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a b s t r a c t

An edge-based smoothed finite element method (ES-FEM) for static, free vibration and buckling analyses

of Reissner–Mindlin plates using 3-node triangular elements is studied in this paper. The calculation of

the system stiffness matrix is performed by using the strain smoothing technique over the smoothing

domains associated with edges of elements. In order to avoid the transverse shear locking and to improve

the accuracy of the present formulation, the ES-FEM is incorporated with the discrete shear gap (DSG)

method together with a stabilization technique to give a so-called edge-based smoothed stabilized dis-

crete shear gap method (ES-DSG). The numerical examples demonstrated that the present ES-DSG

method is free of shear locking and achieves the high accuracy compared to the exact solutions and oth-

ers existing elements in the literature.

� 2009 Published by Elsevier B.V.

1. Introduction

Static, free vibration and buckling analyses of plate structures

play an important role in engineering practices. Such a large

amount of research work on plates can be found in the literature

reviews [1,2], and especially major contributions in free vibration

and buckling areas by Leissa [3–6], and Liew et al. [7,8].

Owing to limitations of the analytical methods, the finite ele-

ment method (FEM) becomes one of the most popular numerical

approaches of analyzing plate structures. In the practical applica-

tions, lower-order Reissner–Mindlin plate elements are preferred

due to its simplicity and efficiency. However, these low-order plate

elements in the limit of thin plates often suffer from the shear lock-

ing phenomenon which has the root of incorrect transverse forces

under bending. In order to eliminate shear locking, the selective re-

duced integration scheme was first proposed [9–12]. The idea of

the scheme is to split the strain energy into two parts, one due

to bending and one due to shear. Then, two different integration

rules for the bending strain and the shear strain energy are used.

For example, for the 4-node quadrilateral element, the reduced

integration using a single Gauss point is utilized to compute shear

strain energy while the full Gauss integration using 2 � 2 Gauss

points is used for the bending strain energy. Unfortunately, the re-

duced integration often causes the instability due to rank defi-

ciency and results in zero-energy modes. It is therefore many

various improvements of formulations as well as numerical

techniques have been developed to overcome the shear locking

phenomenon and to increase the accuracy and stability of the solu-

tion such as mixed formulation/hybrid elements [13–23],

Enhanced Assumed Strain (EAS) methods [24–28] and Assumed

Natural Strain (ANS) methods [29–38]. Recently, the discrete shear

gap (DSG) method [39] which avoids shear locking was proposed.

The DSG is somewhat similar to the ANS methods in the terms of

modifying the course of certain strains within the element, but is

different in the aspect of removing of collocation points. The DSG

method works for elements of different orders and shapes [39].

In the effort to further advance finite element technologies, Liu

et al. have applied a strain smoothing technique [40] to formulate a

cell/element-based smoothed finite element method (SFEM or

CS-FEM) [41–49] for 2D solids and then CS-FEM is extended to
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plate and shell structures [50–52]. By using a proper number of

smoothing cells in each element (for example four smoothing

cells), CS-FEM can increase significantly the accuracy of the solu-

tions [41–52]. Strain smoothing technique has recently been cou-

pled to the extended finite element method (XFEM) [53–55] to

solve fracture mechanics problems in 2D continuum and plates,

e.g. [56]. A node-based smoothed finite element method (NS-

FEM) [57] then has also been formulated to give upper bound solu-

tions in the strain energy and applied to adaptive analysis [58].

Then by combining NS-FEM and FEM with a scale factor

a 2 [0,1], a new method named as the alpha finite element method

(aFEM) [59] is proposed to obtain nearly exact solutions in strain

energy using triangular and tetrahedral elements.

Recently, Liu et al. [60] have proposed an edge-based smoothed

finite element method (ES-FEM) for static, free and forced vibration

analyses of solid 2D mechanics problems. Intensive numerical re-

sults demonstrated that ES-FEM [60] possesses the following

excellent properties: (1) ES-FEM model are often found super-con-

vergent and even more accurate than those of the FEM using quad-

rilateral elements (FEM-Q4) with the same sets of nodes; (2) there

are no spurious non-zeros energy modes found and hence the

method is also temporally stable and works well for vibration anal-

ysis and (3) the implementation of the method is straightforward

and no penalty parameter is used, and the computational efficiency

is better than the FEM using the same sets of nodes. The ES-FEM

has also been further developed to analyze piezoelectric structures

[61] and 2D elastoviscoplastic problems [62]. Further more, the

idea of ES-FEM has been extended for the 3D problems using tetra-

hedral elements to give a so-called the face-based smoothed finite

element method (FS-FEM) [63].

This paper further extends ES-FEM to static, free vibration and

buckling analyses of Reissner–Mindlin plates using only 3-node

triangular meshes which are easily generated for the complicated

domains. The calculation of the system stiffness matrix is per-

formed using strain smoothing technique over the smoothing cells

associated with edges of elements. In order to avoid transverse

shear locking and to improve the accuracy of the present formula-

tion, the ES-FEM is incorporated with the discrete shear gap (DSG)

method [39] together with a stabilization technique [64] to give a

so-called edge-based smoothed stabilized discrete shear gap

method (ES-DSG). The numerical examples show that the present

method is free of shear locking and is a strong competitor to others

existing elements in the literature.

2. Governing equations and weak form

We consider a domain X � R2 occupied by reference middle

surface of plate. Let w and bT = (bx,by) be the transverse displace-

ment and the rotations about the y and x axes, see Fig. 1,

respectively. Then the vector of three independent field variables

for Mindlin plates is

uT ¼ w bx by

� �

: ð1Þ

Let us assume that the material is homogeneous and isotropic with

Young’s modulus E and Poisson’s ratio m. The governing differential

equations of the static Mindlin–Reissner plate are

r � Db
jðbÞ þ ktc ¼ 0 in X;

ktr � cþ p ¼ 0 in X;

w ¼ �w; b ¼ �b on C ¼ @X;

ð2Þ

where t is the plate thickness, p = p(x,y) is a distributed load per an

area unit, k = lE/2(1 + m), l = 5/6 is the shear correction factor, Db is

the tensor of bending modulus, j and c are the bending and shear

strains, respectively, defined by

j ¼ Ldb; c ¼ rwþ b; ð3Þ

where r = (@/@x,@/@y) is the gradient vector and Ld is a differential

operator matrix defined by

LT
d ¼

@
@x

0 @
@y

0 @
@y

@
@x

" #

: ð4Þ

The weak form of the static equilibrium equations in (2) is
Z

X

djTDb
jdXþ

Z

X

dcTDs
cdX ¼

Z

X

dwpdX; ð5Þ

where Db and Ds are the material matrices related to the bending

and shear parts defined by

Db ¼
Et3

12 1� m2ð Þ

1 m 0

m 1 0

0 0 1� mð Þ=2

2

6

4

3

7

5
; Ds ¼ kt

1 0

0 1

� �

: ð6Þ

For the free vibration analysis of a Mindlin/Reissner plate model, a

weak form may be derived form the dynamic form of energy prin-

ciple under the assumption of the first order shear-deformation

plate theory [8]:

Z

X

djTDb
jdXþ

Z

X

dcTDs
cdXþ

Z

X

duTm€udX ¼ 0; ð7Þ

where du is the variation of displacement field u, and m is the ma-

trix containing the mass density q and thickness t

m ¼ q

t 0 0

0 t3

12
0

0 0 t3

12

2

6

4

3

7

5
: ð8Þ

For the buckling analysis, there appears nonlinear strain under in-

plane pre-buckling stresses r̂0. The weak form can be reformulated

as [8]

Z

X

djTDb
jdXþ

Z

X

dcTDs
cdXþ t

Z

X

rT
dwr̂0rwdX

þ
t3

12

Z

X

rT
dbx rT

dby

h i r̂0 0

0 r̂0

" #

rbx

rby

" #

dX ¼ 0: ð9Þ

Eq. (9) can be rewritten as
Z

X

djTDb
jdXþ

Z

X

dcTDs
cdXþ

Z

X

degð Þ
T
s eg dX ¼ 0; ð10Þ

Fig. 1. 3-Node triangular element.
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where

r̂0 ¼
r0
x r0

xy

r0
xy r0

y

" #

; s ¼

tr̂0 0 0

0 t3

12
r̂0 0

0 0 t3

12
r̂0

2

6

4

3

7

5
;

eg ¼

w;x 0 0

w;y 0 0

0 bx;x 0

0 bx;y 0

0 0 by;x

0 0 by;y

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

: ð11Þ

3. FEM formulation for the Reissner–Mindlin plate

Now, discretize the bounded domain X into Ne finite elements

such that X ¼
SNe

e¼1X
e andXi \Xj = ;, i– j. The finite element solu-

tion uh ¼ ðwh; bh
x ; b

h
yÞ

T of a displacement model for the Mindlin–

Reissner plate is then expressed as:

uh ¼
X

Nn

I¼1

NIðxÞ 0 0

0 NIðxÞ 0

0 0 NIðxÞ

2

6

4

3

7

5
dI; ð12Þ

where Nn is the total number of nodes, NI(x), dI = [wI bxI byI]
T are

shape function and the nodal degrees of freedom of uh associated

to node I, respectively.

The bending, shear strains and geometrical strains can be then

expressed as:

j ¼
X

I

Bb
I dI; cs ¼

X

I

Bs
IdI; eg ¼

X

I

Bg
I dI; ð13Þ

where

Bb
I ¼

0 NI;x 0

0 0 NI;y

0 NI;y NI;x

2

6

4

3

7

5
; Bs

i ¼
NI;x NI 0

NI;y 0 NI

� �

;

Bg
I ¼

NI;x 0 0

NI;y 0 0

0 NI;x 0

0 NI;y 0

0 0 NI;x

0 0 NI;y

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

: ð14Þ

The discretized system of equations of the Mindlin/Reissner plate

using the FEM for static analysis then can be expressed as,

Kd ¼ F; ð15Þ

where

K ¼

Z

X

Bb
� �T

DbBb dXþ

Z

X

Bsð Þ
T
DsBs dX ð16Þ

is the global stiffness matrix, and the load vector

F ¼

Z

X

pNdXþ f
b

ð17Þ

in which fb is the remaining part of F subjected to prescribed

boundary loads

For free vibration, we have

ðK�x2MÞd ¼ 0; ð18Þ

where x is the natural frequency, M is the global mass matrix

M ¼

Z

X

NTmNdX: ð19Þ

For the buckling analysis, we have

ðK� kcrKgÞd ¼ 0; ð20Þ

where

Kg ¼

Z

X

Bgð Þ
T
sBg dX ð21Þ

is the geometrical stiffness matrix, and kcr is the critical buckling

load.Fig. 2. 3-Node triangular element and local coordinates.

: centroid of triangles (I , O, H ): field node

boundary 

edge m (AB)

inner edge k (CD)
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Fig. 3. Division of domain into triangular element and smoothing cells X(k) connected to edge k of triangular elements.
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Now, next section aims to establish a new triangular element

named an edge-based smoothed triangular element with the stabi-

lized discrete shear gap technique (ES-DSG3) for Reissner–Mindlin

plate that is a combination from:

� The ES-FEM [60] for 2D solid mechanics was found to be one of

the ‘‘most” accurate models using triangular elements,

� The discrete shear gap (DSG) technique works well for shear-

locking-free triangular elements based on the Reissner–Mindlin

plate theory [39],

� The stabilization technique [64] helps further to improve the

stability and accuracy.

The formulated ES-DSG3 will be stable and works well for both

thin and thick plates using only triangular elements.

4. A formulation of ES-FEM with stabilized discrete shear

technique

4.1. Brief on the DSG3 formulation

The approximation uh ¼ ½wh bh
x bh

y �
T of 3-node triangular

element as shown in Fig. 2 for the Mindlin–Reissner plate can be

written as

uh ¼
X

3

I¼1

NIðxÞ 0 0

0 NIðxÞ 0

0 0 NIðxÞ

2

6

4

3

7

5
d
e
I ; ð22Þ

Table 1

Patch test.

Element w5 hx5 hy5 mx5 my5 mxy5

MIN3 0.6422 1.1300 �0.6400 �0.0111 �0.0111 �0.0033

DSG3 0.6422 1.1300 �0.6400 �0.0111 �0.0111 �0.0033

ES-DSG3 0.6422 1.1300 �0.6400 �0.0111 �0.0111 �0.0033

Exact 0.6422 1.1300 �0.6400 �0.0111 �0.0111 �0.0033

Fig. 5. Square plate model; (a) full clamped plate; (b) simply supported plate.

Fig. 4. Patch test of the element.
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Fig. 6. Clamped plate: (a) central deflection; (b) central moment (t/L = 0.001).
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where d
e
I ¼ ½wI bxI byI�

T are the nodal degrees of freedom of uh asso-

ciated to node I and NI(x) is linearly shape functions defined by

N1 ¼ 1� n� g; N2 ¼ n; N3 ¼ g: ð23Þ

The curvatures are then obtained by

jh ¼ Bbd
e
; ð24Þ

where de is the nodal displacement vector of element, Bb contains

the derivatives of the shape functions that are only constant

Bb ¼
1

2Ae

0 b� c 0 0 c 0 0 �b 0

0 0 d� a 0 0 �d 0 0 a

0 d� a b� c 0 �d c 0 a �b

2

6

4

3

7

5
ð25Þ

with a = x2 � x1, b = y2 � y1, c = y3 � y1, d = x3 � x1 and Ae is the area

of the triangular element.

