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We describe a speech enhancement algorithm which leads to significant quality and intelligibility improvements when used as
a preprocessor to a low bit rate speech coder. This algorithm was developed in conjunction with the mixed excitation linear
prediction (MELP) coder which, by itself, is highly susceptible to environmental noise. The paper presents novel as well as known
speech and noise estimation techniques and combines them into a highly effective speech enhancement system. The algorithm
is based on short-time spectral amplitude estimation, soft-decision gain modification, tracking of the a priori probability of
speech absence, and minimum statistics noise power estimation. Special emphasis is placed on enhancing the performance of
the preprocessor in nonstationary noise environments.
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1. INTRODUCTION

With the advent and wide dissemination of mobile voice
communication systems, telephone conversations are in-
creasingly disturbed by environmental noise. This is espe-
cially true in hands-free environments where the micro-
phone is far away from the speech source. As a result, the
quality and intelligibility of the transmitted speech can be
significantly degraded and fail to meet the expectations of
mobile phone users. The environmental noise problem be-
comes even more pronounced when low bit rate coders are
used in harsh acoustic environments. An example is the
mixed excitation linear prediction (MELP) coder which op-
erates at bit rates of 1.2 and 2.4 kbps. It is used for secure gov-
ernmental communications and has been selected as the fu-
ture NATO narrow-band voice coder [1]. In contrast to wave-
form approximating coders, low bit rate coders transmit pa-
rameters of a speech production model instead of the quan-

tized acoustic waveform itself. Thus, low bit rate coders are
more susceptible to a mismatch of the input signal and the
underlying signal model.

It is well known that single microphone speech enhance-
ment algorithms improve the quality of noisy speech when
the noise is fairly stationary. However, they typically do not
improve the intelligibility when the enhanced signal is pre-
sented directly to a human listener. The loss of intelligibil-
ity is mostly a result of the distortions introduced into the
speech signal by the noise reduction preprocessor. However,
the picture changes when the enhanced speech signal is pro-
cessed by a low bit rate speech coder as shown in Figure 1.
In this case, a speech enhancement preprocessor can signifi-
cantly improve quality as well as intelligibility [2]. Therefore,
the noise reduction preprocessor should be an integral com-
ponent of the low bit rate speech communication system.

Although many speech enhancement algorithms have
been developed over the last two decades, such asWiener and
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Figure 1: Speech communication system with noise reduction preprocessing.
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Figure 2: Block diagram of speech enhancement preprocessor.

power-subtraction methods [3], maximum likelihood (ML)
[4], minimum mean squared error (MMSE) [5, 6], and oth-
ers [7, 8], improvements are still sought. In particular, since
mobile voice communication systems frequently operate in
nonstationary noise environments, such as insidemoving ve-
hicles, effective suppression of nonstationary noise is of vital
importance. While most existing enhancement algorithms
assume that the spectral characteristics of the noise change
very slowly compared to those of the speech, this may not
be true when communicating from a moving vehicle. Under
such circumstances the noise may change appreciably during
speech activity, and so confining the noise spectrum updates
to periods of speech absence may adversely affect the perfor-
mance of the speech enhancement algorithm. To maximize
enhancement performance, the noise characteristics should
be tracked even during speech.

Most common enhancement techniques, including those
cited above, operate in the frequency domain. These tech-
niques apply a frequency-dependent gain function to the
spectral components of the noisy signal, in an attempt to at-
tenuate the noisier components to a greater degree. The gains
applied are typically nonlinear functions of estimated signal
and noise powers at each frequency. These functions are usu-
ally derived by either estimating the clean speech (e.g., the
Wiener approach) or its spectral magnitude according to a
specific optimization criterion (e.g., ML, MMSE). The noise-
suppression properties of these enhancement algorithms

have been shown to improve when a soft-decision modifica-
tion of the gain function, which takes speech-presence uncer-
tainty into account, is introduced [4, 5, 7, 9]. To implement
such a gain modification function, one must provide a value
to the a priori probability of speech absence for each spectral
component of the noisy signal. Therefore, we use the algo-
rithm in [9] to estimate the a priori probability of speech ab-
sence as a function of frequency, on a frame-by-frame basis.

