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A NODAL-BASED FINITE ELEMENT APPROXIMATION OF THE MAXWELL

PROBLEM SUITABLE FOR SINGULAR SOLUTIONS

SANTIAGO BADIA∗ AND RAMON CODINA†

Abstract. A new mixed finite element approximation of Maxwell’s problem is proposed, its main features

being that it is based on a novel augmented formulation of the continuous problem and the introduction of a mesh

dependent stabilizing term, which yields a very weak control on the divergence of the unknown. The method is

shown to be stable and convergent in the natural H(curl; Ω) norm for this unknown. In particular, convergence

also applies to singular solutions, for which classical nodal based interpolations are known to suffer from spurious

convergence upon mesh refinement.

1. Introduction. The simulation of electromagnetic phenomena with increasing com-

plexity demands accurate and efficient numerical methods suitable for large-scale computing.

Finite element (FE) methods are commonly used in this context because they can easily han-

dle complicated geometries by using unstructured grids, provide a rigorous mathematical

framework and allow adaptation.

In many applications of current interest, the electromagnetic problem is coupled to other

physical processes. Salient examples of multiphysics phenomena that include electromag-

netics are magnetohydrodynamics (MHD) and plasma physics. These two problems have

experienced increasing attention due to the need to develop numerical laboratories in fusion

technology design. The simulation of these problems (and many others) would benefit of an

all-purpose FE method that would be suitable for the different sub-problems at hand, simpli-

fying the implementation issues and the enforcement of the coupling conditions. In particular,

an all-purpose continuous nodal-based formulation would be a favored candidate. E.g. the

Navier-Stokes equations are commonly solved with stabilized FE approximations that can

deal with the singularly perturbed nature of the system for high Reynolds numbers and cir-

cumvent the restrictions related to the corresponding inf-sup condition (see e.g. [13, 14]). In

plasma physics, fields computed by discontinuous FE Maxwell solvers create a considerable

numerical noise when embedded in a plasma code, e.g. using the particle-in-cell method

(see [2]). Furthermore, nodal approximations are particularly well-suited for time-dependent

electromagnetic problems because the mass matrix can be consistently lumped without loss

of accuracy, leading to inexpensive transient solvers.

The Maxwell operator has a saddle-point structure, with the particularity that the La-

grange multiplier introduced to enforce the divergence-free constraint is identically zero. Ex-

isting FE methods that satisfy the discrete counterpart of the inherent inf-sup condition for

this problem are based on Nedelec’s or edge elements (see e.g. [27, 33]); edge elements lead

to fields with discontinuous normal component on element edges or faces. We also refer to

alternative formulations based on discontinuous Galerkin approximations [28, 24, 23, 34].

With the aim to solve the Maxwell problem with Lagrangian finite elements (FEs), the dif-

ferential operator of the problem can be transformed into an elliptic one, by adding an exact

penalty term containing the divergence (see [26]); the penalty is exact because the Lagrange

multiplier vanishes. The resulting method satisfies the compatibility conditions over the ele-

ment faces in a pointwise sense. Unfortunately, this method is not able to converge to nons-
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mooth solutions that appear in nonconvex domains, e.g. domains with re-entrant corners (see

[25, 17] and Section 3).

Using an innovative idea, Costabel and Dauge proposed in [17] a rehabilitation of H1-

conforming C0 nodal (i.e. Lagrangian) FEs based on a weighted version of the penalty term

that was able to converge to the“good” solution in nonconvex domains. In order to use the

resulting numerical method, singularity regions have to be identified a priori, and proper

weighted functions constructed, based on this information. In the negative side, it clearly

complicates the numerical integration (of the weighted term), loses computational efficiency

and complicates the automatization of the simulations. An alternative approach to solve the

Maxwell problem is the decomposition of the solution into singular and smooth part (see

[2, 26]) but this method is harder to generalize, specially in three dimensions. Very recently,

Duan et al. have designed in [19] a method based on local projections that uses a FE space

composed of cubic nodal elements enriched with edge and element bubbles. The introduction

of the local projection in the penalty term allows to converge to nonsmooth solutions, but the

same projection weakens convergence, which is only attained in the L2 norm. There are other

nodal-based FE methods, but they converge to spurious solutions in nonconvex domains (see

e.g. [30, 31]).

In this work, we aim at developing a new mixed FE formulation for Lagrangian finite ele-

ments, based on a stabilized approximation of a novel augmented formulation of the Maxwell

problem. We also refer to [6] for a similar approach, regarded to the eigenvalue problem. The

compatibility condition associated to the inf-sup condition can be avoided by the introduction

of the stabilization and exact penalty terms. The method can be understood as a residual-

based FE method heuristically motivated in a variational multiscale framework [29]. On the

other hand, the resulting numerical algorithm is able to capture nonsmooth solutions, so it is

suitable for problems in nonconvex domains. The method is stable and convergent for any

pair of nodal FE spaces for the unknown and the Lagrange multiplier. The implementation

is straightforward, since the extra terms are standard and can be integrated numerically like

the Galerkin terms. It can be implemented in a stabilized FE solver for the Navier-Stokes

equations with minor modifications. Thus, the method is an excellent candidate for being

used in MHD; we have developed a nodal-based FE formulation of the visco-resistive MHD

problem where the magnetic sub-problem is approximated following the ideas in this work in

[5], reporting excellent results.

The outline of the paper is as follows. In Section 2 we introduce the Maxwell problem

and different augmented and/or penalized formulations. Section 3 is devoted to the numer-

ical approximation of the problem by Lagrangian FEs. The problem related to nonconvex

domains is discussed and the new formulation introduced. A complete stability and conver-

gence analysis is also provided. In Section 4 we present some numerical experiments that

confirm the theoretical analysis. Section 5 closes the article drawing some conclusions.

2. The Maxwell problem. In this section, we introduce some notation and state the

Maxwell problem. We consider different augmented and penalized formulations that will be

used throughout the paper.

2.1. Notation. Let Ω be a bounded domain in Rd, with d = 2, 3 the space dimension.

Given a Banach space X , we denote its associated norm by ‖·‖X ; for the sake of conciseness,

we will omit the subscript for the L2(Ω) space of square integrable functions. The space of

vector-valued functions with components in X is denoted by Xd. The dimension superscript

will be omitted in the norm, i.e. we will simply denote its norm by ‖·‖X instead of ‖·‖Xd . The

dual space of X is denoted as X ′. The inner product between two scalar or vector functions

f1, f2 ∈ L2(Ω) is denoted by (f1, f2), whereas 〈f1, f2〉 is used for a duality pairing.
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W s,m(Ω) is used for the standard Sobolev space, with real coefficients s ≥ 0 and m ≥ 1.

