-1), 0, .. • ,u o (O ) , W (0), x o) ( 5. 53) 

where W(t) and öu (t) are given by 

W(N )=q l (N) ( 5 . 54a ) 

w ( t) =q 
1 

( t >-f3 ~q 
2 

( t) + ( F ( t > - G ( t) f3 t) Tw ( t+ 1) , t=O , .. . , N-1 ( 5 . 54b) 

and 

(5 . 54c) 

Compare (4 . 24b), (4.27b), (4.28)and (4.29). In these equations 

the row vector Wx(t) corresponds to W( t) in (5 . 54) . 

From (5 . 52) we final ly get the solution (5 . 41) to (5 . 42a) as 

(5.55a) 

( 5 . 55b) 

t =O, . •. , N-1 
- - -
x(t+l)=F(t)x(t)+G(t)u(t) ( 5. 55c) 

~(t)=W(t) +P(t)x(t ) ,t=O, .. . ,N (5.55d) 

Usually, however , we have no need for the multipliers A(t). 

Therefore we do not necessarily have to compute ~(t) and there

fore we do not have to store W(t) . But t he vectors u
0

(t) must be 

stored. 
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When we examine the equations (5.54} and (5 . 55) we find that the 

factorizat ion of ,fl- in (5.42} is defined by the matrices 

G(t) ,F(t} ,Q
2

(t)+GT (t)P(t+l)G(t) and ~t if we do not need ~(t) . 

Hence we now have an effective method to factorize the left hand 

side matrix in (3.6} in the LQ-case. Also, we know how to find 

the solution z to (3.6} in this case, 

5.5 Inequality constraints. 

We are now r eady to hand l e the inequality constraints (5 . ld) . In 

the method proposed in chapter 3 we need to calculate the matrix 

z in (3 . 5) which is the solution to (3 . 7). We also need to cal

culate µ. which is the solution to {3 . 8}. Hence we also need to 

calculate the matrix A in (3 . 9) and the vector d in (3 . 10). 

Without any loss of generality we assume that the first p ' of 

the constraints (5.ld) are in the active set. Now we use Remark 

3.1 to calculate the i : th column in z (3 . 5). 

Hence in the vector b given by (5.42b) we replace q
2
(ti) and 

i i 
q 1 {ti) by h 2 and h1 • All other elements in bare set to zero and 

the resulting vector is called bi. Let the i : th columns of Z a nd 

A be s tored in r. i wi th the same structure as ind icated by 

( 5 .41). Then we get this i;:. as the solution to 
l 

;/r.•. =b. 
l l 

Ur. .=r. ~ 
l l 

{ 5 . 56a) 

(5.56b} 

where <.i has the same structure as (5.53) . Comparing wi th (5.54) 

we see that the solution to (5.56a) is 

Wi (t} =O , t=ti+l, ••• ,N (5.57a) 
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u.(t)=O , t=t.+l, ... ,N 
l l 

(5 . 57b) 

(5.57c) 

( 5 . 57d) 

W . ( t ) = ( F ( t ) - G ( t ) Il t) 'rw . ( t + l ) , t = 0 , • . . , t . -1 , 
1 l l 

(5 . 57e) 

T - 1 T 
Ui(t) =- (Q2 (t)+G (t)P(t+l)G(t)) G (t)Wi(t+l),t=O, ••• ,ti-1. 

(5.57f) 

and if we compare with ( 5. 55 ) we see that the solution to 

(5 . 56b) is 

x i ( 0) =0 ( 5 . 58a) 

(5 . 58b) 

t=O, •.. ,N-1 

X i ( t +l) = F ( t) X i ( t) +G ( t) LI i ( t) , ( 5 • 5 8 C) 

where in (5. 57 ) and (5.58) the subscript i i ndica t es the i:th 

c olumn of z. 

The e l ement aij in the matrix A in (3 . 9) is given b y 

i i -
a .. =-H

1
x.( t .J-h

2
u.(t. ) . (5 . 59) 

l] J l J l 

The element di in the vector d in ( 3 . 10 ) is given by 

where x(t) and u(t) is given by (5 . 55) . 

We t hen know all quantities that are needed to solve (3 . 8) to 

obtain µ . . The complete solution to the CLQ- problem is 



p ' 
x(t ) =x{t)H Jl ~X. (t} ,t=O , ••• , N 

i=l 1 1 

80 

p' 
u(t} =u( t }H µ(ui(t),t =O, .•• ,N -1. 

i =l 

(5. 6la) 

( 5. 6lb) 

This is of c o u r se true only i f we have chosen the correc t se t o f 

act i ve constraints . Otherwise we have to f i nd a nother set of 

active constraints accord ing to the rules g iven in section 3. 

By substituting u(t) and ui(t) in (5. 6lb ) and using (S.55b) and 

(5.58b) we get 

p' - p'_ 
u ( t ) = uo ( t ) - ~ X ( t ) + L µ ! ( u . ( t ) - ~ t X . ( t ) ) = uo ( t ) + L µ ! u i ( t ) -

t i=l 
1 1 1 

i=l 
1 

p' - p ' _ 
- ~ (x( t ) +L µ! x. (t)}=u

0
(t}H µ!u. (t} - ~tx(t) 

t i =l 1 1 i =l 1 1 
( 5. 62) 

where the last equality follows f rom (5.6 l a}. There f ore we can 

choose to store ui(t} i nstead o f ui(t) a nd xi(t}. Instead of 

( 5. 61} we then use 

p ' 
u(t)=u

0
(t)H 'µ • . u . (t)- ~ tx(t) 

i =l 1 1 

x(t+l)=F{t)x(t)+G( t) u(t) 

t=O, ..• ,N-1 

(5 . 63a) 

(5 . 63b) 

( 5.63c} 

However, in order to be able to calculate the e lements a .. given 
l] 

by (5. 59) we have to calcul a te xi(t) a nd ui( t ) but we need not 

necessari ly store them. In the first iteration of the method 

proposed i n chap t er 3 we know whi c h cons t ra ints belong to the 

ac tive set. We can therefore use (5.59} t o ca l culate all e l e

ments i n A.. However, in later ite ra t ions when a new constraint 

is added to the act i ve set, we cannot use (5 .59) f or all ne w 

elemen t s if we do not want to reca lcula te xi(t} and ui(t) for 

a lready active cons traints. Only the elements i n the new column 

in A could be obtained from (5 . 59) . But then we ut i l i ze the fact 
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that the matrix A i s symmetric , and therefore also the new row 

could be calculated without storing the values xi(t) and ui(t) 

for already active constraints. 
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6 REGULARIZATION ISSUES 

6.1 Introduction 

In chapter 4 we discussed how to determine a Newton direct ion in 

the space of control actions for the optimal control problem 

(4.l)-(4.4). Th is was achieved by solv ing the quadratic sub

problem (4.53) . For this sub-problem to have a unique solution 

we introduced the sufficient assumptions Al and A2 dealing with 

positive definiteness and linear independence respectively. In 

the previous chapter we discussed how to test whether these 

assumptions are satisfied. 

However, even if these assumptions are satisfied at the optimal 

solution to the posed problem , it may happen that they are vio

lated for some sub-problem that we encounter dur ing the i tera

tive search for t he solution . In this chapter we shall briefly 

discuss how the sub-problems can be modified so that the suf

ficient cond itions Al and A2 are assured to be satisfien for all 

subproblems that arise during the iterative procedure . In sec

tion 6.2, assumption Al is treated, while assumption A2 is dis

cussed in section 6 . 3 . When nothing else is explicitly stated, 

we shall use the same notation as in chapters 2 and 4 . 

6.2 Regulariza tion of matrices (Assumption Al) 

The assumption Al requires that the Hessian of the Lagrangian is 

positive def ini te on the orthogonal complement to the space 

spanned by the gradients of the equality constra ints. When app

lied to an unconstrained optimization problem this simpl y means 

that the Hessian of the objective function should be positive 

definite . If this is not the case then Newton's method is un

suitable for the numerical search, since it does not generate 

descent directions . A very natural and common way to handle that 

situation is to add a matrix to the Hessian so that the resul

ting matrix is positive definite (see e . g. Luenberger (1973), p . 

157). This idea was proposed by Levenberg (1944) and Marquardt 

( 1963) . Here we shall describe two basically different choices 

of such matrices, and how to adapt the Levenberg-Marquardt 
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method to our particular problem. The two cho ices in question 

are: 

Cl : µI where µ~O and I is the unit matrix 

C2: A non-negative diagonal matrix D. 

These methods are also described in Fletcher (1980). The choice 

Cl may be motivated in the following way: 

Assume that we want to solve the problem 

minimize J.(z) ( 6 . 1) 

( cf ( 2 • 11 ) ) • 

Newton's method for this problem then generates search direc

tions which are the solutions to 

( 6. 2) 

If J.zz(zk) is positive definite and the Taylor series is 

adequate in a sufficently large region around zk, then this 

should give a reasonable decrease in the objective function. 

However, if J.zz(zk) is indefinite then the expression (6.2) has 

no lower bound and the problem has no bou nd ed solution. A 

possible way to modify this problem is to res trict the search 

for a new va lue to a small enoug h region around the previous 

iterate: 

min imize 
dk 

subject to 

(6 .3a) 

(6. 3b) 

here Ek is a properly chosen pos i tive scalar. The Lagrangian for 

the problem (6 . 3) is 

( 6. 4) 
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and the Kuhn-Tucker conditions for this problem are 

{ 6 . Sa) 

{6.Sb) 

( 6 . Se) 

{6 . Sd) 

If the constra i nt (6.3b) is active, the solution to the problem 

( 6 . 3) is 

( 6 . 6) 

whe re µ is chosen so that jak l =ek· However , any choice of µ such 

that the matrix 

( 6. 7 ) 

is positive definite will make dk given by (6 . 6) a descent 

direction. Therefore , in practice the variable ek is neve r 

explicitly given. Rather, µis chosen so that the matrix ( 6 . 7 ) 

is positive def i nite . When µ tends to infinity, this direc t ion 

tends to the steepest descent direction. This means that too big 

a value of µ may a give slow convergence rate . 

The choice C2 is motivated by the following idea from Gill , 

Murray and Picken (1972). The idea is to make a UTU- factoriza 

tion of the modified matrix : 

{ 6. 8) 

The elements of t he diagonal ma t rix Dk are chosen in the course 

of t his factor i zation so that the right hand side of ( 6 . 8) is 
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made posit i ve definite . This way of choosing ok give s Dk=O if 

~ (zk) is positive defi n ite. An advantage of this rnethod over zz 
(6 . 7) is tha t t he factorization (6.8) has to be completed only 

o nce , while several tests for posi t ive defin iteness in (6.7) may 

be necessary. On the other hand , t he choice (6.8) may give a 

d irection ak which is i s almost or thogonal to the steepest 

des c e nt direc t ion. Examples of some search directions are given 

in figure 6.1 

Figure 6.1 Exampl es of search d i rection dk when d k is g iven by 
-1 T dk=- M t

2
(zk ) and M is g i ven by a) M=I (steepest descent), b ) 

M=t (zk) (Newton, indefinite case ), c) M=i (z k )+µI, 
zz zz 

d) µ=t
22

(zk)+Dk . ( worst case) . 

0 

As t he figure is drawn , t he choice Cl appears to be s uperior to 

the others . Some numerical evidence that t h i s may i ndeea be the 

case are given in Fletcher (1 980), p. 88. 
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Let us now con sider the optimal control problem (4 . 1)-(4 . 4) . We 

found in section 4.3.l that the Newton step for the unconstrain

ed optimal control problem is given by (4 . 10) : 

where V(t) is g i ven by (4 . 8) and 6z(0) is the increment in u(t), 

t=O, .. . ,N- 1. (see equation (4.6)), Now, if Vz
2

(0) is not posi

tive definite, then we modify it using either of the choices Cl 

o r C2. Comparing with equation (4 .14g) we find that the choice 

Cl corresponds to adding µI to the matrices iuu(t) , t=O, . .. , N-1 

and the choice C2 to adding D( t) to J.uu ( t) where D( t) are non

negative diagonal matrices . From corollary 5 . 1 we know that we 

can check if the resulting matrix is positive definite just by 

investigating the matrices 

( 6 . 9) 

where Wxx(t+l) is the solution to the Riccati equation 

(6 .lOc) 

+V (t+l)f (t)+fT{t)W (t+l)f (t)) • {.t (t)+D(t)+V (t+l)f (t)+ 
X XU X XX U UU X UU 

+fT{t)W (t+l)f (t))-l•(J. +V {t+l)f (t)+fT(t)W (t+l)fx(t)) 
U XX U UX X UX U XX 

(6.lOd) 
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We have written these equations here for the choice C2. In the 

c ase of Cl we just replace D(t) with µI. Notice tha t the choice 

Cl requires µ to be equal for all the N time instants . 

Therefore, using the choice Cl we may have to solve t he Riccati 

equation (6.10) several t imes before a proper va l ue of µ is 

fo und. In the case of C2, however , the matrices D(t) can be 

found on-line, by solving (6.10) only once per iteration. 

There fore the choice C2 will be used in our a l gori t hm for the 

optimal control probl em, despite the possible disadvantage indi

cated i n figure 6.1. 

It is i n te res ting to note t hat add i ng the ma trix D ( t) to ,t uu ( t l 
may be in terpre ted as add i ng the t erm 

1 T 
2 

( u ( t) - uk ( t) ) D ( t) ( u ( t) - uk ( t) ) ( 6 . 11 ) 

to the cost- f unct ions t(x(t) ,u(t) ,t) in the performance index 

(4.3), where uk(t) is the cu~rentl y used control signal. Adding 

such a t erm is very sim.ilar to t he convergence control parameter 

(CCP) technique proposed by Järmark (1977), for continuous time 

optimal control problems. I n the original CCP-method, however , 

the same matrix is used at every time i ns t ant , and the choice of 

the matrix is determined by the decrease in the cost function 

between iterations. From this discussion it may co nsequently be 

concluded tha t t he CCP-technique may be interpreted as a 

Levenberg-Ma r q uardt method . 

Hence when we use the choice C2, we repl ace t he matrices Quu(t) 

by 

Q ( t) =Q (t)+Dt uu uu 
(6 . 12) 

when solving (4. 53). In the followi ng when we consider th i s 

formulation instead of (4. 53) we will call it "the regu l arized 

CLQ- problem". 
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6 . 3 On assumption A2. 

The assumption A2, that the gradients of all the constraints be 

linearly independent, is actually stronger than necessary. The 

algorithm given in chapter 3 will work well as long as the rows 

of G and H are linearly independent throughout t he computa tions, 

where H contains t he rows corresponding to the active const 

raints (3.lc). lf, during the computations, the active const

raints become linearly dependent, there are four, conceptually 

different , possible causes for this: 

Rl . There exists no point that satisfies all the constraints 

( 2. llbc) . 

R2 . The constraints are linearly dependent at the optimum. 