The objective of this paper is to describe a single mi-
crophone speech enhancement preprocessor which has been
developed for voice communication in nonstationary noise
environments with high quality and intelligibility require-
ments. Recently, this preprocessor has been proposed as an
optional part of the future NATO narrow-band voice coder
standard (also known as the MELPe coder [1]) and, in a
slightly modified form, in conjunction with one of the ITU-
T 4 kbps coder [10] proposals. The improvements we obtain
with this system result from a synergy of several carefully de-
signed system components. Significant contributions to the
overall performance stem from a novel procedure for esti-
mating the a priori probability of speech absence, and from
a noise power spectral density (PSD) estimation algorithm
with small error variance and good tracking properties.

A block diagram of the algorithm is shown in Figure 2.
Spectral analysis consists of applying a window and the DFT.
Spectral synthesis inverts the analysis with the IDFT and
overlap-adding consecutive frames. The algorithm includes
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an MMSE estimator for the spectral amplitudes, a procedure
for estimating the noise PSD, the long-term signal-to-noise
ratio (SNR), and the a priori SNR, as well as a mechanism for
the tracking of the a priori probability of speech absence. The
spectral estimation procedure attenuates frequency compo-
nents which contain primarily noise and passes those which
containmostly speech. As a result, the overall SNR of the pro-
cessed speech signal is improved.

In the remainder of this paper we describe this algorithm
in detail and evaluate its performance. In Section 2 we dis-
cuss windows for DFT-based spectral analysis and synthesis
as well as the algorithmic delay of the joint enhancement and
coding system. Sections 3, 4, and 5 present estimation proce-
dures for the spectral coefficients and the long-term SNR.We
outline the noise estimation algorithm [11] in Section 6, and
summarize listening test results in Section 7. Section 8 con-
cludes the paper. We reiterate that some components have
been previously published [6, 9, 11, 12]. Our goal here is
to tie all required components together, thereby providing a
comprehensive description of the MELPe enhancement sys-
tem.

2. SPECTRAL ANALYSIS AND SYNTHESIS

Assuming an additive, independent noise model, the noisy
signal y(n) is given by x(n) + d(n), where x(n) denotes the
clean speech signal, and d(n) the noise. All signals are sam-
pled at a sampling rate of fs. We apply a short-time Fourier
analysis to the input signal by computing the DFT of each
overlapping windowed frame,

Y(k,m) =
L−1∑
�=0

y
(
mME + �

)
h(�)e− j2πk�/L. (1)

Here,ME denotes the frame shift, m ∈ Z is the frame index,
k ∈ {0, 1, . . . ,L − 1} is the frequency bin index, which is re-
lated to the normalized center frequency Ωk = k2π/L, and
h(�) denotes the window function. Typical implementations
of DFT-based noise reduction algorithms use a Hann win-
dow with a 50% overlap (ME/L = 0.5) or a Hamming win-
dow with a 75% overlap (ME/L = 0.25) for spectral analysis,
and a rectangular window for synthesis.

When no confusion is possible, we drop the frame index
m and write the frequency index k as a subscript. Thus, for a
given framem we have

Y(k,m) = X(k,m) +D(k,m) or Yk = Xk +Dk, (2)

where Xk and Yk are characterized by their amplitudes Ak

and Rk and their phases ϕk and θk, respectively,

Xk = Ak exp
(
jϕk
)
,

Yk = Rk exp
(
jθk
)
.

(3)

In the gain function derivations cited below, it is assumed
that the DFT coefficients of both the speech and the noise
are independent Gaussian random variables.

Preprocessor
frames
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Time

Figure 3: Frame alignment of enhancement preprocessor and
speech coder withME =MC .

