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A NEWTON-RAPHSON VERSION OF THE MULTIVARIATE
ROBBINS-MONRO PROCEDURE

By DAvVID RUPPERT!
University of North Carolina, Chapel Hill

Suppose that f is a function from R* to R* and for some 8, f(§) = 0.
Initially f is unknown, but for any x in R* we can observe a random vector
Y(x) with expectation f(x). The unknown 6 can be estimated recursively by
Blum’s (1954) multivariate version of the Robbins-Monro procedure. Blum’s
procedure requires the rather restrictive assumption that infimum of the inner
product (x — 8)‘f(x) over any compact set not containing 6 be positive. Thus
at each x, f(x) gives information about the direction towards 6. Blum’s
recursion is X1 = X, — a,Y, where the conditional expectation of Y, given
Xy, -+, X, is f(X,) and a, > 0. Unlike Blum’s method, the procedure
introduced in this paper does not necessarily attempt to move in a direction
that decreases || X, — 0|, at least not during the initial stage of the procedure.
Rather, except for random fluctuations it moves in a direction which decreases
I£)I% and it may follow a circuitous route to 8. Consequently, it does not
require that (x — 0)’f(x) have a constant signum. This new procedure is
somewhat similar to the multivariate Kiefer-Wolfowitz procedure applied to
I )% but unlike the latter it converges to 6§ at rate n~"/2, Deterministic root
finding methods are briefly discussed. The method of this paper is a stochastic
analog of the Newton-Raphson and Gauss-Newton techniques.

1. Introduction. This paper is concerned with a multivariate version of a
problem first studied by Robbins and Monro (1951). Supose that f is an unknown
function from R* to R*, and that for any x in R* we can observe a random vector
Y (x) with expectation f(x). Let « in R* be known, and suppose there is a unique
60 such that f(#) = a. The goal is to estimate 6.

For example, suppose that & = 2 and x gives the doses of two drugs that affect
blood chemistry. The concentrations of two chemicals in the blood are measured
after administration of the drugs, and f(x) gives the expected concentrations as
a function of the doses. If « gives the ideal concentrations of the two blood
components, then # gives the correct doses.

By choosing the appropriate measurement scales, we can without loss of
generality assume that a = 0.

Blum’s (1954) version of the Robbins-Monro (RM) process begins with an
initial estimate X, of 0. Given X, - - - , X,, one observes Y,,, such that E,(Y,) =
f(X.) where E, denotes conditional expectation given by X, ---, X,. Then X,
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is updated by the recursion
(11) Xn+'1 = Xn = Qn Yn

where a, is a suitably chosen positive sequence converging to 0. Convergence of
X, to 0 is proved under the assumption that for each ¢ > 0.

(1.2) inf{(x — 0)f(x):e< || x|| <e '} >0.

The importance of (1.2) can be easily seen as follows. We will suppose that
sup{Var Y(x): x € R*} < o, though a somewhat weaker assumption is possible.
From (1.1) and the fact that E,(Y,,) = f(X,), we have

Eo(| Xner = 01%) = 1 Xo — 011® — 20,(Xa — 6)'F(Xa) + aZE. (Il Yall?).

If we could ignore the term of order a2, then || X, — 6 |> would be a positive
supermartingale and would converge a.s. The term of order a2 can be handled
using a theorem on “almost” positive supermartingales (Robbins and Siegmund,
1971, which also appears in Ruppert, 1981). The theorem also can be used to
show that

(1.3) Yme1 an(X, — 0)f(X,) converges a.s.
The sequence {a,} is chosen so that
(14) 23=1 a, = ®,

and (1.2)-(1.4) imply that X,, — 6 a.s. Authors using condition (1.2) or something
quite similar include Sacks (1958, assumption (Al*)), Schmetterer (1968, as-
sumption (4.15)), and Walk (1977, assumption (2a)). (Walk’s paper concerns the
RM process in a general Hilbert space.) Blum’s original work uses assumptions
stronger than (1.2).