R3 . There e xists no point that satisfies the constraints 

in the quadratic s ub-problem (2.15) even though (2 . llbc) 

have feasible points. 

R4 . The constraints (2 . 15bc) have feas ible points, but whe n 

solving the quadratic subproblem (2 . 15), the algorithm uses 

so many active constraints that they become linearly 

dependent . 

The first two reasons depend on the actual problem only, and 

there is nothing that the algorithm can do about it. The 

fol lowing exam(?le illustra tes how R2 may happen: 

Example 6 . 1 . Consider the problem 

minimize 

-z < 0 
2-
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The solution to this pr:oblem is z= ( ~) . At th is point however: , 

the co nstraints have the derivatives (0,1) and (0 , -1) , respec

tively, which are linearly dependent. 

0 

The possibilities R3 and R4 of course also depend on the p r oblem 

but t hey also depe nd on the starting point given to the algo-

ri thm, and o n how the algorithm chooses the active constraints 

among the i nequali ty constraints. We illustra te R3 wi th the 

following example. 

Examp le 6.2. Assume that we have two variables only , z
1 

and z
2

, 

and that we have two nonlinear eq uality constraints g
1

(z)=O and 

g
2

(z) =O . Assume also that we have simple bounds on the variables 

such that 

-l<zi ~ l, i=l , 2 (6 . 12 ) 

and that the cons traints have a feasible point strictly inside 

this box. If the point zk is t oo far awa y from this feasible 

point it may happen that the l inearized constraint g(z)=O has no 

solut i on inside the box (6 . 12). See Pigure 6.2 . 
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Figure 6 . 2. Two dimensional example of rea son R3. The solid 

curves are the constraints g
1

( z )=O and g
2

(z);;Q. The dashed lines 

are the const r ain ts g (zk) +g
2

(zk)(z-zk) =O which have no solution 

inside the box (6.12). 

D 
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A remedy f or R3 has been proposed by Powell (1977). His idea is 

to scale all equality constraints and all violated inequality 

constraints so that they will have a f easible solution close to 

zk. Then the nonviolated inequality constraints should not, 

hopefully, be activa t ed during the iteration in question. 

Therefore a little step could be taken towards a feasible point 

of the nonlinear constraints. The choice of the scaling f actor, 

mentioned above, has been f urther studied by Tone (1983). 

The possibility R4 may occur when there are more active con

s traints than free variables. Therefore, in order to avoid that 

R4 occurs , the technique for choosing active constraints when 

solving the quadratic problems (2.15) should be designed so that 

the number of active constraints is kept small throughout the 

calculations. A strategy fo r selecting the active set, t hat usu

al ly gives fewe r active constraints than the strategy described 

in section 3.2, is given in Goldfarb and Idnani (1983). They use 

the strategy of section 3.2 applied to the dual problem to 

(2.15). 
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7. CONVERGENCE OF THE OPTIMIZATION ALGOR ITHM 

7 . 1 Introduction 

So far we have only eons idered the problem of f ind i ng a proper 

direction when ite ratively solving t he nonlinear constrained 

programming probl em {2 . 11). We have said nothing about how to 

choose the value of cxk in (2 . 12). This choice is very important 

for the convergence of the algorithms proposed earlier. 

The discussion o f convergence is usually divided into two con

cepts, namely global convergence and local convergence . When we 

investigate g lobal convergence for an algori thm, we f ind the 

conditions under which the algorithm converges to a Kuhn-Tucker

point from an arbi trary starting point. This Kuhn - Tucker- point 

might not even be a local minimum point, but to prove conver

gence to a local minimum point from an arbitrary starting point 

seems to be a very complicated task . 

Whe n we talk about local conve rgence , we es timate the speed of 

convergence close t o a local minimum point . The speed could for 

instance be linear , superlinear or quadratic . 

When we derived o ur algori t hm for constrained optimal control 

problems , we did that by interpreting it as a nonlinear pro

gramming problem . Therefore, all convergence i:-esul ts obtained 

for Wilson ' s method or Quasi-Newton versions of Wilson ' s me thod 

can be applied to our algorithm. Accord ing to Ohno (1978) no 

proof of convergence has been presen t ed for the Mayn e (1970) 

algorithm or ·analogus second order algorithms e . g . {Jacobson 

(1968), Dyer and McReynolds {1970)) . Howe ver , Ohno {1978) proved 

that his algorithm for solving cons trained optimal control 

problems converges to a Kuhn-Tucker point. 

In section 7.2 we give some rules for choosing the s t ep-length 

for unconstrained problems and in section 7 . 3 we discuss const

rained problems . We t hen use the Watchdog technique , given in 

Chamberl ain et al (1979), for the constrained opt imal control 

problem and give proofs for both global and local convergence 
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in this case. In Section 7 .4 we prove global convergence and in 

Section 7 . 5 l ocal convergence. 

7 . 2 Step leng th r u les for unconstrained optimization. 

The basic idea of step length rules is the following. We assume 

tha t we have the problem (2.11) but without constraints. Then 

the problem reduces to 

minimize !(z) ( 7 .1) 

We also ass ume that with some method (for ins tance the Newton 

method or the steepest descen t method) we have found a descent 

direction dk, i.e. !
2

(zk) • dk <O. Now we wa nt to determine ak i n 

the formula 

so that zk+z* (i .e . the solution of (7. 1 )) when k+m . The mo s t 

obvious way to choose ak i s to minimize !(zk+l). Hence 

cxk=arg min !(zk+adk) 
ex 

This method is, however, usually not feasible to use in 

practice , since it requires a lot of function evaluations. 

(Luenberger (1973) p. 147). 

( 7. 3) 

Thcrefore we must accept rules for choosing cxk which do not make 

!(zk+l) as small as p o ssible. However , to acc ep t cxk as s o on as 

the criterion 

( 7 . 4) 

is s atisified, is not sufficient, because then the seqence 

{zk] may converge to a point z for wh ich ! 2 {z)~O. Goldstein 

and Ar mijo have proposed rules for choosing cxk in ( 7 . 2) such 

that {zk} converges to a poin t z for which !
2
(z) =O. See pp. 20-

21 in Bertsekas (1982} for deta i ls of these me thods and o the r 

rules for choosing the step-size. 
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7 . 3 Step length rules for constrained optimization . 

When we have constraints in (2.11) we must not only pay atten

tion to the value of ..t(zk+akdk) when we choose the parameter ak' 

but also to the violations of the constraints . We must, 

therefore, choose ak to obtain a suitable balance between the 

decrease (or increase) in the object1ve function .t ( z) and how 

well the constraints 

g(z)=O ( 7. Sa) 

h( z )2_0 (7 . Sb) 

are satisfied at the point zk+l' 

This balance is usually achieved by constructing a cciterion 

function which is the swn of the ob jective function .t ( z) and a 

penalty term to the constraints (2 . llbc). For examples of such 

criterion functions, see Powell (1977) and Han (1977) . The 

method for choosing the step-length a, for which the strongest 

convergence resul ts hol ds, is the wa tchdog techn ique given by 

Chamberla i n et al. ( 1979). In the next section we will apply 

that method to the optimal control problem . 

7.4 Convergence for the constrained optimal control problem. 

In section 4 .1 we defined the constrained optimal control 

prob l em by (4.1)-(4 . 4). 

X ( t + l ) = f ( X ( t) I u ( t) , t) I t =O , ..• I N-1 

N-1 
J(u)=..t(x(N) ,N)+ E ..t(x(t) ,u(t) ,t) 

t:O 

h i (X ( t. ) I u ( t. ) ) <O I i =l , •.. I p 
l 1 -

( 7 . 6a) 

(7 . 6b) 

(7.6c) 

( 7 . 6d) 
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The problem is to minimize J(u) in (7.6c} when the constrain t s 

(7.6ab) and (7 . 6d} are satisfied. The Kuhn-Tucker necessary 

conditions for a solution to this problem is t hat there must 

exist multipliers A and µ s uch that the f ollowing conditions are 

satisf ied: 

(7.7a} 

(7 . 7b) 

~ (t)+y (t)+AT(t+l)f (t )=O 
u u u 

( 7. 7c) 

µ~O (7.7d) 

(7.7e) 

(for defeninition of y( t ) see eq . (4.50)) as well as the condi

tions (7. 6a) , (7 . 6b ) and (7. 6d) . When we talk about a Kuhn

Tucker-point for the problem (7.6) in the following we mean 

u (t), A(t) and µ such t hat these conditions are satis f ied. 

We assume that we use Newton' s method in the control space for 

solving problem (7.6). We th e n get a s equence {zk (O)} (cf (4.6)) 

which hopeful ly converges to a local minimum point (4. 1 )-

( 4 . 4). 

The sequence {zk(Ol } is def ined b y 

( 7. 8) 

where 6z(0) is given by the solution to t he constrained linea r 

quadratic optimal con trol problem (4.53). When solving th is 

problem we assume that the regulari za t ion technique p roposed in 

sect ion (6.2) is used. 

Here , we will use the Watchdog technique as described in 
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Chamberlain et al (1979) for choosing the value of ak in {7 . 7). 

We start by defining two criterion functions JP( u) and JL(u) as 

p i 
J L { u I µ ) =J ( u ) + E µi h ( X ( t i ) I u ( t i ) ) 

i=l 

(7.9a) 

(7 .9b) 

where J{u) is given by (7 . 6c) and µi in (7.9b) is the Lagrange 

multiplier of the constraint i. The f unction JL(u,µ) is 

actually the Lagrangian to the problem (7 . 6) . This is the reason 

for the subscript Lin JL(u) . The subscript Pin J p{u) stands 

for penalty. We assume that the constants µ.,i=l, .. . ,p have been 
l 

chosen so that 

( 7 .10) 

at each iteration . The multiplier µk is obtained when solving 

(4.53) at iteration k and ( µk ) i is the i : th component of this 

multiplier. We now define the follow i ng two cdteria . 

Cl: (7 .11) 

1 
where oE(O,~) and 6Jkz is given b y 

N-1 
6J k = ..l { N ) 6 X { N ) + E ( .R. ( t) 6 x ( t ) H ( t ) 6 u ( t )) + 

Z X t =O X U 

p . . . 
l l - 1 

+ E ( h { t . ) 6 x ( t . ) +h ( t . ) 6 u ( t . ) ) • µ . • I { h ( t . ) > 0) 
i=l X l l U l l l 1 

{ 7 . 12) 

Here 6u{t) is generated by the solution to (4.53) and öx (t) is 

the solution of the difference equation 

6 X ( t+ l) =f X ( t) LI X ( t) +f u ( t) ll u ( t) , t=O I •• , N-1 (7.13a) 

6x(0)=0 ( 7 . 13b) 
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I(T) is an i ndicato r function which is one if the condi tion T i s 

true and zero otherwise . Note that 6Jkz is the directiona l 

deriva tive of JP (uk) i n t he d irection 6z(0) . 

The other criterion is: 

(7.14) 

Let ~E ( O , l) and let s be a posit i ve integer. The watchdog 

technique is now given by the following scheme. 

Step 0 : Let a c ontrol sequence u0 be given . Set k=O and 

w=Jp(u 0 ) . Calculate 6z(O) given by the solution to 

(4.53) for this control sequence . 

Step 1 : Let ak=~j where j is t he smallest nonnegative in t eger 

such that at leas t one of t he criteria Cl and C2 is 

sa tisfied . Put uk+l=uk+ak6z(0} and go to step 3. 

Step 2: Le t ak=~j where j is the smallest nonnegative i nteger 

such t hat criterion Cl is satisfied . Put 

uk+l=uk+ak6z(O ). 

Step 3: Calculate 6z(O) for the control sequence uk+l . If 

JP(uk)~w , set r=k,w=Jp(uk) and v=JP(u k )+aa k6Jkz " 

S t ep 4: Put k=k+l. I f JP(uk)~v go to step 1 , and if v<JP(uk)~w 

go t o step 2. 

Step 5: If k-s~r go to step 2. Otherwise set uk=ur and r=k and 

then go to step 2 . 

If we have no constraints of the type (7.6d ), t his method 

r educes to the Armijo step size rule. 

The reason for using t~~ criterion functions i s that using only 

c ri terion Cl may prevent superlinear convergence of the sequence 

{zk} and using only the cr iterion C2 , t he seque nce {zk} may 

converge to a point t hat is not a Kuhn-Tucker point. 
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The global convergence of this algorithm is assured by the 

following t heorem. 

Theorem 7.1. (From Chamberlain et al. (1979)). Let {uk} be given 

by the wa tchdog technique and assume that the pred icted decrease 

AJ kz is bounded away from zero if uk is bound e d away from a 

Kuhn -Tucker poi n t. Then, if JP ( uk) is bounded below , the 

seq uence {uk: k=O,l, . } hasa limit point which isa Kuhn-Tucker 

point. 

0 

Proof : See Chamber l ain et al. (1979) . 

0 

That LIJkz is bounded away from zero if uk is bounded away from a 

Kuhn-Tucker-point in our algorithm follows from the following 

theorem . 

Theore m 7.2. If for all k the subproblems (4.53a) sat i sfy t he 

assumptions Al, explained in section 5.2, and A2 explained in 

section 5 . 3, then AJkz is bounded away from zero if uk is not a 

Kuhn-Tucker-point of (4 .1 ) - (4 . 4) . This result holds also if t he 

reg ularization method proposed in section 6.2 is used . 