The segmentation of the input signal into frames and
the selection of an analysis window is closely linked to the
frame alignment of the speech coder [12] and the admis-
sible algorithmic delay. The analysis/synthesis system must
balance conflicting requirements of sufficient spectral resolu-
tion, little spectral leakage, smooth transitions between sig-
nal frames, low delay, and low complexity. Delay and com-
plexity constraints limit the overlap of the signal frames.
However, the frame advancement must not be too aggres-
sive so as to degrade the enhanced signal’s quality. When the
frame overlap is less than 50%, we obtain good results with a
flat-top (Tukey) analysis window and a rectangular synthesis
window.

The total algorithmic delay of the joint enhancement and
coding system is minimized when the frame shift of the noise
reduction preprocessor is adjusted such that l(L − MO) =
lME = MC , with l ∈ N and where MC and MO denote the
frame length of the speech coder and the length of the over-
lapping portions of the preprocessor frames, respectively.
This situation is depicted in Figure 3.

The additional delay ∆E, due to the enhancement pre-
processor, is equal toMO. For the MELP coder and its frame
length of MC = 180, we use an FFT length of L = 256 and
have MO = 76 overlapping samples between adjacent signal
frames.

Reducing the number of overlapping samples MO, and
thus the delay of the joint system, has several effects. First,
with a flat-top analysis window, this decreases the sidelobe
attenuation during spectral analysis, which leads to increased
crosstalk between frequency bins that might complicate the
speech enhancement task. Most enhancement algorithms as-
sume that adjacent frequency bins are independent and do
not exploit correlation between bins. Second, as the over-
lap between frames is reduced, transitions between adjacent
frames of the enhanced signal become less smooth. Discon-
tinuities arise because the analysis window attenuates the in-
put signal most at the ends of a frame, while estimation er-
rors, which occur during the processing of the frame in the
spectral domain, tend to spread evenly over the whole frame.
This leads to larger relative estimation errors at the frame
ends. The resulting discontinuities, which are most notable
in low SNR conditions, may lead to pitch estimation errors
and other speech coder artifacts.

These discontinuities are greatly reduced if we use a ta-
pered window for spectral synthesis as well as one for spectral
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analysis [12]. We found that a tapered synthesis window is
beneficial when the overlap MO is less than 40% of the DFT
length L. In this case, the square root of the Tukey window

h(n)

=



√
0.5
(
1− cos

(
πn

MO

))
, 1 ≤ n ≤MO,

1, MO + 1≤n≤L−MO−1,√
0.5
(
1− cos

(
π(L− n)

MO

))
, L−MO ≤ n ≤ L,

(4)

can be used as an analysis and synthesis window. It results in
a perfect reconstruction system if the signal is not modified
between analysis and synthesis. Note that the use of a tapered
synthesis window is also in line with the results of Griffin
and Lim [13] for theMMSE reconstruction ofmodified short
time spectra.

3. ESTIMATIONOF SPEECH SPECTRAL COEFFICIENTS

Let Ck be some function of the short-time spectral amplitude
Ak of the clean speech in the kth bin (e.g., Ak, logAk, A2

k).
Taking the uncertainty of speech presence into account, the
MMSE estimator Ĉk of Ck is given by [4]

Ĉk = E
{
Ck

∣∣Yk,Hk
1

}
P
(
Hk

1

∣∣Yk
)

+ E
{
Ck

∣∣Yk,Hk
0

}
P
(
Hk

0

∣∣Yk
)
,

(5)

where Hk
0 and Hk

1 represent the following hypotheses:

(i) Hk
0 : speech absent in kth DFT bin,

(ii) Hk
1 : speech present in kth DFT bin,

and E{·|·} and P(·|·) denote conditional expectations and
conditional probabilites, respectively. Since E{Ck|Yk,Hk

0} =
0, we have

Ĉk = E
{
Ck

∣∣Yk ,Hk
1

}
P
(
Hk

1

∣∣Yk
)
. (6)