The geometrical strains are written as:

eg ¼ Bgd
e
; ð26Þ

where

Bg ¼
1

2Ae

b� c 0 0 c 0 0 �b 0 0

d� a 0 0 �d 0 0 a 0 0

0 b� c 0 0 c 0 0 �b 0

0 d� a 0 0 �d 0 0 a 0

0 0 b� c 0 0 c 0 0 �b

0 0 d� a 0 0 �d 0 0 a

2

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

5

:

ð27Þ

As known in many literatures about Reissner–Mindlin ele-

ments, the shear locking often appears when the thickness plate

becomes small. This is because the transverse shear strains do

not vanish under pure bending conditions. In order to avoid this

shortcoming, Bletzinger et al. [39] have proposed the discrete shear

gap method (DSG) for approximating the shear strains. Results of

the shear strains are briefed as

ch ¼ Bsd
e
; ð28Þ

where

Bs ¼
1

2Ae

b� c Ae 0 c ac
2

bc
2

�b � bd
2

� bc
2

d� a 0 Ae �d � ad
2

� bd
2

a ad
2

ac
2

" #

:

ð29Þ

Substituting Eqs. (25) and (29) into (16) and Eq. (27) into (21), the

global stiffness matrices are now modified as

KDSG3 ¼
X

Ne

e¼1

KeDSG3; ð30Þ

KDSG3
g ¼

X

Ne

e¼1

KeDSG3
g ; ð31Þ

where the element stiffness matrix, KeDSG3 and the element geo-

metrical stiffness matrix, KeDSG3
g , of the DSG3 element are given as

KeDSG3 ¼

Z

Xe
ðBbÞTDbBb dXþ

Z

Xe
ðBsÞTDsBs dX

¼ ðBbÞTDbBbAe þ ðBsÞTDsBsAe; ð32Þ
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Fig. 7. The convergence rate in strain energy of a clamped plate.
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Fig. 8. Simply supported plate: (a) central deflection; (b) central moment (t/

L = 0.01).

H. Nguyen-Xuan et al. / Comput. Methods Appl. Mech. Engrg. 199 (2010) 471–489 475



KeDSG3
g ¼

Z

Xe
BgT

sBg dX ¼ BgT
sBgAe: ð33Þ

It was mentioned that a stabilization technique [64] needs to be

added to the original DSG3 element to improve significantly the

accuracy of approximate solutions and to stabilize shear force oscil-

lations presenting in the triangular element. More details for the

stabilized issue of the original DSG3 element can be found in

Bischoff and Bletzinger [65].1 For this remedy, the element stiffness

matrix can be modified as

KeDSG3 ¼

Z

Xe
ðBbÞTDbBb dXþ

Z

Xe
ðBsÞT �DsBs dX

¼ ðBbÞTDbBbAe þ ðBsÞT �DsBsAe; ð34Þ

where

�Ds ¼
kt

3

t2 þ ah2
e

1 0

0 1

� �

; ð35Þ

where he is the longest length of the edges of the element and a is a

positive constant [64].

4.2. Formulation of ES-DSG3

In the ES-FEM, we do not use the compatible strain fields as in

(13) but ‘‘smoothed” strains over local smoothing domains associ-

ated with the edges of elements. Naturally the integration for the

stiffness matrix and the geometrical stiffness matrix is no longer

based on elements, but on these smoothing domains. These local

smoothing domains are constructed based on edges of the

elements such that X ¼
SNed

k¼1X
ðkÞ andX(i) \X(j) = ; for i–j, in which

Ned is the total number of edges of all elements in the entire

problem domain. For triangular elements, the smoothing domain

X(k) associated with the edge k is created by connecting two

end-nodes of the edge to centroids of adjacent elements as shown

in Fig. 3.

Introducing average curvature, shear strain and geometrical

strain over the cell X(k) defined by

~jk ¼
1

AðkÞ

Z

XðkÞ
jðxÞdX; ~ck ¼

1

AðkÞ

Z

XðkÞ
cðxÞdX;

~egk ¼
1

AðkÞ

Z

XðkÞ
egðxÞdX; ð36Þ

where A(k) is the area of the smoothing cell X(k) and is computed by

AðkÞ ¼

Z

XðkÞ
dX ¼

1

3

X

Nk
e

i¼1

Ai ð37Þ

where Nk
e is the number of elements attached to the edge k (Nk

e ¼ 1

for the boundary edges and Nk
e ¼ 2 for inner edges as shown in

Fig. 3) and Ai is the area of the ith element attached to the edge k.

Substituting Eqs. (24), (28) and (26) into Eq. (36), the average

strains at edge k can be expressed in the following form

~jk ¼
X

Nk
n

I¼1

~Bb
I ðxkÞdI; ~ck ¼

X

Nk
n

I¼1

~Bs
I ðxkÞdI; ~egk ¼

X

Nk
n

I¼1

~Bg
I ðxkÞdI; ð38Þ
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Fig. 9. The convergence rate in energy norm of a simply supported plate.
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Fig. 10. The illustration of computational cost for clamped plate: (a) CPU times

versus DOFs; (b) comparison of the efficiency of computation time in terms of

energy error norm.

1 The DSG3 was initially labeled in the original contribution [39] without any

stabilization. The SDSG3 [65] was then named due to combining the stabilized

technique [64]. For abbreviation, the DSG3 still is used in this paper, but with the

stabilization.

476 H. Nguyen-Xuan et al. / Comput. Methods Appl. Mech. Engrg. 199 (2010) 471–489



where Nk
n is the number of nodes belonging to elements directly

connected to edge k (Nk
n ¼ 3 for boundary edges and Nk

n ¼ 4 for in-

ner edges as shown in Fig. 3) and ~Bb
I ðxkÞ; ~B

s
I ðxkÞ and ~Bg

I ðxkÞ are the

average gradient matrices corresponding to the smoothing cell

X(k) and given by

~Bb
I ðxkÞ ¼

1

AðkÞ

X

Nk
e

i¼1

1

3
AiB

b
i ;

~Bs
I ðxkÞ ¼

1

AðkÞ

X

Nk
e

i¼1

1

3
AiB

s
i ;

~Bg
I ðxkÞ ¼

1

AðkÞ

X

Nk
e

i¼1

1

3
AiB

g
i ; ð39Þ

Fig. 11. A simply supported skew Morley’s model.
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Fig. 12. Morley plates: (a) central deflection; (b) central max principle moment; (c) central min principle moment.
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where Bb
i (of 3 � 3 matrix), Bs

i (of 2 � 3 matrix) and Bg
i (of 6 � 3 ma-

trix) are obtained from matrices in (25), (29), and (27), respectively.