0 

Proof. Let the row vectors A(t) satisfy 

A(N) =.l (N)+ I: (µk) .hi(N) 
X iEI(N) 1 X 

(7 .15a) 

>..(t)=.l (t)H(t+l)f (t)+ I: (µk) .hi(t)-
x X iEI(t) l X 

-( .l (t)H(t+l)f (t)+ I: (µk) .hi(t))l3t 
U U iEI(t) lU 

(7.15b) 

where µk are the Lagrange mul tipliers obtained when solving the 

k:t h quadratic subproblem (4.53). Using (7.13a) we get the 

equality 
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0=-A(t+l)Ax( t +l)+A(t+l ) f (t)tix(t)+A(t+l)f (t)tiu(t) 
X U 

( 7 . 16) 

If we for- t=O, ... ,N-1 add (7.16) to (7.12) we get 

tiJ k = (.t (N)-A(N)+ E µ.hi(N)I(hi(N}>O))Ax(N)+ 
z X iEI(N) l X 

N-1 
+ E {(1 (t}+A(t+l)f ( t }-A(t))Ax(t)+(i (t)+A(t+l)f (t))tiu(t}+ 

t=O X X U U 

+ E µi(h!(t)tix(t)+h~(t)tiu(t))I(hi(t)>O)}= 
iEI ( t ) 

=(.tx(N)+ E (µk) .hi(N)-A(N)+ 
iEI(N) 1 

X 

+ E (µ.•I(hi(N}>O)-(µk) .)hi(N))tix(N)+ 
iEI(N) l l X 

N-1 . 
+ E {(.t (t)H(t+l)f (t)+ E (µk) .h 1 (t) - A(t))Ax(t)+ 

t=O X X iEI(t) 1 X 

+(.t (t)H(t+l)f (t)+ E (µk) .hi(t))tiu(t)+ 
u u iE I (t) l u 

+ E (µ
1
. •I(hi(t)>O)-(µk) .)(hi(t)tix(t)+hi(t)tiu(t))} 

iEI(t) l X u 

Now, Au(t) is given by the solution to the guadr-atic subpr-oblem 

(4.53). Using (5.62) we can then wr-ite tiu(t) as 

tiu(t) = öu(t)-~ttix(t) 

and using (7.15) we get 

- i i 
/:;J = E (µi I ( h ( N )> 0) - ( µ k) i) h X ( N) ) /:; x ( N) + 

zk iEI(N) 

N-1 · 
+ E {Cl (T)+A(t+l )f (t)+ E (µk) .h

1
(t))öu(t)+ 

t=O u u iEI(t) 1 u 
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- i i i 
+ E ( µ . I ( h ( t )> 0 ) - ( µ k) . ) ( h ( t) !::. X ( t) +h ( t) 6 u ( t) } 
iEI(t) 1 1 X u 

( 7 .1 7) 

Using the fact that t::.x(t) and t::.u(t} satisfy the constraint 

(4.53d) we have 

( 7 .18) 

i 
If h (ti)>O, then the left hand side of (7.18} must be negative, 

and using (7.10) we obtain 

( 7 .19) 

If hi(t.)<0 and (µk).>0, we have equality in (7.18) and the 
1 - 1 

inequality (7 .19) is again obtained . Hence the inequality (7.19) 

holds for all i, and from (7.17) we get 

N-1 
t::.J < E (.R. (t)+A(t+l)f (t)+ i: (µk) .hi(t))ou(t) 

zk- t=O u u iEI(t) 1 u 
(7.20) 

Comparing (4 . 53) and (5.1) and then using (5.62) we obtain 

öu(t}=-C-tl(.R. (t)H(t+l)f (t)+ E (µk) .hi(t))T 
u u iEI(t) 1 u 

( 7 . 21) 

~ T ~ 

Here Ct is the matrix Ct=0uu(t)+D(t)+fu(t)Wxx(t+l)fu(t) where 

W (t+l) is the solution to the Riccati equation for problem 
XX 

( 4 . 53) . 

So 

N-1 
T 

t::.J k<- E öu (t)Ctöu(t) 
z - t=O 

Hence 6Jzk<O if ou(t)tO for any t because Ct is positive 

definite. 

(7.22) 

0 
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7.5 Local convergence rate. 

After having es tablished convergence we will now examine the 

convergence rate. In section 4.3.3 we found that Wilson's method 

applied to problem (7.6) generates the search direction öu(t),

t =O , .•• ,N-1 in the control space, where öu(t) is the solution to 

(4 . 53) . But Wilson ' s me t hod is obtained by using Newton ' s method 

for solv i ng t he Kuhn-Tucker necessary cond itions (see the end of 

chapter 2) . Newton ' s method has quadratic local conve rgence (cf 

p. 250 in Dahlquist and Björck (1974)) so t he method that we 

have proposed in section 4.3.3 for so l ving the p r oblem (7.6) 

s hould have quad r a t ic loca l convergence i f ak=l in (7 .8). That 

t his really is the case und er. certa in condi tions is assured b y 

the following theorem. 

T T T 
Theorem 7 .2. Let z*(O)=(u*(O ) , ••. , u*(N-1) ) be the solution o f 

problem (7.6) and let µ * be the multipliers that satisfy equa

t ion (7.7). Assume that the fol lowing conditions hold. 

C7.l : At the point (z*(O),µ*) the CLQ- problem satisfies 

asswnption A2 in section 5 . 3. 

C7 . 2 : The strict complementarity condition hol ds for the 

constraii:ts (7.6d}, Le. if µi =O t hen h i{x*(ti),u*(ti})<O 

and if hl(x*( t .) , u*(t.))=0 then µ~>O. 
l l l 

C7.3: At the point (z*{O),µ*) the CLQ-problem (4.53) satisf i es 

the Assump tion Al described i n s e ction 5. 2, i.e. ther.e 

exis t s an a>O such that 

T ~ T ~ 2 
z · (Q (t)+f (t)W (t+l )f (t))z>alzl 

UU U XX U -

where W (t+l ) is defined by 
XX 

W {N)=Q (N) 
XX XX 

-( Q (t ) +fT(tJW (t+l)f (t)· 
· x u X XX u 

( 7. 23) 

( 7. 24a) 
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•(Q (t)+fT(t)W (t+l}f (tll-l · 
UU U XX U 

<(Q (tl+fT(t)W (t+l)f (t)) (7.24b) 
UX U XX X 

and the matrices Qxx(t) , Qx
0

(t) and Quu(t) are given by 

(4 . 52) . (The condition (7.23) must be valid without using 

the regul arization method proposed in sec tion 6. 2 .). 

Then there exist constants Ez and Eµ such that if !z*( O) -

zk(O) j <ekand l µ*-µk-i l <tµ the n the s equence /zk{O)j generated by 

the algorithm defined in section 9.2, with ak=l, converges 

quadratically to z*{O), i.e . there exists a K such that 

Proof. In section 4.3.3 we showed that the algorithm is 

equivalent to Wilson's method. The result the n follows from pp . 

252-256 in Bertsekas (1982 ) and Theorem 5.1. 

D 

The theorem shows that close to the solution our method has 

quadratic convergence if ak=l. I n practice, however, ak is g i ven 

by the step length rule. That the Watchdog t echnique does not 

destroy the rate of converge nce is assured by the f o llowing 

lemma from Chamberlain et al. ( 1979). 

Lemma 7.1 . Assume that the three conditions of Theo r em 7 . 3 hold 

and that condition (7.10) holds . Then there ex ist positive 

constants e 1 , e 2 , e 3 suc h that for any sequence satisfying 

J zk+l ( 0 )-z* ( 0) I 
Jzk(O)-z*(O)j 
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for each k, the Wa tc hdog technique accepts the point zk+l (0). 

Proo f : See the proof of Theorem 2 in Chamberlain et al. 1979. 

a 

We conclude from t he two theorems above that our algori thm using 

t he Watchdog step length technique ha s global convergence as 

we l l as fast converge nce near the o ptimum. 
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8 . SIMPLE CONTROL CONSTRAINTS 

8.1 Introduction 

The method for solving constrained quadratic problems proposed 

in chapter 3 is not useful when t he number of active constraints 

is large , beca use t hen the matrix A defined by (3 . 9) is also 

large. Since A is usually not sparse, the computational burden 

will be heavy. It is easy to find optimal control problems where 

many of the constrains (4 . 4) are active at the solution. 

Examples are bang-bang optimal control problems or problems 

where some of the states touch their boundaries at almost every 

point in time . 

I n section 1.5 of Bertsekas (1982) a method is presented which 

efficiently solves problems of the type 

minimize .l(z) (8 . la) 

subject to z < z < z (8. lb) 

where z and z con tain lower and upper bounds on the variables in 

z . Constraints of the type (8.lb) are in Bertsekas (1982) called 

"simple constraints". Another common name is "box constraints" . 

Since our approach is to consider optimal control problems as 

non- linear programming problems in the control u(t), we can 

easily adapt Bertsekas ' method to optimal con trol problems whe n 

t here are simple constraints on the controls only. The details 

of the resulting method is given in section 8 . 2 , which also 

contains proof of convergence. In section 8.3 we propose a 

hybrid version of Bersekas method and the method described in 

section 4 . 3. The method seems to be promising as shown by the 

examples in chapter 11. 

8.2 A fast algorithm for optimal control problems with simple 

control cons t r a i n ts. 

I n this s ect i on we consider the following special case of 

problem (4. 1 )-(4 . 4) . 



minimize 
u 
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N-1 
J(u)=J.(x(N) ,N)+ l J.(x (t) ,u(t),J.) 

t=O 

subject to x(t+l) =f(x(t) ,u( t) ,t), t =O , •.. ,N-1 

x(O)=x
0 

O~u( t) t =O , •• . ,N- 1 

(8.2a) 

(8.2b) 

(8.2c) 

(8.2d) 

The generalization of the method to handle box constraints on 

the controls is trivial. In sec tion 4. 3.l it was shown how to 

use Newton ' s method on (8. 2a-c) , If we just t ake the projection 

on the constraints (8 . 2d) of the direction generated by Newton's 

method, we might converge to a point which is not a Kuhn-Tucker 

point of the problem. On the other hand if we project the 

steepest descent direc tion onto the constraints (8.2d) we get a 

method that converges to a Kuhn-Tucker-point, but the conver

gence might be slow. Bertsekas' idea is to divide the variables 

into two groups at each iteration. The first group consists of 

the variables that are on the boundaries and will probably 

remain there and the variables that will probably hit their 

boundaries during the next iteration, The second group consists 

of the variables that are clearly inside the feasible region or 

those varaibles which are supposed to move away from the bo un

dary during the next iteration. Then , at each iteration we 

construct a search direc tion which i s a steepest descent direc

tion in the variables in the first group and a Newton direction 

in the variables in the second group. Then during t he line 

search the ne w point is projected into the feasible area. 

Let us denote t he first group at iteration k by Ik. In the 

following we adopt the notation z(O) defined by (4.6) to denote 

the sequence u(t) , t=O, •• • ,N-1. 

For a given Ek>O we define the first group I k at iteration k as 

Ik={i:(z(O)) . <Ek and (V (0)) . >0} 
l z l 

( 8. 3) 
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Here (z)i stands for the i:~h component of the vector z. Vz(O) 

is defined from (4.12a) and (4.12c). Now using the steepest 

descent direction for the variables indexed by Ik gives 

( LI z ( 0 ) ) , =- (V ( 0 ) ) , i El k 
l z ( 8. 4) 

For the e l eme nts in the second group examine the LQ-problem 

(4.20). From Theorem 4 . 1 we know that the solution (in llu(t)) to 

(4 , 20) is also given (in llz(O)) by (4 . 10) which is the solution 

t o the problem 

minimize 
llz ( 0) 

( 8 . 5) 

The Newton direction in the free varaibles is found by solving 

problem (9.5) under the constraint 

( 8. 6) 

and after this solution is obtained we use (8 . 4) to get the 

final search direction. However , minimizing (8.5) under the 

constraint (8 . 6) is the same problem as solving the LQ-problem 

(4 . 20) under the constraint 

(llu(t))j=O jEik(t),t=O, . . . ,N-1 ( 8. 7) 

where Ik(t) denotes the elements of 6u(t) corresponding to 

elements of llz(O) in Ik. 

We will now s how in detail how t o solve the LQ- p robl em. To begin 

with, (8.7) will be replaced by the more general constraints 

h+h llu(p) =O. 
u 

( 8. 8) 

Here p is a given time, h is a vector and h is a full r ank 
u 

matrix. We derive the more general result using the constraint 

(8 . 8) because we will need it in the next sect ion . Later in this 

section the result will be specialized to the constraints 

( 8. 7) • 
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As in section 4. 3. 1 we solve our new prob l e m by putting up the 

subproblems (4.2la). The minimum of these subproblems is 

accord ing to (4.22 ) given by 

( 8. 9) 

where at least for t >p , a(t), Wx(t) a nd Wxx(t) are given by 

(4.24) and (4.27). For t =p we define the Lag r a ng i an 
/ 

L( 4x(p) , 6u ( p ),µ, p}=J*( Ex (p ) 6x ( p)+fu(p)4u (p) , p +l )+ 

T T T 
2t.x (p)Q (p)4u(p)+4u ( p)Q (p)4u(p))+µ (h+h 4 u( p))= xu uu u 

where AP, Bp and CP are de f ined by 

T 
Ap=Qx x(p) +fx(p}Wxx(p+l)fx (p) 

B pQ xu( p)+f~ (p) Wxx(p+l)f u( p) 

Cp = Quu(p)+f~ (p)Wxx(p +l)f u( p) 

The value of 6u(p) that minimizes (8 .10) is give n by 

-1 T T T 
Au( p ) =-C {(~ (p)+W (p+l)f (p) ) +B Ax(~)+ h µ} p U X U p U 

(8.10) 

(8 .lla) 

(8.llb) 

( 8 .llc) 

( 8 . 12) 
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where we choose µso that the constrain t (8 . 8) is satisfied. 

Hence 

- 1 T T -1 T 
O=h+h t.u(p)=h-h C ((1 (p)+W (p+l)f (p)) +Bpt.x(p)) - huCp huµ 

U up U X U 

which gives 

This value of µ is inserted in (8 . 12) which gives us 

-1{ T -1 T - 1 
t.u(p )=-Cp hu(huCp hu) h+ 

+(I-hT(h C-lhT) - lh C - l)((l (p)+W (p+l)f (p))T+ 
u up u up u x u 

(8 . 13) 

+B t.x(pl)} (8.14) 
p 

If we define the matrix I as 
0 

and öu(p) and ~p as 

- 1 T - 1 T -1 -1 T 
öu(p)=-Cp hu(HuCp hu) h-r

0
cp (lu(p)+Wx(p+l)fu(p)) 

~ =I C- l • BT 
p 0 p p 

then equation (9 .14) reduces to 

t.u(p)=öu(p)-~p·t.x(p). 

If we insert (8 . 16) in (8.10) (using (8 . 8)} we get 

J*(t.x{p) ,p)=a(p+l) +(l (p)+W (p+l)f (p))t.x(p)+ 
X X X 

+(l (p)+W (p+l)f (p) )(öu(p} - ~ t.X(p) )+ 
u u u p 

(8.15b) 

(8.15c) 

( 8 . 16) 
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1 T T 
+ L (6x (p}Ap6x(p)+26x (p)Bp(öu(p)-~ p 6x(p))+ 

+( ÖU ( p )-~ p6 X ( p)) TCp ( Ö U ( p) -~ p6 X ( p } ) = 

=a(p+l )+(i (p) +W (p+l)f (p)) • ö u(p)+ 
U X U 

+(1 (p)+W (p+l)f (p}-(1 (p)+W (p+l}f (p)~ + 
X X X U X U p 

T T 
+ öu (p)Bp - öu(p)Cp~p)6x(t)+ 

l T T T 
+ Z 6 x (p)(AP-BP~P-~PBP+~ P CP~P) 6 x(p) 

Identifying the coefficients we then get 

a(p)=a(p+l)+ ( i (p}+W (p+l )f (p))öu(p)+ 
u p u 

W (p ) =l (p)+W (p+l)f (p) - (1 (p ) +W (p+l)f (p) ) ~ ) ) ~ + 
X X X X U X Upp 

+öuT(p)(B~-Cp~p} 

wxx(p) = AP - BP~P-~~BP+~~cp~p= 

=A -B (I c - 1+c-1 1T-c- 1 1Tc I c-1 )B 
ppop popo p op p 

(8 .17) 

(8 .18a) 

(8.18b) 

(8.18c) 

We now return to the simpl e constrain t s defined by (8. 7). 