Unfortunately, (1.2) is a rather restrictive assumption, implying that at each
x, f(x) “points away from 6.” Clearly we can replace (1.2) by

(1.2%) infi—(x — 0)f(x):e < | x|| <&} >0

this requires only that we change (1.1) to X,+; = X, + a,Y.. An example of a
function satisfying neither (1.2) nor (1.2’) is

f(x1, x2) = (exp(—x}) — 1, exp(—x3) — 1)

An alternative to the multivariate RM procedure would be to apply the
multivariate Kiefer-Wolfowitz (KW) procedure to minimize || f(x)||%. (For the
moment assume that the conditional variance of Y(x) is independent of x, so
that E,(|| Y.||® = || f(X,) |* + constant. Otherwise, the KW procedure will find
the minimizer of E || Y(x) ||%, not necessarily the solution to f(x) = 0.) The KW
procedure will tend to follow the negative gradient of || f(x) |2 Thus, the KW
procedure does not attempt to move directly towards 6, in the sense of attempting
to decrease | X, — 6| . However, except for random fluctuations, it does move
downhill, that is, in a direction decreasing | f(x)||% Therefore, under mild
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conditions X, will converge to a local minimum of || f(x) || If 6 is the only local
minimum, then X, — 0.

Unfortunately, the rate of convergence to 6 of the KW method is slower than
the n~'/2 rate of RM method, though modifications of the Kiefer-Wolfowitz
method can produce rates arbitrarily close to n™Y2 if f has derivatives of suffi-
ciently high order (Fabian, 1971).

In this paper, we propose a new multivariate RM process which in some ways
behaves as the Kiefer-Wolfowitz method applied to || f||%, but which possesses
the n~'/2 rate of convergence even when f has only two derivatives.

Let D(x) be the k X k derivative of f(x). Then, the derivative of | f(x) ||? is

2 D¥(x)f (x).
The Hessian matrix of || f(x) || % is
(1.5) H(x) = 2[D(x)D(x) + Tk, H‘i’(x)/;i(x)],

where f° is ith coordinate of f and H” is the Hessian of f.. Thus H(0) =
2 D*6)D(6). The recursive procedure that is introduced here is

(16) Xn+1 = Xn - anhanthfn;

where a > 0, B, is an estimate of [D*(6)D(6)]%, D, is an estimate of D(X,), and
f» is an estimate of f(X,,).

Blum’s multivariate RM procedure uses one observation to construct f, and
thereby to update X, to X,+;. Our procedure uses (2k)(m,) observations to
construct D, and [n”] observations to construct f,, where [-] is the greatest
integer function, ¥y > 0, m, — «, and m,n™" — 0. We let m, — o sufficiently
fast (see below), so that the conditional variance of D,, given X;, .---, X,
converges to 0. We require that m,n™ — 0 so that among the totality of
observations used to construct both D, and f,, the proportion used in estimating
D converges to 0. These properties insure full asymptotic efficiency (see Section
5).

Comparing (1.1) and (1.6), one sees that the procedure introduced here differs
from Blum’s in that f,, is premultiplied by (B,D%). The factor D}, serves to rotate
f», and the expectation of (D.f,) is a descent direction for the function | f(x) || %
Thus, D! is the key to obtaining consistency when condition (1.2) is not imposed.
The factor B, is needed to obtain asymptotic efficiency, but could be omitted
without sacrificing consistency. Also, Blum’s a, is set equal to an™" here. This
choice of {a,} is-asymptotic efficient for a particular a (see Corollary 3.3), so
more general sequences {a,} are not considered.

The estimator f, is simply the mean of [n”] observations with conditional
expectation, given X;, ---, X,, equal to f(X,). The ith column of D, is con-
structed as follows. Let e(i) be the ith column of the k& X k identity matrix. Let
¢, > 0 be a constant and let Y(n, i, 2) and Y(n, i, 1) each be the mean of m,
observations with conditional expectation equal to f(X, + c,e(i)) and
f(X,, — c,e(i)), respectively. Then, the ith column of D, is

Dfli) = [Y(n’ i’ 2) - Y(n’ i; 1)]/(26‘,,).
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We choose m, and c, so that ¢, — 0 and m;c;? — 0. With this choice of c, and
m,, the bias of D, as an estimate of D(X,) converges to 0, and as mentioned
above the conditional variance of D, also converges to 0.

