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Within the framework of general relativity, in some cases at least, it is a rather

delicate and interesting question just what it means to say that a body is or is not

"rotating".  Moreover, the reasons for this -- at least the ones I have in mind -- do

not have much to do with traditional controversy over "absolute vs. relative"

conceptions of motion.  Rather they concern particular geometric complexities that

arise when one allows for the possibility of spacetime curvature. The relevant

distinction for my purposes is not that between attributions of "relative" and

"absolute" rotation, but between attributions of rotation than can and cannot be

analyzed in terms of a motion (in the limit) at a point. It is the latter -- ones that

make essential reference to extended regions of spacetime -- that can be problematic.

 The problem has two parts. First, one can easily think of different criteria for

when a body is rotating. The criteria agree if the background spacetime structure is

sufficiently simple, e.g., in Minkowski spacetime (the regime of "special relativity").

But they do not do so in general.  Second, none of the criteria fully answers to our

classical intuitions. Each one exhibits some feature or other that violates those

intuitions in a significant and interesting way.

 My principle goal in what follows is to make the second claim precise in the

form of a modest no-go theorem. To keep things simple, I'll limit attention to a
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special case. I'll consider (one-dimensional) rings centered about an axis of

rotational symmetry, and consider what it could mean to say that the rings are not

rotating around the axis. (It is convenient to work with the negative formulation.)

The discussion will have several parts.

First, for purposes of motivation, I'll describe two standard criteria of non-

rotation that seem particularly simple and natural.  (I could assemble a longer list of

proposed criteria, but I am more interested in formulating a general negative claim

that applies to all.2)  One involves considerations of angular momentum ("ZAM

criterion"). The other is cast in terms of the "compass of inertia" on the axis ("CIA

criterion"). Next, I'll characterize a large class of "generalized criteria of non-

rotation" that includes the ZAM and CIA criteria. Third, I'll abstract two (seemingly)

modest conditions of adequacy that one might expect a criterion of non-rotation to

satisfy (the "limit condition" and the "relative rotation condition"). Finally, I'll

show that no (non vacuous)3 "generalized criterion of non-rotation" satisfies both

conditions in all relativistic spacetime models. The proof of the theorem is entirely

elementary once all the definitions are in place.  But it may be of some interest to

put them in place and formulate a result of this type. The idea is to step back from

the details of particular proposed criteria of non-rotation and direct attention instead

to the conditions they do and do not satisfy.

I.  Informal Preview

Beginning in section II, our discussion will be cast in the precise language of

relativistic spacetime geometry. But first, to explain and motivate what is coming,

we give a rough, preliminary description of the no-go theorem in more direct,

intuitive,  quasi-operational terms. This will involve a bit of hand-waving, but not

much. (This section will not presuppose familiarity with the mathematical
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formalism of general relativity.)

Consider a ring positioned symmetrically about a central axis as in figure 1.4  At

Figure 1

issue is what it means to say that the ring is not-rotating (about that axis). The first

criterion we will be considering takes the absence of inertial or dynamical effects on

the axis as the standard for non–rotation.  Here is one way to set things up in terms

of a telescope and a water bucket.  (Water buckets, to be sure, are not particularly

sensitive instruments, but they are good enough for our purposes.) Let P be the

point of intersection of the axis with the plane of the ring.  Place a lazy susan at P (in

the plane of the ring), bolt a half-filled water bucket to the center of the lazy susan,

and bolt a tubular telescope to the water bucket.  (See figure 2.)  Finally, mount a

Figure 2

light source at a point (any point) on the ring.  Now consider possible rotational

states of the composite apparatus on the axis (lazy susan + water bucket + telescope).

There is one state in which the apparatus tracks the ring in the sense that an

observer, standing on the lazy susan and looking through the telescope, will see the

light source permanently fixed on its cross hairs. We take the ring to be non-rotating

according to the CIA criterion if in this state (the tracking state), the water surface in

the bucket is flat rather than concave.
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This characterization is a bit complicated because it makes use of a telescope as

well as a water bucket. The former is used to bridge the distance between the water

bucket here and the ring there.

We  can actually use the instruments described to ascribe an angular speed to the

ring (relative to the compass of inertia on the axis).  Let the composite apparatus be

placed in a state of motion in which the water surface is flat. And (just to keep

things simple), let us assume that, at some initial moment, the observer standing on

the lazy susan sees the light source through the telescope. It may be the case that he

continues to see it as time elapses. (This is just the case in which the ring is judged

to be non-rotating according to the CIA criterion.) But, in general -- assuming the

ring is in some state of uniform rotational motion -- he will see it periodically, with

a characteristic interval of time ∆t between sightings.  (We imagine that the observer

carries a stopwatch.)  This interval is the time it takes for the ring to complete one

rotation (relative to the CIA). So the angular speed of the ring (relative to the CIA) is

just  2π/∆t.

  Now we consider a second criterion of non-rotation that is, on the face of it, very

different in character from the first. There is a generic connection in mechanics,

whether classical or relativistic, between (continuous) symmetries of spacetime

structure and conserved quantities.  Associated with the rotational symmetry of the

ring system under consideration is a notion of angular momentum.5 According to

our second (ZAM) criterion, the ring is "non-rotating" precisely if the value of that

angular momentum is zero at every point on the ring. The condition has an

intuitive geometrical interpretation that we will review later. Here, instead, we

describe an experimental test for determining whether the condition obtains. (Many

other tests could be described just as well.)
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Imagine that we mount a light source at some point Q on the ring, and from that

point, at a given moment, emit light pulses in opposite (clockwise and

counterclockwise) directions. This can be done, for example, using concave mirrors

attached to the ring.  Imagine further that we keep track of whether the pulses arrive

back at Q simultaneously (using, for example, an interferometer). It turns out that

this will be the case -- they will arrive back simultaneously -- if and only if the ring

has zero angular momentum.

This equivalence is not difficult to verify and we will do so later.  But wholly

apart from the connection to angular momentum, the experimental condition

described should seem like a natural criterion of non-rotation. Think about it.

Suppose the ring is rotating in, say,  a counterclockwise direction. (Here I am just

appealing to our ordinary intuitions about "rotation".) The C pulse, the one that

moves in a clockwise direction, will get back to Q before completing a full circuit of

the ring because it is moving toward an approaching target. In contrast, the CC pulse

is chasing a receding target. To get back to Q it will have to traverse the entire length

of the ring, and then it will have to cover the distance that Q has moved in the

interim time. One would expect, in this case, that the C pulse would arrive back at Q

before the CC pulse.  (Presumably light travels at the same speed in all directions.)

Similarly, if the ring is rotating in a clockwise direction, one would expect that the

CC pulse would arrive back at Q before the C pulse.  Only if the ring is not rotating,

should they arrive simultaneously. Thus, our experimental test for whether the

ring has zero angular momentum provides what would seem to be a natural

criterion of non-rotation. (Devices working on this principle, called "optical

gyroscopes", are used in sensitive navigational systems. See, for example, the

discussion in Ciufolini and Wheeler (1995), p. 365.)

We now have two criteria for whether the ring is non-rotating. It is non-rotating
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in the first sense if it is non-rotating with respect to the compass of inertia on the

axis (as determined, say, using a water bucket and telescope). It is non-rotating in the

second sense if it has zero angular momentum (as determined, say, using light

pulses circumnavigating the ring in opposite directions). As we shall see later, it is a

contingent matter in general relativity whether they agree or not. Whether they do

so depends on the background spacetime structure in which the ring is imbedded. If

it is imbedded in Minkowski spacetime, for example, it will qualify as non-rotating

according to the CIA criterion iff it does so according to the ZAM criterion. But if it is

imbedded, instead, for example, in Kerr spacetime, the equivalence fails.  (We

choose this example lest one imagine that the failure of agreement occurs only in

pathological spacetime models that are of mathematical interest only. The Kerr

solution may well describe regions of our universe, the real one, at least

approximately -- regions surrounding rotating black holes.)