P(Hk
1 |Yk) is thus the soft-decision modification of the opti-

mal estimator under the signal presence hypothesis.
Applying Bayes’ rule, one obtains [4, 5]

P
(
Hk

1

∣∣Yk
) = p

(
Yk

∣∣Hk
1

)
P
(
Hk

1

)
p
(
Yk

∣∣Hk
0

)
P
(
Hk

0

)
+ p
(
Yk

∣∣Hk
1

)
P
(
Hk

1

)
= Λk

1 +Λk
� GM(k),

(7)

where p(·|·) represents conditional probability densities,
and

Λk � µk
p
(
Yk

∣∣Hk
1

)
p
(
Yk

∣∣Hk
0

) , µk � P
(
Hk

1

)
P
(
Hk

0

) = 1− qk
qk

. (8)

Λk is a generalized likelihood ratio and qk denotes the a
priori probability of speech absence in the kth bin.

Ĉk is then used to find an estimate of the clean signal
spectral amplitude Ak. If Ck = Ak, as for the MMSE am-
plitude estimator, one gets [5]

ÂSA(k) = GM(k)GSA(k)Rk, (9)

where, ÂSA(k) is the MMSE estimator of Ak that takes into
account speech presence uncertainty and, according to (6)
and (7), GM(k) is the modification function of GSA(k) =
E{Ak|Yk,Hk

1}/Rk. The derivation of GSA(k) can be found in
[5].

3.1. MMSE-LSA andMM-LSA estimators

Based on the results reported in [6], we prefer using the
MMSE-LSA estimator (corresponding to Ck = logAk) over
the MMSE-STSA (Ck = Ak) estimator [5], as the basic en-
hancement algorithm. In this case the amplitude estimator
has the form

ÂLSA(k) = exp
[
E
{
logAk

∣∣Yk,Hk
1

}
GM(k)

]
�
[
GLSA(k)Rk

]GM(k)
,

(10)

where, again, GM(k) is the gain modification function de-
fined in (7) and satisfies, of course, 0 ≤ GM(k) ≤ 1. Be-
cause the soft-decision modification of Rk in (10) is not mul-
tiplicative and does not result in a meaningful improvement
over using GLSA(k) alone [6], we choose to use the following
estimator, which is called the multiplicatively modified LSA
(MM-LSA) estimator [9]:

ÂL(k) = GM(k)GLSA(k)Rk � GL(k)Rk. (11)

It should be mentioned that in [14, 15] the second term in
(5) is not zeroed out, as we did in arriving at (6), but is
rather constrained in such a way that (10) can be replaced by
[GLSA(k)Rk]GM(k)[GminRk]1−GM(k), where Gmin is a threshold
gain value [14, 15]. This way, one gets an exact multiplica-
tive modification of Rk, by replacing the expression for GL(k)

in (11) with GLSA(k)GM(k)G1−GM(k)
min . Since the computation of

GL(k) according to (11) is simpler, and gives close results for
a wide range of practical SNR values [15], we prefer to con-
tinue with (11).

Under the above assumptions on speech and noise, the
gain function GLSA(k) is derived in [6] to be

GLSA
(
ξk, γk

) = ξk
1 + ξk

exp
(
1
2

∫∞
vk

e−t

t
dt
)
, (12)

where,

vk � ξk
1 + ξk

γk, γk � R2
k

λd(k)
,

ξk � ηk
1− qk

, ηk � λx(k)
λd(k)

,

λx(k) � E
{∣∣Xk

∣∣2} = E
{
A2
k

}
, λd(k) � E

{∣∣Dk

∣∣2}.
(13)

In [6], γk is called the a posteriori SNR for bin k, ηk is called



1050 EURASIP Journal on Applied Signal Processing

the a priori SNR, and qk is the prior probability of speech
absence discussed earlier (see (7)).

