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1. INTRODUCTION

A relevant empirical literature investigates the presence of stochastic trends
among financial data. Most of the literature is therefore concentrated on the
possibility of common stochastic trends among two, or more, financial vari-
ables, motivating a multivariate analysis in terms of cointegration. Whereas
many empirical studies have used the theory of cointegration, few have
attempted to provide a theoretical explanation for the existence of cointegra-
tion between financial time series. Examples of financial justifications for the
presence of cointegration are given by the purchasing power parity, see Corbae
and Ouliaris (1988), or the present value theory of stock prices, see Campbell and
Shiller (1987). Much attention in the empirical finance literature has been
devoted to the possibility that two or more assets share the same stochastic
trend. An interesting example is the work of Brenner and Kroner (1995), who
discuss the intuition as to why a no-arbitrage pricing formula leads to a cointe-
grated system. A no-arbitrage formula builds a portfolio of assets that replicates
a base asset. This suggests that the portfolio must share the same long-run time
series properties as the base asset it attempts to replicate. The no-arbitrage
pricing formula not only leads to a cointegrated system of assets, but also pro-
vides the combinations of the assets required to establish cointegration, see
Chow, McAleer, and Sequeira (2000). A stock index and its futures price will be
cointegrated if the cost of carry, or the difference between the dividend yield
and the interest rate, is stationary. A number of papers have examined the
dynamic link between the futures and the cash indexes using cointegrated vec-
tor autoregressions. Among others, Dwyer, Locke, and Yu (1996) use a cost of
carry model with nonzero transaction costs to motivate the estimation of a non-
linear dynamic relationship between the S&P 500 futures and cash indexes.
They estimate a threshold cointegration model, concluding that arbitrage is
associated with a rapid convergence of the basis to the cost of carry. More
recently, Pizzi, Economopoulos, and O’Neil (1998) study, with intradaily data,
the existence of price discovery and market efficiency in terms of a cointegra-
tion relation between spot and futures markets, exploiting their long-run equi-
librium relationship represented by the no-arbitrage constraints.

In this study, we show that the no-arbitrage relation between futures and
spot prices implies an analogous relation between futures and spot daily
ranges, defined as the difference between the daily high and low log-prices,
independently of the cost of carry that is negligible. Thus, a simple no-arbitrage
rule on the spot and futures prices implies an equilibrium relationship among
volatility estimates. At the best of our knowledge, there are no papers exploiting
the information contained in the futures volatilities to obtain better forecasts
of the spot volatility. In particular, the no-arbitrage condition is used here to
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derive a long-run relationship between volatility measures and to justify the use
of a fractional VECM to model their relationship. The analysis of daily S&P
500 spot and futures log-ranges show that they are both characterized by com-
mon level shifts and, when the latter are removed, are fractionally integrated.'
Moreover, we show that the series are driven by a common stochastic trend,
which implies that they are fractionally cointegrated. Thus, the joint dynamics
of futures and spot ranges is studied in terms of fractional cointegration, see
Chen and Hurvich (2009) for a review on this topic. Since a key characteristic
of two cointegrated variables is that their paths depend on the extent of devia-
tion from the long-run equilibrium, the dynamics of futures and spot log-
ranges is modeled via the fractional cointegration system outlined in Johansen
(2008), that is a generalization of the VECM to fractional processes. In the
fractional VECM (FVECM hereafter) the integration orders of the endogenous
variables and of the error correction terms are allowed to assume non-integer
values. The main purpose of this study is to show the importance of exploiting
the no-arbitrage equilibrium between futures and spot log-ranges to obtain bet-
ter forecasts of the spot log-ranges. An out-of-sample forecasting comparison
shows the superior forecasting ability of FVECM, which includes an error cor-
rection term based on the no-arbitrage restriction, with respect to models which
do not account for the long-run equilibrium. This evidence clearly confirms that
considering the no-arbitrage condition produces superior long-horizon fore-
casts.

The study is organized as follows. Section 1 introduces the equilibrium
relation between spot and futures ranges induced by the no-arbitrage con-
straints. Section 2 presents a brief description of the data and the analysis of
the long-memory property of range-based volatility estimator, assessing the
equality of the integration orders between spot and futures volatility and show-
ing that the two series have to be considered fractionally cointegrated. Given
the evidence provided in Section 2, Section 3 introduces the FVECM. Section 4
reports the estimation results. Section 5 provides evidence in favor of the
FVECM in terms of forecasting ability and Section 6 concludes.

2. NO-ARBITRAGE RELATION BETWEEN RANGES

The no-arbitrage assumption implies that, in a frictionless market, the spot and
the futures prices, under risk neutral probability, are related by

Ft+k|t =S, ek (1)

!See Beran (1994) and Palma (2007) for an introduction to fractional processes.
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where r,_, is the return of a risk-free asset that expires in period t + k and
e* i is referred to as the cost of carry premium.? When the daily volatilities are
measured by daily ranges, as in Parkinson (1980), Garman and Klass (1980),
Rogers and Satchell (1991), Wiggins (1992), Alizadeh, Brandt, and Diebold
(2002), Shou and Zhang (2006), and Jacob and Vipul (2008), the no-arbitrage
condition in (1) implies a similar relationship between spot and futures daily
ranges. Daily range is defined as the difference between the highest and the
lowest log-price recorded in a given day

Rp=maxf —minf, t—-1<7=t
T T (2)
R, = maxs, — mins, t—-1<71=t
where f_ = log(F,) and s, = log(S,) are the natural logarithm of futures and spot
price, respectively. As noted by Andersen and Bollerslev (1998), the accuracy of
the high-low estimator is close to that provided by the realized volatility estima-
tor based on 2 or 3 h returns. Alizadeh et al. (2002) and Shou and Zhang (2006)
shown that the range-based estimators are robust to the presence of
microstructure noise.> Combining Equations (1) and (2), the no-arbitrage
equilibrium relationship between the forward and spot ranges* is written as

Rt,F = Rt,s + Moy (3)
where u, is equal to

we=r. = (4)

max min

is such that
= min,s,. r, and r, indicate the risk-free rate in correspondence of the

™7 min

fort —1 <7 =t, where 7, is such thats, = max.s,, and 7

Sy
highest and lowest log-price in a given day.

Under the hypotheses that the log-price evolves as a random walk in con-
tinuous time and that the volatility dynamics is a piecewise-constant process,’

an unbiased estimator of daily volatility, o, is given by

o=

O-t,s = )\5 * Rt,s (5)

%In order to simplify the notation, the reference to the constant time to maturity k is dropped. Therefore, F,
will indicate the futures contract opened in t for the period t + k, and r, is the risk-free return for the period
(t, t + k).