Though the two criteria do not agree in general, it is important for our purposes

that they "agree in the limit for infinitely small rings", no matter what the

background spacetime structure. They do so in the following sense.  Imagine that we

have a sequence of rings R1, R2, R3, ...  that share a center point P on the axis, and

have radii that shrink to 0. Imagine further that each of them is non-rotating

according to the ZAM criterion. Each ring Ri  has  a certain angular speed ωi  with

respect to the compass of inertia on the axis. (We described a procedure above for

measuring it.) None of the ωi  need be 0. The claim here is that (regardless of the

background spacetime structure), the sequence ω1, ω2, ω3, ...  must converge to 0. (We

will verify the claim later.)

We  have considered just two simple, natural, experimental criteria for non-

rotation. We could consider others (that do not, in general, agree with either one).

But the fact is, it would turn out in every case that the criterion agrees with them
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"in the limit for infinitely small rings" in the sense just described (no matter what

the background spacetime structure).6 This is one way to understand the claim that

there is  a robust notion of rotation (in the limit) at a point in general relativity, even

if there is none that applies to extended regions of spacetime.

In any case, with these remarks as motivation, we now propose for consideration

a first condition that one might expect a reasonable criterion of non-rotation to

satisfy. Let us understand a "generalized criterion of non-rotation" to be, simply, a

specification, for every ring, in every state of motion (or non-motion), whether it is

to qualify as "non-rotating". We don't require that it have a natural geometrical or

experimental interpretation.

Limit Condition:   Let R1, R2, R3, ...  be a sequence of rings, each "non-rotating",

that share a center point P on the axis, and have radii that converge to 0. For

every i, let Ri  have angular speed ωi with respect to the compass of inertia on the

axis. Then the sequence ω1, ω2, ω3, ...  converges to 0.

We have just asserted that the ZAM criterion satisfies this condition (regardless of

the background spacetime structure). The CIA  criterion does too, of course. (In the

latter case,  ωi  is 0, for every i.  So the sequence certainly converges to 0.)

It remains to state our second condition (on a generalized criterion of non-

rotation).  Suppose  we have two rings R1 and R2 centered about the axis as in figure

Figure 3

3.  (The planes of the rings are understood to be parallel, but nor necessarily
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coincident.) Further suppose that "R2 is non-rotating relative to R1". Then, one

would think, either both rings should qualify as "non-rotating", or neither should.

This is precisely the requirement captured in our  "relative rotation condition". It is

not entirely unambiguous what it means to say that R2 is non-rotating relative to

R1. But all we need is a sufficient condition for relative non-rotation of the rings.

And it seems, at least,  a plausible sufficient condition for this that, over time, there

is no change in the distance between any point on one ring and any point on the

other, i.e., the two rings move as if locked together.

Relative Rotation Condition: Given two rings R1 and R2, if (i) R1 is "non-

rotating", and if (ii) R2 is non-rotating relative to R1 (in the sense that, given any

point on R2  and any point on R1, the distance between them is constant over

time), then R2 is "non-rotating".

The relative rotation condition is really at the heart of our discussion. It seems a

modest condition. But neither the CIA nor the ZAM criterion satisfies it, in general!

They both do so if the rings are imbedded in Minkowski spacetime. But, as we shall

see, neither does if they are imbedded in, for example, Kerr spacetime.

It should be clear just what is being asserted here. The situation is extremely

counterintuitive. Consider the ZAM criterion. The claim is that we can have two

rings, moving as if rigidly locked together, where one, but not the other, has zero

angular momentum. Light pulses circumnavigating the first will arrive back at their

starting point simultaneously. But pulses circumnavigating the second will not do

so.  (And similarly with the CIA criterion.)

We have made a number of claims involving two criteria of non-rotation, two

possible conditions of adequacy on a criterion of rotation, and two spacetime

models. It may help to summarize some of those claims in a table.
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    In Minkowski spacetime In Kerr spacetime

Do the CIA and ZAM criteria agree  
(for rings of arbitrary radius)? Yes No

Does the CIA criterion satisfy the limit
condition? Yes Yes

Does the ZAM criterion satisfy the limit
condition? Yes Yes

Does the CIA criterion satisfy the relative
rotation condition? Yes No

Does the ZAM criterion satisfy the relative
rotation condition? Yes No

The fact that neither the CIA nor ZAM criterion satisfies the relative rotation

condition (in general), seems a significant strike against them, and it is natural to

ask whether any other criterion does better. Our principal claim is that, in an

interesting sense, the answer is 'no'. There are criteria that satisfy the relative

rotation condition in Kerr spacetime.7 But the cost of doing so is violation of the

limit condition, or else the radical conclusion that no ring in any state of motion (or

non-motion) counts as "non-rotating".

Theorem  In Kerr spacetime (and other relativistic spacetime models to be

discussed), there is no generalized criterion of non-rotation that satisfies the

following three conditions:

(i)   limit condition

(ii)  relative rotation condition

(iii) non-vacuity condition:  there is some ring in some state that qualifies as 

"non-rotating".

 The result is intended to bear this interpretation. Given any (non-vacuous)
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generalized criterion of non-rotation in Kerr spacetime, to the extent that it gives

"correct" attributions of non-rotation in the limit for infinitely small rings -- the

domain where one does have a robust notion of non-rotation -- it must violate the

relative rotation condition.

II. Formal Treatment

Now we start all over and cast our discussion in the language of relativistic

spacetime time geometry.8 We present formal versions of the two criteria of non-

rotation and the two conditions of adequacy (though not in the same order as in

section I).

First we have to consider how to represent one-dimensional rings in a state of

uniform rotational motion.  To keep things as simple as possible, we will think of

the rings as test bodies with negligible mass, imbedded in a background spacetime

structure that exhibits the rotational and "time translational" symmetries of the ring

system itself.  More precisely, we will think of them as imbedded in a stationary, axi-

symmetric spacetime model.

II.1  Stationary, Axi-Symmetric Spacetimes

We take a (relativistic) spacetime model to be a structure (M, gab) where M is a

connected, smooth, four–dimensional manifold, and gab  
is a smooth, pseudo–

Riemannian metric on M of Lorentz signature (+, –, –, –). We say that (M, gab) is

stationary and axi-symmetric if there exist two one-parameter isometry groups

acting on M, {Γt: t∈R} and {Σϕ: ϕ∈S1}, satisfying several conditions. (Here we identify

S1 with the set of real numbers mod 2π.)9

(SAS  1) The isometries Γt and Σϕ commute for all t∈R and ϕ∈S1.
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(SAS 2) Γt(p) ≠ p  for all points p in M and all t ≠ 0. (So the orbits of all points

under {Γt: t∈R} are open.)

(SAS 3) Some, but not all, points p in M have the property that Σϕ(p) = p  for all

ϕ.  (Those with the property are called axis points.  So the orbits of axis points

under {Σϕ: ϕ∈S1} are singleton sets, and those of non-axis points are (non-

degenerate) closed curves.)

(SAS 4) The orbits of {Γt: t∈R} are timelike, and the non-degenerate orbits of {Σϕ:

ϕ∈S1} are spacelike.10

The final condition is slightly more complex than the others.  Let M– be the

restricted manifold that one gets by excising the (closed) set of axis points. The orbit

of any point in M– under the two-parameter  isometry group  {Γt ο Σϕ: t∈R & ϕ∈S1} is

a smooth, two-dimensional, timelike11 submanifold that is diffeomorphic to the

cylinder R × S1. Let us call it an orbit cylinder.  So (in the tangent space) at every

point p in M–, there is a timelike two-plane T(p) tangent to the orbit cylinder that

passes through p, and a spacelike two-plane S(p) orthogonal to T(p). The final

condition imposes the requirement that the set {S(p): p∈ M–} be integrable.

