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  Abstract — This paper describes a method for video 

sequences denoising that exploits extra-information 

provided by the image sensor. Fixed Pattern Noise and 

Temporal Noise are removed by analyzing a series of lines 

placed at the top of the imager. 

 

Index Terms — Noise Reduction, Fixed Pattern Noise, 

Temporal Random Noise. 

I. INTRODUCTION 

N order to improve the quality of images acquired by 

ccd/cmos digital still cameras [1], the problem of filtering 

noise must be addressed. Depending on the specific field of 

application, a spatial or spatio-temporal filter is chosen. 

Specifically, the noise reduction process can be implemented 

directly in the Bayer Pattern CFA domain (Colour Filter 

Array) [2], or, after color interpolation, in the RGB or YCbCr 

color spaces. Fig. 1 illustrates a typical image generation 

pipeline (IGP). By placing noise reduction at the beginning 

of the pipeline the overall IGP efficiency is increased. 

We have already proposed methods to filter still pictures 

[3][4] and video sequences [5][6] both working in the CFA 

domain. In order to regulate the filter strength adaptively, a 

noise estimation routine is needed. In the case of the temporal 

filter [5][6], the identification of flat areas in every frame is 

necessary in order to determine the statistical properties of 

the superimposed noise [9]; the estimation of the noise level 

is calculated over the current frame and it is used to filter the 

successive frame by means of the Duncan Filter [4][5][6].  

In this paper we adopt a different approach that does not 

use image data for noise estimation. We rely, instead, on 

supplementary data lines provided by the image sensor. 

These extra-lines allow the estimation of two different 

kinds of noise: 

 

- Fixed Patten Noise (FPN) 

- Temporal Random Noise 

 

Experiments show that skipping image analysis for noise 

estimation allows a significant improvement in terms of 

processing time.  
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The paper is organized as follows. Next section describes 

a typical image generation pipeline along with a brief 

introduction to temporal and fixed pattern noise. Section III 

gives an overview of the proposed spatio-temporal filter 

while the following section explains how the extra-sensor 

data can be effectively used. After illustrating the 

experimental results, a conclusions section with hints for 

future work closes the paper. 

 
 

 

Fig. 1. Typical Image Generation Pipeline. 

II. IMAGE GENERATION PIPELINE AND NOISE 

A typical image generation pipeline is illustrated in Fig. 1. 

Noise introduced by the imager reduces the quality of each 

frame. Removing noise before it reaches the recovery 

engine, where color interpolation and other relevant image 

processing algorithms are actually executed [1][10]-[16], is 

a processing method that we have already exploited [3]-[6]. 

In a video sequence the frames are usually temporally 

correlated; a spatio-temporal filter should exploit the frame 

correlation in order to achieve optimal results. Each frame 

has to be processed by taking into account temporal 

information to avoid artifacts generated by the residual 

noise. Otherwise, the resulting filtered video would be 

affected by annoying artifacts, such as flickering. Hence, 

even when no motion occurs, two adjacent frames are never 

equal on a pixel-by-pixel basis; the differences are 

introduced by noise, which is spread over each frame. 

Discriminating between the true image signal and the 

superimposed noise is a hard task. Adaptive methods are 

needed in order to perform noise filtering accurately. 

A. Temporal Noise 

Digital cameras must be able to provide useful pictures 

both in good and low light conditions. Especially in dim 
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scenes, the camera gain settings are increased in order to 

boost the signal to acceptable values. This, not only 

increases the signal level, but also augments noise; we 

assume this noise to be generally gaussian distributed. 

Specifically, zero mean additive white gaussian noise 

(AWGN) of the form (1), is considered [9]:  
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• 68% of pixels belong to the range [µ-σ, µ+σ] 

• 95% of pixels belong to the range [µ-2σ, µ+2σ] 

• 99.7% of pixels belong to the range [µ-3σ, µ+3σ] 
 

A certain number of pixels is located in the tails of the 

Gaussian distribution; hence, they are similar to impulsive 

noise. The proposed temporal filter is capable to deal also 

with impulsive noise. 

 

B. Fixed Pattern Noise 

In addition to pure temporal noise, one of the most 

annoying artifacts visible in low light conditions is 

represented by the FPN (Fixed Pattern Noise). Sensors 

built using CMOS technology suffer this noise problem 

significantly. Especially at high gains, the comparator 

offsets of the column parallel ADC generate a column-wise 

error in the image. 

 

  
(a) (b) 

Fig. 2 (a). Visible FPN columns in a frame captured in almost 

complete darkness. (b) After FPN removal. 

 

Hence, FPN is particularly visible in low light 

conditions. Fig. 2 shows a cropped part of an image acquired 

in almost complete darkness; vertical stripes are visible and 

must be removed to achieve acceptable quality. 