B, is constructed as follows. Let 5, and 7, be positive sequences such that
7n | 0, 7, T 0, and certain other conditions (see Section 2) are met.

Let
Cn = (n - 1)_1 zp=~11 fDi-
Let B, = C;" if all eigenvalues of C;;' lie between 7, and 7,. Otherwise let B, be
some symmetric matrix whose eigenvalues are all between 7, and 7,.

The procedure of this paper bears some resemblance to the one-dimensional
Venter (1967) procedure. It was shown by Chung (1954) that the univariate
Robbins-Monro procedure is asymptotically optimal when a, = 1/(nf’(9)). Of
course, f’() will typically be unknown. Venter introduced a consistent estimate
b, of /() and showed that asymptotic optimality could be achieved with a, =
1/(n b,).

Our procedure also estimates f’ but at each X,,, not simply at §. Moreover, the
Venter process and the original RM process are consistent under roughly the
same circumstances. Our procedure is an attempt to improve the consistency
properties of Blum’s multivariate RM process. The matrix sequence B, does,
however, play a role for our process which is analogous to that of b, in the Venter
process.

It should be mentioned that Blum’s version of the RM process may be
preferable to the one introduced here under certain circumstances, namely when
either (1.2) or (1.2’) is known to hold and D¥(x)f(x) = 0 for some x # 6. However,
when neither (1.2) nor (1.2’) hold, our procedure, but not necessarily Blum’s, at
least tends to move in a direction decreasing | f(x) || %

We conclude the introduction with a discussion of deterministic methods of
function optimization and root-finding, and their relationships with stochastic
approximation. Much of this material is taken from Fletcher (1980). Another
good, recent reference is Gill, Murray, and Wright (1981). Let r(x) be a function
from R* to R with gradient Vr(x) and Hessian V?r(x). Newton’s method for
minimizing r(x) is the recursion

nr = X = [V (2)]7H(VP (x2)).

Motivation for this method and a discussion of its theoretical properties and
practical limitations can be found in Fletcher (1980). In practice, the need to
supply formulas for the second derivatives of r and to invert [V?r(x,)] can prove
burdensome. Quasi-Newton methods replace [V?r(x,)]™* by a matrix H, such
that H,,, can be calculated from H, by a simple updating formula. This formula
utilizes (%,+; — x.) and (Vr(x,+1) — Vr(x,)) in a clever manner to obtain
information about the inverse Hessian [V2r(x,)]™. Under general conditions
(H, = [V?r(x,)]"!) — 0, although the updating formula does not require explicit
expressions for V2r or matrix inversions. The well-known Davidon-Fletcher-
Powell (DFP) and the Broyden-Fletcher-Goldfarb-Shanno (BFGS) methods are
quasi-Newton procedures which have proved successful in practice.
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Now suppose that
r(x) = Xk fix) = I f ) 117

where f(x) = (fi(x), - -+, f(x))}, x € R*, and n = k. For such “sum of squares”
problems, one can bypass the need for second derivative formulas either by the
general quasi-Newton methods discussed above or by the Gauss-Newton method
which takes advantage of the special structure of r(x). As in (1.5),

Ver(x) = 2 Tk {(VE@)(Vi(x)* + (Vi(x)fi(x)),
and
(1.7) Vir(x) = 2 Ty (Vi) (Vfi(x))*
if f;(x) = 0 near the minimum of r(x). The Gauss- Newton method uses the
approximation (1.7). Note that

Vr(x) = 2 DY(x)f(x)

where Di(x) = (VA(x), ---, Vf.(x)), and the RHS of (1.7) is 2D%(x)D(x). The
Gauss-Newton recursion is
(1.8) Xnt1 = %n = [D*(n)D (x0)] 7D (xn)f (%n).

It is assumed that D(x,) is of rank k. When n = k, D(x) is invertible,
[D¥x)D(x)]*D(x) = D™Y(x), and (1.8) reduces to

(1.9 Xnt1 = X — D7) (%)
Because n = k, there may very well be a solution, x*, to
(1.10) fi(x*)=0, i=1,...,k

Then x* minimizes r(x), and the Gauss-Newton procedure (1.9) is a method of
solving (1.10). In this context the Gauss-Newton procedure is called the Newton-
Raphson method.