Therefore the global stiffness and geometrical stiffness matrices

of the ES-DSG3 element are assembled by

~K ¼
X

Ned

k¼1

~KðkÞ; ð40Þ

~Kg ¼
X

Ned

k¼1

~KðkÞ
g ; ð41Þ

where the edge stiffness, ~KðkÞ, and geometrical stiffness, ~KðkÞ
g , matri-

ces of the ES-DSG3 element are given by

~KðkÞ ¼

Z

XðkÞ
ð~BbÞTDb~BbdXþ

Z

XðkÞ
ð~BsÞT �Ds~BsdX

¼ ð~BbÞTDb~BbAðkÞ þ ð~BsÞT �Ds~BsAðkÞ; ð42Þ

~KðkÞ
g ¼

Z

XðkÞ

~BgTs ~BgdX ¼ ~BgTs ~BgAðkÞ: ð43Þ

It can be seen from Eqs. (42) and (43) that the stiffness matrices are

analytically computed from the integrated constant matrices. Note

that the rank of the ES-DSG3 element is similar to that of the DSG3

element and the stability of the ES-DSG3 element is also ensured. In

addition, it is found from numerical experiments of the present

Fig. 13. Plates and initial mesh: (a) supported plate (b) clamped plate and (c,d) triangular meshes.

Table 2

A non-dimensional frequency parameter - of a SSSS plate (a/b = 1).

t/a Elements Mode sequence number

1 2 3 4 5 6

0.005 DSG3 5.5626 8.8148 11.8281 13.4126 18.1948 19.2897

4.7327 7.4926 8.2237 10.2755 11.6968 12.4915

4.5131 7.1502 7.3169 9.3628 10.3772 10.4461

4.4781 7.0905 7.1718 9.1455 10.1643 10.1814

ES-DSG3 4.9168 8.1996 9.4593 11.5035 14.2016 15.0164

4.5376 7.2981 7.4659 9.6486 10.8937 11.0280

4.4641 7.0870 7.1193 9.0582 10.1444 10.1489

4.4537 7.0565 7.0729 8.9731 10.0410 10.0422

Exact [68] 4.443 7.025 7.025 8.886 9.935 9.935

0.1 DSG3 4.9970 8.1490 9.4311 11.3540 14.1290 14.9353

4.4891 7.0697 7.2530 9.1263 10.2195 10.3361

4.3943 6.8227 6.8587 8.5447 9.4557 9.4616

4.3809 6.7854 6.8037 8.4543 9.3441 9.3457

ES-DSG3 4.7376 7.6580 8.4524 10.1882 12.1227 12.7533

4.4433 6.9495 7.0727 8.8487 9.8575 9.9221

4.3846 6.7922 6.8196 8.4744 9.3666 9.3698

4.3759 6.7692 6.7834 8.4173 9.2968 9.2976

Exact [68] 4.37 6.74 6.74 8.35 9.22 9.22
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formulation that the stabilized parameter a fixed at 0.05 for static

problems and 0.1 for dynamics problems can produce the reason-

able accuracy for all cases tested. Related to the influence of a on

the accuracy of the solution, the stiffness matrix of ES-DSG3 be-

comes too flexible, if a is chosen too large; and the accuracy of

the solution will reduce due to the oscillation of shear forces, if a
is chosen too small. So far, how to obtain an ‘‘optimal” value of

parameter a is still an open question.

5. Numerical results

The present element formulation has been coded using Matlab

program. For practical applications, we define rotations hx, hy about

the corresponding axes. Hence, the relations hx = �by and hy = bx
have been used to establish the stiffness formulations, see Fig. 1.

For comparison, several other elements such as DSG3, MIN3 [30]

and MITC4 have also been implemented in our package.

5.1. Static analysis

5.1.1. Constant bending patch test

The patch test is introduced to examine the convergence of fi-

nite elements. It is checked if the element is able to reproduce a

constant distribution of all quantities for arbitrary meshes. It is

modeled by several triangular elements as shown in Fig. 4. The

boundary deflection is assumed to be w = (1 + x + 2y + x2 + -

xy + y2)/2. The results shown in Table 1 confirm that, similar to

DSG3 and MIN3 elements, the ES-DSG3 element fulfills the patch

test within machine precision.

5.1.2. Square plates

Fig. 5 describes the model of a square plate (length L, thickness

t) with clamped and simply supported boundary conditions,

respectively, subjected to a uniform load p = 1. The material

parameters are given by Young’s modulus E = 1,092,000 and Pois-

son’s ratio m = 0.3. Uniform meshes N � N with N = 2, 4, 8, 16, 32

are used and symmetry conditions are exploited.

For a clamped plate, the convergence of the normalized deflec-

tion and the normalized moment at the center against the mesh

density N is shown in Fig. 6. The present element is free of shear

locking when the plate thickness becomes small and convergent

to exact solution when the mesh used is fine. It is seen that the

ES-DSG3 achieves the higher accuracy compared to the DSG3 and

MIN3 [30] elements. For very coarse meshes, the 4-node MITC4

Table 3

A non-dimensional frequency parameter - of a CCCC plate (a/b = 1).

t/a Elements Mode sequence number

1 2 3 4 5 6

0.005 DSG3 8.4197 12.7720 14.9652 17.2579 21.3890 21.7600

6.7161 9.7867 10.5673 12.9981 14.5306 15.3143

6.1786 8.8759 9.0680 11.2452 12.2182 12.2992

6.0889 8.7239 8.8202 10.8567 11.8519 11.8845

ES-DSG3 6.9741 10.1934 11.4756 13.0548 15.4035 15.9360

6.1982 9.0117 9.2894 11.5616 12.7950 13.0357

6.0355 8.6535 8.7081 10.6584 11.7430 11.7720

6.0158 8.6075 8.6353 10.5252 11.6032 11.6293

Exact [69] 5.999 8.568 8.568 10.407 11.472 11.498

0.1 DSG3 6.8748 9.8938 11.0847 12.6362 15.1032 15.6402

5.9547 8.3618 8.6293 10.2985 11.3415 11.5397

5.7616 7.9935 8.0525 9.5772 10.4153 10.4697

5.7337 7.9381 7.9686 9.4589 10.2758 10.3246

ES-DSG3 6.2662 8.7952 9.6625 10.9112 12.6101 13.1360

5.8068 8.0861 8.2701 9.8397 10.7600 10.8960

5.7250 7.9211 7.9627 9.4499 10.2631 10.3126

5.7141 7.8990 7.9206 9.3896 10.1935 10.2411

Exact [69] 5.71 7.88 7.88 9.33 10.13 10.18
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Fig. 14. Convergence of normalized frequency �xh= �xexact with a/b = 1; t/a = 0.005:

(a) SSSS plate; (b) CCCC plate.
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plate element [33] is more accurate than the ES-DSG3 element.

However, the ES-DSG3 element becomes more accurate than the

MITC4 element for finer meshes. Fig. 7 plots the convergence rate

in energy error norm for a relation t/L = 0.001. It is found that the

present element gains the highest accuracy in energy for this case.

For a simply supported plate, Fig. 8 illustrates the convergence

of the normalized deflection and the normalized moment at the

center and the convergence rate in energy error norm with a rela-

tion t/L = 0.01 is given in Fig. 9. It is clear that the ES-DSG3 element

is still superior to the DSG3 and MIN3 elements. For the conver-

gence of the central deflection, the MITC4 element is the most

effective. For the convergence of moment and energy with fine

meshes, the ES-DSG3 element is slightly more accurate than the

MITC4 element.