Specializing the formulas we ge t , 

h=O (8 .19a) 

and 
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(8 . 19b) 

where er is the r: th column in the unit matrix. We assume tha t 

r
1

, r
2

, ... ,rp are the indices in Ik(p) . (See (8.7)) . 

The value of öu(t) in (8 . lSb) becomes 

( 8. 20) 

The difference equation for Wx(p) reduces to 

( 8 . 21) 

The variables which do not belong to Ik(or Ik.(t),t=O, ... , N-1) 

are now calculated from 

.t.x(O)=O (8 . 22a) 

} 
(8 . 22b) .t.u(t)=öu(t) - ~t.t.x(t) 

t=O, ... ,N - 1 

( B. 22c) 

After these calcul ations we set 

( 8 . 23) 

to obtain the steepest descent direction among the variables 

index ed by Ik. 

The s t ep length procedure is modified in the following way: 

Consider the following controls 

+ 
u(t,a)=[uk(t)+a.t.u(t)] ;t=O, .• . ,N-1 ( 8. 24) 

where the expression u=[u]+means u.=max(O,u.) where 
T - - Tl l ]+ 

u=(u1 , ... , un) and u=(u 1 , ... ,un) • Hence the operator 
u u 

defines t he projection of uk(t)+.t.u( t) into the feasib l e region 
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(8.2d). From proposition 1.35 on page 78 in Bertsekas (1982) we 

then know that uk{t) ,t=O, ..• ,N-1 isa Kuhn-Tucker-point of the 

problem (8.2) if and only if 

u(t,a)=uk(t),a~O,t=O, ••. ,N-1 {8.25) 

Also, if uk(t) ,t=O, .. • ,N-1, is nota Kuhn-Tucker point o f (8 .2 ), 

there is an ä>o, such that J(u(a))<J(uk) when aE(O,a). Hence 

öu(t) defines a descent direction for the problem defined by 

( 8 . 2) • 

The algorithm outlined in Bertsekas {1982) for the next control 

sequence now gives 

and mk is the smallest nonnegative integer m such that 

where 6J{~m) is defined as 

N-1 
t.J(~m)= E 

t=O 

öJ + E -- ( u ( t , a ) - uk ( t ) ) . 
jEik( t} o(u( t)) j J 

( 8. 26) 

( 8. 27) 

(8 . 28) 

(8. 29) 

Now we assume that the problem (8.12) satisfies the following 

conditions. 

C8.l. The derivatives V (0 ) are Lipschitz continuous on each 
z 

bounded set in the control-space. 
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C8 . 2 . There exist positive scalars ~land ~ 2 and nonnegative 

integers q
1 

and g
2 

such that 

for all z in the control- space and where 
T + 

wk=lzk(O)-[zk(O) - MVz(O)] \ fora positive definite 

diagonal matrix M. 

We ha ve the f ol low ing global eon ve rgence cond it ion 

Theorem 8.1. If the conditions C8 . l and C8 . 2 above are 

satisfied , then every limi t point of the control sequence {uk} 

generated by the iteration (8.26) is Kuhn - Tucker point of the 

problem (8.2). 

Proof: Follows from Bertsekas (1982), p. 86 . 

0 

8.3 A hybrid algorithm. 

In this section we propose an algorithm for solving constrained 

nonlinear optimal control problems , where the constra ints 

consist of both general constraints and box constraints . The 

idea is to handle the ge neral constraints using our basic method 

and the box constraints using t he technique given in the 

previous section. 

We thereEore consider the problem 

mi nimize 
u 

N-1 
J(u)=~(x(N) ,N)+ E ~(x(t) , u(t) , t) 

t=O 

s ub ject to x(t+l) =f(x(t) ,u(t) ,t) 

(8 . 30a) 

( 8 . 30b) 

( 8 . 30c) 
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i 
h (x(ti),u(ti))=O, i=O, •.. ,p (8.30d) 

O~u(t), t =O, ... ,N-1 (8.30e) 

The constraints (8.30e) are now treated in the way described in 

the previous section. Hence we solve the Riccati equation 

(8 . 18) and then calculate 6u 0 (t) according to (8.22). After that 

we adjust the variables in Ik(t) such that 

( ö u ( t) ) i= t:. u ( t) i=- ( u ( t) ) i i f i E I k ( t) (8.31) 

Note that we can not use lu(t)+Vx(t+l) fu (t) to define the 

index- sets Ik(t). Instead we use the derivatives of the 

Lagrangian for identifying the possible active box constraints. 

As Lagrange multipliers we choose t he ones obtained at iteration 

k- 1. Hence the index sets Ik(t) are now defined by 

(8.32) 

Here Vx(t) is given as in section 4.3.3 by (4.51) and y(t) by 

(4.50) except that only the general constraints (8.29d) are 

used. From section 5.4 we know that solving the Riccati equation 

(8 .18) is actually a way to factorize a matrix. Applying the 

arguments in connec tion with equations (5 .55) to our box 

constraints we fina that in this case the factorization is 
-1 - 1 

defined by the mat:ices fx(t), fu(t), I 0 •Cp and ~t· Hence CP 

is replaced by I
0

Cp . The only change when we calculate the 

influence of the general constraints is that for (8.29) the 

equations (5.57d) and (5.57f) are given by 

(8.33a) 

-1 T 
öu.(t)=- I ct f (t)W.(t+l) ,t=O, ... ,t . -1. 

l 0 u l l 
(8.33b) 

The new control is then given by 
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(8.34) 

where ak is chosen according to the rules for the Watchdog 

t echnique given in section 7. In Chapter 11 we will show 

examples where the method is used. 
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9. SUMMARY AND IMPLEMENTATION OF THE OPTIMIZATION ALGORITHM 

9.1 Introduct ion 

In the prev ious chapters we ha ve de ser ibed and d iscussed di f fe 

rent aspects of algorithms for solving static and dynamic opti

mization problems. The f orma! development of these aspects has 

been filled with many long expressions and t echnica l arguments . 

It is the purpose of the present chapter to summarize this dis

cussion into a single and final algorithrn . That will be done in 

section 9.2. In section 9 . 3 we discuss the relationship between 

our algorithm and other algorithms. Our algorithm has been 

implemented on a DEC-20 computer . A flow chart for the organiza

tion of tbis program is given in section 9 . 4, while details of 

the user aspects of the program are given in section 9. 5 . 

A computer program has also been developed for the static opti

mization problem (2.11) which is suitable for large scale prob

lems. This program is described in section 9.6. In the following 

two chapters some numerical expe rience with the computer pro

grams, when applied to various problems, wi ll be reported. 

9 . 2 The algorithm for solving constrained optimal control 

problems . 

The fundamental idea behind the development in this thesis has 

been to formulate the optimal control problem (4.1)-(4 . 4) as a 

static optimization problem, and to derive the Newton-type algo

rithm in a consistent manner . Clearly, in order to obtain an 

eff icient algorithm, the inherent structure in the problem for 

mulation must be utilized when the problem is viewed as a static 

optimization problem. 

This means that the developed algorithm from a conceptual point 

of v iew is Wilson' s method appl i ed to the particular problem 

(4.1)-(4 . 4). The control signals u(t),t=O, .. ,N-1 a re considered 

as free variables. The sequence of state vectors x(t) is elimi 

nated us i ng (4.1). From Theorem 4.1 we know that then the 

Llu( t) ,t =O , ... ,N-1 given by the solution to (4 . 53) define the 
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Wilson direction for the problem (4.1)-(4.4). The problem is 

thus to solve (4.53), and we shall now summarize the discussion 

in chapter 5, sections 6.2 and 8.3 of how to solve this 

equation. This procedure will consequently include both 

regularization and techniques f or handling simple constraints. 

Assume that we initially are given a control sequence u 0(t), 

t=O, •.• ,N-1 anda p-dimensional vector of nonnegative multi

pliers µ _
1

. 

I. At step k of the algorithm we have a control sequence 

II. 

uk( t) ,t=O, ... ,N- 1. Using equations ( 4 .1) and ( 4. 2) we can 

calculate and store the sequence of states xk(t),t=O, ••• ,N 

that corresponds to this control sequence. 

Let Vx(N) and V (N} be given by 
XX 

W (N)=1 (N) 
X X 

(9.la} 

( 9. lb} 

(9. le) 

III. For t=N-1, .•. ,0 solve the difference equations 

(9. 2a) 

W ( t ) = 1 ( t ) +W ( t + l } f ( t ) - ( 1 ( t ) +W ( t + l } f ( t ) ) ~ t 
X X X X U X U 

(9.2b) 

(9. 2c) 

where 

{9.3a) 
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(9 . 3b) 

(9 . 3c) 

-1 T 
~ =I • C • B 

t 0 t t 
(9 . 3d) 

and where !
0 

is defined from the active simple constraints 

described in section 8.4. In (9.3c) th e matrix D(t) is 

chosen in accordance with the ideas described in section 

8.2. Store the values 

öuo(t)=-roc- 1 (~ (t)+W (t+l)f (t))T 
t U X U 

(9 . 4a) 

~t ( 9. 4 b) 

(9 . 4c) 

For every active simple constraint at time t put ( ö u
0
(t))i 

at its boundary. 

IV . Put t1x
0

(t)=O and for t=O, ... ,N-1 calculate and store 

t1x
0

(t+l) and t1u
0

(t) given by 

( 9. Sal 

(9 . Sb) 

V. Choose the active constraints according to the rules given 

in section 3. 3 . 

For each active constraint i, do the following 

calculations: 



Store the values: 

t>t. 
1 
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For t=ti-1, ••• ,0 so lve the difference equation 

Wi(t)=Wi(t+l )(f (t)-f (t)~t) 
X X X U 

with the boundary value 

and dur ing these calculations compute and store 

(9 .6a) 

(9.6b) 

(9. 7a) 

(9. 7b) 

( 9 . 8) 

Put 6xi(O) =O and for t=O, ..• ,N-1 calculate 6 xi(t+l) and 

6ui(t) from 

6u . ( t) = Ö U . ( t ) - ~ t [) X ( t . ) 
1 1 l 

(9.9a) 

( 9. 9b) 

During these calculations compute and store the element 

a . . given by 
lJ 

a .. =hj(t. )6x. (t. )+hj(t. )6u . (t.) 
l J X ] l J U ] l J 

(9 .10) 

for every constraint j in the active set. 

The elements a . . in (9.10) define the matrix A in (3.9) in 
l] 

section 3.3. The elements of the right hand s i de vector in 

(3.10) are calculated as 
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(9.11) 

After having solved ( 3 .8) for the current set of active 

constraints, put öx(O l=O and solve t he equations 

(9 . 12a} 

(9 .12b) 

Du ring these calculations, calculate the values of öJ zk in 

(7.7) and also check if the non-active constraints of 

(4.53d} are violated . 

If the matrix A becomes sing ular during these calcu

lations, the assumption A2 given in section 5.2 is 

viola ted. Then special mea s ures must be taken (cf 

section 6 . 2). 

VI . Let öx(t) and öu(t) be the result of the previous step and 

µk the value of the Lagrange multipliers for the con

straints (4 . 53d) obtained at the solution . 
N-1 

2 If E löu(t) I <i:: for some g iven i::>O go to step VIII. 
t=O 

VI I. Let 

where o:k is chosen according to the rules given in 

section (7.4). Put k=k+l and go back to step I. 

VIII. Accept uk(t ) , t=O , ... ,N-1 as the optimal control. 

9 . 3 Relationship to other algorithms 

( 9 .13) 

After describing our algori thm for discrete time optimal control 

problems we will now make a comparison with two other proposed 

methods in this field, namely the DDP-me thod in Jacobson and 
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Mayne (1 970) and th e new DDP- algor ithm by Ohno (1978). We will 

here consider the version of the DDP-method denoted as small 

variations in control. Moreover we assume that in Ohno' s method, 

the Newton method is used as the local iteration procedure for 

finding a solution to the Kuhn - Tucker necessary condi t ion. 

These three methods (our method, and the two DDP-methods) all 

give an increment of the type 

6u(t) = öu(t)-~t·dx(t) (9.14) 

but the choices of öu(t), ~tand dx(t) differ for the methods. 

We first assume that we have no constraints of the type {4.4). 

In both the DDP-methods, the backward equations are solved as in 

(9.2) but in the expressions (9.3), the vector V (t) is replaced 
X 

by Wx(t). Hence it is not necessary to solve the difference 

equation for Vx{t). The calculation of ~t is made in accordance 

with (9.3d) for all t hree methods but again in the expressions 

for ~ t and Ct' Vx(t) is e xchanged for Wx{t) for the DDP-methods. 

This is also the only difference in the calculation of öu(t). 

Another difference appears in the calculation of the value of 

dx(t) in (9.14). Our algorithm uses dx(t)=6x(t) where 6 x(t) is 

obtained from the solution to (9.5). In both the DDP-methods 

dx( t) is calculated as 

(9.15) 

where xk(t) denotes the states corresponding to the con t rol s 

uk(t) and xk+l<tl denotes the states corresponding to the cont

rols uk+l(t) =uk(t)+6u(t). Hence again our method requires the 

solution of an extra set of difference equations in order to get 

an exact Newton direction. (If we refrain from using an exact 

Newton method we could of course also use (9.1 5)). 

To obtain global convergence in our algorithm, we adjust the 

v~riable ak in (9.13) so that a sufficient reduction is obtained 

in the objective function. In Jacobson and Mayne the new control 

seqµence is given in a similar way, namely by 



123 

where c is chosen so that a decrease is obtained in the objec

tive function . Ohno's method is only supposed to be applied 

close to a solution, so he uses 

(9.17) 

without any step-size reduction procedure at all (cf Theorem 

7. 2) . 

As shown above, our method requires the solution of two ex tra 

sets of difference equations. But because the variables in these 

difference equations are of dimension nx' the extra computer 

work for solving these equations is small compared to the solu

tion of the Riccati equation which is nxxnx. Also these two 

extra difference equations are necessary to obtain an exact 

Newton direction and hence the reason why we easily prove global 

convergence and locally quadratic convergence. 