The problem studied in this paper is a stochastic version of (1.10), and the
algorithm introduced here could be considered a stochastic version of the Newton-
Raphson technique. However, when developing the algorithm, consistency was
more easily proved by not estimating [DY(X,)D(X,)]™* as (D.D,) ™" where D, is
used to estimate D(X,). Since it is more similar to (1.8) than (1.9), perhaps our
procedure is better viewed as a stochastic Gauss-Newton method.

An early method of function minimization, the method of steepest descent, is,
in our notation,

Xn+1 = Xn — Vr(xn)~

Steepest descent makes no use, explicitly or implicitly, of information about
second derivatives and its convergence can be exceedingly slow. It’s use is no
longer recommended. If we omitted B, in (1.6) then we would have a stochastic
steepest-descent algorithm. Except for a Newton-like stochastic algorithm in
Fabian (1971), multivariate Kiefer-Wolfowitz procedures found in the literature
are analogs of the method of steepest descent.
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An indication of the unsatisfactory nature of Blum’s multivariate RM proce-
dure may be the fact that it apparently has no deterministic analogs.

2. Notation and assumptions. Let R* be k-dimensional Euclidean space.
If A is a k X / matrix, let A” be the i, jth entry of A, and if # = 1let A’ = A™.
Also, let A® be the transpose of A, and let | A |2 = Yk, ¥4, (AY)%

All random variables are defined on the same probability space, and all
relations between random variables are meant to hold with probability one. Let

—¢ denote convergence in law.
We say that a, ~ b, if a,/b, — 1. The “O” and “0” notation has its usual

meaning.
The following assumptions on f will be needed.

Fl1. G)f=(f, ---,f:)"is a twice differentiable function from R* to R*, 0 is
in R* and f() = 0.

(i) D(x) is the derivative of £, i.e., D(x) = (9/dx;)f'(x).

(iii) D(#) is nonsingular.

(iv) Foralle > 0,

inf{| D*@)f(x) Il: e < | fx) | = 7} > 0.

(v) sup{|| D(x) ||: x € R¥} < c0.
(vi) Let H(x) be the Hessian of || f(x) ||?, i.e., HY(x) = (8%/dx;0x;) || f(x) || %
Then supf{ || H(x) |: x € R¥} < oo,

F2. Foralle>0
inf{|| f(x)l:e<||lx—0] =&} >0.

The modified Robbins-Monro algorithm will be described formally by the
following assumptions.

Al. (i) Xn+1 = X, — an™'B,D.f, where a > 0, X, is in R* and B, and D,, are

k X k random matrices.

(ii) ¢, >0, ¢, | 0, m, is an integer, myc2 1 ®, ¥ >0, m,n™ — 0, 9, | 0, an~2

= o(w_y,,n'l), Nn T @,

(2.1) Y nly, = o,
and
2.2) Y nMalc + n7l(ck + cZmt + nT)] < o,

(iii) For any random vector X, let E,.(X) and Var,(X) be respectively the
condition mean and variance of X given Xi, ---, X,. If X is a random matrix,
then Var,(X) is the conditional variance of X arranged as a column vector. Let
. be the c-algebra generated by X;, - - -, X,,. Then B, is %,-; measurable, and
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E.(f.) = f(X,). Define D, = E,(D,). There exists a constant K such that
IDn — D(Xa) | < Kei, || Vara(fu) | < Kn™, and
| Var,(D,) | = Km,'c;? for all n.
Given 4, f, and D, are conditionally independent.

(iv) B, is symmetric and all eigenvalues of B, are between 7, and 7,.

A2, (a>@1+17v)/2

(ii) If X, — 6, then B, — (D*(#)D(0)) ! and n” Var,(f,) — S for some matrix
S, and for all r >0

lim, on™ X EIY| Vill2 2 r i} [ Vill2 =0,
where V.= n7/2(E;f(Xn) - thfn), and ﬁn = En(Dn)~

REMARKS ON THE ASSUMPTIONS. F1 (vi) corresponds to the assumption of
a bounded Hessian which has been used in the study of the Kiefer-Wolfowitz
algorithm, e.g., Fabian (1971, assumption (2.2)). Any substantially weaker con-
dition would probably require that the step sizes, an™'B,D,f,, in Al (i) be
modified to prevent increasingly large oscillations. Otherwise, X,, might have no
finite limit points.