3See also Rossi and Spazzini (2009) for an analysis of the finite-sample properties of range-based estimators.
*Brandt and Diebold (2006) also make use of no-arbitrage restrictions on daily ranges. However, those
restrictions are used to derive closed form expression for time varying return covariances and correlations.
>See Alizadeh et al. (2002). This means that the volatility is constant on a given day, but it is stochastic across
days.

Journal of Futures Markets ~ DOI: 10.1002/fut



A No-Arbitrage Fractional Cointegration Model

where A, = log(2) is a scale factor that is obtained from the second moment of
a standard Brownian motion, see Parkinson (1980). Therefore, Equation (3) is
recasted as

O-t,F:Ut,S+§ty t=1,...,T (6)

with ¢, = Ay, In practice, due to the presence of transaction costs, market
imperfections, and measurement errors, an additional error term, m, with
E(n,) = 0, should be included on the right-hand side of (6). A sufficient condi-
tion for ¢, = 0 is that the risk-free rate is constant on a given day. This does not
represent a strong restriction, since the intraday variation of the risk-free rate
can be considered negligible with respect to the variations in the prices.® The
relation (6) between o, - and o, ¢ represents an equilibrium condition, on a
daily basis, which imposes constraints on the joint dynamics of the two series.
Thus, the dynamics of o, g and o, ;. are restricted by the no-arbitrage relation,
and are not expected to drift too far apart.

From a dynamic perspective, a well-documented stylized fact is that
volatility of financial returns is characterized by long-range dependence, or
long memory, see, for instance, Dacorogna, Muller, Nagler, Olsen, and Pictet
(1993), Ding, Granger, and Engle (1993), Baillie, Bollerslev, and Mikkelsen
(1996), Bollerslev and Mikkelsen (1996), and Granger and Ding (1996). More
recently Andersen, Bollerslev, Diebold, and Ebens (2001), Andersen, Bollersley,
Diebold, and Lays (2003) report evidence of long memory in the ex post volatil-
ity measures, such as realized volatility. We provide evidence that daily ranges
are long-range dependent and can be best approximated by a fractionally inte-
grated process, or I(d), with 0 <d < 1. Therefore, given the equilibrium con-
dition in (6), we allow for the possibility that they are fractionally cointegrated,
when modeling the long-run relationship between spot and futures ranges.
Next section discusses the concept of fractional cointegration and the semi-
parametric techniques used to estimate the cointegration rank.

3. LEVEL SHIFTS AND FRACTIONAL
COINTEGRATION ANALYSIS

The data used in this study consist of the daily high and low of spot and futures
prices. The spot is the S&P500 index and the futures is the three months con-
tract on it. The sample covers the period from November 27, 1998 to August
25, 2008, for a total of 2,450 trading days. The time series of daily ranges are
then constructed according to (2) and (5). Ranges are transformed in logs.

®More precisely, the variation r, — r, is considered null, namely the risk-free rate is assumed to be

constant on daily intervals.
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FIGURE 1

Autocorrelogram (ACF) of log o, - and log 0, 5. Dotted lines are the Bartlett confidence intervals.
Detrended indicates the residuals from Bai and Perron (2003) procedure to detect level shifts.

Given the length of the period under analysis, it seems natural to analyze the
presence of structural breaks in the series. In fact, as pointed out by Granger
and Hyung (2004), the long-memory property of volatility could be induced
spuriously by the presence of level shifts. The slow decay of the autocorrelation
functions of the futures and spot log-ranges, displayed in Figure 1(a) and 1(b),
is clearly supportive of the long-range dependence hypothesis. As noted among
others by Granger and Hyung (2004) and Perron and Qu (2010), when a short-
memory process is contaminated by a level shift, then the autocovariance
decays slowly and, at long lags, it is dominated by the cumulated shift compo-
nent, so that it converges to a constant.

An identification problem arises since a similar long-run dependence char-
acterizes the truly long-memory processes. In particular, long memory is
defined in terms of decay rates of long-lag autocorrelations, or in the frequency
domain in terms of rates of explosion of low-frequency spectra, see Beran
(1994). The spectral density f(A) has a pole and behaves like a constant c; times
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TABLE |
Perron and Qu (2010) Test of Truly Long Memory

Raw Series Detrended Series
¢ Log Ut,S Log Ut,l—‘ Log Ut,S Log a-t,F
1.0 0.3050 0.0858 0.0631 0.1572
1.1 0.1292 0.0384 0.2694 0.3483
1.2 0.0375 0.0036 0.6753 0.9860
1.3 0.0693 0.0066 0.6329 0.9924
1.4 0.1596 0.0174 0.4123 0.7862
1.5 0.0764 0.0080 0.6853 0.9992
1.6 0.0147 0.0020 0.8121 0.9729
1.7 0.0090 0.0019 0.6381 0.6648
1.8 0.0008 0.0006 0.3442 0.6105
1.9 0.0007 0.0002 0.2784 0.4297
2.0 0.0005 0.0003 0.2171 0.2904

Note. The term Raw Series indicates the original daily log-range series, whereas Detrended Series indicates the residuals from Bai
and Perron (2003) procedure to detect level shifts. Table reports the p-values of the test statistic in (7). As in Perron and Qu (2010),
the bandwidth parameters are chosen as a = 0.5, b = 4/5, and ¢, = 1, while ¢, € [1, 2].

A% at the origin. If d € (0, 1/2) the process is stationary and presents long
memory; instead, if d € (—1/2, 0) the process is antipersistent, i.e. it is a short-
memory process. Perron and Qu (2010) propose a test to verify the null hypoth-
esis that the series at hand is a truly long-memory process. Under the null
hypothesis, the test statistic is

24c¢,[T"] N d
S = dy,) NGO, 7
where oAla,cl and oAlbyc2 are obtained with the Geweke and Porter-Hudak (1984)
estimator with bandwidth m, = ¢, [T"] and m, = ¢, [T"], where [x] denotes the
largest integer less than or equal to x. Perron and Qu (2010) test computed on
the raw series, see Table I, rejects the null of truly long memory for both series
and for almost all choices of the bandwidth parameter, ¢, € [1, 2].