With the above definitions, the expression for Λk in (7) is
given by [5]

Λk = µk
exp

(
vk
)

1 + ξk

∣∣∣∣
ξk=ηk/(1−qk)

. (14)

In order to evaluate these gain functions, one must first esti-
mate the noise power spectrum λd. This is often done during
periods of speech absence as determined by a voice activity
detector (VAD), or, as we will show below using the mini-
mum statistics [11] approach. The estimated noise spectrum
and the squared input amplitude R2

k provide an estimate for
the a posteriori SNR. In [5, 6], a decision-directed approach
for estimating the a priori SNR is proposed:

η̂k(m) = αη
Â2(k,m)

λd(k,m− 1)
+
(
1− αη

)
max

{(
γ(k,m)− 1

)
, 0
}
,

(15)

where 0 ≤ αη ≤ 1.
An important property of both the MMSE-STSA [5] and

the MMSE-LSA [6] enhancement algorithms is that they
do not produce musical noise [16] that plagues many other
frequency-domain algorithms. This can be attributed to the
above decision-directed estimation method for the a priori
SNR [16]. To improve the perceived performance of the es-
timator, [16] recommends imposing a lower limit ηMIN on
the estimated ηk, analogous to the use of a “spectral floor”
in [17]. This lower limit depends on the overall SNR of the
noisy speech and may be adaptively adjusted as outlined in
Section 5. The parameter αη in (15) provides a trade-off be-
tween noise reduction and signal distortion. Typical values
for αη range between 0.90 and 0.99, where at the lower end
one obtains less noise reduction but also less speech distor-
tion.

Before we consider the estimation of the prior probabili-
ties, we mention that in order to reduce computational com-
plexity, the exponential integral in (12) may be evaluated us-
ing the functional approximation below instead of iterative
solutions or tables. Thus, to approximate

ei(v) �
∫∞
v

e−t

t
dt, (16)

we use

ẽi(v) =


−2.31 log10(v)− 0.6 for v < 0.1,

−1.544 log10(v) + 0.166 for 0.1 ≤ v ≤ 1,

10−(0.52v+0.26) for v > 1.

(17)

Since in (12) we need exp(0.5ei(v)), we show this func-
tion (solid line) alongside its approximation (dashed line) in
Figure 4. For the present purpose this approximation is more
than adequate.

3.2. Estimation of prior probabilities

A key feature of our speech enhancement algorithm is the es-
timation of the set of prior probabilities {qk} required in (12)

103

102

101

100

ex
p(
0.
5e
i(
v)
)

10−4 10−2 100

v

Exact
Approximation

Figure 4: An approximation of exp(0.5ei(v)) using the approxima-
tion for ei(v) in (17).

and (14), where k is the frequency bin index. Our first ob-
jective is to estimate a fixed q (i.e., a frequency-independent
value) for each frame that contains speech. The basic idea is
to estimate the relative number of frequency bins that do not
contain speech and use a short time average of this statistic
as an estimate for q. Due to this averaging, the estimated q
will vary in time and will serve as a control parameter in the
above gain expressions.

The absence of speech energy in the kth bin clearly cor-
responds to ηk = 0. However, since the analysis is done with
a finite length window, we can expect some leakage of energy
from other bins. In addition, the human ear is unable to de-
tect signal presence in a bin if the SNR is below a certain level
ηmin. In general, ηmin can vary in frequency and should be
chosen in accordance with a perceptual maskingmodel. Here
we choose a constant ηmin for all the frequency bins, and set
its value to the minimum level, ηMIN, that the estimate η̂ in
(15) is allowed to attain. The values used in our work ranged
between 0.1 and 0.2. It is interesting to note that the use of
a lower threshold on the a priori SNR has a similar effect to
constraining the gain, when speech is absent, to some Gmin,
which is the basis for the derivation of the gain function in
[14, 15].