Now we mention the computational efficiency of present

method compared with FEM models. The program is compiled

by a personal computer with Intel(R) Core (TM) 2 Duo CPU-2

GHz and RAM-2GB. The computational cost is to set up the global

stiffness matrix and to solve the algebraic equations. Owing to

the establishment of the smoothed strains (36), no additional

degrees of freedom are needed in the ES-DSG3. Fig. 10 illustrates

Table 4

A non-dimensional frequency parameter - ¼ xa2
ffiffiffiffiffiffiffiffiffiffiffi

qt=D
p

of square plate (t/a = 0.005) with various boundary conditions.

Plate type Elements Mode sequence number

1 2 3 4

SSSF DSG3 11.7720 28.3759 41.9628 61.5092

ES-DSG3 11.6831 27.8382 41.4312 59.6720

Exact [3] 11.685 27.756 41.197 59.066

SFSF DSG3 9.6673 16.3522 37.6792 39.5026

ES-DSG3 9.6425 16.1239 36.9054 39.2167

Exact [3] 9.631 16.135 36.726 38.945

CCCF DSG3 24.2848 41.7698 65.0068 80.9461

ES-DSG3 23.8947 40.1998 63.5127 77.8776

Exact [3] 24.020 40.039 63.493 76.761

CFCF DSG3 22.3437 27.1814 45.8829 62.5225

ES-DSG3 22.1715 26.4259 43.9273 62.9466

Exact [3] 22.272 26.529 43.664 64.466

CFSF DSG3 15.2788 21.0199 41.1975 50.3328

ES-DSG3 15.2035 20.5856 39.9697 49.7767

Exact [3] 15.285 20.673 39.882 49.500

Fig. 15. The cantilever CFFF skew plate.

Fig. 16. The circle plates and initial mesh.

Table 5

A non-dimensional frequency parameter - ¼ ðxa2=p2Þ
ffiffiffiffiffiffiffiffiffiffiffi

qt=D
p

of a CFFF rhombic plate.

t/a Elements Mode sequence number

1 2 3 4 5 6

0.001 DSG3 0.3988 0.9580 2.5996 2.6562 4.2551 5.2267

ES-DSG3 0.3976 0.9532 2.5785 2.6400 4.2209 5.1825

Ref. [70] 0.398 0.954 2.564 2.627 4.189 5.131

0.2 DSG3 0.3785 0.8262 2.0109 2.1918 3.1631 3.8302

ES-DSG3 0.3772 0.8192 1.9933 2.1785 3.1296 3.7937

Ref. [70] 0.377 0.817 1.981 2.166 3.104 3.760
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the error in energy norm against the CPU time (s) for clamped

plate. It is observed that the ‘‘over-head” computational cost of

the ES-DSG3 is little larger than those of the MIN3, DSG3 and

MITC4, due to the additional time by the smoothing operations

related to the stiffness matrix. However, in terms of the

computational efficiency (computation time for the same

accuracy) measured in the error of energy norm, the ES-DSG3 is

clearly more effective, compared to all these methods as illus-

trated in Fig. 10.

5.1.3. Skew plate subjected to a uniform load

Let us consider a rhombic plate subjected to a uniform load

p = 1 as shown in Fig. 11. This plate was originally studied by Mor-

ley [66]. Dimensions and boundary conditions are specified in

Fig. 11, too. Geometry and material parameters are length

L = 100, thickness t = 0.1, Young’s modulus E = 10.92 and Poisson’s

ratio m = 0.3.

The values of the deflection and principle moments at the

central point of the ES-DSG3 in comparison with those of other

methods are given in Fig. 12. It is seen again that the ES-DSG3

element shows remarkably excellent performance compared to

the DSG3, MITC4 elements and the list of other elements found

in [67].

5.2. Free vibration of plates

In this section, we investigate the accuracy and efficiency of the

ES-DSG3 element for analyzing natural frequencies of plates. The

plate may have free (F), simply (S) supported or clamped (C) edges.

The symbol, CFSF, for instance, represents clamped, free, supported

and free boundary conditions along the edges of rectangular plate.

A non-dimensional frequency parameter - is often used to stand

for the frequencies and the obtained results use the regular

meshes. The results of the present method are then compared to

analytical solutions and other numerical results which are avail-

able in the literature.

Table 7

The parameterized natural frequencies - ¼ ðxR2Þ
ffiffiffiffiffiffiffiffiffiffiffi

qt=D
p

of a clamped circular plate

with t/(2R) = 0.1.

Mode DSG3 ES-DSG3 Exact [71] ANS4 [72]1 ANS4 [72]2

1 9.3012 9.2527 9.240 9.2605 9.2277

2 18.0038 17.8372 17.834 17.9469 17.8010

3 18.0098 17.8428 17.834 17.9469 17.8010

4 27.6010 27.2344 27.214 27.0345 26.6801

5 27.6082 27.2391 27.214 27.6566 27.2246

6 30.9865 30.5173 30.211 30.3221 29.8562

7 37.9464 37.2817 37.109 37.2579 36.3966

8 37.9817 37.3128 37.109 37.2579 36.3966

9 43.9528 43.0626 42.409 43.2702 42.1089

10 44.0324 43.1328 42.409 43.2702 42.1089

11 48.9624 47.8823 47.340 47.7074 46.0596

12 48.9793 47.8976 47.340 47.8028 46.0985

13 57.2487 55.7747 54.557 56.0625 53.9332

14 57.2776 55.8052 54.557 57.1311 54.7720

Note: The alternative form of MITC4 [72]1 using a consistent mass; the alternative

form of MITC4 [72]2 using a lumped mass.

Fig. 17. A triangular cantilever plates and mesh of it: (a) square triangular plate, (b) rhombic triangular plate, (c,d) its mesh grid.

Table 6

The parameterized natural frequencies - ¼ ðxR2Þ
ffiffiffiffiffiffiffiffiffiffiffi

qt=D
p

of a clamped circular plate

with t/(2R) = 0.01.

Mode DSG3 ES-

DSG3

ANS4

[72]

ANS9

[73]

Exact

[3]

Exact

[71]

1 10.2941 10.2402 10.2572 10.2129 10.2158 10.216

2 21.6504 21.3966 21.4981 21.2311 21.2600 21.260

3 21.6599 21.4096 21.4981 21.2311 21.2600 21.260

4 35.9885 35.3012 35.3941 34.7816 34.8800 34.877

5 35.9981 35.3277 35.5173 34.7915 34.8800 34.877

6 41.1864 40.3671 40.8975 39.6766 39.7710 39.771

7 53.4374 52.0138 52.2054 50.8348 51.0400 51.030

8 53.5173 52.1013 52.2054 50.8348 51.0400 51.030

9 64.2317 62.3053 63.2397 60.6761 60.8200 60.829

10 64.4073 62.4665 63.2397 60.6761 60.8200 60.829

11 74.2254 71.6554 71.7426 69.3028 69.6659 69.666

12 74.3270 71.7269 72.0375 69.3379 69.6659 69.666

13 91.4366 87.7019 88.1498 84.2999 84.5800 84.583

14 91.5328 87.7861 89.3007 84.3835 84.5800 84.583
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5.2.1. Square plates

We consider square plates of length a, width b and thickness t.