Therefore, structural breaks in the log-ranges are identified following the
procedure outlined in Bai and Perron (2003).” Not surprisingly, the breakpoints
are found to occur on the same dates. From Figures 1(c) and 1(d) clearly
emerges the reduction in the persistence, obtained by removing the breaks
from the original series. However, the detrended series display true long mem-
ory, as shown by the Perron and Qu (2010) test (Table I) which cannot reject
the null hypothesis. Our purpose, in this section, is to show that fractional

"In the rest of the paper, the residuals from Bai and Perron (2003) procedure are referred as detrended series.
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cointegration between spot and futures log-ranges is not induced spuriously by
the presence of common shifts but it is due to their common stochastic trend.®

Given the equilibrium relation stated in Equation (6), the possibility of
fractional cointegration is tested on both the raw series and the detrended
series. Robinson and Yajima (2002) discuss a semi-parametric procedure for
determining the cointegration rank, focusing on stationary series. Nielsen and
Shimotsu (2007) extend the analysis of Robinson and Yajima (2002), in order
to consider cointegration for both stationary and non-stationary variables. In
particular, they apply the exact local Whittle estimator of Shimotsu and
Phillips (2005) in a multivariate setup, to test the equality of the fractional
integration orders, and to estimate the fractional cointegrating rank. In the
bivariate case, which is relevant here, the equality of the fractional integration
orders is a necessary condition to have non-trivial fractional cointegration.

Since the presence or absence of cointegration is not known when the
fractional integration orders are estimated, Nielsen and Shimotsu (2007) pro-
pose, as in Robinson and Yajima (2002), a test statistic for the equality of inte-
gration orders that is informative in both circumstances, in the bivariate case
this takes the form

T, = md<521><s %f)*l(é O G)D'S + h(T>2>_l(s£l) (8)

where © denotes the Hadamard product, S = [1, —1]’, h(T) = log(T) *for k> 0,
D = diag (G,,, G,,), while

— 2 Re(Z (A (9)
d] 1
is a consistent estimator of G, the spectral density matrix at the origin, that is sin-
gular under fractional cointegration (see Nielsen and Shimotsu, 2007 for more
details). Z(A)) is the co-periodogram at frequency A; = 2mj/T of the fractionally
differenced series, X = (A% log T, s A% log o.5), With A? = (1 - L) , and
Re(-)denotes the real part of the number.” The vector of estimates d= (dp, d ) i

obtained with the univariate exact local Whittle estimator, that makes no
assumptions on the presence of cointegration. In particular, each element of the
parameter vector d is estimated by minimizing the objective function

my

1
0, d,G;) = — E log(GA; 2 + Elj (10)
d i=1 ..

un

8In a recent paper, Christensen and Santucci de Magistris (2010) note that the presence of a common level
shifts process among two or more I(0) series induces spurious fractional cointegration.

“The test statistic in (8) reduces in this case to 2m,(d, — d,) (1 — p1,) + 2h(T)?)™!, where p,, denotes the
correlation between the fractionally differenced series.
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TABLE 1l
Fractional Integration Estimation

my T%7 =235 T%¢ =108 T% =49
Raw Series
de 0.4797 0.5715 0.5188
(0.0639) (0.0943) (0.1400)
dg 0.4909 0.5636 0.5375
R (0.0639) (0.0943) (0.1400)
To 0.1653 0.0452 0.1247
Detrended Series
dr 0.4147 0.4851 0.2715
(0.0639) (0.0943) (0.1400)
dg 0.4313 0.4753 0.3101
) (0.0639) (0.0943) (0.1400)
To 0.3600 0.0690 0.5300

Note. Exact local Whittle estimates (standard error in parenthesis). The fo test statistic is calculated with h(T) = log (T).

which is concentrated with respect to the diagonal element of the (2 X 2) matrix G,
under the hypothesis that the spectral density of X satisfies fy(A) ~ G as A — 0™.
If the variables are not cointegrated, that is the cointegration rank r is zero,
Ty — x2, while if r = 1, T, — 0. A significantly large value of T}, with respect to
X3, can be taken as an evidence against the equality of the integration orders.
The cointegrating rank r is estimated by calculating the eigenvalues of the
matrix G, which is obtained with a new bandwidth parameter m,. Given d,
computed with m, as bandwidth, the matrix G is then estimated, using m, peri-
odogram ordinates in (9), such that m,/m; — 0. Let §, be the ith eigenvalue of
G, it is possible to apply a model selection procedure to determine r.'” In the
bivariate case,
# = arg min L(u) (11)
u=0,1

where

2—u

L) =v(T)2 —u) — 231 (12)
i1
for some v(T) > 0 such that v(T) + l/mi/zv(T) — 0. Table I reports the exact
Whittle estimates for the raw and detrended series.
The estimates of d, in Table II, based on the raw data, are larger than 1/2
when m, is small. Differently, the estimates of the long-memory parameter of the

"°Following Nielsen and Shimotsu (2007) the eigenvalues are calculated using the estimated correlation
matrix P = D72GD™'/2,
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TABLE 11I
Fractional Cointegration Estimation

Raw Series Detrended Series
o(T) g0 m703 mr0 m70H m70¥ —
m, =235, m, =109
L(0) ~1.7956 ~1.6607 ~1.4368 ~1.7956 ~1.6607 ~1.4368
L(1) ~1.8457 ~1.7762 ~1.6682 ~1.8452 ~1.7778 ~1.6688
f 1 1 1 1 1 1
my = 108, m, = 50
L(0) ~1.7099 ~1.5545 ~1.3158 ~1.7099 ~1.4555 ~1.3158
L(1) ~1.8326 ~1.7549 ~1.6355 —~1.8321 ~1.7523 ~1.6350
f 1 1 1 1 1 1
m, =49, m, =22
L(0) —1.5883 ~1.4118 ~1.1655 —1.5853 —1.4118 ~1.1655
L(1) —1.7836 —1.6968 —-1.5737 —1.7826 —1.6959 —-1.5727

4 1 1 1 1 1 1

Note. The table reports the value of the function L(u) for different choices of m, and m,. f is the estimated cointegrating rank.

detrended series fall into the stationarity region for all bandwidths, but the
degree of long memory is significantly greater than zero. The T}, statistic takes
values close to 0 in all cases. The equality of the fractional integration orders is
consistent with the hypothesis of fractional cointegration and it is robust to the
choices of the bandwidth. Furthermore, the analysis of the cointegration rank,
in Table III, with three different values for m; and m,, confirms the presence of
cointegration, since 7 results to be equal to 1 in all cases. Interestingly, the
series are fractionally cointegrated even if the presence of structural breaks is
removed. As expected, the result of Nielsen and Shimotsu (2007) test confirms
that spot and futures log-ranges have the same fractional integration order and
are fractionally cointegrated.