Assume that we have constraints of the type ( 4. 4). Both the DDP

methods require that these constraints are explicit functions of 

the controls . If these methods are used on problems which have 

pure state constraints, the state transition equation must be 

used once or several times to get a constraint that is an expli

cit function of u . Both the DDP-methods take care of the con

straints in the same way as we handle simple constraints in 

Section 8 . 2 . In our method, two difference equations are solved 

for each active constraint (cf (9.7) and (9.9)) and for each set 

of active constraints we have to solve the dif ference equation 

(9.12). Hence, again our method has to solve extra difference 

equations. On the other hand, our method gives a better es timate 

of the active constraints, because in the other methods, the 

choice of active constraints is made when solving the Riccati 

equation, and this choice cannot be changed during the rest of 

the iteration. A result of this fact can be an increased number 

of iterations for the DDP-methods. 
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The DDP-method with global variations in control has a sl ightl y 

different structure than the three methods we have discussed so 

far in th is sectio n. At t ime t, in the backwards iteration, a 

global minimization in u(t ) i s made of the func tion 

i ( X k ( t) / U ( t ) / t ) +W X ( t + 1 ) f ( X k / U ( t) , t ) + 

(9 .18) 

where 6f(u(t) ,t) i s the diffe rence 

6f(u(t) ,t)=f(xk (t) ,u(t) ,t)-f(xk(t} , u k ( t) ,t) (9 .19) 

The u(t} that min imizes (9.18) is denoted by u*(t) . Then the 

backward equations are solved with (xk(t) ,u*(t)) as arguments 

ins t ead of (xk(t),uk(t)). The new controls are then given b y 

{9.20) 

whe r e ~ t a nd d x( t) a r e calculated in t he usual manne r . The 

possibility of convergence of thi s me t hod is increased by t he 

f o llowing ste p-size adjustment procedure: First the control 

(9.20) i s used over the who le time horizon. If a sufficient 

red uct ion in the cost f unction is obtained , t he new control 

sequence is accepted and the iterat ions proceed . If a r e duc tion 

is not obtained , the controls (9.20) are used on srnaller and 

smaller time intervals unti l t hi s happens. This step- size 

ad j u s tment method is also used in the continuous-tirne DDP

method. 

9.4 A flow chart of a cornputer p rogram f or implementing the 

algori thm 

Two compu t er programs have been written for solving discre t e 

t ime optima l control problems. The f ir s t p rogram sol ves optimal 

control problems, that are directly form ula t ed in discrete tirne 

such as (4.1)-(4.4). Th e other program treats prob lems that a re 
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f o rmulated in continuous t i me, wh i le t he control is constrained 

to be piecewise constant between sampl ing instants. This prob

lem, along wi t h r e l evant equations , i s further discussed in the 

appendix . 

The basic steps in t hese two programs are the same. In fact, 

they have the same main program - only certain subroutines 

differ between t he two programs. 

The organization of the calculations basically fo l low the sum

mary of the algorithm, given i n the Section 9 . 2 . A flow char t of 

the main program has the fo l lowing structure: 
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I ni tia! ize t he problem I 

-
write the c harac t eristics 

of the prob l em 

---~-- --- --
~-----~ -

r-------
wri t e t he initial 

con trol sequence 

c ompute t he sta t es x and t he cost 

fo r the cur rent contro l sequence , 

and the va l ues of the constraints 

--w -r~ i ~ t - e --. t 4 1 - ,e - s ~ t~ a ~ tes x and cost f or 

the curre nt controls uk 

~---"-------
-~------

----w r~ i ~ t - e --, t ~ h - ,e - v - a -:- 1 -u es of the constr aints 

and t he ir Lagrange multipl ie r s ---
s o lve the Riccati equa t ion 

a nd the o t her backward s equation 

compute the solution to 

t he unconstrained pr oblem 
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calculate the rows in the matrix A for the 

current set of active constraints and obtain 

the LDLT factorization for this matrix 

calc ulate the Lagrange mult i pliers of the 

current se t of active constraints . Calculate 

the corresponding values of the controls and 

states , calculate 6Jzk' and the values of the 

l inearized constraints . 

~s 

is some linearized constraint violated?.:>---

no 

add one constraint that is violated 

to the active set. Calculate the row 

in A for this constraint. Update the 

LDLTfactorization for the new A 

matrix 

yes 

is some Lagrange multiplier negative ? 

no 

delete the constraint which have 

the most negative multiplier from 

the active set. Update the LDLT 

factorization for the A matrix 
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2 N-1 2 
calculate \ tiul = l \tiu(t)j 

t =O 

yes 

no 

(s top 

I 1e t cc=l I 

for the control uk+a·ti~ calculate the 

states , value of the constraints, the 

cost and the values of JP(u) and JL(u ) 

no 

is the Watchdog crite rion sa t isfied?..........->-~~--' 

yes 

write values of ukl 
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The main program that administers this flow-chart consists of 

180 FORTRAN statements, which corresponds to about 2100 bytes 

when implemented on a DEC 20 computer . All calculations, ind i

cated in the flow-chart are performed in subroutines . These sub

routines consist of 1300 FORTRAN statements, corresponding to 

approximately 9900 bytes . The differen t ial equations in the 

Appendix are solved by a fourth order Runge-Kutta method (p . 346 

in Dahlquist, Björck ( 1974)). 

The program is written to handle both equality and inequality 

constraints of the type (4 . 4) . In the quadratic subproblems, the 

active constraints are chosen in the following way . Steps 0-2 

make it possible to start outside the region defined by the 

constraints . 

o. Let all equality constraints and all inequality constraints 

which have a positive Lagrange multiplier be in th e active 

set . Put ISAT=O. 

1 . Compute the solution for the current set of active con

straints . If all constraints are satisfied for this solu

tion put ISAT=l. 

2. If ISAT=l go to step 3 . Else add t he most violated con

straint to the active set and go back to step 1. 

3 . If all constraints are satisfied then go to step 4 , else 

add a constraint to the active set using the method 

described in section 3.2 

4. If all Lagrange multipliers of the inequality constraints 

in the active set are positive then go to step 5 . If not 

delete the inequality constraint with the most negative 

Lagrange multiple r f rom the active set and go back to step 

1. 

5. The solution has been found . 
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The idea is to add viola t ed inequality constrain t s to the active 

set until all constraint s are satisf ied. Then we can use the a l

gori thm in Section 3.2 (steps 3- 5). 

9.5 User-program i n terface. 

The organization of the program is such t hat t he user specifies 

his non-linear optima l con t rol problem in a separate FORTRAN 

subroutine. This FORTRAN subroutine communicates with the main 

program through four named COMMON blocks . I n these COMMON blocks 

the following information should be given: 

n x' the number of s t ates 

n 
u' 

the number of controls 

N, the number of sampl ing instants 

p, the number of inequality cons traints. 

µ I the values of the penalty parameters in t he Watchdog 

technique (7. 3). 

e, Parameter to determine the termination criterion. 

Moreover the values of the time instants, t 1 , ..• , tp at which 

the constraints are given must be specified , as well as lower 

a nd upper bou nds on the contro l signals. 

Al so, for given x and u the state transition function f (see 

(4.1)) as wel l as its first and second order derivatives should 

be calculated. Similar l y , for given x and u the criterion func

tion ~ along with its fi r st and second der i vatives with respect 

to x ana u should a lso be specified as well as the constraint 
. i 

funct 1ons h together with their first and second order deriva-

tives with resepct to x and u. Finally, the initial values for 

tb e control-signals and for the Lagrange mult ipliers must be 

specified. 

A typical subroutine is depicted in Figure 9.1 
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SUBROUI'INE USER 
c 
C SUBROUI'INE FOR THE PRCX>RAM QADAPP, WHICA OOLVES DISCRETE TIME 
C OPI'IMAL CCNTROL PROBLEMS . 
c 
C IN THIS SUBROUTINE THE PROBLEM IS DEFINED . 
c 

c 

c 

c 

c 

c 

c 

c 

c 
c 
c 

REAL F(6), X(74), U(2), FX(6,6), FU(6,2), FXX(6,6,6) , FXU(6,6,2), 
* FUU(6,2,2), LX(6), lll(2), LXX(6,6), 
* LXU(6,2), UJU(2,2), FIX(6), FIXX(6,6), U.10(2 ,201) 

REAL UNOM(2, 201). VNCt-1(201), XIN(6). XNCM(6, 201). 
* UL(2,201), UU(2,201) 

REAL GCOO ( 80 ), GXC'CTN ( 80 , 6 ) , GUCOO ( 80, 2 ). GXXCCN ( 80, 6 , 6 ). 
* GXUCCN(80,6,2), GUUCDN(80,2,2), 1ACON(80 ), 
* Il\MBDA. ( 80) 

INTEGER ITEQ ( 80). IPElO ( 80) 

COvlMON /QADl / IGAAD, KOOT, ITEMJ\X, LP, N, NACT, NE.W, 
* NPR.lNI', NSTEP, NEND, 
* NU, NEQ, NIEX), NAEQ, INDEL, IFAIL, II.roP 

C<M1CN /QAD2/ EPSIL, ETAl, ETA2, IT, T, TSAMP, UNORM, \/NEW, 
* VOLD, PCIC 

CCMMCN /QAD3/ UNQvl, VNQvl, XIN, XNQvl, UJO, ITEX), TPEQ, 
* GCON, IACCN, LAMBDA, UL, UU 

C<M1CN /OAD4/ SF, SL, F, U, FX, FU, FXX, FXU, FUU, 
* LX, UJ, LXX, LXU , llJU, FIX, FIXX, GXC'CTN, GUCOO, 
* GXXC'ON, GXUCCN, GUUCON, X 

Figure 9 . 1 Program head for the subroutine to be written by the 

user of the optimization program . 

When the program is run, the main program gives , for each itera

tion, the current values of the control signals, the states, the 

values of the constraints and the Lagrange multipliers and also 

the current cost. This information can be given on the terminal 

screen, on a line -printer or stored on disc-are a . 

For further information about how to use the program, consul t 

the program manual, Jenson {1983) . 
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9.6 A computer prog ram for solving s tatic nonlinear constrained 

p rogramming problems. 

In chapter 2 we described a general static non-linear con

strained programming problem ( 2 .11), which has the form 

minimize .l ( z) (9.2la) 

subject to g(z)=O (9.2lb) 

h(Z)2_0 (9 . 2lc) 

In that chapter we also showed that given the variables zk, 

Ak-l ' µk-l' the Newton direc tion towards the Kuhn - Tucker-point 

of (9.21 ) is obtained by solving the following problem with 

linear constraints: 

mi n i mize 
d 

subject to 

(9.22a) 

(9.22b) 

( 9. 22c) 

where L(z,A,µ) is the Lagrangian to the problem (9.13). The 

solution to (9.22) def ines the variables dk' Ak and µk . The next 

value zk+l is then determined from 

(9 . 23) 

where ak is chosen according to the Watchdog technique described 

in section 7.4. 
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A computer program has been developed for the problem (9.21) 

using the i tera t ions (9 . 23). Similarly to the program for opti

mal control problems, a subroutine has to be written by the 

user. This subroutine should specify the following values: 

n, the number of variables 

m
1

, t he numbe r of equality constraints 

m
2

, the number of inequality constraints. 

Also for any given value of z, the values of the functions 

J.( z ), g(z), and h (z) (defined in (9 . 21)) along with their first 

and second order derivatives with respect to z have to be 

g i ven. 

When t he program is run the values of zk' g(zk) , h(z k ) ' Ak and 

µk are printed on a file for each iteration. 

In the program the quadratic sub- problems (9.22) are solved 

using the technique described in sec tion 3 . 3. The NAG-routines 

FOIBRF and F04AXF are used for factoriz ing the system matrix in 

(3 . 6) and (3.7) a nd for solving this system of linear equa 

tions. 
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10. AN OPTIMAL POWER DISTRIBUTION PROBLEM 

10.1 Introduction 

In this chapter we consider an e l ectrical network of the same 

kind as that of example 2 . 1 . It will however be of more realis t ic 

complexity. We assume that the network has a number of nodes . 

Some of the nodes are connected by elec trica l lines . Not all 

nodes need to have direct lines between each other , but all nodes 

are connected. At each node there are power generators , power 

consumers or both . A node can have more than one generator . Each 

generator is allowed to produce power within a given interval 

on l y. The consumers requ ire a known amount of electric power . On 

some of the lines there may also be transformers . To each ge ne 

rator there is assigned a cost function, whose value is de ter

mined by the amount of power generated . 

The problem is now to adjust the generated power so that the 

total cost, summed over each power generator , is mi nimized when 

the power demand from the cons umers i s sat i sf i ed . 

This problem is of the type {2 . 11 ). More specifically, we may 

define the problem as follows: 

Let the vec t or z consist of all values that de s c ribe the network 

with t he following quantitites: 

Vi the voltage amplitude at each node 

~i the phase angle of each node (except the slack- node} . 

t. the amplitude ratio for transformer j 
J 

PGk th e r eal power produced by ge nerator k 

QG~ the complex power produced by generator~. 
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Objective function 

We assume t hat only the real power generators have associated 

costs. Hence our cost function is 

(10.1) 

The index k on ek impl ies that the cost functions may be diffe

rent for the different generators. 

Equality constraints 

Each node must be in balance, both with respect to real and to 

complex power. This gives us the constraints for each node. As in 

example 2.1 we get t hat for node l these constraints are" (see 

( 2. 2)) 

(10.2a) 

Inequality constraints 

I n order to operate safely, the lines must not be overloaded. 

Tha t is to eac h line there is an upper limit on the heat produced 

i n the line. (cf equation (2.7)}. 

Also, the network must be stable . Therefore the phase angle 

between two nodes a t each end of a line must not differ by more 
n 

tha n 2 . ror one of the nodes the phase angle is fixed to zero. 

This node is usually called the slack node. 

Simple constraints 

The generators have limited capaci ty. Therefore for each gene 

rator, the generated power must be within a given interval. 
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(10.3a) 

(10 . 3b ) 

10.2 The test e xample 

We choose an e xample given in Arriatti (1971 ), which is often 

used as a t est example for algorithms designed to solve elelctri 

cal power distribution problems. It consists of 10 nodes and 13 

transmission lines. In 5 of these lines there is a transformer . 

The total number of power generators is 14, allocated at 7 diffe

rent nodes. At each of these 7 nodes there is also a reactive 

generator . This gives a total of 45 free variables, 20 equality 

constraints, 20 inequality constraints and 41 simple constraints. 

The varibles are: 10 voltage amplitudes, 2 phase angles, S trans

formers, 7 reactive power generators and 14 real power genera 

tors . The 22 inequality constraints consist of 13 from maximum 

capacity at the 13 lines and 8 f rom phase angle differences . The 

41 simple constraints are : 10 for the voltage amplitudes , 6 phase 

angles directly connected to the slack node, 5 transformers , 14 

real power generators and 7 reactive generators . The geometry of 

the network is given by figure 10.1. 

This problem is an exampl e of a so-called sparse prob l em . Spar

sity here means that the Hessian of the objective function and 

the constraints, and the Jacobian of the constraints contain many 

zeros. 

The figures 10.2a and 10.2b show non-zero elements in the Hessian 

of the Lagrangian of the problem (equations (10 .l) and (10.2)) 

and in the Jacobian of the equality constrain ts (equat i on 

(10.2ab)) and inequality constraints (equation (2.7)). The vari

ables are ordered in the following way: 



10 

5 

9 

7 

14 

vol tage ampli tudes 

transformers 
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voltage phase angles (node 4 i s slack node) 

reactive power generators 

real power generators 

The voltage levels have the simple constraints 

205<V.<240 
- 1-

where the unit is kV . 

The ratio of the t rans formers have the limits 

0.9<t .<l.l 
- 1-

(10.4) 

(10.5) 
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Figure 10 . l The structure of the network in the test example . 