Assumptions F1 (iv) and F2 are also similar to conditions that would be needed
if the KW process were applied to || f(x) |2 See Fabian (1971, assumption (2.2)
equation (1)). They imply that 6 is the only local minimum of || f(x) || %

Given the method described in the introduction of constructing B,, D,,
and f,, assumptions Al (iii), Al (iv) and A2 (ii) are natural. To have
| E.(D,) — D(X,)| = Kc2, it is sufficient that the second derivative of f be
uniformly bounded. Simple conditions sufficient for A2 (ii) can be found using
standard martingale techniques. The assumptions on Var,(f,) and Var,(D,) are
reasonable and will be met if the measurements Y(x) have bounded variances
and if for any constants s;, ---, s, one can take measurements Y(X, + s;),
i=1, ..., q,that are conditionally independent given Xj, - - - , X,.

Condition Al (ii) is satisfied if 0 < a < v, m, = [n°], ¢c» = R, 4, =
(log(n + 1)), and 7, = log(n + 1).

3. Theorems.

THEOREM 3.1. Assume F1 and Al. Then f(X,) — 0. If F2 also holds, then
X, —0.

THEOREM 3.2. Assume F1, F2, ‘Al, and A2. Then
n®I%(X, — ) - N(0, [a®/(2a — 1 — ¥)]D~Y(8)SD4(6))

COROLLARY 3.3. Under F1, F2, Al, and A2, the choice a = (1 + v) is optimal.
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With this choice,
N/A(X, — ) -« N(0, D7(6)S D74(6))

where N, is the total number of observations needed to construct X,.

4. Proofs.

PROOF OF THEOREM 3.1. Recall the definition D, = E,(D,). Define d, =
D, — D,, and ¢, = f, — f(X.,). By F1 (ii), Al (i), and A1 (iii) there is a { in (0, 1)
such that

E.(I f(Xns1) I1? = | f(X,) I = 2an7'f4(X,)D(X,)BoD(X,)f (Xn)
(4.1) —2an"'f(X,){D, — D(X,)}B,D"(X,)f(X,)
+ a’n’E,{(B,D4f,) ' H(X, — {an™'B,D}f,)(B.D3f,)}.
By F1 (v) and Al (iii),
(4.2) | f{(Xn){Dn — D(X,)}BnDYX0)f (X2) | = O f(Xa) | *Nac?)
where )\, is the largest eigenvalue of B,. By F1 (vi)
(4.3) E,[(B.D:f,)'H(X, — tan™'B,D}f,)(BuD4fa)] = OMLE,| Difull®).
By A1 (iii)
E,| Difall®
= | DYX,)f (X)) I? + FA(Xu){Dn D% — D(X,) D (X (X)
+ f(Xn)(Endnd’)f(Xn) + Enler(DaD} + dnd?) el
= | DX (Xa) 1% + Of(ch + cz?m) 1 f(Xa) 12 + n 7).
By (2.2), (4.1) to (4.4), and A1 (iv),
E, (| {(Xn+1) 1®)
= [£(X) 1%L + 2an"ack + O(n™n3%(ch + ca’mz'))}
- — (2an7'g, — O(77n7™) | D(XR)f(X) I + O(i7g™™?)
= GG 1%L + ) — (2an~,)(1 + 0(1) | DX X I + v

(4.4)

where ¥ p, < and ¥ », < . Therefore, by Theorem 1 of Robbins and Siegmund
(1971), lim, || f(X,,) || exists and is finite and

it 27l DX (X0) 12 < o0,
Then by F1 (iv) || f(X,) |2 — 0, and therefore X, — 6 if F2 holds. I