Hilbert spaces W s,2(Ω) are denoted by Hs(Ω). We write H1
0 (Ω) for the space of functions

in H1(Ω) with null trace on ∂Ω. We will make use of the following spaces of vector fields:

H(div; Ω) :=
{

v ∈ L2(Ω)d such that ∇ · v ∈ L2(Ω)
}

,

H(curl; Ω) :=
{

v ∈ L2(Ω)d such that ∇× v ∈ L2(Ω)d
}

,

and the subspaces

H(div 0; Ω) := {v ∈ H(div; Ω) such that ∇ · v = 0} ,

H0(curl; Ω) := {v ∈ H(curl; Ω) such that n× v = 0 on ∂Ω} .

We use the notation A . B to indicate that A ≤ CB, where A and B are expressions

depending on functions that in the discrete case may depend on the discretization as well, and

C is a positive constant.

2.2. Problem statement. In this work, we consider the Maxwell problem, which physi-

cally describes magnetostatics in a bounded domainΩ surrounded by a perfect conductor. Let

us consider Ω ⊂ Rd to be a simply connected nonconvex polyhedral domain with a connected

Lipschitz continuous boundary ∂Ω. Besides its range of applicability, this system of partial

differential equations exhibits the mathematical complications encountered in more involved

model problems (see e.g. [19, 10]). The Maxwell problem can be stated as a minimization

problem that consists in finding the vectorial field u (magnetostatic field) that minimizes the

potential

E(v) =

∫

Ω

(

λ|∇ × v|2 − 2v · f
)

dx,

with the constraint ∇ · v = 0 and the homogeneous boundary condition n× v = 0 over the

boundary ∂Ω, for some divergence-free datum f ; λ is a positive physical parameter.

2.3. Augmented and penalized formulations. The Maxwell problem can be recasted

as a saddle-point problem by enforcing the divergence constraint with a Lagrange multiplier

p. The Euler-Lagrange equations read as follows: seek a pair (u, p) solution of

λ∇× (∇× u)−∇p = f ,(2.1a)

∇ · u = 0,(2.1b)

with n × u = 0 and p = 0 on ∂Ω. As we will see later on, p vanishes in the appropriate

functional setting. Thus, the problem consists of finding u such that λ∇×∇×u = f and ∇·
u = 0 on Ω. It has motivated the exact penalty approach, in which the divergence constraint

is penalized and the Lagrange multiplier eliminated; it consists of seeking u solution of

(2.2) λ∇×∇× u− λ∇(∇ · u) = f in Ω.

The regularization requires to add the boundary condition ∇·u = 0 on the boundary ∂Ω (see

[26]). This re-statement of the problem is (in principle) very appealing from a numerical point

of view. However, as we will see in the next section, this exact penalty modifies the functional

setting of the original problem, leading to spurious solutions for nonconvex domains.

The variational interpretation of the mixed problem (2.1) admits two functional settings.

The so-called curl formulation reads as: find u ∈ H0(curl; Ω) and p ∈ H1
0 (Ω) such that

(λ∇× u,∇× v)− (∇p,v) = (f ,v) , ∀v ∈ H0(curl; Ω),(2.3a)

(∇q,u) = 0, ∀q ∈ H1
0 (Ω),(2.3b)
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where f ∈ H(div 0; Ω) is assumed. However, this is not the only functional setting in which

the problem is well-posed; the H1(Ω) regularity for p can be “transferred” to u, leading to a

curl-div variational formulation: find u ∈ H0(curl; Ω) ∩H(div; Ω) and p ∈ L2(Ω)/R such

that

(λ∇× u,∇× v) + (p,∇ · v) = (f ,v) , ∀v ∈ H0(curl; Ω) ∩H(div; Ω),(2.4a)

− (q,∇ · u) = 0, ∀q ∈ L2(Ω).(2.4b)

On the other hand, the exact penalty method only allows a curl-div formulation. Thus, its

variational form reads as: seek u ∈ H0(curl; Ω) ∩H(div; Ω) such that

(2.5) (λ∇× u,∇× v) + (λ∇ · u,∇ · v) = (f ,v),

for any v ∈ H0(curl; Ω)∩H(div; Ω). For the sake of conciseness, we introduce the bilinear

forms

a(u,v) = (λ∇× u,∇× v) , b(v, p) = − (∇p,v) ,

and c(u, p;v, q) = a(u,v) + b(v, p) − b(u, q). Let us also denote the Hilbert spaces

H0(curl; Ω) and H1
0 (Ω) by V and Q respectively, supplemented with the norms

‖v‖V := ‖v‖H(curl;Ω) =
1

ℓ
‖v‖+ ‖∇× v‖,(2.6)

‖q‖Q := ‖q‖H1
0
(Ω) =

1

ℓ
‖q‖+ ‖∇q‖,(2.7)

where ℓ = ℓ(Ω) is a constant with dimensions of length that makes the norms dimensionally

consistent. In the following, ℓ will denote a length scale, not necessarily the same at different

appearances. The norm associated to the product space V ×Q is denoted by

|||v, q||| = λ
1
2 ‖v‖V + ℓλ− 1

2 ‖q‖Q.

From the standard theory of saddle-point problems, well-posedness of the curl formulation

(2.3) is proved in the next theorem.

THEOREM 2.1. The following inf-sup condition is satisfied,

(2.8) inf
(u,p)∈V×Q\{0,0}

sup
(v,q)∈V×Q\{0,0}

c(u, p;v, q)

|||u, p||||||v, q|||
≥ β > 0.

As a consequence, formulation (2.3) is well-posed.

Proof. The form a : V ×V → R is bilinear, continuous and coercive when it is restricted

to V ∩ H(div 0; Ω) (the closed subspace of V in the kernel of b(·, q) for any q ∈ Q), since

a(v,v) ≥ λ‖∇×v‖2 for any v ∈ V ∩H(div 0; Ω). The L2(Ω) control of v is consequence

of the Poincaré-Friedrichs inequality

1

ℓ
‖v‖ ≤ cF ‖∇× v‖, ∀v ∈ V ∩H(div 0; Ω)

(see [32, Corollary 3.51]). On the other hand, b(v, p) is a continuous bilinear form such that,

for any p ∈ Q, there exists vp ∈ V with ‖vp‖V = 1 that satisfies b(vp, p) ≥ βb‖p‖Q.

This is true, since ∇p ∈ V for any p ∈ Q. The coercivity of a in the kernel of b, and

the inf-sup condition satisfied by b are necessary and sufficient conditions for proving (2.8)
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(see [21, Proposition 2.36]). We know from the theory of saddle-point problems that (2.3) is

well-posed if and only if condition (2.8) is satisfied (see [21, Theorem 2.34]).

The curl-div formulations are equivalent to the curl formulation (2.3).

PROPOSITION 2.2. Formulations (2.4) and (2.5), with f ∈ H(div 0; Ω), are well-posed.