 

III. SPATIO-TEMPORAL FILTER 

The proposed filter uses two working windows; these 

masks are centered in the current CFA noisy frame and in 

the previous CFA filtered frame.  

The method is based on Duncan Filtering (DF) as shown 

in [5][6][8]. 

In order to take advantage of the temporal redundancy, 

motion between two successive frames has to be considered 

[10]. This can be done either with a motion estimation 

algorithm, or by using motion detection. The first method is 

more reliable but time consuming, as the motion 

estimation/compensation complexity is higher than motion 

detection alone.  

Motion compensation usually works in a block-wise 

manner. Images are subdivided in fixed sized blocks (e.g. 

16x16 or 8x8); each block in the current frame is coupled 

with its counterpart in the previous frame (Fig. 3).  

 

 

Fig. 3. Motion compensated approach. 

 

 

Fig. 4. Motion Detection between two successive frames. 

 

 

In a real time implementation, usually a simpler motion 

detection approach is considered. The SAD (Sum of the 

Absolute Differences) between the two working windows is 

computed; motion is detected if the SAD value is higher 

than a given threshold. In Fig. 4 the results of the motion 

detection block are shown. Black pixels represent static 

areas between frames; gray colored regions are relative to 

pixels where motion between frames has been detected. 

The presence of motion hinders the previous frame from 

being reliable. In case of motion, the data from the previous 

frame is discarded and the filter support is fully spatial. On 

the other hand, if no motion is detected, the data from the 

two frames can be used. In order to regulate the filter 

strength, noise level estimation has to be performed.  

The proposed spatio-temporal filter is based on the 

knowledge of the noise standard deviation σ (see [5][6][8] 

for further details). To estimate σ, the homogeneous areas 

of each frame are used; in these areas, the differences 

between pixel values are caused mainly by random noise. A 

texture analyzer, inspecting the local characteristics of a 

frame, discriminates between flat and textured zones. A 

threshold Td is computed, representing the texture degree 

related to the area where the current pixel is located. 
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Fig. 5 (a). A CFA video frame. (b) The CFA frame as seen from the texture analyzer: Dark regions are the homogeneous detected areas; bright areas 

contain different degrees of texture. 

 

Fig. 6. Some of the flat areas used for the local noise estimation. 

 
If a flat area is detected, its local variance is computed 

[5][6][7][17]. After scanning the whole frame we end up 

with a series of local standard deviations; by averaging 

them, the noise standard deviation of the current frame is 

available. Actually, the algorithm “sees” an image as 

different degrees of texture, as illustrated in Fig. 5 and Fig. 6. 

The estimated noise level is used to regulate the filter 

strength for the next video frame. 

Let σ be the frame variance computed over the previous 

frame; this value is used to filter the current frame. 

Denoting with CurrPix the noisy pixel under processing, 

two other values are considered: CurrPix+σ and CurrPix-

σ. Three intervals having wideness W=f(σ) are chosen, and 

centered on CurrPix, CurrPix+σ and CurrPix-σ (Fig. 7). 

 

 

 

Fig. 7. Duncan Filtering method. 

The higher σ, the wider W. The interval W maximizing 

the number of pixels is chosen and a weighted average is 

computed. In the selected interval, pixels far from the 

central one have lower weights. 

This approach, although correct and reliable, is time 

consuming, as some computations are necessary in order to 

extrapolate the flat areas and compute the local variances. 

 

IV. FILTERING BY USING SENSOR EXTRA-DATA 

A better strategy for noise estimation consists in 

analyzing the supplementary data provided by the image 

sensor. As Fig. 8 and Fig. 9 depict, a series of extra-lines is 

placed at the top of the image sensor. First, there is a series 

of black lines, followed by a series of dark lines. Black 

lines have zero integration time; dark lines have the same 

exposure time as the image lines but they are shielded from 

the incident light. The extra lines will not be shown in the 

final color denoised pictures. 

These considerations imply that:  

 

• black lines contain very little noise 

(specifically, FPN noise only); 

• dark lines accumulate almost the same temporal 

noise as the image, because they have the same 

integration time of the image lines. 

 

 
Fig. 8. Black lines are used for FPN estimation, Dark lines for random 

noise estimation. 

  
(a) (b) 
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Fig. 9. FPN clearly visible in Black lines. 

The FPN cancellation is achieved by continuously 

averaging the black sampled data, according to the 

following equation: 

 
FPN_Est = FPN_Est – (FPN_Est/LeakC)+(FPN_CurSample/LeakC)

      (2) 

 

where:  

- LeakC: is a constant to weight the previous estimation. 

- FPN_Est: is the estimation of the FPN signature. 

- FPN_CurSample: is the FPN signature, extracted from 

the current frame. 

The current estimation, FPN_CurSample, for the FPN is 

obtained by averaging each column j of the black lines (3): 
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Hence, denoting with bk_rows the number of black rows, 

a value Mj is obtained by averaging each column j of the 

black data.  