4. THE MODEL

Given the analysis in the previous section, the joint dynamics of the spot and
futures log-ranges is modeled with the FVECM of Johansen (2008), which
accounts for the equilibrium relationship induced by the no-arbitrage condi-
tion. Contrary to Granger (1986) model, the Johansen (2008) model allows for
a Granger representation of cofractional systems in terms of the generalized lag
operator L, = 1 — (1 — L)

K
AX, = (1 = A" (A Pap’X,) + D TALX, + &, (13)

ji=1
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where X, = (log o, f, log 0, ), and I'; are the short-run matrices of parameters.
g, is an i.i.d. vector sequence with mean 0 and positive-definite covariance
matrix (). The (2 X 1) vector « contains the adjustment parameters, while S is
the (2 X 1) cointegrating (cofractional) vector, such that B'X, is fractional of
order d — b. The parameter b represents the cofractional order, which is the
fractional order of the common stochastic trend. A similar model, with
the addition of regime switches, has been used by Haldrup, Nielson, and Nielson
(2010) to model the congestions on the electricity market. This setup slightly
differs from the bivariate model proposed by Duecker and Startz (1998), which
is based on a triangular representation of a fractional cointegrated system. This
model can be estimated following the method outlined in Sowell (1989, 1992).
The model in (13) presents several advantages over the traditional cointegra-
tion regression and cointegrated bivariate ARFIMA:

¢ The integration order of the endogenous variables and the fractional cointe-
gration order are defined by two parameters d and b, with 0, b =< d, that are
jointly estimated.

¢ As outlined in Johansen (2008), the FVECM constitutes a generalization of
the well-known triangular model, since in the bivariate case, the assumption
B'a=—1and a = [1, 0], implicit in the triangular model, can be relaxed.

¢ The vector of loading parameters o measures the speed of adjustment to the
long-run equilibrium given a short-run departure from that, allowing us to draw
conclusions on the relative efficiency of the futures market.

In the FVECM model, the element a;; of the matrix a measures the single-
period response of variable i to the shock to the jth equilibrium relation. In our
analysis, where r = 1, the parameter «,, abbreviated with «,, should be nega-
tive to guarantee the convergence toward the unique long-run equilibrium
implied by the no-arbitrage assumption. The vector « has a clear interpretation
as the short-term adjustment coefficient and represents the proportion by
which the long-run disequilibrium in the spot (futures) log-ranges is being cor-
rected in each period.

5. RESULTS

As pointed out by Lasak (2008) the estimation procedure of the FVECM is fur-
ther complicated with respect to the standard VECM (where d and b are
restricted to be equal to 1), since the unknown parameters d and b need to be
estimated. A solution to this problem, under the assumption d = 1, is provided
by Lasak (2008) that suggests to concentrate the likelihood function with
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12 Rossi and Santucci de Magistris
TABLE IV
Model Selection Criteria for Different Lag Values p
14 0 1 2 3 4 5
HQ —5.3208 —5.3496" —5.3492 —5.3442 —5.3459 —5.3428
BIC —5.3208 —5.3436" —5.3371 —5.3261 —5.3217 —5.3126
Note. HQis the Hannan and Quinn information criterion, see Hannan and Quinn (1979). BIC is the Bayesian (Schwarz) information

criterion, see Schwarz (1978).

respect to b. In this case, the model in (13) is estimated via a likelihood-based
method analogous to that developed by Johansen (1991) for the standard
VECM, where the initial step consists of maximizing the profile likelihood with
respect to b. More recently, Johansen and Nielsen (2010, 2011) developed a
joint estimation procedure for d and b, that is also based on a profile likelihood
method, but, differently from Lasak (2008), d is not restricted to be 1. The like-
lihood function is supposed to be Gaussian even though the true distribution of
the error is not normal. Thus, we are in quasi-maximum likelihood framework.
Johansen and Nielsen (2011) prove the existence and consistency of the maxi-
mum likelihood estimator (MLE) when 0 < b = d. When b < 1/2, i.e. there is
weak fractional cointegration using the terminology of Hualde and Robinson
(2010), Johansen and Nielsen (2011) show that the asymptotic distribution of
the ML estimates of model parameters is Gaussian. Appendix A reports the
results of a Monte Carlo simulation that shows the finite-sample performances
of the MLE in the case of weak fractional cointegration. The simulation con-
firms the asymptotic results of Johansen and Nielsen (2011), which is the
convergence rate of the MLE of 8 depends only on true value of b.

Since the number of lags included plays an important role in this context,
we first implement two information-based criteria for the model selection. The
Hannan and Quinn and Schwarz information criteria, in Table 1V, are both
minimized for p = 1, so that we estimate the following model:

{Ad log(ruﬂl B [Ad_b—Ad 0 Hal}[l B][logatf}
A logo,g 0 AP — Al a, log o, ¢

n [711 ’)’12][1 — AP 0 ][Ad log a-t,F:| + |:8t,F:|
Y21 Va2 0 1 — A"J[ A log O;s &S

The results of the ML estimation procedure, with the asymptotic standard

(14)

errors and the bootstrapped confidence intervals, are reported in Table V. The
bootstrapped distribution has been generated with 1,000 replications obtained
with wild bootstrap, that is robust to possible heteroskedastic and autocorrelat-
ed error terms, see Davidson (2002) and Cavaliere, Rahbek, and Taylor (2009).

Journal of Futures Markets ~ DOI: 10.1002/fut



A No-Arbitrage Fractional Cointegration Model

13

TABLE V
Estimation Results

Estimate SE t Bootstrap CI
d 0.4737 0.0287 6.459 (0.4344, 0.5375)
b 0.4737 0.0733 16.512 (0.2961, 0.5721)
B —1.0009 0.0205 —48.807 (—1.0449, —0.9570)
ay —0.2265 0.1738 —1.303 (—0.5106, 0.0505)
a, 0.6813 0.2776 2.454 (0.3756, 0.9640)
Y11 —0.4769 0.1822 —2.617 (—0.7639, —0.2034)
Y12 —0.2173 0.2334 -1.113 (—0.4794, 0.0734)
Yoq ~0.2598 0.1742 —1.248 (~0.5345, 0.0389)
Voo —0.5035 0.1686 —2.987 (—0.7795, —0.2283)
QH(5) 0.879 Q4(5) 0.883
QH(30) 0.051 Q4(30) 0.535
QH(50) 0.061 Q4(50) 0.249
JBe 0.210 JBg 0.787
LM, 0.049 LMg 0.416

Note. Table reports the estimated parameters of model in (14), the asymptotic standard errors (see Johansen and Nielsen, 2011),
the t-statistic, and the 90% wild bootstrap confidence interval. Table also reports the p-values of Box—Pierce test (Qrand Q) for lags
5, 30, and 50; the p-values of Jarque—Bera test of normality for spot and futures log-ranges (JBr and JBg), and the P-values of uni-
variate ARCH tests with 5 lags (LM and LMy).