Furthermore, they are equivalent to (2.3) in the sense that they lead to the same u.

Proof. Let us only show that p ≡ 0 in (2.3), which will be systematically used along

the paper. Taking v = ∇p (which clearly belongs to V ) in (2.3), and using the fact that

∇ × ∇p = 0 and ∇ · f = 0 a.e. in Ω, we obtain ‖∇p‖ = 0. Since p vanishes on ∂Ω, it

implies p ≡ 0 a.e. in Ω by virtue of Poincaré’s inequality. We refer to [25, Propositions 3.4

and 3.5] for the completion of the proof.

2.4. A novel augmented formulation for the Maxwell problem. In this work, we

propose a novel numerical approximation of the Maxwell problem whose starting point is a

different augmented formulation. Since we are interested in a curl formulation for reasons

that will become obvious in the next section, the idea consists of adding the term ℓ2

λ
∆p to

(2.1b); ℓ > 0 is the penalty value, with dimension of length. A length scale is inherent

to the problem, since it is needed to define dimensionally consistent norms in (2.6)-(2.7).

Theoretically, this length scale comes from the Poincaré-Friedrichs inequality of the problem

at hand. The augmented formulation in strong form consists of finding u and p such that

λ∇×∇× u−∇p = f ,

−∇ · u−
ℓ2

λ
∆p = 0,

in Ω, satisfying n× u = 0 and p = 0 on ∂Ω. Since p ∈ Q is identically zero, the penalty is

exact. The weak form of the new formulation reads as: find u ∈ V and p ∈ Q such that

a(u,v) + b(v, p) = (f ,v) , ∀v ∈ V,(2.9a)

−b(u, q) + sp(p, q) = 0, ∀q ∈ Q,(2.9b)

where

sp(p, q) =
ℓ2

λ

∫

Ω

∇p · ∇qdx.

We now show the equivalence of the new formulation (2.9).

PROPOSITION 2.3. Formulation (2.9) is well-posed and its solution (u, p) is the solution

of (2.3) for f ∈ H(div 0; Ω).
Proof. Well-posedness is simply verified by proving that p ≡ 0 in (2.9) (using the ideas

introduced above) and testing the system against (v, q) = (u, p). The new formulation is

clearly stable in the norm ||| · |||, because of the stability of the original curl formulation and

the positivity of the term added. Equivalence is now straightforward.

3. Numerical approximation.

3.1. Finite element approximation. Let Th be a partition of Ω into a set of finite ele-

ments {K}. For every element K , we denote by hK its diameter, and set the characteristic

mesh size as h = maxK∈Th
hK . We consider a non-degenerate family {Th}h>0 of finite ele-

ment partitions. The space of polynomials of degree less or equal to k > 0 in a finite element

K is denoted by Pk(K). The space of continuous piecewise polynomials is defined as

(3.1) Nk(Ω) =
{

vh ∈ C0(Ω) such that vh|K ∈ Pk(K) ∀K ∈ Th
}

.
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This type of finite element space is the one that we consider in this work for both scalar

fields and every component of vectorial fields. These approximations are usually called H1-

conforming approximations, because of the inter-element continuity. Any function Nk(Ω)
can be uniquely determined by its values on a set of points (nodes) in Ω (see [7, 21]), and so

this is a nodal finite element approximation.

For quasi-uniform partitions, there is a constant Cinv, independent of the mesh size h
(the maximum of all the element diameters), such that

‖∇vh‖L2(K) ≤ Cinvh
−1
K ‖vh‖L2(K), ‖∆vh‖L2(K) ≤ Cinvh

−1
K ‖∇vh‖L2(K)(3.2)

for all finite element functions vh defined on K ∈ Th. This inequality can be used for scalars,

vectors or tensors.

3.2. The corner paradox. Although all the formulations introduced above are equiva-

lent, stable and consistent, numerical approximations of the curl-div formulations (2.4) and

(2.5) lead to spurious solutions for nonconvex domains, e.g. domains with re-entrant corners.

Costabel provided in [15] a mathematical justification to this surprising observation.

LEMMA 3.1. If Ω is not convex, V ∩ H1(Ω)d is a closed proper subspace of V ∩
H(div; Ω).

Out of this result, H1-stable finite element formulations cannot converge to solutions in

V ∩H(div; Ω) that do not belong to V ∩H1(Ω)d. We can prove that this is the case of the

curl-div formulation: find uh ∈ Xh ⊂ H1(Ω)d ∩ V such that

(λ∇× uh,∇× vh) + (λ∇ · uh,∇ · vh) = (f ,vh), ∀vh ∈ Xh,(3.3)

where Xh is a H1-conforming finite element space. From Lemma 3.1 we then have:

COROLLARY 3.2. If Ω is not convex

lim
h→0

‖u− uh‖V ∩H(div;Ω) 6= 0,

in general.

Proof. Every element of the sequence {uh}h>0 belongs to H1(Ω)d. Further, every uh

is solution of (3.3) and thus, λ‖∇ × uh‖2 + λ‖∇ · uh‖2 ≤ C‖f‖‖uh‖, for C uniform with

respect to h. From [15, Theorem 4.1], we have that ‖uh‖H1(Ω) . ‖∇ × uh‖ + ‖∇ · uh‖,
for Ω being a polyhedron (see also [15, Corollary 2.2] in the case when ∂Ω ∈ C1,1). Thus,

λ‖∇ × uh‖ + λ‖∇ · uh‖ . ‖f‖ and {uh}h>0 is uniformly bounded in H1(Ω)d ( V ∩
H(div; Ω) and cannot approximate an element in V ∩H(div; Ω) which is not in H1(Ω)d.

This result implies that approximations based on (2.4) and (2.5) cannot capture solutions

u 6∈ V ∩ H1(Ω)d of the Maxwell problem (2.3), and so, are not suitable for numerical

purposes. This kind of solutions are called nonsmooth or singular solutions. Note that the

key for this negative result is the spurious control on the divergence of the approximations

based on (2.4) and (2.5), which implies that the whole gradient is uniformly bounded in

L2(Ω), since uh is a H1(Ω)d function for all h.

Let us consider conforming finite element approximations of the spaces V and Q, de-

noted by Vh and Qh respectively. A crude Galerkin approximation of the curl conforming

mixed problem (2.3) reads as: find uh ∈ Vh and ph ∈ Qh such that

a(uh,vh) + b(vh, ph) = (f ,vh) , ∀vh ∈ Vh,(3.4a)

−b(uh, qh) = 0, ∀qh ∈ Qh.(3.4b)
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The well-posedness of this finite dimensional problem relies on the discrete version of the

inf-sup condition (2.8):

(3.5) inf
(uh,ph)∈Vh×Qh\{0,0}

sup
(vh,qh)∈Vh×Qh\{0,0}

c(uh, ph;vh, qh)

|||uh, ph||||||vh, qh|||
≥ βd > 0,

for βd > 0 uniform with respect to h (see e.g. [8]). As far as we know, it is not known whether

there is any nodal interpolation for Vh ×Qh satisfying this inf-sup condition. However, it is

satisfied when Vh is given by the celebrated Nedelec’s (or edge) elements; those elements are

only conforming in H(curl; Ω), since they do not satisfy normal continuity over the element

faces. A nodal finite element space can then be used for Qh (see e.g. [35]).