Numbers in squares deno t e node numbers. P means real power 

generators. Q means reactive powe r generators. L denotes the 

lines , T th e transformers and D is the demand . 
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Figure 10 . 2a The non-zero elements in the Hessian of the problem. 

Only the left upper 32x32 part of the matrix is shown . The rest 

of the matrix is zero except for the diagonal. 

X 

X 
X 

X 

X 

X 
X 

- x_ 

xxxx 

XX 

XX 
XX 

Figure 10 . 2b The non- zero elements in the Jacobian of the matrix . 

The upper part corresponds to the 20 equality constraints and the 

lower part, to the 13 inequality constraints. 
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Generator Lower Upper Initial Value at 

number bound bound value the solution 

(MVAr) (MVAr) (MVAr) (MVAr) 

1 -24 120 0 . 0 120 . 00 

2 -48 240 0 . 0 5. 72 

3 -78 390 o.o 390.00 

4 -30 150 0.0 150.00 

5 - 89 195 o.o 160.46 

6 -23 115 o.o 104.44 

7 -24 120 o.o 28. 44 

Table 10 . l Limits of generated reactive power . 

Generator Cost coeff icients Limits Initial Value a t 

number A1 A2 lower upper val ue the solution 

(MW) (MW) (MW) (MW) 

l l. 0 0.000461 80 217 150 . 0 121. 40 

2 l. 0 0.000461 80 217 150 .0 148.19 

3 l. 0 0 . 000461 80 217 150.0 148.19 

4 l. 0 0 . 000461 80 217 150 . 0 217.00 

5 l. 0 0 . 000461 80 217 150 .0 217.00 

6 l. 0 0.000926 40 108 80.0 108 . 00 

7 l. 0 0.000926 40 108 80 . 0 108. 00 

8 l. 0 0 . 000926 40 108 80.0 108 . 00 

9 l. 0 0 . 000926 40 108 80.0 108.00 

10 l. 0 0 . 000461 80 217 150.0 193.13 

11 l. 0 0 . 000926 40 108 80 . 0 95.5 3 

12 l. 0 0. 000139 30 72 50.0 72. 00 

13 1.0 0.000926 40 108 80 . 0 108 . 00 

14 l. 0 0.000461 80 217 150 . 0 217.00 

Table 10.2 Cost coefficients and limits for the real power 

generators. 
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Line Reactance Shunt admittance Maximum Load a t the 

number {ohms) (mhos) load solution 

( MW) (MW) 

1 5.00+j 24. 50 j 0.0002 25.0 6.7 

2 5 . 75+j 28 . 00 j 0.0002 1 4.0 14.0 

3 6 . OO+j 39.50 j 0 . 0003 25 .0 11. 0 

4 22 . BO+j 62 . 60 j 0 . 000 2 25.0 0.9 

5 5 . 00+j 24 . 50 j 0 . 0001 14 . 0 14.0 

6 2 4 . 70+j 97. 0 0 j 0 . 0002 25 . 0 5.9 

7 24. 70 +j 97.00 j 0 . 0002 25 .0 3.0 

8 3 . 75+j 24.7 5 j 0.0001 25.0 0. 5 

9 8. 25+j 33. 00 j 0.0003 25.0 1.1 

10 2 . 00+j 10 . 00 j 0 . 0002 25.0 8 .6 

11 9 . 50+j 31 .80 j 0.0002 25 . 0 13 . 8 

12 6 . 00+j 39.50 j 0 . 0003 2 5 .0 10.3 

13 8 . 25+j 32 . 30 j 0.0003 25 . 0 5.2 

Table 10.3 Reactances and shunt admittq nces of the lines . 

Node Power demand 

number (MW) (MVAr) 

3 250 150 

4 1000 630 

5 150 75 

6 100 35 

7 100 50 

8 250 150 

9 100 30 

Table 10 . 4 Power demand at different nodes . 
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The upper and lower l imit s of t he complex generators are given in 

Tab le 10 . 1 . In that table the initial values given to the algo

rithm are also shown, and also their values at the solution . 

The cost functions for the real power generators are of the form 

(10. 5) 

where the values of A
1 

and A
2 

for the dif feren t generators are 

g iven in Table 10.2 . Th a t table also con t ains the lower and upper 

limits on the generated real power for the different r eal power 

generators ana also the initial values and the optimal values 

o b tained for the real powers. 

The transmission lines are represented by their equivalent n . 

Hence each line has a leng t h r eac tance and a shunt admit t ance at 

i t s ends . The va l ues of these reac t ance s and shunt admittances 

are given in Table 10 . 3 . The power demand at the nodes is given 

by Table 10 . 4 . 

Initia l ly the voltage amplitudes were set to 225.0kV and the vol

tage phase angles were set to zero. The r atio of the trans formers 

were set to one . The initial values gave that the absolute value 

of the constraint vector was 955.5 MW. 

When we tried to solve this p roblem, the si tuation described in 

Figure 6.2 occured . Therefore all equality constraints were 

scal ed during the first iterations according to the idea of 

Powell (1977). Then the program managed to find a local minimum 

point which took 10.5 CPU-seconds ana 14 iterations . The absolute 

value of the equality constraints wa s reduced to 0 . 11 (MW) and 

the value of the ob jec tive function was 2148 . 5 un its . The values 

of the variables at the solution can be found in the tabl es 10 . l, 

10. 2 and 10 . 5 . 
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Voltage Transformer 

ampli tude phase angle ratio 

l 240.0 0 .019 1. 089 

2 240.0 0.072 0.927 

3 217 . 2 - 0 . 064 0 . 982 

4 236.7 -- l. 003 

5 222.S -0.055 0. 9 33 

6 240.0 -0 . 003 

7 240.0 -0.022 

8 234 . 5 0 . 012 

9 240.0 -0 .007 

10 240 . 0 0.037 

Table 10 . 5 The values of voltages a nd transformers at the 

solution. 

Usually this type of problems are solved by Reduced Gradient 

Methods (p. 262 in Luenberger (1973)). However , these methods 

cannot handle the inequality constraints ( 2 .7) effec tive ly. 

Therefore also Reduced Gradient Methods and Quasi Newton versions 

o f Wi l s o n ' s method have been tried. (Talukda r and Giras (1982)). 

In this method , m
1 

of the var i ables a r e eliminated using the m
1 

equality constraints . The remaining , inequali ty constrained 

optimization problem , is sol ved by Wilson ' s method , when the 

Hessian of the Lagrangian is u pda ted, using Quasi-Newton 

t echniques (Powell (1977), Han (1975)). 
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11. NUMERI CAL EXAMPLES OF OPTIMAL CONTROL PROBLEMS 

In this chapter we shall apply the computer program , described in 

Section 9 . 3 to some optimal control problems . These will i nclude 

both simple test cases ( Example 11 . 1), "tr icky" small probl ems, 

(Example 11.2, 11. 3 and 11.4) and a more realistically formulated 

a p p lication example (Example 11 .5). 

It would of course be interesting to compare our method with 

other methods designed for solving discrete time optimal control 

problems , but this is not easy , because very few othe r algori thms 

hav e resul t ed in computer programs . Therefore , as a c omparison we 

also solve some of the corresponding problems in continuous time , 

with the continuous time DDP- methods by Jacobson and Mayne 

(1970) . The constraining hyperplane technigue for this problem is 

described in M!rtensson (1972). Note however that t hese algo

r ithms s o lve completely different types af problems . We a l so 

cla i m that our formula t ion af the problem is a more r ealistic one 

f or dig i tal control and that the DDP- mehod gives a solution that 

is more difficult ta implement an a digital computer . 

Note, however, that for our method the state co ns traints might be 

violated betwee n the sample i ns t ants . 

Example 11.l The discrete time double integrator 

We consider a s ystem with two states and one control variab l e . 

The dy nam i cs af t he s ystem is assumed ta be 

x(t+l) = Fx(t)Gu(t) ( 11. l) 

where the matrices P and G are 

( 11. 2) 

This s ystem is the result af sampling the differential equat ion 

y=u , where y=x
1

, with the sampling interval equal ta on e time 

un it. 
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Consider the following performance index fo r the system 

1 N-1 2 
J{u):: i:: u (t) 2 

t =O 
{ 11. 3) 

with the number of steps N equal to 10. Assume tha t the initial 

va lue o f the s t ate is 

{ 11. 4) 

and that we have the following state constraints: 

(11.Sa) 

and 

X l ( t ).::_10 ,t=O , ..• , N (11.Sb) 

At iteration 0 the initial values of the controls were set to 

u(t) =-2 ,t=0, •.• ,9, which is the sol ution to t he problem if the 

cons tra i nt (11 . Sb ) is removed . The init ial values of the Lagrange 

multiplier s were chose n to be µ _
1

=0. Since this is a cons trained 

linear quad r atic (CLQ) p r oblem , the algorithm will find the solu

tion to this problem after one iteration only . The only problem 

is to choose t he correc t set of active const raints . How this 

choice is made is ill ustrated in Figure 11.lab a nd Figure ll .2ab. 

First the solution was ob t ained , when only t he constraint (10.Sa ) 

was included . This solution makes the constraint (10 . Sb) for t=S 

to be the mast v iola t ed one. This constraint is included in the 

active set a nd a ne w so lu tion is calculated. For t h is solution 

the constraint (11.Sb) for t=3 is the mast violated one. This 

constraint i s also inc l uded in the active set and a new solution 

is obtained, which leads to inclusion of the constraint at t=7 

inta the act i ve set. For the next solution , all constraints are 

sa t isfied but the mul t iplier corresponding to the constr aints at 

t=S, is negative , so we delete t hat constraint from the active 

set and obtain a new solu tion. This solution satisfies all Kuhn

Tucker conditions, and is accepted as the solution to the CLQ

probl em . For these calculations, 1 . 09 CPU- s econds were required, 

on the DEC - 20 computer . 
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o 
Figure 11.la The state x

1
(t) ,t=0, . .. ,10. The area outside the 

constraint is shaded. The solid line corresponds to the initial 

control u(t)=-2 . The solution when x
1

(5)=10 (l:st iteration) is 

given by the dashed line and the solution when x
1

(3)=10 and 

x
1

(5)=10 {2:nd iteration) is given by the chain-dotted line. 

Il 

8~ ~ ~~---..-~~~--.~~~~..-- ~~~ ~-L-~~~ 

0 6 

Figure 11.lb The state x
1
(t) ,t=0 , ... ,10 . The area outside the 

constraint is shaded. The solid line is the solution when 

x
1

(3)=10,x
1

(5)=10 and x
1

(7)=10 (3:rd iteration) and the dashed 

line corresponds to the optimal control of the problem (4:th 

iteration). 
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Figure ll.2a The control signal u(t) ,t=0, ••• , 9. The solid line i s 

the initial control u(t)=-2. The dashed line is the control when 

x
1

(S) =10 and the chain-dotted line is the control when x
1

(3)=10 

and x 
1 

( 5) =10. 

z 

0 

-z 

-4 

-b-+-- ~~~~~~ ~~~~ ~---r~ ~~--r~~~-. 

0 10 

Figure ll.2b The control signal u(t) ,t=0, ••. ,9 . The solid line is 

the solution when we have 3 constraints in the active set namely 

x1 (3)=10,X 1 (5)=10 and x
1

(7)=10. The dashed line is the optimal 

control of the problem. 
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Example 11 . 2 A problem where lxx is not positive definite. 

We consider the following system with one state variable and one 

control variable: 

2 
x(t+l)=2•x(t)+x (t)+u(t) 

The objective function is 

N-1 
J(u)=x(N)+ E (~ 2

(t) (t) (t) 
1 

x
2
(tl) t=O 4 u -u -x -2 

and the initial value 

x(O)=O . 

(11.6) 

(11. 7) 

(11.8) 

No constraints are given for this problem . The value of N was 

chosen as 10 . Th e optimal solution to this problem is 

u(t)=O , t=O, •.• ,N-1 , but because ixx=-1 in (11.7) , this isa very 

difficult problem to solve. We started with u(t)=0.01 , t=0, . . . ,9 

which gave the value J(u)=8 . l•l0
3 

for the cost function and 
3 

x(l0) =16 . 3•10 . The value of E in the stopping-cri t erion was 

chosen as l.O•l0- 12 . 

We will now show the rate of convergence for our method. Le t ek 

be the value 

( 11. 9) 

ancl assume that close to the solution we have 

(11.10) 

where we want to estimate p. Let lj)k be the logarithm of ek . From 

(11 . 10) we then get 

(11.11) 
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where pk is the estimate of p at iteration k. 

The computer needed 23 iterations to satisfy the stopping 

criterion, and then 2.83 CPU-seconds was used. In Figure 11. 3 the 

value of pk defined by (11.11) is plotted versus iteration 

number . 

The figure shows that pk tends to 2 as k tends to infinity . The 

abrupt jump from 2 to 1 from iteration 22 to iteration 23 is 

due to underflow when calculating ek when k =23. 
,.... 

.P* 

l.5 

l. 

1.5 

I. 

0.5 

0. 

0 10 15 zo 
Z

5 
lferolioo 
nvmoer 

Figure 11 . 3 The estimate of the rate of convergence pk, when the 

Newton method is used . 
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Example 11.3 Adapted from M8rtensson (1972) . 

Consider the continuous time system with two states and one 

control signal 

. 
X{~)=Ax(~)+Bu{~), 

where the matrices A and B are 

The criterion function is 

J= 1 
~ 

1 
f 
0 

and the initial cond it ion is 

X { 0) =( ~ ) 
We have the terminal constraints 

x{l)=(~) 

and the state inequality constraints 

(11.12) 

(11.13) 

(11.14) 

(11.15) 

(11.16) 

(11.17) 

We solve this problem using the program based on the algorithm 

described in the Appendix. The sampling time was chosen as 

T
5

=0.05 which makes N=20. The constraint (11 . 14) is then approxi

mated by 

2 
x

1
(s) - 8{s-0 . 5) +0 . 5~0; s=T

5
•t;t=0, ..• ,20. (11.18) 

Since this is actually a quadratic problem with linear const

raints our algorithm solves this problem in one iteration. The 
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initial sequence to the algorithm wa s u(t}=O; t =0 , .• • , 19 , which 

gave a non feasible solution. 

In t he subproblem, 8 itera t ions we re needed to obtain the correct 

set of active constraints. The computer need e d 2.0 CPU-se cond s 

for the calculations. At the o p timum, three of the inequality 

cons train ts (11.19) are act i ve , name ly for s=0.55 , s=0 .80 a nd 

s=0.85. 

x1 (t) 

10~ -~~~~~~~~ ~~~~~~~~~~~~~ ~ 

o" 
OG 

04 

oz 

0.0 

-o.z 

-0. 4 

-o ~ O.l 0.4 10 t 

Figure 1 1 . 4 The sta t e x 1 (s),s=0 .05t,t=0, ••. ,20 at t he solution. 