Due to the nonlinearity of the estimator for ηk in (15),
there is a “locking” phenomenon to ηMIN when the speech
signal level is low. Hence, one could consider using ηMIN as
a threshold value to which η̂k is compared in order to decide
whether or not speech is present in bin k. However, our at-
tempt to use this threshold resulted in excessively high counts
of noise-only bins, leading to high values of q (i.e., closer to
one). This is easily noticed in the enhanced signal which suf-
fers from an over-aggressive attenuation by the gain modifi-
cation function GM(k).
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We therefore turn our attention to the a posteriori SNR,
γk, defined in (12) and determined directly from the squared
amplitude R2

k, once an estimate for noise spectrum λd(k)
is given. Assuming that the DFT coefficients of the speech
and noise are independent Gaussian random variables, the
pdf of γk for a given value of the a priori SNR, ηk, is given
by [5]

p
(
γk
) = 1

1 + ηk
exp

(
− γk

1 + ηk

)
, γk ≥ 0. (18)

To decide whether speech is present in the kth bin (in the
sense that the true ηk has a value larger or equal to ηmin), we
consider the following composite hypotheses:

(H0) ηk ≥ ηmin (speech present in kth bin),
(HA) ηk < ηmin (speech absent in kth bin).

We have chosen the null hypothesis (H0) as stated above since
its rejection when true is more grave than the alternative er-
ror of accepting when false. This is because the first type of
error corresponds to deciding that speech is absent in the bin
when it is actually present. Making this error would increase
the estimated value of q, which would have a worse effect on
the enhanced speech than if the value of q is under-estimated.
Since ηk parameterizes the pdf of γk, as shown in (18), γk can
be used as a test statistic. In particular, since the likelihood ra-
tios that correspond to simple alternatives to the above two
hypotheses

p
(
γk
∣∣ηk = ηmin

)
p
(
γk
∣∣ηk = ηak

) , (19)

for any ηak < ηmin, are monotonic functions in γk (for γk >
0 and any chosen ηmin > 0), it can be shown [18] that the
likelihood ratio test for the following decision between two
simple hypotheses is a uniformly most powerful test for our
original problem:

(H ′
0) ηk = ηmin,

(H ′
A) ηk = ηak ; η

a
k < ηmin.

This gives the test

γk

H0

>
<
HA

γTH, (20)

where γTH is set to satisfy a desired significance level [19] (or
size [18]) α0 of the test. That is, α0 is the probability of reject-
ing (H0) when true, and is therefore

α0 =
∫ γTH

0
p
(
γk
∣∣ηk = ηmin

)
dγk. (21)

Substituting the pdf of γk from (18), we obtain

γTH =
(
1 + ηmin

)
log
(

1
1− α0

)
. (22)

Let M be the number of positive frequency bins to con-
sider. Typically, M = (L/2) + 1, where L is the DFT trans-
form size. However, if the input speech is limited to a nar-
rower band, M should be chosen accordingly. Let Nq(m) be
the number of bins out of the M examined bins in frame m
for which the test in (20) results in the rejection of hypothe-
sis (H0). With rq(m) � Nq(m)/M, the proposed estimate for
q(m) is formed by recursively smoothing rq(m) in time:

q̂(m) = αqq̂(m− 1) +
(
1− αq

)
rq(m). (23)

The smoothing in (23) is performed only for frames which
contain speech (as determined from a VAD). We selected the
parameters based on informal listening tests. We noticed im-
proved performance with α0 = 0.5 (giving γTH = 0.8 in (22))
and αq = 0.95 in (23).

Yet, as discussed earlier, a better gain modification could
be expected if we allow different q’s in different bins. Let
I(k,m) be an index function that denotes the result of the
test in (20), in the kth bin of frame m. That is, I(k,m) = 1 if
(H0) is rejected, and I(k,m) = 0 if it is accepted. We suggest
the following estimator for q(k,m):

q̂(k,m) = αqq̂(k,m− 1) +
(
1− αq

)
I(k,m). (24)

The same settings for γTH and αq above are appropriate here
also. This way, averaging q̂(k,m) over k in framem results in
the q̂(m) of (23).