The material parameters are Young’s modulus E = 2.0 � 1011, Pois-

son’s ratio m = 0.3 and the density mass q=8000. The plate is mod-

eled with uniform meshes of 4, 8, 16 and 22 elements per each

side. A non-dimensional frequency parameter - ¼ ðx2qa4t=DÞ1=4

is used, where D ¼ Et3= 12ð1� m2Þ
	 


is the flexural rigidity of the

plate.

The first problem considered is a SSSS thin and thick plate cor-

responding to length-to-width ratios, a/b = 1 and thickness-to-

length t/a = 0.005 and t/a = 0.1. The geometry of the plate and its

mesh grid are shown in Fig. 13a and c-d, respectively. Table 2 gives

the convergence of six lowest frequencies corresponding to meshes

using 4 � 4, 8 � 8, 16 � 16 and 22 � 22 rectangular elements. It is

observed that the results of ES-DSG3 agree well with the analytical

results [68] and are more accurate than those of the DSG3 element

for both thin and thick plates.

The second problem is a CCCC square plate shown in Fig. 13b.

Meshes are obtained the same as the SSSS plate case. Table 3 shows

the convergence of eight lowest modes of a CCCC plate. It is found

again that the ES-DSG3 element is better than the DSG3 element.

Fig. 14 also illustrates clearly the convergence of computed

frequencies (-h/-exact) of SSSS and CCCC plates.

We further study the five sets of various boundary conditions in

this example: SSSF, SFSF, CCCF, CFCF, CFSF. In this case, a 20 � 20

regular mesh is utilized for a square plate with various boundary

conditions and the first four lowest frequencies are presented in

Table 4. As a result, the ES-DSG3 element is almost better than

the DSG3 element and gives a good agreement with the exact solu-

tion [3] for all frequencies examined in this problem.

5.2.2. The parallelogram plates

Let us consider the thin and thick cantilever rhombic (CFFF)

plates. The geometry of the plate is illustrated in Fig. 15a with skew

angle a = 600. The material parameters are Young’s modulus

E = 2.0 � 1011, Poisson’s ratio m = 0.3 and the density mass q =

8000. A non-dimensional frequency parameter - is used. The total

number of DOF used to analyze the convergence of modes is 1323

dofs. Table 5 shows the convergence of six lowest frequencies of a

CFFF rhombic plate. The solution of the ES-DSG3 element is often

found closer to that of the semi-analytical method using the pb-2

Ritz method [70] than that of the DSG3 element.

5.2.3. Circle plates

In this example, a circular plate with the clamped boundary is

studied as shown in Fig. 16. The material parameters are Young’s

modulus E = 2.0 � 1011, Poisson’s ratio m = 0.3, the radius R = 5

and the density mass q = 8000. The plate is discretized into 848 tri-

angular elements with 460 nodes. Two thickness-span ratios h/

(2R) = 0.01 and 0.1 are considered. As shown in Table 6, the fre-

quencies obtained from the ES-DSG3 element are closer to analyt-

ical solutions in Refs. [3,71] than that of the DSG3 element and is a

good competitor to quadrilateral plate elements such as the As-

sumed Natural Strain solutions (ANS4) [72] and the higher order

Assumed Natural Strain solutions (ANS9) [73]. In case of the thick-

ness-span ratio h/(2R) = 0.1, the ES-DSG3 results also are very good

in comparison to the ANS4 element that used 432 quadrilateral

elements (or 864 triangular elements), cf. Table 7.

5.2.4. Triangular plates

Let us consider cantilever (CFF) triangular plates with various

shape geometries, see Fig. 17a and b. The material parameters

are Young’s modulus E = 2.0 � 1011, Poisson’s ratio m = 0.3 and the

density mass q = 8000. A non-dimensional frequency parameter

- =xa2(q t/D)1/2/p2 of triangular square plates with the aspect ra-

tio t/a = 0.001 and 0.2 are calculated. The mesh of 744 triangular

elements with 423 nodes is used to analyze the convergence for

modes via various skew angles such as a = 0, 15, 30, 45, 60. Table 8

gives the convergence of six lowest modes of the thin triangular

plate (t/a = 0.001). In addition, the convergence of the frequencies

is also illustrated in Fig. 18. The ES-DSG3 element is also compared

to the alternative MITC4 finite element formulation [72] (the As-

Table 8

The parameterized natural frequencies - ¼ ðxa2=p2Þ
ffiffiffiffiffiffiffiffiffiffiffi

qt=D
p

of triangular plates with t/a = 0.001.

a0 Elements Mode sequence number

1 2 3 4 5 6

0 DSG3 0.6252 2.3890 3.3404 5.7589 7.8723 10.3026

ES-DSG3 0.6242 2.3789 3.3159 5.7124 7.7919 10.1547

Rayleigh–Ritz [74] 0.624 2.377 3.308 5.689 7.743 –

Pb2 Rayleigh–Ritz [75] 0.625 2.377 3.310 5.689 7.743 –

Experimental [76] 0.588 2.318 3.239 5.540 7.518 –

ANS4 [72] 0.624 2.379 3.317 5.724 7.794 10.200

15 DSG3 0.5855 2.1926 3.4528 5.3481 7.3996 10.2498

ES-DSG3 0.5840 2.1833 3.4163 5.3020 7.3112 10.0779

Rayleigh–Ritz [74] 0.584 2.181 3.409 5.280 7.264 –

Pb2 Rayleigh–Ritz [75] 0.586 2.182 3.412 5.279 7.263 –

ANS4 [72] 0.583 2.181 3.413 5.303 7.289 10.095

30 DSG3 0.5798 2.1880 3.7157 5.5983 7.2814 10.7753

ES-DSG3 0.5766 2.1778 3.6539 5.5361 7.1628 10.5108

Rayleigh–Ritz [74] 0.576 2.174 3.639 5.511 7.108 –

Pb2 Rayleigh–Ritz [75] 0.578 2.178 3.657 5.518 7.109 –

ANS4 [72] 0.575 2.174 3.638 5.534 7.139 10.477

45 DSG3 0.6006 2.3564 4.2795 6.5930 7.8615 11.7850

ES-DSG3 0.5923 2.3359 4.1699 6.4424 7.6658 11.3496

Rayleigh–Ritz [74] 0.590 2.329 4.137 6.381 7.602 –

Pb2 Rayleigh–Ritz [75] 0.593 2.335 4.222 6.487 7.609 –

ANS4 [72] 0.588 2.324 4.126 6.381 7.614 11.224

60 DSG3 0.6497 2.7022 5.6491 8.3505 10.7757 14.6003

ES-DSG3 0.6261 2.6101 5.4283 7.7333 10.3756 13.3296

Rayleigh–Ritz [74] 0.617 2.576 5.376 7.524 10.285 –

Pb2 Rayleigh–Ritz [75] 0.636 2.618 5.521 8.254 10.395 –

ANS4 [72] 0.613 2.564 5.353 7.460 10.306 12.942
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sumed Natural Strain method (ANS4) using a mesh of 398 4-node