The state touches t he infeasible region for s=0.55, s=0.80 and 

s=0.85. 
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v (t) 

15. 

0. 

-15. 

-.x?. 

-<--5. 

-r;,o. 
0. oz O.tJ 1.0 t 

Figure 11 . 5 The optimal control for the problem in example 11 . 3 

To compare with DOP , we also solved t his p r oblem using T
5

=0 . 0l 

which makes N=lOO . For this problem our algorithm requi r ed 5.3 

CPU-seconds whereas the DDP- method needed 8 . 5 CPU-seconds. 
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Example 11 .4 The constrained Van der Pol equa t ion. 

Consider the system 

( ll.19a) 

(ll.19b) 

with the initial value 

x(O) =( ~ ) (11.20) 

a nd t he cri t erion function 

(11.21) 

The cons t raints are 

x( l)= ( ~ ) (11.22) 

and 

-3_:u( t) 2_3 (11.23) 

This problem was solved with our sampling program where t he 

sampling time was cho sen as 0.01 . Henc e N=lOO . The constraints on 

the controls are of the type d i scussed i n section 8 .2. Therefore 

we solve t hi s problem using the algorithm proposed i n section 

8 . 3. The initial controls were u ( t) =O and µ_
1

=0. We a l so sol ved 

the continuous version o f this problem with t he continuous DDP

method. The r esult i s summarized in the following t able : 
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Our program DOP 

Number of 

iterations 4 6 

Value of 

criterion function 2 .934 2.938 

Value of terminal 0.0006 0 .0008 

constraints 0.0008 0.0009 

Solution time 

(CPU-seconds) 9 . 27 6 . 74 
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Example 11.5 A container crane. 

This example is based on a problem described in M8rtensson 

(1973). 

trolley 

zo 

Figure 11. 6 

A truck delivers containers to a storage house. A crane in thi s 

storage house is supposed to lift the container from the truck and 

stack it in a predetermined position. During the transportation, 

the crane may have to lift the container over other, already 

stacked, containers. We assume that we can control the accelera

tions o f ~he trolley and the winch separately. 

We use t he following notation. 

(~1 , 0) 

(i; 2 I T)2) 

e 
T 

c 
L 

c 
m 

g 

position of the trolley 

position of the load 

angular dev ia t ion 

t e ns ion in the cable 

length o f the cable 

mass of load 

gravity acceleration (9.8lm/s
2

) 
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See also Figure 11 .7. From the figure we find that 

n =-L cose 
2 c 

m.9 

(sz ,qz) 

(ll.24a) 

(ll.24 b) 

Figure 11.7 Definition of the variables fo r the container crane . 

If we let u(t) be the acceleration of the trolley and u
2
(t) be 

the control signal to the winch we get the fo llowing differential 

equations 

'i. =u 
c 2 

(ll.25a) 

( 11. 25b) 



Por the l o ad we ge t 

m~ =-T •sin0 
2 c 
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( 11. 26a) 

(ll.26b) 

I f we mul tiply (ll .26b) by sin0 and t hen eliminate T using 
c 

( 11. 26a) we get 

(11.27) 

By d i fferent iation of (11.24) twice with respect to ~ we get : 

•. • 2 • • •. 
~ 2 =- (Lc-0 )cos0+2Lc0sin0+Lc0 sin0 

If we use 
.. 

(11.26) to eliminate ~ 2 and T)
2 

in 

1 
(g sin0+2Lc 0+~ 1 cos0) Le 

We now define the state variables as 

X =L s c 

. 
X =L 

6 c 

(l l. 28a) 

( 11. 28b) 

(11. 28) we get 

(11.29) 

( ll.30a) 

( 11. 30b) 

( ll.30cl 

(11. 30d) 

(ll.30e) 

(l l.30f ) 
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The dynamics of the system is then described by the following 

sysLem of differential equations . 

(ll.3la) 

(ll.3lb) 

( 11. 3lc) 

. 
x4 =-(g sinx 3+u1 cosx

3
+2x4 x

6
)/x

5 (ll.3ld) 

(ll.3le) 

(ll. 3lf) 

We assume that the system is initiated at 

T x(0)=(0,0,0,0,12,0) {ll . 32a) 

and after 20 seconds t he sys t em should be in the state 

T 
x( 20)=(2 0,0,0,0,6,0) {l l . 32b) 

We assume that we can approximate the already stored containers 

by the parabola 

2 
n = -4- 0 . 25(~-0.25) (11.33) 

The load must therefore be above this parabola . This gives us the 

s tate inequal ity constra i nt 

(11.34) 

When we sol ved th is problem wi th our algor i thm, the sampling t ime 

was chose n as 0 . 2 seconds which g i ves the value N=lOO . 
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'l'he in i tial sequence was chosen as 

u(·r}=(-~ : ~4) O<-t<lO ( ll.30a) 

( -0. 2) 
u(-t)= 0 .0 3 10<-t< 20 (ll.30b) 

which makes a trajectory tha t satisfies only the f irst two of the 

t e r minal constra ints ( ll . 32b) . 

The iterations were term i na tea when the value of jå ul was smaller 

than 0.1 . The algorithm needed 3 iterations to find the solu t i o n 

and took approxima t ely 55 CPU-seconds . 

The posi t ion of the load i s plotted versus time in Figures 11.8 

both for the initial control seqence ( Figure 11.Ba) a nd the 

o p timal con t rol sequence (Figure 11.Bb). 

We a lso solved this probl em in its continuous time counterpar t 

using the DDP- method , Jacobson and Mayne (1 970), in combination 

with a constr aining hyperplane technique to handle the s tate 

constrai nts (1 1.29) as i n Mår t ensson (1973). Also in t his case 

the time i nterval [0,20] was divided into 100 steps. The DDP

p rogram needed 14 iterations and 103 CPU-seconas to solve this 

p roblem. The value of the criterion function was in this case 

0. 6119 whereas our a lgori thm gave the value O. 6404. The most 

viola ted terminal constraint h ad the absolute va lue 0.0008 for 

the DOP prog r am and O. 0004 for our program . 

To solve t his problem, i t was neces s a ry to use the reg ul a rization 

t ech nique proposed in Section 6 . 2 . We chose t he diagonal elements 

so that the matrix C became posit ive def in i te, and so that the 

absolute va l ues af the elements in~ d id not exceed 1 . 5. Also , 

for both our method and for the DDP-method it was necessary to 

add the square o f t he terminal constraints to make the prog rams 

operate in a sui t abl e way. (This is a trick often e mpl oyed when 

solving optimal control problems.) 



161 

0. 

-Z.5 

-5. 

-75 

-10. 

f.0 8.0 IZO IC..O zo.o 5 

Figure 11 . Sa The position o f load and trolley at every other 

second for the initial control sequence . 

0. 

-Z.5 

-5. 

-7.5 

-10. 

-/ Z.5 +--.----,----,---:.___--.----,---.---...---...----.l----r--
O.O 8 .0 IZ.O IC..O zoo 5 

Figur e ll.8b The position of load a nd trolley at every other 

second for the optima l control sequence . 
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Summary 

We have shown that our program and the algorithm upon which it is 

based is capable of solving non-linear , discre te-time optimal 

control problems of different kinds, in particular problems with 

state constraints. The program has a l so been appl ied to other 

problems, see e.g. Trulsson (1983), and has exposed robust prac

tical convergence properties . 

Comparisons with other numerical schemes, such as DDP show that 

our method is competitive. It must however be remarked that it is 

difficult to eva l uate comparisons between the continuous-time 

DDP-algorithm and our discrete- time algorithm. A fair comparison 

should be carried out against a discrete- time counterpart of the 

DDP-algorithm, which can handle state constraints. Such an algo

rithm has, however, apparently never been explicitly reported in 

the literature. 

The numerical expressions also reveal that some care must be 

exercised in the choice of numerical algorithms in the sub

routines, that mechanize the different equations that are to be 

solved in the course of the optimization scheme. Replaci ng the 

straightforward implementat ion of the Riccati-equation by more 

sophisticated and numerically sound versions is probably the most 

important possible improvement of this kind. 
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12 CONCLUSIONS 

Many problems in engineering can be formulated as optimization 

problems. This thesis focuses on two particular types of optimi

zation problems, namely nonlinear programming problems, i.e . 

nonlinear optimization problems with equal ity and inequality 

c onstraints , and optimal control problems in discrete time with 

state and control constraints. It has been the aim t hroughout the 

thesis to use a unified approach to these two problems . 

To that ena an algorithm has been developed which can be looked 

a t from two different viewpoints. On the one hand it is exac tly 

Wi lson ' s method, i.e. a Newton method for constrained problems, 

when the optimal control problem is regarded as a static non-

1 inear optimization problem. On the other hand it is a method 

that takes advantage of t he peculiar structure of optimal control 

problems and has a form similar to well known optimal control 

a lgorithms for problems without state and control constraints . A 

benefit from the approach is that it suggests a method of hand

ling constraints, in particular pure state constraints, which are 

notoriously dif ficult t o treat. 

To get a deeper understanding of t he relation between the two 

points o f view , the regularity conditions of the nonlinear pro

gramming problem have been interpreted in the optimal control 

framework. It has been shown that th e constraint qualification 

leads to a cont r ollability condition and that a certain definite

ness condition can be checked from the behaviour o f a Riccati 

equation. 

Our approach leads to a simple treatment of convergence ques

tions. Due to the mathematica l programming interpretation of our 

algorithm we have been able to establish bo t h global convergence 

and a locally quadratic convergence rate. 

A program has been developed which uses our algorithm to solve a 

completely genera l nonlinear discrete time optimal control 

problem. Both problems that are discrete-time prob l ems in 

themselves and problems formulated as piecewise cons tant control 
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af con t inuous-time systems (usually arising from computer cent

ral) can be handled. The program has been used successfully to 

solve a number af prob l ems af varying complexity. Our approach 

has thus been shown ta have not only theoretical inte r est, but 

practical usefulness as well. 
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APPENDIX 

SAMPLING OF CONTINUOUS TIME SYSTEMS: 

1. Introduction 

The main purpose af this thesis is ta describe and analyze a 

me thod for solving discrete time nonlinear constrained optimal 

c en tral p r oblems . However most af t hese problems originate from 

continuous time systems , but are for practical reasons or by 

tradition defi ned as discrete time systems . For instance mast 

economic sys t ems are usually described as discrete time systems . 

Also, when a digital computer is used for controlling a system, 

a d i sctcte time description of the sys t em is suitable, because 

when a digital computer is used, li1e con t rols a r e usually held 

constant between the sample times . 

Hence we need a method to get a discrete time description af the 

s y stem we are interested in. In this thesis we have assumed that 

this discrete time descri p t ion i s given or easily o btained . In 

t hi s appendix we will describe how to solve the disc r ete time 

descr i p t ion of the system even when it is i mposs i b l e ta e xpli 

citly f ind t he functions f and l in (4. 1) and ( 4 . 3) . 

We assume that we have a contin uous time description of the 

system , namely 

x('t)=F(x(-c) ,u( 't),'t) ; 02_'t::_tF 

a nd t hat wc want to minimize the performance inde x 

tF 

J(u)=l(x(tF) ,tF)+f L(X('t),U('t))d't 
0 

( A. l) 

( A. 2) 

We assume that the initial values of the states are given by 

x(O) =x
0 

( A . 3) 
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The problem is now that we are only allowed to change t he values 

of t he controls a t certain times, the sampling times. 

We will assume here that these sampling times are equidistant 

a nd also that the distance between two consequtive sampling 

times is 1. (This is not ne cessary. We make these assumptions to 

g P. t easier notations). Hence the sampling times are the i ntegers 

0,1, . .• ,N-l. we also assume that at these sampling times we have 

constraints of the type 

hi(x(ti),u(ti)).:_O,i=l, ..• , p. (A.4) 

We also assume that the controls are right continuous, i.e. 

u(-r)=u(t) if t<-r<t+l. (A.5) 

We also assume that the solutions to all the differential 

equations in this appendix exist, are uniqe and are bounded on 

the intervals on which they a r e defined . 

If the state x(t) and the control u(t) are known , we can cal

culate x(t+l) by solving the differential equa tion (A.l), since 

from (A.5) we know the controls u(-r). Hence the function Pin 

(A.l) implicitly defines the function f(x(t) ,u(t),1) in the 

discrete- time descript ion (4.1) of t he system. Also in (4.3) the 

values of the function l(x(t),u(t},t) could be evaluated as 

t +l 
l(x(t) ,u(t) , t)= f L(x(-r) , u(-r),-r)d-r 

t 
( A. 6) 

So we conclude that th~ prob lem defined by (A.1-5) is actually 

of t he same type as that described in chapte r 4, but usually the 

functions f and l a re imposs ible to ge t explici tly. 

In the following we wi ll use the notations a(t+) and a(t ) when 

we mean the right hand lim i t and the left hand limit o f the 

piece- wise continuous funct ion a(t) . 

Hence i f E >O we ha ve 



a(t+)=lim a(t+e) 
e+O 

a(t )=lim a(t-e). 
e+O 
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(A.7a) 

( A. 7b) 

In the next section we derive the necessary equations when there 

are no constraints of the type (A.4) and in section 3 we extend 

these resul ts to include these constraints . 

2. Solving the unconstrained problem 

We will derive a technique for solving the optimal control, 

def ined in the previous section. When we derive this technique 

we will c losely follow the same lines as those in section 4. 3 .1, 

when we derived the technique for discrete time systems. Con

sequently we let z(t) consist of the controls from time t up to 

N- 1 as i n (4.6). Hence 

T T T 
z ( t) = ( u ( N-1) I • •• I u ( t) ) • (A. 8) 

In (4.8) we defined the function V(x(t),z(t) ,t) as the cost from 

time t up to time N starting at x(t) and using the control 

defined by z(t). So here we, for t~i:<t+l, define 

N 
V(x(i:) ,z(t) ,i:)=1(x(N) ,N)+ f L(x(s) ,u(s) ,s)ds 

't 
( A . 9) 

where x(s), for s~i:, is the solution to (A.l) starting at x(-t), 

and u(s) is defined by (A.8) and (A.5) . As in section 4.3.1 we 

now want to calculate the derivatives of V(t+) with respect to 

x, z, xx, xz, and zz. We do that in the following way. The de

rivative of the function V('t) in (A.9) with respect to 't is 

. 
V('t)=V't('t)+Vx(i:)F('t}=-L('t) (A.10) 

if t<i:<t+l. (The term Vz(i:)~(t) in the expression above vanishes 

because z(t) is inde pendent of • on the interval . ) 
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From {A.10) we get the equality 

V (t)+L{•)+V {•)F{•l=O. 
't X 

( A.11) 

By differentiating (A.11) with respect to x, z, xx, xz and zz we 

get the following equalit ies. 