(SAS 5) (Orthogonal transitivity) Through every point in M– there is a smooth,

two-dimensional, spacelike submanifold Π that is tangent to S(p) at every

point p in Π ∩ M–.

Associated with the two isometry groups {Γt: t∈R} and {Σϕ: ϕ∈S1}, respectively, are

Killing fields τa and ϕa . (They arise as the "infinitesimal generators" of those

groups.) It will be helpful for what follows to reformulate the five listed conditions

in terms of these fields.  (SAS 1) is equivalent to the assertion that the fields have

vanishing Lie bracket, i.e., at all points
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                         τ n∇n ϕ
a – ϕ n∇n τ

a = 0.                                                   (1)

(SAS 2) comes out as the requirement that τa  be everywhere non-zero. (SAS 3) can

be understood to assert that ϕa vanishes at some (axis) points, but does not vanish

everywhere. (SAS 4) is equivalent to the assertion that τa is everywhere timelike,

and ϕa  is spacelike at non–axis points.  Finally, (SAS 5) is equivalent (by Frobenius'

theorem) to the assertion that the conditions

                                     ϕ[aτb
 ∇cτd] = 0                                                        (2a)

                                                       τ[aϕb∇cϕd] = 0                                                        (2b)

hold at every non-axis point.12

The five listed conditions imply the existence of coordinate functions with

respect to which the metric gab assumes a special, characteristic form.13

The first three imply that there exist smooth maps  t: M → R  and  ϕ: M–→ S1 such

that  τa  = (∂/∂t)a  on M, and ϕa  = (∂/∂ϕ)a  on M–. (Again, M– is the restricted

submanifold on which ϕa≠ 0.)  The remaining conditions imply that, at least locally

on M–, we can find further smooth coordinates x2 and x3  such that, at every point,

the vectors (∂/∂x2)a  and (∂/∂x3)a  are spacelike, orthogonal to each other, and

orthogonal to both (∂/∂t)a   and (∂/∂ϕ)a .  Thus, at points in M–, the matrix of

components of gab with respect to the coordinates (t, ϕ, x2, x3) has the characteristic

form:

 τaτa τaϕa 0 0

τaϕa ϕaϕa 0 0

0 0  (∂/∂x2)
a
(∂/∂x2)a 0

0 0 0 (∂/∂x3)
a
(∂/∂x3)a

And the inverse matrix (giving the components of gab) has the form:
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(ϕaϕa)D-1 (–τaϕa)D-1 0 0

(–τaϕa)D-1 (τaτa)D-1 0 0

0 0 [(∂/∂x2)
a
(∂/∂x2)a]-1 0

0 0 0 [(∂/∂x3)
a
(∂/∂x3)a]-1

where  D = (τaτa)(ϕbϕb) – (τa ϕ
a)2.  (D < 0 in M–, since (ϕbϕb) < 0 in M–  and  (τaτa) > 0

everywhere.)

For future reference, we note that ∇at (= gab∇bt = gab(dt)b) can be expressed as

              ∇at  = (ϕnϕn)D-1 (∂/∂t)a  + (–τnϕn)D-1 (∂/∂ϕ)a  = (D-1) [(ϕnϕn) τa  – (τnϕn)ϕa]

in M–. Hence

                            (∇at)(∇at)  =  (ϕnϕn)D-1

and therefore

     (∇at) [(∇nt)(∇nt)]–1 =  τa  – (τnϕn)(ϕmϕm)–1 ϕa                            (3)

in M–.

Of special interest is the case where [(τnϕn)(ϕmϕm)–1] is constant on M–.14 We will

say then that the background spacetime (M, gab) is static.  This is a slightly non-

standard way of formulating the definition.15 But if [(τnϕn)(ϕmϕm)–1] is  constant, τ' a=

τa– (τnϕn)(ϕmϕm)–1ϕa  is a smooth timelike Killing field on M that is hyper-surface

orthogonal. (It is a Killing field since any linear combination of two Killing fields is

one. It is hypersurface orthogonal by (3).)

An example to which we will turn repeatedly is Kerr spacetime (see, e.g., O'Neill

(1995)).  In Boyer-Lindquist coordinates (t, ϕ, r, θ) -- again with τa  = (∂/∂t)a   and ϕa  =

(∂/∂ϕ)a  -- the non-zero components are

τaτa  = 1 – 2 M r ρ–2            (5a)

τaϕa  = 2 M r a (sin2θ) ρ–2         (5b)
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ϕaϕa  = – [ r2 + a2 + 2 M r a2 (sin2θ) ρ–2 ] (sin2θ)      (5c)

(∂/∂r)a(∂/∂r)a  = –ρ2 ∆–1

(∂/∂θ)a(∂/∂θ)a  = –ρ2

where

                         ρ2 = r2 + a2 (cos2θ)                                                       (5d)

                                     ∆ = r2 –2 M r + a2.                                                (5e)

(Here a and M are positive constants.) Axis points are those at which (sin2θ) = 0.  It is

not the case that τa  is everywhere timelike and ϕa is everywhere spacelike on M–.

But these conditions do obtain in restricted regions of interest, e.g., in the open set

where  r > 2 M.  If we think of Kerr spacetime as representing the spacetime

structure surrounding a rotating black hole, our interest will be in small rings that

are positioned close to the axis of rotational symmetry (where (sin2θ) is small) and

far away from the center point (where r is large). There we can sidestep complexities

having to do with horizons and singularities.

II.2  Striated Orbit Cylinders and the ZAM Criterion

Assume we have fixed, once and for all, a stationary, axi-symmetric spacetime

(M, gab) with isometry groups {Γt: t∈R} and {Σϕ: ϕ∈S1} and corresponding Killing

fields τa  and ϕb.  The first of these fields defines a temporal orientation on (M, gab).

We will work with that one in what follows.16

We want to represent (one-dimensional) rings, centered about the axis of

rotational symmetry.  We do so using the "orbit cylinders" introduced above.  Recall

that these were characterized as the orbits of points in M– under the two–parameter

isometry group {Γt ο Σϕ: t∈R & ϕ∈S1}. Here is an equivalent formulation.

Definition  An orbit cylinder is a smooth, two-dimensional, timelike

submanifold in M–, diffeomorphic to the cylinder R × S1, that is invariant under
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the action of all maps Γt  and Σϕ.

Clearly, we are thinking about the life history of a ring, not its state at a given

"time".

Let C be an orbit cylinder representing ring R. To represent the rotational state of

R, we need to keep track of the motion of individual points on it. Each such point

has a worldline that can be represented as a timelike curve on C.  So we are led to

consider, not just C, but C together with a congruence of smooth timelike curves on

C.17

Figure 4

We want to think of the ring as being in a state of rigid rotation (with the

distance between points on the ring remaining constant). So we are further led to

restrict attention to just those congruences of timelike curves on C that are

invariant under all isometries Γt and Σϕ. Equivalently (moving from the curves

themselves to their tangent vectors), we are led to consider smooth, future directed

timelike vector fields ξa  on C that are invariant under all these maps.  Since each

such field is determined by its value at any one point on C (and since the tangent

plane to C at any point is spanned by the vectors τa  and ϕa  there), ξa  must be of the

form  (k1τa  + k2ϕa), where k1 and k2 are constants, and k1 > 0.18 We lose nothing if

we rescale ξa   by a positive factor and write it in the form (τa  + k ϕa). So we are led to

the following definition.

Definition  A striated orbit cylinder is a pair (C, k), where C is an orbit cylinder,
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and k is a number such that the vector field (τa  + k ϕa) is timelike on C.