As a result, nodal finite elements have only been used with the “bad” formulation (3.3),

leading to spurious solutions for nonconvex domains, e.g. domains with re-entrant corners.

On the other hand, the “good” formulation (3.4) has been restricted to edge elements, since

they do satisfy (3.5). Since the problem is the fact that a curl-div formulation is not suitable for

numerical purposes, a rehabilitation of nodal finite elements has been proposed in [17]. The

key idea of this approach is to introduce a weight in the penalty div-div term in (3.3) which

depends on the distance to the singularities. The resulting problem is posed in a weighted

Sobolev space that does satisfy an approximability property.

For the previous reasons, nodal elements have always been related to curl-div conforming

formulations, whereas edge elements have always been related to curl formulations. Instead,

in this article we construct a new curl mixed formulation and a corresponding residual-based

stabilized finite element approximation that can be solved with nodal finite elements. Thus,

our approach is very different to the one in [17]. Furthermore, the formulation we propose

can be automatically used for any problem without the need to know where the singularities

are and to define a weight function around every singularity.

3.3. A mixed finite element formulation suitable for nodal approximations. It is ob-

vious that a nodal finite element approximation that would always provide the “physical” so-

lution would be favored in many situations. In particular, the original motivation of this work

lies in the multi-physics magnetohydrodynamics (MHD) problem. The numerical application

of this phenomenon, with increasing interest in fusion reactor design, couples Navier-Stokes

and Maxwell solvers. The ability to solve both problems with an all-purpose stabilized finite

element method would make the extension of existing fluid solvers to MHD multi-physics

very easy.

Our approach can be motivated as a residual-based stabilized discretization of the ex-

act augmented formulation (2.9), although we will simply state the method without fur-

ther heuristic motivation. The finite element formulation we propose is designed for H1-

conforming finite element spaces. Then, Vh = Nk(Ω)
d ∩ V and Qh = Nl(Ω) ∩ Q, for

k, l > 0 the order of approximation for u and p, respectively; there is no restriction be-

tween k and l, and equal-order approximations are allowed. The method consists of seeking

uh ∈ Vh and ph ∈ Qh solution of

a(uh,vh) + b(vh, ph) + su(uh,vh) = (f ,vh) , ∀vh ∈ Vh,(3.6a)

−b(uh, qh) + sp(ph, qh) = 0, ∀qh ∈ Qh,(3.6b)

where the stabilization term reads

su(uh,vh) =
∑

K∈Th

cuλ

∫

K

h2
K

ℓ2
∇ · uh∇ · vhdx,(3.7)
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cu being an algorithmic constant. We can easily see that (3.6) is a residual-based FE approx-

imation of the augmented formulation (2.9) (see e.g. [29, 12]). The stabilization parameter

cuλ
h2
K

ℓ2
must provide a dimensionally consistent method and it can be heuristically justified

by using Fourier transform techniques (see e.g. [3]). The benefit of this approach is twofold:

it allows us to circumvent the need of a discrete inf-sup condition and stabilizes singularly

perturbed problems (see e.g. [21]).

The reason why the su term is needed becomes evident from both theoretical analysis

and numerical experimentation. Obviously, as h → 0 this term vanishes, and the method is

not a div-curl conforming algorithm. In the sequel, we analyze this method. We denote by

cs(uh, ph;vh, qh) = c(uh, ph;vh, qh) + su(uh,vh) + sp(ph, qh)

the stabilized counterpart of c.

3.3.1. Stability analysis. In the next theorem we establish stability of the bilinear form

introduced above with respect to the mesh-dependent norm

(3.8) |||vh, qh|||h = λ
1
2 ‖∇× vh‖+ λ

1
2

(

∑

K∈Th

h2
K

ℓ2
‖∇ · vh‖

2
K

)
1
2

+
ℓ

λ
1
2

‖∇qh‖.

LEMMA 3.3. The bilinear form cs : Vh ×Qh × Vh ×Qh → R is coercive with respect

to the mesh-dependent norm (3.8).

The proof of the lemma is straightforward. Unfortunately, this norm is not enough for

numerical purposes, since it does not explicitly provide uniform control with respect to h in

L2(Ω). However, we show in the next lemma that the “continuous” norm |||uh, ph||| for the

FE solution can be bounded by its mesh-dependent norm.

LEMMA 3.4. The solution (wh, αh) ∈ Vh ×Qh of the discrete problem

cs(wh, αh;vh, qh) = 〈f ,vh〉+ 〈g, qh〉, ∀(vh, qh) ∈ Vh ×Qh(3.9)

for f ∈ V ′ and g ∈ Q′, satisfies |||wh, αh||| . |||wh, αh|||h + ‖g‖Q′ . Furthermore, for any

(vh, qh) ∈ Vh ×Qh, we have |||vh, qh|||h . |||vh, qh|||.
Proof. Since Vh × Qh ⊂ V × Q, by virtue of the continuous inf-sup condition (2.8),

there exists (w̃, α̃) ∈ V ×Q such that |||w̃, α̃||| = 1 and

c(wh, αh; w̃, α̃) ≥ β|||wh, αh|||.

Let us denote by SZh(·) the Scott-Zhang interpolation operator (see e.g. [7]) into the corre-

sponding finite element space; the space (either Vh or Qh) is easily understood by the context.

We have

c(wh, αh; w̃, α̃) = c(wh, αh; w̃, α̃− SZh(α̃)) + c(wh, αh;0,SZh(α̃)).(3.10)

We bound the first term in the right-hand side as follows:

c(wh, αh; w̃, α̃− SZh(α̃))

≤ λ‖∇ ×wh‖‖∇× w̃‖+
∑

K∈Th

‖∇ ·wh‖K‖α̃− SZh(α̃)‖K + ‖∇αh‖‖w̃‖

. λ‖∇ ×wh‖‖∇× w̃‖+
∑

K∈Th

hK‖∇ ·wh‖K‖α̃‖H1(Ω) + ‖∇αh‖‖w̃‖

. |||wh, αh|||h|||w̃, α̃|||,(3.11)

8



where we have used the interpolation properties of the Scott-Zhang projector (see e.g. [7]).