The Monte Carlo results reported in Appendix A show that for a sample size
larger than 2,000 observations and d = b, the finite-sample distribution of the
ML estimates are very close to the limiting Gaussian distribution. The univari-
ate analysis of the FVECM residuals indicates that the Gaussian assumption
cannot be rejected by the standard Jarque—Bera test, even though we observe
an ARCH effect in the futures log-range residuals. The Box—Pierce test signals
a surviving autocorrelation in the residuals of the futures log-range equation.
The value implied by the no-arbitrage condition, i.e. B8 = —1, is contained in
the 90% confidence interval. This confirms the role of the no-arbitrage condi-
tion on the joint dynamics of the futures and the spot log-range, suggesting a
one-to-one co-movement in the long run. Moreover, the estimates of d and b
are close to the values obtained in the semi-parametric analysis in Section 2. In
particular, the fractional and cofractional integration orders are equal, d = b,
so that a common stochastic trend, with long memory, is responsible for the
long-run dependence of spot and futures log-ranges. From a visual inspection
of Figure 2, it clearly appears that the ECM, log o, . + Blog 0, s, does not have
any residual long-memory component, as confirmed by the exact local Whittle
estimate which is equal to 0.0007.

It is also interesting to note that, during the financial crisis in 2001-2002,
the long-run relationship is subject to a higher variability which can be caused
by an increase in the uncertainty after September 11, 2001.
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ECM Term
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FIGURE 2
Error correction term. Figure plots the error correction term given by log(o!) + Blog(c5).

An interesting feature that emerges from the estimates is that the spot log-
range converges faster futures to than the equilibrium, since &, is greater than &,
in absolute value. Moreover, «a, cannot be considered as statistically different
from zero. Concluding, there are no changes in the futures log-range caused by
shocks in the cointegration relation. All the corrections to the equilibrium are
made by adjustments in the spot log-ranges. This means that futures volatility
leads spot volatility to the equilibrium, implicitly confirming the Cox (1976)’s
hypothesis on the efficiency of the futures market in processing the new infor-
mation. In fact, according to the expectation hypothesis, the futures price, under
risk neutrality, is the expected value of the future spot price, so that it is reason-
able to think of futures log-ranges as the leading factor of the entire system.

6. FORECASTS

In order to evaluate the accuracy of the out-of-sample forecasts obtained with
the FVECM, these are compared with the forecasts provided by alternative
model specifications. In particular, six competing models are considered
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¢ Random walk model (RW).
® Vector Autoregression model with 4 lags (VAR)."!

¢ Univariate HAR model (UHAR) proposed by Corsi (2009), where the
observed log-range, for spot and futures, is regressed on its own daily, weekly,
and monthly past values

log o, =0+ B log o ;T BW, it BM, .y +u, i=FS

5 22
where W,_,; = é2j=l logo,_;;and M,_,; = = Ejzllog T
® Bivariate HAR (BHAR) where past values of the futures (spot) log-range are
included in the equation of the spot (futures) log-range:

log O p = w + B, log o, p T Blzwtfl,F + BISMtfl,F + By, log Oi-18
+ BISWt—I,S + Bl()Ml—l,S + U p

logo-t,S = w, T By O, 5T BZZWt—l,F + BZSMt—l,F + B,y log 0,158
+ IBZSWt—l,S + BZ6M1—1,S toug.

The system’s parameters are estimated by least squares.
¢ Fractional Filter model (FF) that accounts for the long memory in the data

Af log o,=u, i=FS

where u, ~ i.i.d N(0, v*).
e FIVAR(1, d) model (FIVAR):

(P Vi) P ol R
0 1 b ba 0 A% logo't,s Us .
The FIVAR(1, d) can be considered a VAR(1) calculated on the fractionally

differenced series.

The forecasts are based on parameter estimates from rolling samples with
a fixed sample size of 1,350 days. For every date t = 1,350, the parameters of
each specification are estimated with 1,350 observations including date ¢.
Then, we calculate the forecasts of the average futures and spot log-ranges over
the periodst + 1, ..., ¢ + s, where s is equal to 1, 5, and 22, for daily, weekly,
and monthly horizons, respectively. The presence of overlapping observations is
avoided, meaning that we have 50 monthly, 220 weekly, and 1,100 daily fore-
casts. In this way, both short-term and long-term forecasts are considered

""The number of lags is chosen according to the Schwartz information criterion.
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TABLE VI
Forecasts Results
MSE RMSE MAE
s 1 5 22 1 5 22 1 5 22
(a) Futures
RW 0.271 0.068 0.070 0.521 0.261 0.295 0.421 0.204 0.236
VAR 0.178 0.067 0.078 0.423 0.260 0.279 0.341 0.206 0.213
UHAR 0.174 0.065 0.059 0.418 0.254 0.244 0.339 0.201 0.183
BHAR 0.176 0.065 0.060 0.419 0.255 0.245 0.340 0.202 0.183
FF 0.187 0.068 0.069 0.432 0.261 0.262 0.350 0.211 0.199
FIVAR 0.187 0.068 0.069 0.433 0.260 0.263 0.350 0.210 0.200
FVECM 0.174 0.045 0.013 0.417 0.211 0.113 0.338 0.167 0.086
(b) Spot
RW 0.307 0.083 0.066 0.554 0.288 0.257 0.450 0.231 0.199
VAR 0.184 0.085 0.057 0.429 0.291 0.238 0.345 0.226 0.188
UHAR 0.182 0.061 0.056 0.426 0.247 0.237 0.344 0.198 0.175
BHAR 0.181 0.062 0.054 0.425 0.248 0.233 0.344 0.199 0.175
FF 0.209 0.068 0.069 0.457 0.261 0.262 0.369 0.208 0.204
FIVAR 0.204 0.068 0.068 0.452 0.261 0.261 0.365 0.207 0.204
FVECM 0.186 0.044 0.013 0.430 0.210 0.112 0.348 0.160 0.084

Note. Forecasts of average futures (Panel (a)) and spot (Panel (b)) log-ranges for different time horizons (s = {1, 5, 22}). Table
reports the MSE, the RMSE, and the MAE of alternative models. In each column, figures in bold represent the minima.