We call the integral curves of (τa + k ϕa) on C "striation lines", and call k their

"slope factor".

Now we can formulate our fundamental question:  Under what conditions does

a striated orbit cylinder count as non-rotating?   The first proposal we consider is the

following.19

Definition  A striated orbit cylinder (C, k) is non-rotating according to the ZAM

(zero angular momentum) criterion if the vector field (τa  + kϕa) is orthogonal to

ϕa , i.e., if  k = –(τaϕa) (ϕnϕn)–1.

The connection with angular momentum is immediate. The stated condition is

equivalent to the assertion that every point on the ring has 0 angular momentum

with respect to the rotational Killing field ϕa .20

The criterion should seem like a reasonable one. It seems plausible to regard a

striated orbit cylinder as non-rotating iff the striation lines (representing the

worldlines of points on the ring) do not "wrap around the cylinder". And the latter

condition is plausibly captured in the requirement that the striation lines be

everywhere orthogonal to equatorial circles on the cylinder, i.e., have no

component in the direction of those circles.   But how does one characterize

"equatorial circles" in the present context? If the background geometry were

Euclidean, e.g., if we were dealing with ordinary barber shop poles, we could

characterize an equatorial circle as a closed curve of shortest length on the cylinder

that is not contractible to a point. That characterization does not carry over to the

present context where the background metric has Lorentz signature. But an

alternate, equivalent one does. In the Euclidean case, we can equally well
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characterize an equatorial circle as the orbit of a point under the group of rotations

that leave fixed the central axis of the cylinder. Lifting that characterization to the

present context, we are led to construe the orbits of points under {Σϕ: ϕ∈S1} as

"equatorial circles". These are just the integral curves of the field ϕa . So the

requirement that striation lines not "wrap around the cylinder" is plausibly

captured in the condition that they be everywhere orthogonal to the field ϕa . That is

precisely the ZAM criterion of non-rotation.

 Consider now the operational test described in the preceding section for

whether a ring is rotating according to the ZAM criterion. We can verify that it

works with a simple calculation.21   Let (C, k) be a striated orbit cylinder. We have to

keep track of three curves on C. (See figure 5). The first is a striation line γ that

Figure 5

represents the worldline of a fixed point on the ring from which light is emitted and

absorbed. The other two are null curves λ1 and λ2 on C that represent the worldlines

of photons that start at that point, traverse the ring in opposite directions, and then

arrive back at it. (Call them "photon 1" and "photon 2".)  Let p0 be the initial

emission point at which the three curves intersect.  Let p1 be the intersection point

of γ with λ1 at which the first photon is reabsorbed. And let p2 be the corresponding

intersection point of γ with λ2. We have to verify that the photons arrive back at the

same instant iff (C, k) is non-rotating according to the ZAM criterion, i.e.,

                      p1  = p2          ⇔        k = – (τaϕa) (ϕnϕn)–1.                              (6)

The tangent fields to the curves γ, λ1, and λ2 (after rescaling by a positive
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constant) can be written in the form (τa  + k ϕa), (τa  + l1 ϕ
a), and (τa  + l2 ϕ

a). Since the

first is timelike, and the second two are null, we have li  ≠ k and

                                (τa  + li ϕ
a) (τa  + li ϕa) = 0                                     (7)

for i = 1, 2.  Consider the scalar function ϕ': C → S1 defined by ϕ' = (ϕ – kt) (mod 2π).

It is a circular coordinate that is adapted to (C, k) in the sense that it is constant along

striation lines.22 Let the  (t, ϕ') coordinates of the points p0, p1, p2  be (t0, ϕ' 0), (t1, ϕ' 0),

and (t2, ϕ' 0). We can verify (6) by considering the respective rates at which ϕ' changes

along λ1 and λ2 as a function of t.23 Without loss of generality, assume that it

increases from ϕ' 0 to (ϕ' 0 + 2π) along λ1, and decreases from ϕ' 0 to (ϕ' 0 – 2π) along λ2.

Then, the total increase (resp. decrease) along λ1 (resp. λ2) can be expressed as24:

2π  =  (t1 – t0) (dϕ'/dt)|on λ1 =  (t1 – t0) (l1 – k)

–2π  =  (t2 – t0) (dϕ'/dt)|on λ2 =  (t2 – t0) (l2 – k).

So

(t1 – t2) = 2π (l1 + l2  – 2k) (l1 – k)–1 (l2 – k)–1.

But it follows from (7) that

l1 = [– (τaϕa) + (–D)1/2] (ϕnϕn)–1

l2 = [– (τaϕa) – (–D)1/2] (ϕnϕn)–1

where (as above) D = (τaτa)(ϕbϕb) – (τn ϕ
n)2.  So,

  p1  = p2      ⇔     (t1  – t2)  = 0     ⇔     (l1 + l2 – 2k) = 0     ⇔     k = – (τaϕa) (ϕnϕn)–1,

which confirms (6).

II.3  Generalized Criteria of Non-Rotation and the Relative Rotation Condition

Now we turn to "generalized criteria of non-rotation". Using our current

terminology, the definition comes out this way.

Definition  A generalized criterion of non-rotation is a specification, for every

striated orbit cylinder  (C, k), whether it is to count as "non-rotating" or not.
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We do not assume that generalized criteria of non-rotation bear a natural

geometrical or experimental interpretation. Nor do we assume that given an orbit

cylinder C, they render (C, k) "non-rotating" for at least one k, or at most one k.

Clearly, the ZAM criterion of non-rotation qualifies as a generalized criterion of

such.

Next consider the relative rotation condition. Intuitively,  it asserts that if we

have two rings (with the same axis of symmetry), then if  the first qualifies as "non-

rotating", and if the second is non-rotating relative to the first,  then the second ring

also qualifies as "non-rotating". As mentioned above, all we need here is a sufficient

condition for relative non-rotation of the two rings; and it seems, at least, a plausible

sufficient condition for this that, over time, there be no change in the distance

between any point on one ring and any point on the other, i.e., the two rings move

as if locked together.

Suppose we have two striated orbit cylinders (C1, k1) and (C2, k2), suppose γ1 is a

striation line of the first, and γ2 is a striation line of the second. There are various

ways we might try to measure the "distance between γ1 and γ2". For example, we

might bounce a photon back and forth between them and keep track of how much

time is required for the round trip -- as measured by a clock following one of the

striation lines. But no matter what procedure we use, the measured distance will be

constant over time if  γ1 and γ2 are (up to reparametrization) integral curves of a

common Killing field (or, equivalently, orbits of a common one-parameter group of

isometries). For any measurement procedure can be characterized in terms of some

set of relations and functions that are definable in terms gab (e.g., the set of null

geodesics, the length of a timelike curve) and all such relations and functions will be

preserved under the elements of the isometry group (since these all preserve gab).

So we seem to have a plausible sufficient condition for the relative non-rotation of
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(C1, k1) and (C2, k2) -- namely, that there exist a (single) Killing field κa  defined on M

whose restriction to C1 is proportional to (τa  + k1ϕa), and whose restriction to C2 is

proportional to (τa  + k2ϕa).  But the latter condition holds immediately if k1 = k2,

since, for any constant k,  (τa  + kϕa) is itself a Killing field defined on M.

The upshot of this long-winded argument is the proposal that it is plausible to

regard (C2, k2) as non-rotating relative to (C1, k1) if k1 = k2. So we are led to the

following formulation of the relative rotation condition.