Using the fact that (wh, αh) is the solution of the stabilized problem (3.9), the second term

in (3.10) can be treated as

c(wh, αh;0,SZh(α̃)) = 〈g,SZh(α̃)〉 − sp(αh,SZh(α̃))

≤ ‖g‖Q′‖SZh(α̃)‖Q +
ℓ2

λ
‖∇αh‖‖∇SZh(α̃)‖

≤ (|||wh, αh|||h + ‖g‖Q′) |||w̃, α̃|||,

by using the continuity of SZh(·) in H1(Ω). Since |||w̃, α̃||| = 1 by construction, we get

the upper bound for ||| · ||| in the lemma. The lower bound is easily obtained using an inverse

inequality (see (3.2)).

REMARK 3.1. We infer from the previous lemma the importance of the h‖∇ · wh‖
stabilization term, which is essential for bounding (∇ ·wh, α̃− SZh(α̃)) in (3.11). In fact,

the requirement of having this stabilization is not only technical, as is shown in Section 4

using numerical experimentation.

The following corollaries are consequences of Lemmata 3.3 and 3.4.

COROLLARY 3.5. The stabilized bilinear form cs : Vh × Qh × Vh × Qh → R is

continuous with respect to the norm ||| · |||.
COROLLARY 3.6. Problem (3.6) is well-posed, i.e. it admits a unique solution (uh, ph)

bounded by the data as follows:

|||uh, ph||| . ‖f‖.(3.12)

Proof. The coercivity in Lemma 3.3 with the upper bound in Lemma 3.4 for g = 0 imply

that

|||uh, ph|||
2 . cs(uh, ph;uh, ph).(3.13)

Therefore, (3.6) is a squared linear system of equations, with a positive definite system matrix.

So, it proves existence and uniqueness of solutions. On the other hand, using the Cauchy-

Schwarz inequality we get (f ,uh) ≤ ‖f‖‖uh‖ ≤ ‖f‖|||uh, ph|||. Combining this result with

(3.13), we prove the corollary.

Thus, the numerical approximation (3.6) is stable in the “continuous” norm. On the other

hand, the consistency of the method is easily checked by the fact that both p and ∇ · u are

zero a.e. in Ω.

3.3.2. Error estimates. As commented above, numerical methods based on the curl-

div formulation fail to converge to singular solutions due to the lack of an approximability

condition (see Corollary 3.2). Formulation (3.6) avoids this problem, since both stability and

continuity hold for the same norm ||| · ||| in which the continuous problem is well-posed.

In order to define the interpolation error function, we make use of the following result.

We refer to [1, Proposition 3.7] for the proof of this lemma (see also [27, Lemma 4.2]).

LEMMA 3.7. If v ∈ V ∩H(div; Ω) then v ∈ Hr(Ω)d for some real number r > 1
2 , and

there holds

ℓr−1‖v‖Hr(Ω) . ‖∇× v‖+ ‖∇ · v‖.

The previous lemma leads to the following result, that is used in the definition of the error

interpolation function.
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COROLLARY 3.8. Any function v ∈ V ∩ H(div; Ω) belongs to L2(∂K), for any K ∈
Th.

Proof. As a consequence of the previous lemma, v ∈ Hr(K)d, for some r > 1
2 . Now,

using the trace theorem for fractional Sobolev spaces in [18, Theorem 1], we obtain that

v ∈ Hr− 1
2 (∂K), which proves the result.

The interpolation error for the new formulation, which comes from the subsequent con-

vergence analysis, is defined as

Eh(u, p) := inf
(wh,rh)∈Vh×Qh

̺(u−wh, p− rh)(3.14)

where

̺(v, q) := |||v, q|||+ λ
1
2

(

∑

K

hK

ℓ2
‖v‖2L2(∂K)

)
1
2

.(3.15)

THEOREM 3.9. The solution (uh, ph) of problem (3.6) for the family of finite element

partitions {Th}h>0 approximates the continuous solution (u, p) of problem (2.3) in the fol-

lowing sense

|||uh − u, ph − p||| . Eh(u, p).

Proof. On one hand, the Galerkin orthogonality, the consistency of the method and the

fact that the finite element approximation is conforming lead to

cs(uh −wh, ph − rh;vh, qh) = cs(u−wh, p− rh;vh, qh)

= c(u−wh, p− rh;vh, qh) + su(u−wh,vh) + sp(p− rh, qh)(3.16)

for any (wh, rh) and (vh, qh) in Vh × Qh. On the other hand, using integration by parts

within each element domain K ∈ Th for the su term, we get:

su(u−wh,vh) =
∑

K∈Th

cuλ

∫

K

h2
K

ℓ2
∇ · (u−wh)∇ · vhdx

=−
∑

K∈Th

cuλ

∫

K

h2
K

ℓ2
(u−wh) · ∇∇ · vhdx

+
∑

K∈Th

cuλ

∫

∂K

h2
K

ℓ2
(u−wh) · n∇ · vhdx

.
∑

K∈Th

cuλ
h2
K

ℓ2
‖u−wh‖L2(K)‖∇∇ · vh‖L2(K)

+
∑

K∈Th

cuλ
h2
K

ℓ2
‖u−wh‖L2(∂K)‖∇ · vh‖L2(∂K).

Using the inverse inequalities (3.2) and the relation ‖φh‖L2(∂K) . h
− 1

2

K ‖φh‖L2(K), that

holds for any piecewise polynomial function, together with Young’s inequality and the conti-
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nuity of c and sp, we get

cs(uh −wh, ph − rh;vh, qh)

|||vh, qh|||
.|||u−wh, p− rh|||

+ λ
1
2

(

∑

K

hK

ℓ2
‖u−wh‖

2
L2(∂K)

)
1
2

.(3.17)

By virtue of Lemma 3.4 with (f , g) = cs(u−wh, p− rh; ·, ·) and the fact that

‖g‖Q′ = sup
q∈Q\{0}

−b(u−wh, q) + sp(p− rh, q)

‖q‖Q
. |||u−wh, p− rh|||,

we get:

|||uh −wh, ph − rh||| . |||uh −wh, ph − rh|||h + |||u−wh, p− rh|||

. |||uh −wh, ph − rh|||h + ̺(u−wh, p− rh).(3.18)

Testing (3.17) against (vh, qh) = (uh−wh, ph−rh) and using the coercivity of cs in Lemma

3.3, Cauchy-Schwarz and Young’s inequalities, we obtain

|||uh −wh, ph − rh|||
2
h . |||uh −wh, ph − rh|||̺(u−wh, p− rh)

. (|||uh −wh, ph − rh|||h + ̺(u−wh, p− rh))̺(u−wh, p− rh)

.
1

4β
|||uh −wh, ph − rh|||

2
h + (1 + β)̺(u −wh, p− rh)

2,(3.19)

for β > 0. Taking β large enough in (3.19) together with (3.18), we obtain |||uh −wh, ph −
rh||| . ̺(u−wh, p− rh). Combining this bound and the triangle inequality , we get:

|||uh − u, ph − p||| . |||u−wh, p− rh|||+ |||uh −wh, ph − rh||| . ̺(u−wh, p− rh)
(3.20)

for any (wh, rh) ∈ Vh ×Qh. Taking the infimum for wh ∈ Vh and rh ∈ Qh, and invoking

the expression for the interpolation error (3.14), we prove the theorem.