PROOF OF THEOREM 3.2. By Theorem 3.1 and A2 (ii), B, — (D()D(6))",
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A.=0(1), and D(X,) = D(6). Foreachy>0"
fA(Xa)D(X0)B.DU(X,)f(Xn) = (1 = ) | f(Xa) |12
for all sufficiently large n. Therefore, by (4.1) to (4.4), for each n >0
E (1 f(Xord) I? = 1 F(X) 11 = 22(1 — m)n™" + O(cin™' + n7%)} + O(n™>™)
= 1f(X) I%(1 — 2a(1 — 29)n™") + O(n™>7™)

for all n sufficiently large. Note that (n + 1)'** = n'** + n*(1 + ¢) + O(n*%). For
each 0 < ¢ <y and for each » > 0 and for all large n,

(n+ D*E, (I f(Xns1) I1* =
(1 - [2a(1 = 1) = (1 + )] ™[ f(X) |2 + 077079,

Therefore, by A2 (i) and another application of Theorem 1 of Robbins and
Siegmund (1971), lim,_,.n'* || f(X,) || 2 exists and is finite for all ¢ < v, whence

(4.5) N f(Xa) 12— 0

for all e > v.
There exists a matrix D} which is & -measurable such that f(X,) = D} X,

and D} — D(0). We can now apply Theorem 2.2 of Fabian (1968), which also
appears in Ruppert (1981). Fabian’s theorem is applied with T', = aB,D.D¥,
F'=al,a=18= (1 + 7)’ U, = Xn’ ¢, = aBm ¢ = aD_l(o)D_t(a)y V. =
n"*(D4f(X,) — Difa), To =T =0, P =1, A = al, and § = lim, . E,(V,V}).
Note that 8 = 8, and (A® + AW — 8,) = (2a — 1 — v) for all i and j. We need

to calculate ¥ more explicitly.
If Vi, Vo, Wy, and W, are random variables possessing finite second moments

such that (Vi, V) is independent of (W;, W), then

Cov(V Wy, VoW,) = Cov(Vi, Vo)Cov(W,, Wy) + Cov(Vy, Vo )(EW1)(EW>)

+ Cov(W,, Wo)(EV,)(EV,).
Applying this fact coordinatewise to D%f, and using A1 (ii) and A1 (iii), one can
show that
(4.6) | Var,(D:fa) — Dh(Vara(f.))Dall = L{|| f(X.) | %cz®mn + n77c72my}
for some constant L. Then by A2 (ii) and (4.5)
T = lim,.n"Var,(D.f.) = D%0)S D(6).

Finally, to use Fabian’s theorem one must verify that

(4.7 I1E.VaVe— EI<C

for a positive constant C. This could be done using (4.6) if || f(X,,) || converged to
0 uniformly. By Egorov’s Theorem, for each ¢ > 0, || f(X,) || — 0 uniformly on a
set of probability at least (1 — ¢). On the complementary set we may change the
definition of V, so that (4.7) holds. Since the resulting process, say X}, agrees
with X, on a set of probability at least (1 — ¢) and since ¢ is an arbitrary positive
number, we are done. [0
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PrROOF OF COROLLARY 3.3. It is trivial to show that a?/(2a — 1 — v) is
minimized in a, subject to the constraint that a > (1 + v)/2, by a = (1 + v). The
corollary then follows because N, = Y%, {[i"] + mi} ~ X% [("] ~n'*/(1 + v).0

5. Asymptotic efficiency. We will not treat the subject of efficiency in
great detail, but we will study a simple example. Suppose D is nonsingular and
known, f(x) = D(x — ), and Var Y(x) = S for all x. If Y(x) is normally
distributed, then x — D7'Y(x) ~ N(, D7'SD7Y. Thus, if Z,, ---,
Zy, is any sequence of random variables, then the maximum likelihood estimate
of 6 based on Y(Z,), ---, Y(Zy,) is

§ = N;' XM [Z; — DT'Y(Z)].

Also § ~ N(, N;*D™'S D). Therefore, 6 and our estimator, X, have the same

asymptotic distributions.

When deriving the asymptotic distribution of X,,, it is crucial that Var,(D,)
— 0 so that Var,(D%f,) = D*@)(Var,(f,))D(6). Then because Var,(D.f,) is
determined by Var,(f,), full efficiency is obtained by having m,n™ — 0, so that
the ratio of the number of observations used to construct D, to the number used
to construct f, converges to 0.
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