Relative Rotation Condition  For all k, and all striated orbit cylinders (C1, k) and

(C2, k) sharing k as their slope factor, if  (C1, k) qualifies as "non-rotating", so does

(C2, k).25

It follows easily that the ZAM criterion of non-rotation satisfies the relative

rotation condition iff the background stationary, axi-symmetric spacetime structure

is static, i.e., if the function [( a
a )( n

n)–1] is constant on M–.26 In Kerr spacetime, by

(5b) and (5c),

 –(τaϕa) (ϕnϕn)–1  =  (2 M r a) [ (r2 + a2) ρ2 + 2 M r a2 (sin2θ) ] –1.                    (8)

The right hand side expression is not constant over any open set. So we see that the

ZAM criterion does not satisfy the relative rotation condition in Kerr spacetime, or

the restriction of Kerr spacetime to any open set. (We have been taking for granted

that a and M are both strictly positive. It also follows directly from (8) that the ZAM

criterion does  satisfy the relative rotation condition in Schwarzschild spacetime (a =

0 and M > 0) and Minkowksi spacetime (a = 0 and M = 0).)

II.4  The CIA Criterion

Next we consider how to capture the CIA criterion of non-rotation in the

language of spacetime geometry. Let (C, k) be a striated orbit cylinder. The Killing
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field (τa + kϕa) that determines the striation lines on C is defined on all of M. It

seems a natural proposal to construe (C, k) as non-rotating if the twist (or vorticity)

of (τa + kϕa) vanishes at axis points. This is very close to being the CIA criterion. But

there is a problem. It is true that given any axis point p, there is one and only k such

that (τa + kϕa) has vanishing twist at p.  (We verify this in lemma 2.)  But it turns

out that that critical value need not be the same at all axis points. It is not, for

example, in Kerr spacetime.  (In the end, it is this one fact that lies at the heart of our

mini no-go theorem.) So we need to direct attention to some particular axis point

and take the test to be whether (τa + kϕa) has vanishing twist there . The natural

choice is the "centerpoint" of the ring, the point that lies at "the intersection of the

axis with the plane of C". (That is where we previously placed the experimental

apparatus consisting of lazy susan + water-bucket + telescope. Recall figure 2.) The

question, then, is how to construe the expressions in quotation marks.

One natural way to do so is in terms of light signals traveling from the ring to

the axis. In cases of interest, there is exactly one point on the axis at which the

incoming light signals arrive so as to be perpendicular to the axis. That one point is

a natural candidate for the "centerpoint" of the ring, and we will treat it as such in

what follows.  But a bit of work is necessary to set everything up.

Let ∈abcd be a volume element27, and let  σa  be the smooth field defined by

σa  = ∈abcdτb ∇c ϕd.

We claim that at every axis point p,  σa  gives the "direction of the axis of rotation" as

determined relative to τa .  The interpretation is supported by the following lemma

that collects several simple facts about σa  for future reference. It implies that at axis

points,  σa  is, up to a constant, the only non-zero vector, orthogonal to τa , that is

kept invariant by all isometries Σϕ.
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Lemma 1  At all points:

(i) σa is orthogonal to τa  and ϕa

(ii) Lϕ(σa)  =  0  =  Lτ(σa)      (Here Lϕ and Lτ are Lie derivative operators.)

(iii) τ[a∇b ϕc]   =  (1/6) ∈abcdσd.

At axis points:

(iv) σa ≠ 0

(v) ∇aϕb  =  (1/2) (τn τn)–1 ∈abcdτcσd

Given any field ψa , if Lϕ(ψa) = 0  at an axis point, then at the point it must be of 

form  ψa  =  k1τa+ k2σa .

Proof  (i) ∈abcd is totally anti-symmetric. So σaτa  = ∈abcdτaτb ∇c ϕd = 0, and

σaϕa  = ∈abcdϕaτb ∇c ϕd = ∈abcdϕ[aτb ∇c ϕd].

But ϕ[aτb ∇c ϕd] = 0, by (2b). So  σaϕa  = 0.  (ii) The Lie operators Lτ and Lϕ annihilate τa

and ϕa , by (1), and annihilate gab and ∈abcd because τa  and ϕa  are Killing vectors. So

they annihilate all fields definable in terms of τa , ϕa , gab, and ∈abcd, including σa .

(iii) follows by a simple computation:

∈abcd σ
d  =  ∈abcd ∈

d m p q τ m ∇p ϕq
 = (3!) δa

[m δb
p δc

q]  τ m ∇p ϕq
 =   6 τ[a ∇b ϕc].

28

For (iv), suppose σa = 0  at an axis point p. Then, by (iii),  τaτ[a ∇b ϕc]  = 0  at p.

Expanding this equation and using the fact that ∇b ϕc = –∇c ϕb (since τa  is a Killing

field), we have

(τaτa) ∇b ϕc  +  τc τ
a∇a ϕb  – τb τ

a∇a ϕc  =  0.

But the second and third terms are 0 at p, since τa∇a ϕb = ϕa∇a τb (by equation (1))

and ϕb = 0 at p. So, since τa  is timelike, ∇b ϕc = 0 at p. But this is impossible. For

given any Killing field κa , if both κa  and ∇a κb vanish at a point, κa  must vanish

everywhere. (See Wald (1984), page 443.) And we know that ϕa  does not vanish

everywhere.  (v) follows from (iii) and a computation very close to the one just used

for (iv).  Finally, assume that Lϕ(ψa) = 0 at p. Then, at p,  ψa∇a ϕb
 =  ϕa∇a ψb = 0  since
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ϕa  = 0 at p. Hence, by (v),  ∈abcdψaτcσd = 0 at p. It follows that the three vectors ψa , τa ,

and σa  are linearly dependent at p and, so, ψa can be expressed there as a linear

combination of the other two vectors. ♦

     Let C be an orbit cylinder. Let γ be an integral curve of τa  on which ϕa  vanishes.29

It represents the worldline of a point30 on the axis of rotation.  We say that γ is the

centerpoint of C if,  for all future-directed null geodesics running from a point on C

to a point on γ, if λa is the tangent field to the null geodesic, then, at the latter

(arrival) point, λa  is orthogonal to σa .31

In what follows, we take for granted that orbit cylinders have unique

centerpoints. The assumption is harmless because it will suffice for our purposes to

restrict attention to regions of spacetime near axis points (e.g., within convex sets)

and there they certainly do.32

 To complete our definition of the CIA criterion we need the following lemma.

Lemma 2 Let p be an axis point. Then there is a unique k such that the Killing

field ξa  =  (τa  + kϕa) has vanishing twist at p, i.e., such that  ξ[a ∇b ξc] = 0 at p.  It's

value is given by:

kcrit(p) = – [(∇b τc)(∇
bϕc)] [(∇mϕn)(∇mϕn)]–1.

Proof  Since ϕa  = 0 at p, what we need to show is that there is a unique k such

that

                 τ[a ∇b τc]  +  k τ[a ∇b ϕc]  = 0                                      (9)

at p. We know from clauses (iii) and (iv) of lemma 1 that τ[a ∇b ϕc] ≠ 0 at p.  So

uniqueness is immediate. For existence, consider the twist vector field of τa defined

by

ωa  = ∈abcdτb ∇c τd.
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ωa is orthogonal to τa  and is Lie derived by ϕa , i.e., Lϕ(ωa) =  0. (The proof is almost

exactly the same as for σa  in clauses (i) and (ii) of lemma 1.) Hence, by the final

assertion in lemma 1, ωa = k2 σ
a at p, for some number k2.  It follows by clause (iii) of

lemma 1, and the counterpart statement for ωa  and τ[a∇b ϕc] , that

τ[a∇b τc]   =   (1/6) ∈abcdωd =  k2 (1/6) ∈abcd σ
d = k2 τ[a∇b ϕc] .

Thus (9) will be satisfied if we take k = – k2.