In the following, we obtain some a priori error estimates. Let us consider the interpola-

tion estimates:

inf
wh∈Vh

‖v−wh‖Hs(K) . ht−s
K ‖v‖Ht(K), 0 ≤ s ≤ t ≤ k + 1,(3.21)

inf
rh∈Qh

‖q − rh‖Hs(K) . ht−s
K ‖q‖Ht(K), 0 ≤ s ≤ t ≤ l + 1,(3.22)

for any K ∈ Th (see [17]). We get the following order of convergence for regular solutions,

which in fact does not depend on the order l of the approximation for p:

COROLLARY 3.10. Let the solution of the continuous problem (2.3) be u ∈ Hr(Ω)d,

with r ≥ 1. Then, the solution (uh, ph) of problem (3.6) satisfies the error estimate

|||u− uh, p− ph||| . λ
1
2ht−1‖u‖Ht(Ω),

where t := min{r, k + 1}.

Proof. We infer from (3.21) that

inf
(wh,rh)∈Vh×Qh

|||u−wh, p− rh||| . λ
1
2ht−1‖u‖Ht(Ω),
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where we have used the fact that p = 0 a.e. in Ω. On the other hand, the trace inequality

‖v‖2L2(∂K) . h−1
K ‖v‖2L2(K) + hK‖∇v‖2L2(K)(3.23)

that holds for v ∈ H1(K), K ∈ Th, allows us to obtain

hK‖u−wh‖
2
L2(∂K) . ‖u−wh‖

2
L2(K) + h2

K‖u−wh‖
2
H1(K).

The proof follows by taking the infimum with respect to (wh, rh) in (3.20), the previous

result and (3.21).

We can prove a sharper a priori error estimate that is also applicable to nonsmooth solu-

tions, under some assumptions over the partition Th and/or the polynomial degree k of Vh. In

order to do that, we will make use of the following lemma and Lemma 3.7.

LEMMA 3.11. Let u ∈ V ∩H(div; Ω) be the solution of (2.3). Then, u can be decom-

posed into a regular part and a singular part as follows:

u = u0 +∇ϕ,

where u0 ∈ H1+r(Ω)d∩H0(curl; Ω), ϕ ∈ H1
0 (Ω)∩H

1+r(Ω) for some real number r > 1
2 .

Lemma 3.11 is a consequence of the deep analysis about the singularities for the Maxwell

problem due to Costabel and Dauge in [16] (see also [17, Section 6]).

Error estimates for nonsmooth solutions can be proved, relying on an assumption over

the finite element space Vh:

ASSUMPTION 3.1. There exists a finite element space Gh defined over the mesh partition

Th such that, for any function φh ∈ Gh, ∇φh ∈ Vh. Furthermore, this space satisfies the

approximability property

inf
φh∈Gh

‖φ− φh‖Hs(K) . ht−s
K ‖φ‖Ht(K)

for any K ∈ Th, for φ ∈ Ht(K) and 0 ≤ s ≤ t ≤ 1 + k.

Lemma 3.7 proves that the solutionu of the Maxwell problem (2.3) for a forcing term f ∈
H(div 0; Ω) belongs to Hr(Ω)d for some r > 1

2 . Without any assumption over the regularity

of the solution, we get the following error estimate that is based on the decomposition in

Lemma 3.11:

COROLLARY 3.12. Under Assumption 3.1, the solution (uh, ph) of problem (3.6) satis-

fies the error estimate

|||u− uh, p− ph||| .
∑

K∈Th

(

λ
1
2ht

K‖u0‖H1+t(K) +
λ

1
2

ℓ1−ǫ
ht−ǫ
K ‖ϕ‖H1+t(K)

)

,

for any ǫ ∈]0, t− 1/2[ and for t = min{r, k}.

Proof. Following [17], we use the decomposition u = u0 + ∇ϕ in Lemma 3.11 and

consider optimal interpolations ũ0,h ∈ Vh and ϕ̃h ∈ Gh for u0 and ϕ, respectively. Then,

we have

‖u0 − ũ0,h‖Hs(K) . h1+t−s
K ‖u0‖H1+t(K),

‖ϕ− ϕ̃h‖Hs(K) . h1+t−s
K ‖ϕ‖H1+t(K),(3.24)

for 0 ≤ s ≤ t + 1, with t := min{r, k}. These estimates also hold locally, within each

element. Now, we pick wh = ũ0,h +∇ϕ̃h ∈ Vh. We can easily see that

|||u−wh, p||| .
λ

1
2

ℓ
‖u0 − ũ0,h‖+

λ
1
2

ℓ
‖∇(ϕ− ϕ̃h)‖

+ λ
1
2 ‖∇× (u0 − ũ0,h)‖,
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where the contribution from p has been neglected because p = 0. For the second term in

Eh(u) we use

h
1
2

K‖u−wh‖L2(∂K) . h
1
2

K‖u0 − ũ0,h‖L2(∂K) + h
1
2

K‖∇(ϕ− ϕ̃h)‖L2(∂K).

The first term in the right hand side of the previous inequality can be treated as above, using

the trace inequality (3.23). For the second term, we use the embedding of W ǫ,m(∂K) into

W ǫ+ 1
m

,m(K) (see [22]) for ǫ > 0 and m = 2, getting:

h
1
2

K‖∇(ϕ− ϕ̃h)‖L2(∂K) . h
1
2

Kℓǫ‖∇(ϕ− ϕ̃h)‖Hǫ(∂K)

. h
1
2

Kℓǫ‖∇(ϕ− ϕ̃h)‖
H

1
2
+ǫ(K)

. h
1
2

Kℓǫ‖ϕ− ϕ̃h‖
H

3
2
+ǫ(K)

. h
1
2

Kℓǫh
1+t− 3

2
−ǫ

K ‖ϕ‖H1+t(K),

where in the last step we have used the second interpolation estimate in (3.24) with s =
3
2 + ǫ < 1+ t. Note also that in the first step the fractional derivative in the norm in Hǫ(∂K)
would scale as hǫ

K , but we need to introduce a length scale ℓ independent of the element size

to bound the whole Hǫ(∂K)-norm.

Combining the previous results, we easily get the desired error estimate.