quadrilateral elements or 796 triangular elements) and two other

well-known numerical methods such as the Rayleigh–Ritz method

[74] and the pb-2 Ritz method [75]. From the results given in Ta-

ble 8 and Fig. 18, it is observed that the frequencies of the ES-

DSG3 are often bounded by the solutions of the Rayleigh–Ritz
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Fig. 18. Variation of the first five frequencies of triangular plate with angle a (t/a = 0.001).
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and the pb-2 Ritz models. Note that our method is simply based on

the formulation of 3-node triangular elements without adding any

additional DOFs. Therefore, the ES-DSG3 is very promising to pro-

vide an effective tool together with existing numerical models.

Also, Table 9 again shows that the ES-DSG3 works well for this

thick plate problem.

Table 9

The parameterized natural frequencies - ¼ ðxa2=p2Þ
ffiffiffiffiffiffiffiffiffiffiffi

qt=D
p

of triangular plates with the aspect ratio a/b = 1 and t/b = 0.2.

a0 Elements Mode sequence number

1 2 3 4 5 6

0 DSG3 0.5830 1.9101 2.4176 3.9772 5.0265 5.9521

ES-DSG3 0.5823 1.9040 2.4083 3.9559 4.9954 5.8994

Pb2 Rayleigh–Ritz [75] 0.582 1.900 2.408 3.936 – –

FEM [77] 0.581 1.901 2.410 – – –

ANS4 [72] 0.582 1.915 2.428 3.984 5.018 5.944

15 DSG3 0.5449 1.7803 2.3959 3.6668 4.8504 5.6057

ES-DSG3 0.5441 1.7749 2.3854 3.6467 4.8208 5.5385

Pb2 Rayleigh–Ritz [75] 0.544 1.771 2.386 3.628 – –

FEM [77] 0.543 1.770 2.388 – – –

ANS4 [72] 0.545 1.764 2.420 3.608 4.820 5.431

30 DSG3 0.5339 1.7815 2.4356 3.6085 4.7829 5.4532

ES-DSG3 0.5328 1.7754 2.4206 3.5842 4.7444 5.3377

Pb2 Rayleigh–Ritz [75] 0.533 1.772 2.419 3.565 – –

FEM [77] 0.532 1.769 2.419 – – –

ANS4 [72] 0.532 1.773 2.437 3.591 4.765 5.323

45 DSG3 0.5412 1.8977 2.5304 3.7518 4.8188 5.4304

ES-DSG3 0.5391 1.8882 2.5004 3.7035 4.6800 5.2256

Pb2 Rayleigh–Ritz [75] 0.540 1.885 2.489 3.674 – –

FEM [77] 0.538 1.881 2.482 – – –

ANS4 [72] 0.541 1.884 2.518 3.748 4.740 5.292

60 DSG3 0.5634 2.0837 2.5355 4.0862 4.6612 5.9782

ES-DSG3 0.5588 2.0623 2.4356 3.8009 4.3393 5.5835

Pb2 Rayleigh–Ritz [75] 0.559 2.059 2.396 3.590 – –

FEM [77] 0.555 2.047 2.386 – – –

ANS4 [72] 0.559 2.095 2.483 3.910 4.517 5.763

Fig. 19. Rectangular plates: (a) Axial compression, (b) biaxial compression, (c) shear in-plane, (d) regular mesh.

Table 10

The factors K of axial buckling loads along the x axis of rectangular plates with length-to-width ratios a/b = 1 and thickness-to-width ratios t/b = 0.01.

Plates type Elements 4 � 4 8 � 8 12 � 12 16 � 16 20 � 20

SSSS DSG3 7.5891 4.8013 4.3200 4.1590 4.0889

ES-DSG3 4.7023 4.1060 4.0368 4.0170 4.0089

CCCC DSG3 31.8770 14.7592 11.9823 11.0446 10.6282

ES-DSG3 14.7104 11.0428 10.3881 10.2106 10.1410
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5.3. Buckling of plates

In the following examples, the factor of buckling load is defined

as K = kcrb
2/(p2D) where b is the edge width of the plate, kcr the crit-

ical buckling load. The material parameters are Young’s modulus

E = 2.0 � 1011, Poisson’s ratio m=0.3.

5.3.1. Simply supported rectangular plates subjected to uniaxial

compression

Let us first consider a plate with length a, width b and thickness

t subjected to a uniaxial compression. Simply supported (SSSS) and

clamped (CCCC) boundary conditions are assumed. The geometry

and regular mesh of the plate are shown in Fig. 19a and d, respec-

tively. Table 10 gives the convergence of the buckling load factor

corresponding to the meshes of 4 � 4, 8 � 8, 12 � 12, 16 � 16

and 20 � 20 rectangular elements. Fig. 20 plots the convergence

of the normalized buckling load Kh/Kexact of square plate with the

thickness ratio t/b = 0.01, where Kh, Kexact are the buckling load of

numerical methods and the buckling load of the analytical solution

[78], respectively. It is evident that the ES-DSG3 element converges

to the exact solution faster than the DSG3 element. In addition, the

performance of the ES-DSG3 element is also compared with several

Table 12

The factor Kh of axial buckling loads along the x axis of rectangular plates with various length-to-width ratios a/b = 1 and various thickness-to-width ratios.

t/b Plate types DSG3 ES-DSG3 RPIM [79] Pb-2 Ritz [80]

0.05 SSSS 3.9786 3.9412 3.9464 3.9444

CCCC 9.8284 9.5426 9.5819 9.5586

FCFC 3.8365 3.7654 3.8187 3.8005

0.1 SSSS 3.7692 3.7702 3.7853 3.7873

CCCC 8.2670 8.2674 8.2931 8.2921

FCFC 3.4594 3.4966 3.5138 3.5077

Table 13

The factor Kh of axial buckling loads along the x axis of rectangular plates with various

length-to-width ratios and various thickness-to-width ratios.

a/b t/b DSG3 ES-DSG3 Meshfree [8] Pb-2 Ritz [80]

0.5 0.05 6.0478 5.9873 6.0405 6.0372

0.1 5.3555 5.3064 5.3116 5.4777

0.2 3.7524 3.7200 3.7157 3.9963

1.0 0.05 3.9786 3.9412 3.9293 3.9444

0.1 3.7692 3.7402 3.7270 3.7865

0.2 3.1493 3.1263 3.1471 3.2637

1.5 0.05 4.3930 4.2852 4.2116 4.2570

0.1 4.0604 3.9844 3.8982 4.0250

0.2 3.2014 3.1461 3.1032 3.3048

2.0 0.05 4.1070 3.9811 3.8657 3.9444

0.1 3.8539 3.7711 3.6797 3.7865

0.2 3.2023 3.1415 3.0783 3.2637

2.5 0.05 4.3577 4.1691 3.9600 4.0645

0.1 4.0644 3.8924 3.7311 3.8683

0.2 3.2393 3.1234 3.0306 3.24214 6 8 10 12 14 16 18 20
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Fig. 20. The convergence of buckling load Kh of square plate with t/b = 0.01.