Now assume that k does  satisfy (9) at p.  Contracting with τa∇bϕc,  and then

dividing by (τc τc), yields

 [(∇b τc)(∇
bϕc)] + k  [(∇bϕc)(∇

bϕc)]  = 0.

(Almost all terms drop out because  τa∇a ϕb = .)  So to complete the proof we need

only verify that (∇b ϕc)(∇
bϕc) ≠ 0 at p. But this follows, since by clause (v) of lemma 1,

(∇bϕc)(∇
bϕc)  =  (1/2)(τnτn)–1∈bcpq(∇bϕc)τpσq  =  – (1/2)(τnτn)–1(σqσq)

at p, and by clauses (i) and (iv), (σqσq) < 0 at p.♦

  Lemma 2 has a simple geometric interpretation.  Equation (9) is equivalent to:

ωa + kσa  = 0.

So, when the dust clears, the lemma asserts that, at every axis point, the twist vector

ωa (of τa) is co-alligned with the axis direction vector σa . The critical value k is just a

proportionality factor.

If p is an axis point, and γ is the integral curve of τa that passes through p, the

function kcrit is constant on γ. (This follows since the condition that  (τa + kϕa) is

twist free is definable in terms of τa, ϕa, and gab, and these are all preserved by the

isometries Γt).  So, in particular, if  γ is the centerpoint of an orbit cylinder C,  we can

write 'kcrit(γ)' without ambiguity. Now we have all the pieces in place for our

definition.

Definition  A striated orbit cylinder (C, k) is non-rotating according to the CIA
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criterion if k = kcrit(γ), where γ is the centerpoint of C.

We now consider the conditions under which the CIA criterion satisfies the

relative rotation condition, and the conditions under which our two criteria of non-

rotation agree. We take them in order.33  Since every axis point is the centerpoint of

some orbit cylinder, the CIA criterion satisfies the relative rotation condition iff the

function kcrit assumes the same value at all axis points. But there is a more

instructive way to formulate the later condition.

Lemma 3  The function f = [–(τaϕa)(ϕnϕn)–1]  can be smoothly extended from M–

to all of M.  The value of the extension at an axis point p is kcrit(p).

Proof  The proof that f  can be smoothly extended to M is long, and we omit the

details.34  But the rest of the proof is easy.  Consider the field τ' a  = τa+ fϕa  defined on

M–. By (3), it is hypersurface orthogonal, i.e., of form τ' a  = g ∇ah. So, it must have

vanishing twist.35 Therefore, at all points in M–,

0  = τ' [a∇b τ' c]  =  τ[a∇b τc]  +  f τ[a∇b ϕc] +  ϕ[cτ a∇b]  f + f ϕ[a∇b τc] + f2ϕ[a∇b ϕc] .

Let k' be the limiting value of f at p.  Then, at p we have

0  = τ[a∇b τc]  +  k' τ[a∇b ϕc]

(since ϕa  = 0  at p).  But we saw in the proof of lemma 3 that there is a unique k that

satisfies equation (9). So k' = kcrit (p). ♦

It follows immediately from lemma 3 that the CIA criterion satisfies the relative

rotation condition iff  [–( a
a )( n

n)–1]  has the same limit values at all axis point. At

axis points in Kerr spacetime, the limit value of  [–(τaϕa)(ϕnϕn)–1]  is

2 M r a [r2 + a2]–2.

(Recall (8).) Clearly, this function is not constant over any interval of values for r .

So we see that the CIA criterion does not satisfy the relative rotation condition in

Kerr spacetime, or the restriction of Kerr spacetime to an open set containing an axis
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point.

We also see if that if the background stationary, axi-symmetric spacetime is static,

then the CIA criterion satisfies the relative rotation condition. (If [–(τaϕa)(ϕnϕn)–1]  is

constant, then certainly the function has the same limit values at all axis point.) It

turns out, however, that the converse is false.36

Next consider the conditions under which our two criteria agree (for all rings).

What is required is that, for all orbit cylinders C, the value of [–(τaϕa)(ϕnϕn)–1] on C

be equal to the value of kcrit at the centerpoint of C. Recalling how centerpoints are

defined, and making use of lemma 3, we see that the CIA and ZAM criteria of non-

rotation agree (for all rings) iff the function [–( a
a )( n

n)–1] is constant on all null

geodesics that terminate at axis points and have tangents there orthogonal to the

axis direction a .37  It follows that they do not agree in Kerr spacetime, or any open

set in Kerr spacetime containing an axis point.38

II.4  The Limit Condition and the Theorem

Finally, we turn to the limit condition. Let (C1, k1), (C2, k2), (C3, k3), ... be a

sequence of striated orbit cylinders that share a common centerpoint γ, and that

converge to γ. (We can take the second condition to mean that each point on γ is the

accumulation point of a sequence of points p1, p2, p3, ... , with pi  on C i .)   For all i, let

τi
a  = τa  + ki  ϕ

a , and let ωi
a be its associated twist field

ωi
a  = ∈a

bcd τi
b ∇c τi

d.

We can take the limit condition to assert that, if each (Ci , ki) qualifies as "non-

rotating", then the sequence ω1
a , ω2

a , ω3
a , ... converges to  on γ.  This captures the

requirement that the measured angular velocity of (Ci , ki) relative to the compass of

inertia on γ goes to 0. An equivalent formulation is the following.39
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Limit Condition  Let (C1, k1), (C2, k2), (C3, k3), ... be a sequence of striated orbit

cylinders that share a common centerpoint γ, and that converge to γ. If each of

the (Ci , ki) qualifies as "non-rotating", then lim
 i→∝

ki  = kcrit(γ).

It follows immediately, of course, that the CIA criterion satisfies the limit

condition (in all stationary, axi-symmetric spacetime models). For if each (Ci , ki)

qualifies as non-rotating according to that criterion,  ki  = kcrit(γ) for all i. (One does

not need to take a limit to reach kcrit(γ).)  It also follows immediately from lemma 3

that the ZAM criterion satisfies the limit condition (in all stationary, axi-symmetric

spacetime models). For if each (Ci , ki) qualifies as non-rotating according to that

criterion, ki  is equal to the value of the function  [–(τaϕa)(ϕnϕn)–1]  on Ci , for all i.

And the sequence of those  values converges to kcrit(γ) by the lemma (and the fact

that the Ci  converge to γ).

We can, now, finally, state our principal result.

Theorem  Assume the background stationary, axi-symmetric spacetime model is

one (like Kerr spacetime) in which there exist axis points p and p' such that

kcrit(p) ≠ kcrit(p').  Then there is no generalized criterion of non–rotation that (in

the model) satisfies the following three conditions:

(i)   limit condition

(ii)  relative rotation condition

(iii) non-vacuity condition:  there is at least one striated orbit cylinder  

that qualifies as "non-rotating".

Proof:  Let γ and γ' be the integral curves of τa  containing p and  p', and let C1, C2,

C3, ... and C'1, C'2, C'3, ...  be sequences of orbit cylinders that converge to γ and γ'

respectively. Now assume there is a generalized criterion of non-rotation G that

satisfies all three conditions in the model. Let (C, k) be a striated orbit cylinder that
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qualifies as "non-rotating" according to G.  For all i sufficiently large, (Ci , k)  and

(C ' i , k) are striated orbit cylinders, i.e., (τa + kϕa) is timelike on Ci and C'i . So, by the

relative rotation condition, (Ci , k) and (C 'i , k) qualify as non-rotating according to G

for all i sufficiently large. Therefore, by the limit condition applied to the sequences

(C1, k), (C2, k), (C3, k), ...  and (C'1, k), (C '2, k), (C'3, k), ... , it must be the case that k =

kcrit(p) and k = kcrit(p'). But this contradicts our hypothesis that kcrit(p) ≠ kcrit(p'). So

our non-existence claim follows. ♦

The implication in the theorem is reversible. For if the value of kcrit is  the same

at all axis points, then the CIA criterion satisfies all three of the stated conditions.