REMARK 3.2. When Assumption 3.1 is satisfied, the previous result is very strong, in

the sense that we have not only proved convergence towards the good solution, but an (al-

most) optimal order of convergence, even for nonsmooth solutions. We can also weaken the

approximability assumption over Gh, and in the limit case

lim
h→0

inf
φh∈Gh

‖φ− φh‖Hs(Ω) = 0, s ≤ 1 + r,

we would get strong convergence towards the solution without order. Alternatively, instead of

considering the decomposition of u, an interpolation result

lim
h→0

inf
wh∈Vh

(

ℓr−1‖u−wh‖Hr(Ω) + ‖∇ × (u−wh)‖
)

= 0,

for Vh would also lead to convergence towards the good solution, without the need to intro-

duce Gh.

REMARK 3.3. Let us note that a similar method has recently been proposed in [6] for

electromagnetic eigenvalue problems. The method in [6] depends on a coefficient α and cor-

responds to the method proposed herein for α = 1 with the only difference that no restriction

over the FE spaces or meshes is assumed. Unfortunately, the convergence of the proposed

algorithm is deteriorating in the limit α → 1 and the corresponding numerical analysis in

[6] does not apply for the limit case considered in this work.

3.4. FE meshes and spaces satisfying Assumption 3.1. Assumption 3.1 is known to

hold for k ≥ 4 in dimension 2 without any assumption on the mesh typology. In this case, we

can take Gh as the finite element space obtained for the Argyris triangle. For k ≥ 2, Gh can

be constructed by using the Bogner-Fox-Schmidt triangle; in order to do this, the triangulation

Th should admit a coarser mesh of macroelements. We refer to [17] for a detailed discusion.

For the most interesting case of linear interpolations, under the same kind of restriction

over the mesh topology, the discrete space recently introduced in [36], based on a Powell–

Sabin interpolant (see Figure 3.1 right), makes true Assumption 3.1 for k ≥ 1, both in two
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and three dimensions (see also [9, 11]). Furthermore, we have observed from numerical

experiments that a mesh with the crossed-box typology (see Figure 3.1 left) also satisfies

this assumption. In a numerical code, it implies to perform a cheap pre-processing of the

original mesh. Given any original triangular mesh, the Powell-Sabin mesh is obtained by

introducing additional nodes on the mid-points of the edges and the element barycentes, and

re-connecting the nodes properly. On the other hand, crossed-box meshes are obtained from

a quadrilateral mesh by placing a node on its center, and creating four triangles; in fact, the

additional node can be condensed. These are the two typologies of meshes considered in

Section 4. We refer to [4] for detailed numerical experiments about the effect of having a

suitable macro-element structure in the convergence of the method. In [5] we have extended

this work to three-dimensions in the frame of MHD applications; we have considered both the

3d Powell-Sabin element and a 3d extension of the crossbox; both choices exhibit excellent

convergence properties.

FIG. 3.1. Crossed-box (left) and Powell-Sabin (right) macro-element typologies.

4. Numerical experiments.

4.1. Stabilized curl formulation. In order to check, using numerical experimentation,

that the nodal-based finite element approximation proposed in this article converges to both

smooth and nonsmooth physical solutions, we take the datum f such that the solution of (2.3)

in polar coordinates (r, θ) is:

u = ∇

(

r
2n
3 sin

2nθ

3

)

(4.1)

in the nonconvex domain Ω ≡ [−1, 1]2 \ [0, 1]2, with one re-entrant corner. We have that

u ∈ H
2n
3
−ǫ(Ω)2, for any ǫ > 0. Since for n = 1 we have that u 6∈ H1(Ω)2, by virtue of

Corollary 3.2, curl-div based finite element approximations converge to spurious solutions.

On the other hand, as proved in Theorem 3.9, the solution of formulation (3.6) must converge

to the physical solution (4.1) by using h-refinement and appropriate meshes. In order to ob-

serve this, we have considered a family of structured triangular meshes obtained by a partition

of the domain into squares and a subsequent division of the squares in the crossed-box fashion

(see Figure 3.1). We consider linear elements in the resulting mesh. The number of divisions

in every direction has been set to 2i with i = 3, 4, 5, 6; the characteristic mesh size h is 2−i

and the number of triangular elements 2i+1. In Figure 4.1(a), we show the numerical errors

eu = uh−u and ep = ph−p for different norms as h → 0. The convergence rate at every re-

finement level and numerical values of the error have been provided in Table 4.1. From these

results, it is clear that the method we propose herein is capable to approximate numerically

nonsmooth solutions, as Theorem 3.9 says. In fact, the order of convergence of the method

is surprisingly high when compared to those for the weighted regularization in [15] and the

discontinuous Galerkin technique in [28] (for the same test problem). Furthermore, optimal

convergence in L2(Ω) is obtained for this method.
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FIG. 4.1. Error plots for different quantities in L2(Ω) norm for Formulation (3.6) and the problem with

analytical solution (4.1), with different values of n. Plot (b) corresponds to (3.6) without the stabilization term

su(uh,vh).

TABLE 4.1

Experimental errors for Method (3.6) for uh and rate of convergence (in brackets). Piecewise linear finite

elements for both uh and p.

n = 1 n = 2 n = 4
h ‖eu‖ ‖∇ × eu‖ ‖eu‖ ‖∇ × eu‖ ‖eu‖ ‖∇ × eu‖

2−3 2.67e-1 (-) 3.92e-1 (-) 6.75e-2 (-) 9.96e-2 (-) 7.31e-3 (-) 2.66e-2 (-)

2−4 1.51e-1 (0.82) 2.03e-1 (0.95) 2.49e-2 (1.44) 3.20e-2 (1.64) 1.93e-3 (1.92) 3.44e-3 (2.95)

2−5 8.11e-2 (0.90) 9.22e-2 (1.14) 8.68e-3 (1.52) 9.08e-3 (1.82) 4.89e-4 (1.98) 4.34e-4 (2.99)

2−6 4.52e-2 (0.84) 3.98e-2 (1.21) 3.12e-3 (1.48) 2.44e-3 (1.89) 1.22e-4 (2.00) 5.43e-5 (3.00)

Now, in order to stress the importance of the h‖∇ · uh‖ stabilization, we have switched

off the term
(

h2
K∇ · uh,∇ · vh

)

from the formulation (3.6). In the previous stability analysis,

this term is crucial for recovering L2(Ω)-control of uh. We perform the same convergence

test as above and show the plots in Figure 4.1(b). As expected, convergence is not attained

for the quantity ‖eu‖. So, the introduction of this term is motivated by both theoretical and

numerical observations.