Table 11

The factor Kb of axial buckling loads along the x axis of rectangular plates with length-to-width ratios a/b = 1 and thickness-to-width ratios t/b = 0.01.

Plate types DSG3 ES-DSG3 Liew and Chen [79] Ansys [79] Timoshenko and Gere [78] Tham and Szeto [82] Vrcelj and Bradford [83]

SSSS 4.1590

(3.97%)

4.0170

(0.4%)

3.9700

(�0.75%)

4.0634

(1.85%)

4.00

(0.0%)

4.00

(0.0%)

4.0006

(0.02%)

CCCC 11.0446

(9.68%)

10.2106

(1.4%)

10.1501

(0.8%)

10.1889

(1.18%)

10.07

(0.0%)

10.08

(0.1%)

10.0871

(0.17%)
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Fig. 21. Variation of axial buckling load Kb of SSSS plate with various length-to-

width ratios and various thickness-to-width ratios.
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other methods in the literature. Table 11 shows the factor values Kh

using 2 � 16 � 16 triangular elements, and the relative error per-

centages compared with exact results are given in parentheses. It

is found that the ES-DSG3 results agree well with analytical solu-

tion [78], spline finite strip methods [82,83] and the radial point

interpolation meshfree method [79].

Next we consider the buckling load factors of SSSS, CCCC, FCFC

plate with thickness-to-width ratios t/b = 0. 05; 0.1. The results are

given in Table 12. The present results are compared with the radial

point interpolation meshfree method [79], the pb-2 Ritz method

[80] and a good agreement is found.

More details, we also consider simply supported plates with

various thickness-to-width ratios, t/b = 0.05; 0.1; 0.2 and length-

to-width ratios, a/b = 0.5; 1.0; 1.5; 2.0; 2.5. Table 13 and Fig. 21

show the buckling factors using the regular mesh of 16 � 16

rectangular elements. The DSG3 and ES-DSG3 results are also

compared to the pb-2 Ritz and meshfree method [8]. It is seen that

the ES-DSG3 exhibits a good agreement with meshfree method and

the pb-2 Ritz method [80]. Fig. 22 also depicts the axial buckling

modes of simply-supported rectangular plates with thickness-to-

width ratios t/b = 0.01 and various length-to-width ratios, a/

b = 1.0; 1.5; 2.0; 2.5.
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Table 14

The factors Kh of biaxial buckling loads of rectangular plates with length-to-width ratios a/b = 1, thickness-to-width ratios t/b = 0.01 and various boundary conditions.

Plates type DSG3 ES-DSG3 Timoshenko and Gere [78] Tham and Szeto [82] Vrcelj and Bradford [83]

SSSS 2.0549 2.0023 2.00 2.00 2.0008

CCCC 5.6419 5.3200 5.31 5.61 5.3260

SCSC 4.0108 3.8332 3.83 3.83 3.8419

Table 15

The factors Kh of shear buckling loads of simply supported rectangular plates with

various length-to-width ratios, choose t/b = 0.01.

a/b DSG3 ES-DSG3 Meshfree [8] Exact [81]

1.0 9.5195 9.2830 9.3962 9.34

2.0 6.7523 6.4455 6.3741 6.34

3.0 6.5129 5.8830 5.7232 5.784

4.0 6.3093 5.6732 5.4367 5.59
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5.3.2. Simply supported rectangular plates subjected to biaxial

compression

The square plate subjected to biaxial compression is considered.

The geometry of the plates is shown in Fig. 19b. Table 14 gives the

shear buckling factor of square plate subjected biaxial compression

with three essential boundary conditions (SSSS, CCCC, SCSC) using

2 � 16 � 16 triangular elements. It can be seen that the ES-DSG3

element matches well with the analytical solution [78] and the

spline finite strip methods [82,83].

5.3.3. Simply supported rectangular plates subjected to in-plane pure

shear

Consider the simply supported plate subjected to in-plane shear

shown in Fig. 19c. The factors Kh of shear buckling loads of this

plate are calculated using 16 � 16 rectangular elements. The shear

buckling factors with thickness-to-width ratio, t/b = 0.001 and

length-to-width ratios, a/b = 1.0; 2.0; 3.0; 4.0 are listed in Table

15. The present results are compared to the exact solutions in

[81] and the meshfree solution [8]. It can be seen that the ES-

DSG3 element agrees well with the exact solution. We can be con-

cluded that the factor of buckling load of the plate is well approx-

imated by the present method. The convergence of the shear

buckling load of a support plate is illustrated in Fig. 23. The shear

buckling load decreases rapidly as length-to-width ratios increase.
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Fig. 24 shows the shear buckling modes of simply-supported rect-

angular plates with thickness-to-width ratios t/b = 0.01 and vari-

ous length-to-width ratios, a/b = 1.0; 2.0; 3.0; 4.0.

Now we consider the square subjected to in-plane shear with

three essential boundary conditions, SSSS, CCCC, SCSC. The present

result is given in Table 16. It can be again seen that the ES-DSG3

element is very good in comparison to the analytical solution

[78], the spline finite strip methods [82,83].

6. Conclusions

An edge-based smoothed finite element method with the stabi-

lized Discrete Shear Gap technique using triangular elements is

formulated for static, free vibration and buckling analyses of Reiss-

ner–Mindlin plates. Through the formulations and numerical

examples, some concluding remarks can be drawn as follows:

� The ES-DSG3 uses only three DOFs at each vertex node without

additional degrees of freedom and no more requirement of high

computational cost.

� The ES-DSG3 element is more accurate than the DSG3, MIN3

triangular elements, and often found more accurate than the

well-known MITC4 element when the same sets of nodes are

used for all cases studied. The results of the ES-DSG3 element

are also in a good agreement with analytical solution and com-

pared well with results of several other published elements in

the literature.

� For free vibration and buckling analyses, no spurious non-zero

energy modes are observed and hence the ES-DSG3 element is

stable temporally. The ES-DSG3 element gives more accurate

results than the DSG3 element and shows also a strong compet-

itor to existing complicated models such as the Rayleigh–Ritz

method, the pb-2 Ritz method, the spline finite strip and the

meshfree approaches.

Through the obtained results, the present method is thus very

promising to provide a simple and effective tool for analyses of

plate structures.
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