(for an analogous analysis see Brandt and Jones, 2006). The actual average is

defined as
- 1S .
t+1,t+s = ;Elogaﬁr,i’ 1= Fy Sy S = {17 57 22} (15)
=1

The MSE, the RMSE, and the MAE statistics in Table VI clearly depict a situ-
ation where, except for daily forecasts of spot log-range, the FVECM outper-
forms the alternative models. It is particularly important to stress the fact that,
considering longer forecasting horizons, the superior performance of the
FVECM is more evident, for all statistics considered. The unbiasedness of
the estimates is evaluated by regressing the actual average log-ranges on a con-
stant and the corresponding out-of-sample forecast. This is the so-called
Mincer and Zarnowitz (1969) regression which takes the following form:

i+l,i+s =a+ BV T, i=FS (16)

where Vti+1,1+s is the average of forecasts over the period [t + 1, ¢ + s] for each
model. Table VII reports the results of the Mincer—Zarnowitz regressions. In
Panel 7(a), the regression adjusted R*s for the FVECM turn out to be higher
for all horizon considered with the exception of 1-day ahead for spot log-range.
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TABLE VI
Mincer—Zarnowitz Regression Results

Log Ut,F Log (Tl,S
s 1 5 22 1 5 22
(a) Adjusted to R?
RW 0.2178 0.4696 0.4406 0.1763 0.4986 0.4566
VAR(4) 0.3013 0.5233 0.3312 0.3133 0.5596 0.3850
UHAR 0.3155 0.5391 0.4575 0.3186 0.5691 0.5047
BVAR 0.3120 0.5367 0.4353 0.3229 0.5750 0.5035
FF 0.2974 0.5302 0.3909 0.2667 0.5404 0.4280
FIVAR 0.2984 0.5316 0.3895 0.2761 0.5424 0.4247
FVECM 0.3212 0.7389 0.8787 0.3182 0.7380 0.8868
(b) Hya =0vs H:a #0
RW —2.7637 —1.6063 —1.6896 —3.002 —1.5140 —1.5404
(—19.65) (—6.028) (—3.065) (—21.40) (—6.008) (—2.574)
VAR(4) -0.3017 —-0.2520 —1.8054 —0.2885 —-0.2370 -1.6327
(—1.315) (0.3324) (—2.960) (1.301) (—0.776) (—2.898)
UHAR -0.1517 —0.2008 -1.2324 —0.1325 —0.1649 —1.0958
(—0.672) (—0.604) (—2.049) (—0.528) (—0.776) (—1.981)
BVAR -0.2111 -0.2234 —1.3733 —0.2483 —0.2639 0.5226
(—0.935) (—0.674) (—2.291) (1.144) (—0.871) (—2.338)
FF -1.300 —0.6913 -1.5134 -1.535 —0.8024 —1.4613
(—7.453) (—2.287) (—2.514) (—8.816) (—2.782) (—2.554)
FIVAR -1.297 —0.6978 —1.5221 -1.415 —0.8009 —1.4656
(—8.053) (—2.281) (—2.545) (—8.053) (—2.788) (—2..583)
FVECM —0.2283 0.5157 0.5621 -0.5117 0.2998 0.4512
(—1.044) (2.061) (1.585) (—2.469) (1.295) (1.5453)
(c)Hy:B=1vs H:B #1
RW 0.4671 0.6895 0.6731 0.4204 0.7072 0.7015
(17.31) (13.50) (2.342) (15.84) (14.62) (6.207)
VAR(4) 0.9421 0.9511 0.7341 0.9445 0.9538 0.6819
(1.307) (0.767) (2.342) (1.291) (0.874) (2.981)
UHAR 0.9705 0.9612 0.7616 0.9741 0.9680 0.7873
(0.678) (0.610) (2.095) (0.594) (0.534) (2.034)
BVAR 0.9593 0.9571 0.7341 0.9519 0.9492 0.7627
(0.934) (0.675) (2.342) (1.146) (0.786) (2.397)
FF 0.7482 0.8655 0.7055 0.7024 0.8439 0.7156
(7.508) (2.290) (2.575) (8.888) (2.831) (2.614)
FIVAR 0.7487 0.8644 0.7038 0.7256 0.8444 0.7147
(7.524) (2.316) (2.606) (8.109) (2.831) (2.646)
FVECM 0.9550 1.0995 1.1074 0.8999 1.0577 1.0859
(0.2868) (4.2859) (2.545) (6.222) (0.1968) (1.5437)
(dHya=0NB=1vsH:a#0NB #1
RW 194.90 18.628 5.5173 243.63 18.391 4.1269
(0.0000) (0.0000) (0.0069) (0.0000) (0.0000) (0.0223)
VAR(4) 0.8713 0.3056 5.3746 0.8553 0.3204 5.1663
(0.4186) (0.7369) (0.0078) (0.4254) (0.7261) (0.0093)
UHAR 0.2332 0.1909 2.5324 0.18114 0.1489 2.4580
(0.7920) (0.8263) (0.0900) (0.8343) (0.8617) (0.0963)
BVAR 0.4368 0.2283 2.50294 0.6570 0.3823 0.6480
(0.6461) (0.7960) (0.0924) (0.5185) (0.6827) (0.0811)
FF 28.298 2.8167 3.7847 0.85531 4.2786 3.842
(0.0000) (0.0621) (0.0298) (0.4254) (0.0150) (0.0283)
FIVAR 28.400 2.8412 3.86473 32.976 4.8149 3.9590
(0.0000) (0.0605) (0.0278) (0.000) (0.0089) (0.0256)
FVECM 0.6284 2.1518 1.2900 3.164 0.8386 0.7727
(0.5336) (0.1187) (0.2848) (0.0426) (0.433) (0.4675)

Panel 7(a) reports the Mincer—Zarnowitz regression adjusted R2, in bold the highest R? among the models considered for each fore-
cast horizon. Panel 7(b) and (c) report estimates of the intercept and slope coefficients, @ and B, in the regression (16). The t-statistics,
in parenthesis, are computed using Newey—West standard errors. In bold when the null hypothesis (« = 0 or B = 1) is rejected at 5%
significance level. Panel 7(d) reports the F test statistic for the joint hypothesis « = 0 38 = 1, the P-values are in parenthesis, in bold
when the null hypothesis is rejected at 10% significance level.
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The fit is particularly good for longer horizons. The Mincer—Zarnowitz
coefficient estimates are presented in Panel 7(b) and 7(c), respectively. The test
statistic for the restriction that @ = 0 and B = 1 is reported in Panel 7(d).