FPN_Est is initialized to zero and is updated by means of 

equation (2), each time a new frame arrives. 

The first estimation, computed on the first frame, is 

merely a coarse approximation of the real FPN signature. 

After some iterations the estimation converges towards the 

correct signature that must be row-wise subtracted from the 

image data in order to get rid of the FPN. The LeakC value 

defines how much weight is attributed to the previous 

estimations; by changing this value, the speed of 

convergence can be modulated. 

Also, the number of black lines used to “learn” the 

signature is a key element of the algorithm. If a low number 

of black lines is used, the estimation would be not reliable, 

as noise would generate uncertain approximations. On the 

other hand, using more lines than necessary is a useless 

waste of resources, both on the sensor and from a 

computational point of view. Thus, a trade-off between the 

number of black lines and the leak factor value must be 

found. Attention must be paid in order to avoid changes in 

the original illumination, thus Hmean is added at each 

pixel. After convergence, the mean value of the FPN 

horizontal signature Hmean is computed (4): 
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Fig.10 illustrates the simulation results performed to 

determine the best trade-off between the number of black 

lines and the value to choose for LeakC. On the x-axis, the 

number of frames is represented; on the y-axis, the error 

from the correct FPN signature is shown. 

 

 

Fig. 10. Simulation results obtained by varying the number of black 

lines and LeakC. 

The FPN signature is continuously averaged and updated 

by using the information provided by the black lines. After 

a certain number of iterations (i.e. after processing the black 

data provided by a certain number of frames), the 

estimations change very little from frame to frame (see Fig. 

10). At this stage, the signature is considered as “stabilized” 

and it can be subtracted from the image data.  

Additionally, before subtraction from image lines, the 

FPN signature must be scaled by the same gain used during 

capture. 

The extra-lines information can be also used to determine 

the random noise level. An estimation of the temporal noise 

standard deviation can be obtained by processing the dark 

data. Pixel fluctuations in dark lines are caused mainly by 

random noise. Dark lines noise has approximately the same 

power of image noise, as these lines are held in exposure 

for the same time. Hence, a straightforward computation of 

noise standard deviation on dark data is equivalent to a 

noise level estimation on homogeneous frame areas. The 

overall filtering process, that removes both FPN and 

random noise, is illustrated in Fig. 11. Two frames are 

considered: the current Current Noisy Frame (CNF) and 

the Previous Filtered Frame (PFF). Black data from CNF 

is used to estimate the FPN signature; dark data from CNF 

allows the estimation of temporal noise. The Update 

Signature Block updates the FPN estimation by weighting it 

with the previous one. The Remove FPN Block, removes 

FPN from CNF. Finally, the temporal filter processes the 

PFF and the FPN-free CNF to remove the temporal noise, 

by using the noise level estimation previously computed on 

the dark data. 
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Fig. 11. Overall filter processing pipeline. 

 

V. EXPERIMENTAL RESULTS 

The proposed technique estimates noise levels starting 

from the sensor extra-lines; this method allows to filter 

image data according to its own noise levels, instead of 

relying on information computed over the previous frames. 

A test sequence composed by 150 frames has been 

contaminated with gaussian noise having high variance. 

FPN was also simulated. Then, Fixed pattern noise 

cancellation and temporal noise reduction is performed. 

After removing the temporal noise, there is a significant 

gain in terms of PSNR. 

Fig. 12 shows the PSNR computed between the clean 

sequence and the noisy one, versus the PSNR between the 

clean and the filtered sequence. 

Fig. 13 illustrates the gain in terms of PSNR. 

 

 

Fig. 12. PSNR (Clean vs. Nosy) and PSNR (Clean Vs. Filtered). 

 

 

Fig. 13. PSNR Gain relative to the filtered sequence. 

 

The temporal filter can increase the PSNR up to 3-4 dB 

in our experiments; by removing also FPN, a further gain of 

1-2 dB can be achieved. The lowest PSNR gains are 

obtained when a scene change occurs; on the other hand 

PSNR gains increase with correlation between adjacent 

frames. Fig. 14 and Fig. 15 show examples of the proposed 

filtering method. 

 

VI. CONCLUSIONS 

A technique to remove noise from video sequences by 

using sensor extra-lines has been presented. It allows to 

perform noise levels estimation quickly and to improve 

significantly the quality of the source noisy video. Two 

cascaded filters remove FPN and temporal noise. Future 

work will address the problem of implementing a refined 

spatial filter when temporal information is discarded. A 

motion compensated approach is also to be investigated. 
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(a) (b) 

Fig. 14 (a). A video frame, before FPN cancellation; (b) After FPN Cancellation. 

  
(a) (b) 

Fig. 15. (a) A video frame before FPN and temporal noise reduction; (b) After FPN cancellation and temporal noise reduction. 
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