4. VOICE ACTIVITY DETECTION AND LONG-TERM
SNR ESTIMATION

The noise power estimation algorithm described in Section 6
does not rely on a VAD and therefore need not deal with
detection errors. Nevertheless, it is beneficial to have a VAD
available for controlling certain aspects of the preprocessor.
In our algorithm we use VAD decisions to control estimates
of the a priori probability of speech absence and of the long-
term SNR. We briefly describe our delayed decision VAD and
the long-term SNR estimation.

As in [7] (see also [20]), we have found that the mean
value γ̄ of γk (averaged over all frequency bins in a given
frame), is useful for indicating voice activity in each frame.
For stationary noise and independent DFT coefficients, γ̄ is
approximately normal with mean 1 and standard deviation
σγ̄ =

√
1/M (for sufficiently large M, which is usually the

case). Thus, by comparing γ̄ to a suitable fixed threshold, one
can obtain a reliable VAD—as long as the short-time noise
spectrum does not change too fast. Typically, we use thresh-
old values γ̄th in the range between 1.35 and 2, where the
lower value, which we denote by γ̄min

th , corresponds to 1+4σγ̄
for M = L/2 + 1 with a transform size of L = 256 (32-
millisecond window). We found this value suitable for sta-
tionary noise at input SNR values down to 3 dB. The higher
threshold value allows for larger fluctuations of γ̄ (as ex-
pected if the noise is nonstationarity) without causing a de-
cision error in noise-only frames, but may result in misclas-
sification of weak speech signals as noise, particularly at SNR
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values below 10 dB. We may further improve the VAD de-
cision by considering the maximum of γk, k = 0, . . . ,M,
and the average frame SNR. We declare a speech pause if
γ̄ < γ̄th, maxk(γk) < γmax-th, andmean(η̂(k,m)) < 2γ̄th, where
γmax-th ≈ 25γ̄th. Finally, we require a consistent VAD decision
for at least two consecutive frames before taking action.

The long term signal-to-noise ratio SNRLT(m) character-
izes the SNR of the noisy input speech averaged over periods
of one to two seconds. It is used for the adaptive limiting of
the a priori SNR and the adaptive smoothing of the signal
power, as outlined below. The computation of SNRLT(m) re-
quires a VAD since the average speech power can be updated
only if speech is present. The signal power is computed using
a first-order recursive system update on the average frame
power with time constant TLT:

λy(m) = αLTλy(m− 1)

+
(
1− αLT

) 1
M + 1

M∑
k=0

R2(k,m),
(25)

where αLT ≈ 1−ME/(TLT fs). SNRLT(m) is then given by

SNRLT(m) = (M + 1)λy(m)∑M
k=0 λd(k,m)

− 1. (26)

If SNRLT(m) is smaller than zero, it is set equal to SNRLT(m−
1), the estimated long-term SNR of the previous frame.

5. ADAPTIVE LIMITING OF THE A PRIORI SNR

After applying the noise reduction preprocessor described so
far to the MELP coder, we found that most of the degrada-
tions in quality and intelligibility that we witnessed were due
to errors in estimating the spectral parameters in the coder.
In this section, we present a modified spectral weighting rule
which allows for better spectral parameter reproduction in
the MELP coder, where linear predictive coefficients (LPC) are
transformed into line spectral frequencies (LSF). We use an
adaptive limiting procedure on the spectral gain factors ap-
plied to each DFT coefficient.We note that while spectral val-
leys in between formant frequencies are not important for
speech perception (and thus can be filled with noise to give a
better auditory impression), they are important for LPC esti-
mation.

It was stressed in [9, 16] that in order to avoid structured
“musical” residual noise and achieve good audio quality, the
a priori SNR estimate η̂k should be limited to values between
0.1 and 0.2. This means that less signal attenuation is applied
to bins with low SNR in the spectral valleys between for-
mants. By limiting the attenuation, we largely avoid the an-
noying “musical” distortions and the residual noise appears
very natural. However, this attenuation distorts the overall
spectral shape of speech sounds, which impacts the spectral
parameter estimation. One solution to this problem is the
adaptive limiting scheme we outline below.