{A.12a) 

(A.12b) 

(A.12c) 

(A.12d) 

v ( • l+ (oo ZZ't LO{•)) +FT{'t)Vxzz{•)+ (FT( •~V (•)\+ 
uu u xz ~ 

+ ( 0 I V ( 't) E' ( 't) ) + ( 0 0 ) =O 
ZX U 0 V X ( 't) F UU ( 't ) 

{A.12e) 

Using the equali t ies in (A.12) we can derive t he following 

differential equalities in the interval t<•<t+l. 

• T 
-V (•)=-V (•)- E' ('t)V ('t)=L (•)+V (•)F ('t) X X't XX X X X {A.13a) 

(A.13b) 

• T T - V (-i) =-V {'t)-F (• )V (<) =L (-i)+F (•)V (•) 
XX XX't XXX XX X XX 

+V ('t)F (-i)+V (•) F (•) 
XX X X XX (A.13c) 
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(A.13d) 

= (OT ) + (0, V (-i-)f' (-i-))+ (00 
f' (-i-)V ('t") zx u 

u xz 

(A. 13d) 

From the definition (A . 9) o f the function V('t") and the construc

tion (A.8) of the vector z(t), it is obvious that we have the 

following boundary conditions . 

V (N-)=O 
z 

V (N-)=0 
zz 

and for t=l, . . . , N-1 we have 

- + 
V (t )=(V (t ),0) 

xz xz 

(A .14a) 

(A . 14b) 

(A. 14c) 

(A.14 d) 

(A . 14e) 

(A . 14f) 

(A.14e) 

(A. l4g) 

(A . 14h) 
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: ) (A. 1 4 i) 

Followi ng the i deas of c hapter 4.3.l we continue by defining 

W(öx(•),öz( t) ,•) as the second order Taylor expansion of the 

f unc tion V(•) around the point (x(•) ,z(t) ) on the interval 

t <• <t+l . Hence 

W( 6X( ') , 6Z ( t) 6Z ( t) , ')=V(') +V X (') • 6 X(' ) + 

( A.15) 

We now assume that öx (•) satisi f ies the di f ferential equation 

( A.16) 

on t he interval t<•<t+l. (cf the role o f the auxiliary variable 

D(t+l) in (4. 1 6) .) From the variation of constants formula i n 

Brockett (1970) , p. 40, we can write öx(t+l) as 

t+l 
6x (t + l )=~(t+ l, ,)6x ( •) + f ~(t + l , s)F (s)dsöu(t} 

u 

where the transfer matr i x ~ ( , , s ) is def ine d by 

( A. l 7 } 

d 
~ (•, s}=Fx(• )~( • ,s); ~(s ,s) = I . (A.18) 

d• 

We now try to fi nd the ana logy of equation (4. 18 ) in which W(t) 

is expressed as a function of W(t) ,öx(t) and 6 u(t). Hence we 

put up the following expression for W(•} 

W ( 6 X ( ') , 6 Z ( ' } , ' ) =W ( 6 X ( t + 1} , 6 Z ( t + l) , t + 1 ) + 
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T T 
+2llx ('t)Q ('t)Au(t)+ AU (t)Q ('t)AU(t )) 

xu uu 
(A . 19) 

where ..t('t) ,..t ('t) ,..t ('t) ,Q ('t) ,Q ('t) and Q ('t) are to be deter-
x U XX XU UU 

mined . 

We can do that in the f ollowing way. Elimi nate ö x(t+l) in (A.19) 

by using the expression (A . 17) . We then, af t er some manipulatio

ns, get a quadratic expression in t he variables AX ('t), llz ( t+l) 

and llu(t). By identifying the coefficients in this expression 

with the coefficients in (A.15) we get 

..t('t)=V('t}-V(t+l) 

..t ('t)=V ('t)-V (t+l)11>(t+l,'t) 
X X X 

t+l 
..t ('t)=[v ('t)] (t)-v (t+l) f 11> (t+l ,s )F ( s)ds 

U Z U X U 
't 

Q ( 't)= [ V ('t)) -
xu xz u{t) 

t+l 
-11>T{t+l,'t)Vxx(t+l) J 11> (t+l,s)Fu(s)ds 

't 

t+l T t+l 
-( f 11>(t+l,s)Fu(s)ds) Vxx(t+l){ f 11> (t+l , s)Fu (s)ds) 

't 't 

(A.18 a ) 

(A.18b) 

( A.18 c ) 

(A . 18d) 

(A . 18e ) 

( A. 18 E) 

Here ] u(t) means t hat we only use the part of the matrix 

within the brackets that corresponds to u(t). If we diffe 

rentiate relations (A . 18) with respect to 't and use (A.10) and 

(A.13) we obtain the following di ffe rential equations • 

. 
-..t(.) =L('t) (A . 19a) 
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-1 (-c)=L (-c)H (•)F (-c) 
X X X X 

(A.19b) 

-1 (-c)=L (-c)+~ (-c)F (-c) 
U U X U 

(A.19c) 

(A. 19d) 

( A.19e) 

• T 
-Q (-c)=L (-c)+V (-c)F (-c)+F (•)Q (-r) +Q (•)F (-c) 

UU UU X U U U XU UX U 
(A.19 f) 

By taking the limits of the expressions (A.18) as• tends to 

{t+l) we get that all variables are zero at (t+l)-. 

Again we use the func t ion J*(6x(t) ,t) defined in section (4.3.l) 

as 

J*(6x(t) , t)= min W(6x(t*),6(t) ,t*) 
6z( t) 

(A.20) 

This function is only defined at the times t=O , .•. ,N-1. From 

(A.15) we see that the 6z(t) that minimizes W(6x(t +),6z(t) ,t+) 

is given by 

(A .21) 

If we put this va lue in (A.15) we fina that J*(6x(t) ,t) is a 

quadratic function of öx(t). We therefore pu t up the following 

expression for J*(6x(t),t). 

J * ( 6 X ( t ) , t ) = a ( t ) +W X ( t ) 6 ( t ) + ~ 6 X T ( t ) W X X ( t ) 6 X ( t ) ( A • 2 2 ) 

Now assume that we have a rule for calculating öz(t) in (A.21) 

for t=N, • .. , p+l. (For t =N it is triv i a l!) We will then calculate 

öu( t) r:oc t=p in the following way. For p<-r<p+l we defi ne the 

function w0
(öx(-c),6u(t),-r) as 



173 

w0
(öX(<),öu(p),•)=J*(öx(p+l) ,p+ l )+ 

+l{T)+l (T)AX(T) +l (T)öu(p)+ 
X U 

(A. 23) 

That is w0
(•) is the va lue of the function W(•) given by (A.15), 

but when 6z{p+l)is chosen so that W(öx(p+l), öz(p+l) , p+ l) is 

minimi zed . 

We now put up the f ollowing expression for w0
(öx(>) , öu(p),T). 

0 0 
W ( Ax ( • ) , A z ( p) , • ) =a ( • ) + 

(A . 24) 

If we now again use the Variation of Constants Formula ( A.17) to 

eliminate the variables Ax(p+l) in (a . 23) and identify the 

coeff icients we ge t 

a 0 (•)=1(•)+a(p+l) (A. 25a) 

w0
(•)=1 (>)+W (p+l)~(p+l,>) 

X X X 
(A . 25b) 

p+l 
w0

(•)=1 (•)+W (p+l) J ~(p+l ,s)F (s )ds 
U U X U 

( A. 25c) 
T 

o T 
W (<)=Q (T)+~ (p+l,T)W (p+l)~(p+l,T) 

XX XX XX 
(A.25d) 
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p+l T 
W~u('t)=Quu('t) + ( f 11>(p+l,s)Fu(s)ds) ·Wxx(p+l)• 

't 

p+l 
• f 

• 
11>(p+l, s)F (s)ds 

u 

(A.25e) 

(A.25f) 

By differentiating the equalities in (A.25) we get the following 

differential equation, 

•O -a ( >) =L ( 't ) (A . 26a) 

(A.26b) 

(A.26c) 

(A.26d ) 

(A.26e) 

(A.26f) 

If we let • t e nd to (p+l) in (A . 25) we see that the differen

t i al equations in (A . 26} have the limits 

0 -a ((p+l} )=a(p+l} 

w0 ((p+l)-}=W (p+l} 
XX XX 

w0 
( ( p+ l ) - ) = 0 

xu 

(A.27a} 

(A . 27b} 

(A.27c) 

(A.27d) 

(A.2 7e) 



w0 
( (p+l)-)=0 

uu 
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(A. 27f) 

We now solve the differential equa tions (A.26) with the 

limits (A.27) to obtain t he va lue of the function w
0 (• l in 

+ 
(A.24) for •=p . At this time the minimizing tiu(p) is given by 

o + -1 o + T o + T + 
tiu(p)=-Wuu(p ) (Wu(p ) +wxu(p ) tix(p )) (A.28) 

and hence for t=p the coefficients in (A.22) is given by, 

w ( )-wo ( +)-wo ( +)Wo ( +,-1wo ( +} 
XX p - XX p XU p UU p UX p 

if we introduce the notations 

the equation (A.28) reduces to 

tiu(p)=öu(p) - ~ tix(p) 
p 

(A.29a) 

(A.29b) 

(A.29c) 

(A . 30a) 

(A. 30b) 

( A. 31) 

From theorem 4.1 we conclude that t he Newton s t ep towards the 

solution of the problem (A.l)(A.2)(A.3) and (A. 5 ) is given by 

(A.28) whe re tix(•) is the solution to the differential equation 

(A.16) and the other coefficients in (A.28) are given from 

(A.26), (A.27) and (A.29). 

Hence the algorithm to solve, (A.l-3),(A.5) is as follows . 

1. Assume that we h ave a control sequence u
0
(t), t=O, .. . ,N-1. 

Put k=O. 
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2. For the control sequence uk(t),t=O, •• . ,N-1 calculate the 

corresponding states xk(•) using (A.l) and (A.3) and the 

value J(uk) of the crite r i on function in (A . 2). 

3. For t=N-1, .•• ,0 solve the d iffe r e ntial equations (A. 13a) and 

(A.26) on the intevals [t,t+l ] . During these ca l culations 

compute and store t he values of öu(t) and ~t given by (A.30). 

If the mati:-ix W~u(t+) becomes singular or indefinite foi:- some 

t, use the method propos ed in section 6.2. 

4 . For t=O, •.. ,N-1, c alculate and stor e the value of ti u ( t) from 

(A.31 } and solve the d ifferential equation (A.16) on the 

interval [t,t+l]. 

5. If l6u(t) l<e Vt, where E is a small positive number, go to 

step 7. 

6. Put uk+l(t}=uk(t)+aktiu(t) ,t=O, •.• ,N-1, where a is chosen 

accoi:-ding to the rules given in section 7. Put k=k+l and go 

back to step 2. 

7. Stop. uk(t} is probab l y close toa local minimizing 

control sequence to the problem (A.l), (A.2), (A.3) and 

( A. 5). 

3. Solving the constrained problem. 

The constraints only in fl uence the equations at times 0,1, •.• , N 

and not between these time s. Hence, the diff e rential equations 

remain the same, on l y t he boundary conditions a re change d. As in 

section 4.3.3 we use the f unction y(t), defined by (4.50), to 

obtain the influence on the constraints. Hence, 

i 
y(t)=y(x(t) ,u(t}, µ ,t)= E µ .h (x(t.) ,u(t . )} 

i e l(t) 1 1 1 
( A. 32) 

where I(t) is defined by (4.49). The va l ues of µ are t he ones 
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obtained from the previous iteration . 

From the resemblance between the equations in section (4 . 3) and 

in this appendix it is obvious that the Riccati equations now 

become 

w0 
(N-)=1 (N)+y (N) 

XU XX XX 

w0 (N-)=0 
uu 

(A.33a) 

(A.33b) 

(A . 33c) 

(A.34d) 

Between the sampling times these variables satisfy the following 

differential equations. (cf equations (A.13a} and (A . 26)). 

(A . 34a) 

(A . 34b) 

(A. 34c) 

(A.34d) 

At the times t=N-1, . . . ,0, calculate and store the matrices c~ 1 

and ~t given b y 

(A.35a) 

(A . 35b) 

Aga in if Ctis indefinite or singular we use the method proposed 

in sect ion 6.2 to make it positive definite . At the times 
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t =N-1, . . . , l we have the following boundary conditions. 

w0 (t- ) =0 
xu 

(A.36a) 

( A. 36b) 

( A. 36c) 

(A.36d) 

The trajectory corresponding to the uncons trained o ptimum is now 

obtained from the following two steps. 

Step l. Start with 

w0 (N-)=O 
u 

For t =N-1, ... ,0 find the solution to 

On the interval (t,t+l ) 

and let ou
0

(t) be given by 

For t=N- 1, . .. ,l we have the boundary conditions 

(A . 37a) 

(A. 37b) 

(A.38a) 

(A.38b) 

( A. 39) 

(A.40a) 
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(A . 40b) 

Step 2. Start with Ax
0

(0)=0 and for t=O, .. . ,N-1 let Au
0

(t) be 

given by 

and solve the d i fferential equation 

. 
Ax 0 (~)=Fx(~)Ax 0 (~)+Fu(~)Au 0 (t) 

Store the values of Au
0
(t),t=O, . .. , N-l and 

Ax
0

( t) ,t=O, • .. ,N . 

(A. 41) 

(A . 42) 

For each constraint i in the active set we perform the following 

two steps . 

Step 1. For t>ti put 

öui(t ) =O (A . 43) 

For t= t i we have the conditions 

(A . 44a) 

(A. 44b) 

(A.44c) 

For t=ti-1, .•. , 0 we solve on t he interva l s (t , t+l) the 

differential equations 

(A . 45a) 

(A . 45b) 
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For t=ti - 1, ... ,1 the boundary conditions are 

{A.45a) 

{A. 46b) 

For t =ti-1, .•• ,0 we calculate 

( A. 4 7) 

During these calculations we store the values of öu i ( t), 

t=O, ... ,N-1 . 

Step 2. Start with Axi(O)=O and for t=O, ••• ,N-1 let AUi{t) be 

given by 

L'I U. { t) =ÖU. { t )-j'l tL'IX . ( t) 
l l l 

(A .48 ) 

and solve the differential equation 

A~.('t)=F ('t)AX.('t)+F ('t)L'lu.(t) 
l X l U l 

(A. 49) 

on the interval {t,t+l ). During these calculate for each 

constraint j in the active set, the value 

a .. =h j ( t.) AX. ( t. )+h j ( t.) AU . ( t.). 
lJ X J l J U J l J 

(A.50) 

The values a .. in (A.50) define the elements in the matrix A 
l J 

given by (3.9). The elements in the vector d i n (3.10) are 

given by 

(A. 51) 

It is trivial to impl ement the method for simple constraints on 

the controls g iven in section (8.3), because we only need to use 

the matrix r 0 c~
1 instead of c~ 1 in the equations (A.35b), 
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(A . 39) , (A.44a) and (A .4 7) . The boundary conditions for w~x('t) 

in (A.36b) are c h anged to 

( A . 52) 

which follows from (8 . 18c). 
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