(Even then, of course, it need not be the case that the CIA criterion agrees with ZAM

criterion, or that the latter satisfies the relative rotation condition.)

 ...................................................

I have argued that, in the context of general relativity, the concept of rotation is a

delicate and interesting one. Perhaps it is worth saying, in conclusion, that I intend

no stronger claim. There is no suggestion here that the no-go theorem poses a deep

interpretive problem (or any problem at all) for the foundations of general

relativity, nor that we have to give up talk about rotation in general relativity. The

point is just that, depending on the circumstances, we may have to disambiguate

different criteria of rotation, and may have to remember that they all leave our

classical intuitions far behind.
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Footnotes

1 It is a pleasure to dedicate this paper to Howard Stein. It has been one of the great

good fortunes of my life to be able to count him as my teacher, colleague, and friend

for over twenty-five years.  I wish to thank him for the assistance and support he

has given me during this time, and to thank him, David Garfinkle, Robert Wald,

and, especially, Robert Geroch for helpful discussion of the issues raised in the

paper. I am also grateful to John Norton for help in preparing figures 4 and 5.

2 For an extended discussion of other criteria, see Page (1998) and the references

cited there.

3 It turns out that a generalized criterion of rotation can satisfy both the limit and

relative rotation conditions vacuously if, according to the criterion, no ring, in any

state of motion (or non-motion), qualifies as "non-rotating".

4 Here and throughout section I, we make free appeal to our common sense

(Euclidean) intuitions about the geometry of space.  We take for granted that we

understand, for example, what it means to say that the plane of the ring is

orthogonal to the axis, that the axis is at the center of the ring, etc.. Later, in section

II, we will have to consider how to capture these conditions within the framework

of four-dimensional spacetime geometry.

5 We will later restrict attention to spacetimes that are stationary and axi-

symmetric. It is the presence of the latter axial (or rotational) symmetry that gives

rise to a notion of angular momentum.  (See footnote 20.)

6 I am only thinking here of experimental procedures that can be performed

locally, on or near the ring and axis. Procedures performed, for example, at "spatial

-29-



infinity", are excluded.

7 For example, we can take an arbitrary ring in an arbitrary state of uniform

rotational motion and dub it "non-rotating". Then we can take other rings to be

"non-rotating" precisely if they are non-rotating relative to that one (in the sense

described).

8 In what follows, we presuppose familiarity with the basic mathematical

formalism of general relativity, and make use of the so-called "abstract index

notation" (see Wald (1984)).

9 Thus, Γ0 and Σ0  are the identity map on M, and

Γt  ο Γt' =  Γ(t + t')    and    Σϕ ο Σϕ' =  Σ  (ϕ + ϕ') (mod 2π)

for all t, t' in R, and all  ϕ, ϕ' in S1.

10  Strictly speaking, this condition rules out standard examples of interest,

including Kerr spacetime. We are, in effect, limiting attention to restricted regions of

interest in those spacetimes where the condition holds.  (See the final paragraph of

this section.)

11 That is, at every point there is a timelike vector tangent to the submanifold.

Equivalently, the restriction of gab to the submanifold has signature (1, –1).

12 For a proof of the equivalence, see Wald (1984), p. 163.

13 See the discussion in Wald (1984), pp. 162 -165.

14 Note that the definition does not depend on the initial choice of timelike Killing

field τa  in this sense:  given any other choice τ*a = (k1 τ
a  + k2 ϕa),  τ*a  satisfies the

constancy condition iff τa does.
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15 Usually one says that a spacetime is "static" if there exists a timelike Killing field

κa  (defined everywhere or, at least in some domain of interest) that is hypersurface

orthogonal, i.e.,  such that κa
 = f (∇ag)  for some functions f and g. (In this case κa  is

orthogonal to the g = constant hypersurfaces.)

16 That is, a timelike vector  αa at a point will qualify as future directed if  αaτa  > 0.

17 In what follows, we will not always bother to distinguish between (parametrized)

curves and the images of such curves.  Strictly speaking, it is usually the latter in

which we are interested.

18  Since ξa  is timelike and future directed, it must be the case that

(k1τa  + k2ϕa) (k1τa  + k2ϕa) > 0       and       τa  (k1τa  + k2ϕa) > 0.

These two conditions imply that k1 > 0.

19 Rings non-rotating according to this criterion might also be called "locally non-

rotating". That terminology is often used in the literature. (See, for example,

Bardeen (1970), p. 79, and Wald (1984), p. 187.)

20  Given any Killing field κa in any relativistic spacetime model (not necessarily

stationary and axi-symmetric), and any timelike curve with (normalized) four-

velocity ξa , we associate with the two a scalar field (κaξa) on the curve. If the curve

represents a point particle, then we call (κaξa) the "energy" of the particle (relative to

κa) if κa is timelike, and call it the "angular momentum" of the particle (relative to

κa) if κa  corresponds to a rotational symmetry. In the special case of a free particle

with geodesic worldline, the canonically associated magnitude (κaξa) is constant on

the curve (i.e., is conserved) since

ξn∇n (κ
aξa) = κaξn∇n ξa  + ξaξn∇n  κa= 0.
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(The first term in the sum vanishes because the curve is a geodesic (ξn∇nξa  = 0); the

second does so because κa  is a Killing field ∇(n κa) = 0.)

In the case at hand, we are considering a rotational Killing field ϕa  and points on

the ring with four-velocity  f(τa+kϕa), where f = [(τa+ kϕa)(τa  + kϕa)]–1/2. The

angular momentum of the points (with respect to ϕa) is  f(τa+kϕa)ϕa . Clearly, this

magnitude vanishes precisely if (τa  + kϕa) is orthogonal to ϕa .

21 See also Bardeen (1970) and Ashtekar and Magnon (1975).  Ours is a simple, low-

brow calculation.  The discussion in the second reference is much more general and

insightful. (Readers may want to skip the calculation. It is not needed for anything

that follows.)

22 To confirm that it is constant along them, note that

(τa  + kϕa)∇a(ϕ – kt) = τa∇a(– kt) + (kϕa)∇a  ϕ = 0.

23 t increases along all three curves since

(τn + kϕn)∇n t  = (τn + liϕ
n)∇n t  =  1

for i = 1, 2.

24 Note that if λi  is parametrized by s, then

(dϕ'/dt) = (dϕ'/ds)/(dt/ds)  =  [(τn + liϕ
n)∇n ϕ']  [(τn + kϕn)∇n t]–1  = (li – k).

25 It might seem preferable to state the condition this way.  For all striated orbit

cylinders (C, k) and all orbit cylinders C', if (C, k) qualifies as "non-rotating", then so

does (C', k). But there is a problem with this formulation. It takes for granted that

(C', k) is a striated orbit cylinder in the first place, i.e., that the field  (τa+kϕa) is

timelike on C'.

26 (Recall our slightly non-standard definition of "static" in section II.1.) The "if"
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half of the proof is straightforward. The proof of converse involves one small

complication. Here is the argument in detail. Assume that the ZAM criterion

satisfies the relative rotation condition. Let p1 and p2 be any points in M–, let C1 and

C2 be the orbit cylinders that contain them, and let k1 and k2 be the values of the

function [–(τaϕa)(ϕaϕa)–1]  at p1 and p2. We must show that k1 = k2. We don't know

(initially) that either (C1, k2) or (C2, k1) qualifies as a striated orbit cylinder. But, by

moving sufficiently close to the axis, we can find a point p3 such that, if C3 is the

orbit cylinder that contains p3, (C3, k1) and (C3, k2) both qualify as striated orbit

cylinders. (For any value of k, the vector field (τa+kϕa) is timelike at points

sufficiently close to axis points.) (C1, k1) and  (C2, k2) are both non-rotating according

to the ZAM criterion. So, by the relative rotation condition, (C3, k1) and (C3, k2) are

both non-rotating according to that criterion. So k1 and k2 must both be equal to the

value of  [–(τaϕa)(ϕaϕa)–1]  at p3. Therefore,  k1 = k2.