It clearly emerges that the FVECM, differently from alternative specifica-
tions, provides unbiased forecasts for all different choices of s, with the excep-
tion of the spot ranges when s = 1. It is noteworthy that when s = 22 the
FVECM strongly overperforms the competing models. When considering
longer forecast horizons, the fractional cointegration restriction improves the
forecasts of spot log-ranges, since the adjustment mechanism implicit in
the FVECM operates to restore the equilibrium. A test for the forecasting supe-
riority of FVECM is carried out in Diebold and Mariano (1995) framework,
focusing here on the mean squared error (MSE), see Patton (2011) for the
choice of the loss function. The forecasting error of model i at date ¢ is defined

as the difference, ¢, ,, between the sample average of the log-ranges in the peri-

1,1

od [t + 1,t + s] and the corresponding forecast provided by model i:

A,
1

&,=Vii— Vinas={1,522},n=1,...,N,t=1350,...,T—s (17)

i,n

where N = (T — 1,350)/s represents the number of forecasts, and is equal to
1,100, 220, 50 for the daily, weekly, and monthly horizon, respectively.
Specifically, the interest is on the measure of the relative forecasting perform-
ance of the different model specifications, testing the superiority of model i
over FVECM, which is the benchmark, with a t-test for the null hypothesis that
u; = 0in

81'2,;1 - 812:VECM,n =w +tv, i=FS (18)
where a positive estimate of w, indicates support for the FVECM. Table VIII
reports the t-statistics for the estimates of u,, for all choices of s, and it clearly
depicts a situation where the forecast errors associated with FVECM are sig-
nificantly smaller than those of the competing models, in particular for longer
horizons. Moreover, the values of the t-tests are positive and significant in most
cases, that is the FVECM forecasts are more accurate than those of alternative
models considered. In particular, the forecasting ability of FVECM can be
attributed to its equilibrium adjustment mechanism, that in this case systemat-
ically leads to superior forecasting performances. Indeed, the FVECM domi-
nates the alternative multivariate models considered, e.g. BHAR and FIVAR,
which differ from the FVECM for the absence of an error correction term. It is
interesting to note the superiority of FVECM'’s forecasts of the spot log-range
at weekly and monthly horizons. This is due to the error correction mechanism
that induces the convergence of spot log-range to the long-run equilibrium.
These results suggest that properly accounting for the long-run relation
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TABLE VIl
Diebold—Mariano Test

Log o-t,F Log o-t,S

s 1 5 22 1 5 22

RW 8.9142 6.1432 3.805% 6.4112 9.769° 3.235°
VAR(4) 1.715¢ 7.1512 3.5832 0.288 5.8712 3.715%
UHAR 0.534 8.153% 3.405% —0.352 7.055% 3.4012
BHAR 0.900 8.368° 3.664° —0.627 6.952° 3.6112
FF 3.2772 7.7922 3.3822 4.210? 6.640° 3.6112
FIVAR 3.246°2 7.7602 3.980°% 3.6742 6.543% 3.613%

Note. Table reports the t-statistic of the estimate of , in the regression e2, — eZyecy, = w; + 1,, Where &, is the forecast error of
model iin period t for a given forecast horizon s. a, b and ¢ denote 1, 5, and 10% significance level of the corresponding t-ratio test.

between log-ranges, that is implicit in the no-arbitrage pricing, provides a sig-
nificant forecast improvement, since the futures log-range, given the specula-
tive nature of futures contracts, leads the spot log-range.

Finally, the log-range forecasts can be employed to obtain estimates of the
Value-at-Risk (VaR) for both assets. We compute for each asset the daily and
weekly VaR at 5% level. The quantile used in the computation is obtained fit-
ting a Student’s density to the returns data. The weekly VaR for each model is
calculated with \/5 - eXp{\A/nytJrs + 3@?}, i = F, S, where &? denotes the esti-
mate of the forecast error variance.

The results of the VaR analysis, for the daily and the weekly horizons, are
reported in Table IX."? The table reports the number of VaR exceedances at 5%
and the P-values of the Kupiec (1995) (KP) and Christoffersen (1998) (CH)
tests for the null hypothesis that the observed frequency of VaR exceedances is
not statically different from 5%. In all cases, the observed probability that
returns exceed the VaR threshold based on FVECM is not statistically different
from the 5%. This result generally holds for the other models too. In order to
evaluate the economic value of the VaR forecasts, the following loss functions
are also employed:

100

LF, = — >\ (r, = VaR;)’ (19)
] i=1
100 ¢

LF, = TE lr, — VaR;| (20)
j=1

where ] indicates the length of the forecast sample, that is ] =1,100 for the
daily VaR and J = 220 for the weekly VaR. The rationale behind this choice for

"?The sample of 50 monthly forecasts is too small to guarantee a reliable VaR exercise.
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TABLE IX
VaR Results
Futures Spot
Exc KP CH LF, LF, Exc KP CH LF, LF,

Daily

RW 5.18 0.7832 0.3551 0.0356 1.5543 4.82 0.7808 0.0624 0.0364 1.5693
VAR(4) 4.45 0.3981 0.0307 0.0273 1.4059 4.18 0.2006 0.3161 0.0282 1.4232
UHAR 418 0.2006 0.0140 0.0272 1.4008 4.09 0.1537 0.0116 0.0280 1.4163
BVAR 4.09 0.1537 0.0116 0.0273 1.4035 3.91 0.0848 0.0075 0.0283 1.4204
FF 4.91 0.8897 0.4531 0.0292 1.4415 4.64 0.5755 0.4731 0.0303 1.4607
FIVAR 4.82 0.7808 0.4703 0.0294 1.4429 4.45 0.3981 0.4333 0.0302 1.4587
FVECM 4.64 0.5755 0.0235 0.0274 1.4030 5.00 1.0000 0.1444 0.0287 1.4277
Weekly

RW 2.73 0.0917 0.1980 0.0911 2.5558 1.36 0.0035 0.0135 0.1009 2.7186
VAR(4) 5.91 0.5471 0.3453 0.0863 2.5003 4.09 0.5235 0.5320 0.0946  2.6510
UHAR 6.36 0.3723 0.2416 0.0876 2.5118 3.64 0.3303 0.4429 0.0981 2.6726
BVAR 5.91 0.5471 0.3453 0.0879 2.5190 4.55 0.7535 0.5629 0.0969 2.6656
FF 5.91 0.5471 0.3453 0.0885 2.5134 3.64 0.3303 0.4429 0.0981 2.6726
FIVAR 5.91 0.5471 0.3453 0.0887 2.5172 3.64 0.3303 0.4429 0.0983 2.6773
FVECM 6.82 0.2398 0.1548 0.0862 2.4852 4.09 0.5235 0.5320 0.0944  2.6391

Note. Table reports the percentage of VaR exceedances (Exc) for each model, the p-value of the Kupiec, KP, and Christoffersen
tests, CH, respectively; LF, and LF, are the loss functions defined in (19).

the loss functions is that once the null hypotheses of KP and CH tests are not
rejected a bank is clearly interested in minimizing the distance between the
observed returns and the VaR. It is noteworthy the fact that, according to
the loss functions, the VaR based on the fractional cointegration model pro-
vides the best performance at the weekly horizon for both futures and spot
prices. At daily horizon, the loss functions are very close to those obtained with
the UHAR. This evidence further corroborates the forecasting results, namely
that the ECM, included in the FVECM, improves the precision of the long-run
forecasts but is less effective in the short run.