Going back to the full formulation (3.6), we perform the same convergence analysis with

n = 2 and n = 4 in (4.1). In the case n = 2, the solution uh belongs to H
4
3
−ǫ(Ω)2 ⊂
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TABLE 4.2

Experimental errors for Method (3.6) for ph and rate of convergence (in brackets). Piecewise linear finite

elements for both uh and p.

n = 1 n = 2 n = 4
h ‖ep‖ ‖∇ep‖ ‖ep‖ ‖∇ep‖ ‖ep‖ ‖∇ep‖

2−3 1.56e-1 (-) 1.05e+0 (-) 3.72e-2 (-) 2.68e-1 (-) 8.69e-4 (-) 1.14e-2 (-)

2−4 8.70e-2 (0.83) 8.75e-1 (0.27) 1.30e-2 (1.51) 1.39e-1 (0.95) 1.01e-4 (3.10) 2.10e-3 (2.44)

2−5 4.09e-2 (1.09) 6.29e-1 (0.48) 3.85e-3 (1.76) 6.27e-2 (1.15) 1.09e-5 (3.22) 3.56e-4 (2.56)

2−6 1.76e-2 (1.22) 4.19e-1 (0.59) 1.04e-3 (1.89) 2.63e-2 (1.25) 1.10e-6 (3.30) 5.88e-5 (2.60)

TABLE 4.3

Experimental errors for Method (3.6) for uh and rate of convergence (in brackets) for the test problem with

n = 1 and Powell-Sabin triangle meshes. Piecewise linear finite elements for both uh and p.

n = 1
h ‖eu‖ ‖∇ × eu‖

2−3 2.13e-1e-1 (-) 2.99e-1 (-)

2−4 1.13e-1 (0.91) 1.40e-1 (1.10)

2−5 5.98e-2 (0.92) 5.99e-2 (1.22)

2−6 3.34e-2 (0.84) 2.48e-2 (1.27)

H1(Ω)2. Then, both curl-div and curl formulations are able to capture the solution. In any

case, the smoothness of the solution does not allow us to obtain theoretically optimal conver-

gence for first order approximation of both uh and ph, since u 6∈ H2(Ω)2. The convergence

plot and convergence rates at every level of refinement can be found in Figure 4.1(c) and Ta-

ble 4.2, respectively. The method exhibits some super-convergence. For n = 4 the solution

u belongs to H
8
3
−ǫ(Ω)2 and the optimal error estimate should apply. We can see that this is

in fact the case for both u and p in the continuous norm |||eu, ep||| in Figure 4.1(d) and Table

4.1. Again, the method exhibits super-convergence.

Finally, we solve the singular problem (with n = 1) with a Powell-Sabin mesh. As

expected, the method shows a very similar convergence order as the one obtained for crossed-

box meshes. The numerical errors and slopes with respect to h are shown in table 4.3.

Let us remark the fact that the stabilized finite element formulation (3.6) leads to a

positive-definite linear system. In this work, this linear system has been solved using a direct

solver. For larger scale problems, a Krylov iterative solver with a Schur complement type

preconditioner could be explored (see [20]). This type of block-preconditioner allows one

to decouple the computation of uh and ph at the preconditioner level, reducing the original

problem into two smaller ones, for which effective preconditioners can be used.

4.2. Stabilized curl-div formulation. Following the same idea as at the continuous

level, in which we went from (2.3) to (2.4) passing regularity from p to u, we can pass from

(3.6) to a curl-div stabilized finite element formulation. Proceeding this way, we get the

discrete problem: find uh ∈ Vh and ph ∈ Qh solution of

a(uh,vh) + b(vh, ph) + (cuλ∇ · uh,∇ · vh) = (f ,vh) , ∀vh ∈ Vh,(4.2a)

−b(uh, qh) +
∑

K∈Th

∫

K

h2
K

λ
∇ph · ∇qhdx = 0, ∀qh ∈ Qh.(4.2b)

Again, this method is a residual-based finite element method, in which the stabilization pa-

rameter has been chosen to be cuλ. The second term in the right-hand side comes from the

penalty term in (2.9) but taking
h2
K

λ
as penalty coefficient. The numerical analysis of this
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method uses similar arguments to the ones for (3.6). Since we have control over both the curl

and the divergence of uh, and the control h‖∇ph‖ only leads to L2(Ω) stability for ph, this

problem is well-posed for the curl-div norm, for which there is no approximability property.

Thus, this formulation is not able to deal with the singular solution (4.1) with n = 1; we show

this in Figure 4.2(a). However, as expected, the method converges for n = 2 and n = 4 to the

good solution, since u ∈ H1(Ω). We show the error plots in Figures 4.2(b) and 4.2(c). Let us

point out that in the curl-div formulation there is no control over∇ph, and so, no convergence

can be expected for it (see Figure 4.2(b)).
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FIG. 4.2. Error plots for different quantities in L2(Ω) norm for Formulation (4.2) and the problem with

analytical solution (4.1), with different values of n.

5. Conclusions. The finite element formulation proposed in this paper to approximate

Maxwell’s problem has been shown to allow one to use continuous Lagrangian interpolations

for the unknown, yielding stable and convergent approximations to any solution of the con-

tinuous problem, including singular solutions. Convergence to smooth solutions is reached

with optimal order.

The essential point to converge to singular solutions is to avoid the spurious control on

the L2(Ω)-norm of the divergence of the unknown, typical of penalized or curl-div formu-

lations. Instead of avoiding this by using weighted L2(Ω)-inner products, we resort to the

introduction of a Lagrange multiplier to enforce the zero divergence restriction. However,

to ensure stability of this in the appropriate functional setting, a novel augmented formula-
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tion has been introduced, which consists of adding a Laplacian of the multiplier in the zero

divergence restriction. Since the multiplier is zero in the continuous problem, consistency

remains unaltered. The final ingredient is to use a stabilized formulation at the discrete level,

in our case consisting only in adding a least-square form of the zero divergence condition.

The stabilizing term is multiplied by the square of the mesh size, so that it mimics stabil-

ity of the divergence of the unknown in H−1(Ω), not in L2(Ω), as curl-div formulations

wrongly do. This new term is also responsible for obtaining stability in the L2(Ω) part of the

whole H(curl; Ω) norm of the unknown. Finally, in order to have approximability for lin-

ear Lagrangian elements, particular mesh typologies must be used for singular solutions that

can easily be generated by a cheap post-processing of any original triangular or quadrilateral

mesh, both in two and three dimensions.

A classical numerical test has been used to check the theoretical predictions. Notably,

very good convergence has been observed in the case when the solution is singular, as com-

pared to other formulations that can be found in the literature.

The practical interest of our approach is clear. Even if tailored approximations for

Maxwell’s problem may be afforded at a reasonable computational cost when it is an iso-

lated problem, it is obvious that a classical Lagrangian type approximation greatly simplifies

its implementation in situations where this problem is coupled to others, as in MHD (see

[5]). On the other hand, our approach may be viewed as an alternative to the use of the

so called compatible discretization, satisfying the appropriate inf-sup conditions. In simple

model problems, such as Stokes’, Maxwell’s and Darcy’s, our formulation allows us to use

the same interpolation for the unknowns in all cases, instead of one compatible for each case.
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