27 Volume elements always exist locally, and that is sufficient for our purposes.

28 For facts such as   ∈abcd ∈
d m p q  = (3!) δa

[m δb
p δc

q],  see Wald (1984), p.  433.

29 If ϕa  vanishes at one point on an integral curve of τa , it necessarily vanishes at

all points.  This follows from equation (1).

30 There is a certain ambiguity in terminology here. We have taken an "axis point"

to be a point in M at which ϕa  = 0. But here we have in mind an "axis point" in the

sense of figure 2 (i.e., a point in a three-dimensional space). It is represented by a

timelike curve in M.  In what follows, when referring to "axis points", it should be

clear from context (and notation) which is intended.

31 Note that if the stated condition holds for one future-directed null geodesic
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running from a point on C to a point on γ, it holds for all. For the entire class of such

null  geodesics  is generated from any one under the action of the isometry group

{Γt ο Σϕ: t∈R & ϕ∈S1}. Note too that the requirement that λa  be orthogonal to  σa  at

the arrival point is equivalent to the (slightly more intuitive) requirement that, at

that point, the component of λa orthogonal to τa  (representing the "spatial

direction" of the incoming light signal relative to τa) be orthogonal to σa .

32 Here is a rough sketch of the proof.  Suppose p is an axis point and suppose λa is

a past–directed null vector at p that is orthogonal to the axis direction σa .  We can

extend λa  to a past directed null geodesic.  Let q be any point on that geodesic and let

C(q) be the orbit cylinder that contains q, i.e., the orbit of q under the isometry group

{Γt ο Σϕ: t∈R & ϕ∈S1}. Then, "by construction", C has a centerpoint γ (with p on it).

 There is a smooth two-dimensional timelike submanifold S through p that

consists entirely of axis points. (At every point of S, the tangent plane to S is

spanned by  τa  and σa , where  σa is as in the preceding paragraph.) If we let λa range

over all past–directed null vectors at points of S that are orthogonal to σa , and

consider all points q on the past-directed null geodesics they determine (or at least

all such points sufficiently close to p), we sweep out an open set O. The argument in

the preceding paragraph shows that every orbit cylinder through every point in O

has a centerpoint. Uniqueness follows from that fact that, at least locally, given any

point q, there is a unique point p on S such that there is a future directed null

geodesic that runs from q to p and whose tangent vector at q is orthogonal to σa .

33 To support the operational interpretation of the CIA criterion presented in

section I, one can proceed as follows. Let (C, k) be a striated orbit cylinder, let γ be the

centerpoint of C, and let γ' be a striation line on the cylinder, representing the point

on the ring (say R) at which a light source is mounted. (So, both γ and γ' are integral
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curves of the field  τ' a  = τa  + kϕa .)   Finally, let λa  be a future directed null geodesic

field, the integral curves of which run from γ' to γ. (The latter represent light signals

emitted at R and received at the center point.) The entire field of integral curves is

generated from any one of them under the action of the isometry group associated

with τ' a , i.e.,  the field λa  is Lie derived by τ' a . Suppose the telescope at the center

point is tracking the light source. Then the direction of the telescope (as determined

by the observer with worldline γ) is represented by a vector field νa  on γ whose value

at any point is the component of λa  orthogonal to τ' a at that point.  It is not difficult

to check that the Fermi derivative of νa  along γ vanishes iff  k = kcrit(γ).  (For details,

see the discussion in Malament (forthcoming). The vanishing of that Fermi

derivative serves as a surrogate here for the flatness of the water surface in the

bucket.)

34 Here is a rough sketch of a proof (shown to us by Robert Geroch). Let S be the

two-dimensional submanifold of axis points.  Let α = (–τaϕa) and β = (ϕaϕa), so that f

= α/β.  Let p be a point on S. Given any point q sufficiently close to p, it has a unique

orthogonal "projection" q' on S, i.e., there is a unique point q' on S with the

property that the geodesic segment running from q' to q is orthogonal to S. So the

point q is uniquely distinguished by a pair of objects:  (i) the value of β at q, and (ii)

its orthogonal projection q' on S.  Thus, if we restrict attention to a suitable open

neighborhod of p, we can think of α as a function defined on a subset A of the

product manifold (with boundary) [0,∞) × R2.  We first show that α is smooth, not

just as a function on M, but also when construed this way (as a function on A).  To

do so, we consider a finite Taylor series expansion of α, up to order n, at p, with

partial derivatives taken in directions tangent to, and orthogonal to, S.  Since α is

constant on orbits of ϕa, the coefficients in the series, i.e, the mixed partial

derivatives of α at p, have a special, simple structure. Those of odd order in
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directions orthogonal to S must be 0, and those of even order in those directions can

be expressed in terms of derivatives in any one orthogonal direction (and directions

tangent to S).  This allows us to reinterpret the series as a finite Taylor series

expansion (at p) of α construed as a function on A.

 Next we observe that α = 0  and ∇a α = 0 at p. (The second equation can be

proved using clause (v) of lemma 1.) It follows that the terms in the expansion of

0th order in β are 0. So we can divide by β and generate a finite Taylor series

expansion for f = α/β at p.  Since the number of terms n in the original expansion

was arbitrary, so is the number of terms in the derived expansion. It follows that all

partial derivatives of f (as a function on M) exist and are continuous at p.

35 The computation is straight forward.

τ' a∇b τ' c =  g (∇ah)∇b (g (∇c h))  =  g2(∇ah)(∇b ∇c h ) + g(∇ah)(∇b g)(∇ch).

So, since, (∇[b ∇c] h ) = 0, and (∇[ah)(∇c] h) = 0, it follows that τ' [a∇b τ' c] = 0.

36 For a counterexample, it suffices to find a stationary axi-symmetric spacetime

that is not static, but exhibits "cylindrical symmetry", i.e., in which the axis direction

field σa  is a Killing field. For the latter condition will guarantee that the function

kcrit is constant as one moves along the axis.  Gödel spacetime is one such.  (In terms

of standard t, ϕ, r,  y coordinates, σa turns out to be (up to a constant) just the

translational Killing field (∂/∂y)a .) (For a description of Gödel spacetime, see

Hawking and Ellis (1973). For further discussion of rotation in the model, see

Malament (forthcoming).)

37 It would be nice to have a simpler or more instructive characterization. (I do not

have one.)

38  One can verify this with a calculation, but there is a painless way to see that the
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stated constancy condition cannot hold. Start at a point p on the axis with positive r

coordinate, choose a future directed null vector λa at p orthogonal to σa , and

consider the (maximally extended) null geodesic through p that has tangent λa at p.

It comes in from "past infinity" where, asymptotically, the value of [–(τaϕa)(ϕnϕn)–1]

is 0.  (Recall (8).) Since its value at p is not  0, the function cannot be constant on the

geodesic.

39   By lemma 2,  τ[b
 ∇c

 τd] +  kcrit τ[b
 ∇c

 ϕd]  = 0  on γ.  So

{ωi
a} converges to  on γ

⇔   {τ[b
 ∇c

 τd] +  ki τ[b
 ∇c

 ϕd]}  converges to 0 on γ

⇔   {(kcrit – ki) τ[b
 ∇c

 ϕd]}  converges to 0 on γ.

Since τ[b
 ∇c

 ϕd] ≠ 0 on γ, the third conditions holds iff  (kcrit – ki) converges to 0.
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