7. CONCLUSIONS

This study presents an innovative model setup, based on a well-known no-arbitrage
pricing formula, which exploits the efficient information contained in the
futures log-range series, in order to provide superior forecasts of the spot log-
range. Given the long-memory property of the log-range series, the analysis is
carried out in terms of fractional cointegration so that the dynamic behavior of
the two series is modeled by a fractional VECM model, as defined by Johansen
(2008). The cointegrated system is estimated, by means of a profile likelihood
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technique, that allows to jointly estimate fractional and cofractional orders.
This technique extends the estimation method proposed in Lasak (2008) and
Johansen and Nielsen (2011). A clear empirical evidence confirms the pres-
ence of a common stochastic trend with long memory that captures the total
persistence of the system, so that the error correction term is integrated of
order 0. Moreover, the parameter S is close to the theoretical value —1, and the
spot log-range converges faster to the long-run equilibrium than the futures
log-range. This evidence suggests that futures volatility, as measured by the
range, is the driving factor in the volatility process, given that the futures con-
tracts are more efficient in processing the new information. Allowing for the
long-range dependence between spot and futures volatility improves signifi-
cantly the out-of-sample forecasts, given the equilibrium mechanism that is
incorporated in the model for fractional cointegration, and, as a by-product,
provides more reliable VaR forecasts.

APPENDIX A: SIMULATION STUDY

The finite-sample properties of the profile ML procedure, outlined in Johansen
and Nielsen (2011), are evaluated by means of a Monte Carlo simulation. Two
stationary fractionally cointegrated processes are generated from an FVECM,
without short-term dynamics

Y, = al(Afb - (Y, - BX,) + Af‘islt

A
X, = a,(A" — 1)(Y, — BX,) + A%, (A1)

where d = 0.4, B =1, and @ = (— 0.5, 0.5). The parameter b assumes values
0.4 and 0.3. The infinite moving-average representation of the long-memory
process, W,, is given by

U, = Aﬁdsi,t = E ‘l/iai,hi (A2)
i=0

where v, = 7 /(d — 1) as i — %, see Hosking (1981). From a practical point of
view, a truncated version of (22) is considered, that is

-1
+ _
u;; = E(pisi,t—i
i=0

where the pre-sample values are assumed to be equal to zero.

The Monte Carlo experiment is based on 1,000 replications, with T observa-
tions each, where T = {500, 1,000, 2,000}. ¢,, and &,, are randomly generated
from a bivariate normal distribution with mean 0, variance 1, and correlation
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TABLE X
Monte Carlo Results

T 2000 1000 500

b 0.3 0.4 0.3 0.4 0.3 0.4
Q506 0.4011 0.4015 0.4015 0.4029 0.4056 0.4014
Qsg 0.3702 0.3697 0.3572 0.3570 0.3399 0.3435
Qus.d 0.4299 0.4306 0.4420 0.4404 0.4577 0.4583
RMS 0.0178 0.0184 0.0261 0.0252 0.0361 0.0357
Qs 0.3072 0.4043 0.3076 0.4086 0.3244 0.4233
Qs 0.1860 0.3092 0.1297 0.2761 0.0507 0.2145
Qus 0.4268 0.5076 0.4771 0.5426 0.5920 0.6329
RMSE 0.0733 0.0594 0.1087 0.0822 0.1695 0.1293
Qo —1.0000 —1.0002 —1.0005 ~0.9996 -0.9978 ~0.9996
Qs 5 ~1.0215 ~1.0152 —1.0388 —1.0203 —1.0530 ~1.0301
Qs 3 -0.9772 —0.9867 —0.9681 —0.9794 —0.9490 —0.9691
RMSE 0.0134 0.0085 0.0206 0.0124 0.0311 0.0183
Qso, —0.4837 —0.4908 —0.4927 —0.4894 —0.4329 —0.4600
Qs -1.0273 —0.8458 —1.6025 -1.1012 —1.9003 —1.4107
Qo5 ~0.1509 —0.2085 —0.0396 —0.1284 0.3624 0.0388
RMSE 0.2567 0.1835 0.4801 0.2500 0.7043 0.4184
Qso, 0.5033 0.4868 0.4663 0.4894 0.4490 0.4698
Qs 0.1408 0.2099 ~0.0710 0.1303 ~0.2989 —0.0591
Qos.3, 1.0428 0.8339 1.4173 1.0015 1.9363 1.3114
RMSE 0.2718 0.1814 0.4402 0.2485 0.7103 0.3953

Note. Table reports the median (Qy), the 5th (Q;) and 95th (Qy;) percentile of MLE d, b, 3, and & for T = 2,000, 1,000, 500 obser-
vations and 1,000 replications. In the simulations, d = 0.4, @ = (—0.5, 0.5), and 8 = —1. The values of b used in the Monte Carlo are
reported.

equal to 0.9 (these values are close to those observed in the futures-spot data
set). All the parameters are then estimated following the Johansen and Nielsen
(2011) method, assuming that the cointegration rank is known and equal to 1.
The percentiles of the Monte Carlo distribution of the parameters estimates
are reported in Table X. The precision in the estimation of the parameters
increases with the sample size. This is due to the long-memory feature of
the generated series. Moreover, the parameter dispersion, as measured by the
RMSE, increases with the difference between d and b, as already noted by
Lasak (2008). Notably, the MLE of B is fairly precise also for moderate sample
sizes; see the plots in Figure 3. Moreover, the Monte Carlo distribution of 3 is
clearly much more concentrated around the true value when b = 0.4 with
respect to the case of b = 0.3. This is consistent with the results of Johansen and
Nielsen (2011) that establish that the convergence rate of B is equal to T”. On
the other hand, the estimates of the vector a appear to be more dispersed; this is
due to the fact that & is a function of 07, b, and ﬁ, and hence it is affected by
the estimation uncertainty present in the previous step. As shown in Figure 3,
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FIGURE 3
Monte Carlo kernel densities of the FVECM parameter estimates for b = 0.3 (panel a) and b = 0.3
(panel b). Vertical dotted lines represent the true values. Solid lines correspond to T = 2,000, dashed
lines to T = 1,000, and dotted lines to T = 500.
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the densities of the a estimates are far from symmetric, in particular when
T = 500. This is due to the presence of outliers in correspondence of values of
b that are negative. Note that the skewness tends to zero when T — %, and this
is in accordance with the asymptotic results in Johansen and Nielsen (2011).
These results suggest that the estimation of the FVECM parameter with
Johansen and Nielsen (2011) method is highly reliable when the sample size is
larger than 2000 and d = b which is the case in the log-range analysis.
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