We utilize the VAD to distinguish between speech-and-
noise and noise-only signal frames. Whenever we detect

pauses in speech, we set a preliminary lower limit for the a
priori SNR estimate in the mth frame to ηMIN1(m) = ηminP

(typically, ηminP = 0.15) in order to achieve a smooth resid-
ual noise. During speech activity, the lower limit ηMIN1(m) is
set to

ηMIN1(m) = ηminP0.0067
(
0.5 + SNRLT(m)

)0.65
(27)

and is limited to a maximum of 0.25. We obtained (27) by
fitting a function to data from listening tests using several
long-term SNR values. We then smooth this result using a
first-order recursive system,

ηMIN(m) = 0.9ηMIN(m− 1) + 0.1ηMIN1(m), (28)

to obtain smooth transitions between active and pause seg-
ments. We use the resulting ηMIN as a lower limit for η̂k. The
enhanced speech sounds appear to be less noisy when us-
ing the adaptive limiting procedure, while at the same time
the background noise during speech pauses is very smooth
and natural. This method was also found to be effective in
conjunction with other speech coders. A slightly different dy-
namic lower limit optimized for the 3GPP AMR coder [21]
is given in [22].

6. NOISE POWER SPECTRAL DENSITY ESTIMATION

The importance of an accurate noise PSD estimate can be
easily demonstrated in a computer simulation by estimating
it directly from the isolated noise source. In fact, it turns out
that many of the annoying artifacts in the processed signal
are due to errors in the noise PSD estimate. It is therefore of
paramount importance both to estimate the noise PSD with
a small error variance and to effectively track nonstationary
noise. This requires a careful balance between the degree of
smoothing and the noise tracking rate.

A common approach is to use a VAD and to update the
estimated noise PSD during speech pauses. Since the noise
PSD might also fluctuate during speech activity, VAD-based
methods do not work satisfactorily when the noise is nonsta-
tionary or when the SNR is low. Soft-decision update strate-
gies which take the probability of speech presence in each fre-
quency bin into account [9, 20] allow us to also update the
noise PSD during speech activity, for example, in between
the formants of the speech spectrum or in between the pitch
peaks during voiced speech.

The approach we present here is based on the minimum
statistics method [11, 23] which is very robust, even for low
SNR conditions. The minimum statistics approach assumes
that speech and noise are statistically independent and that
the spectral characteristics of speech vary faster in time than
those of the noise. During both speech pauses and speech
activity, the PSD of the noisy signal frequently decays to the
level of the noise. The noise floor can therefore be estimated
by tracking spectral minima within a finite time window
without relying on a VAD decision. The noise PSD can be up-
dated during speech activity, just as with soft-decision meth-
ods. An important feature of the minimum statistics method
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is its use of an optimally smoothed power estimate which
provides a balance between the error variance and effective
tracking properties.

6.1. Adaptive optimal short-term smoothing

To derive an optimal smoothing procedure for the PSD of
the noisy signal, we assume a pause in speech and consider
a first-order smoothing recursion for the short-term power
of the DFT coefficients Y(k,m) of the mth frame (1), us-
ing a time- and frequency-dependent smoothing parameter
α(k,m):

λ̂y(k,m + 1) = α(k,m)λ̂y(k,m)

+
(
1− α(k,m)

)∣∣Y(k,m)
∣∣2. (29)

Since we want λ̂y(k,m) to be as close as possible to the true
noise PSD λd(k,m), our objective is to minimize the condi-
tional mean squared error

E
{(

λ̂y(k,m + 1)− λd(k,m)
)2∣∣∣λ̂y(k,m)

}
(30)

from one frame to the next. After substituting (29) for

λ̂y(k,m+ 1) in (30) and using E{|Y(k,m)|2} = λd(k,m) and
E{|Y(k,m)|4} = 2λ2d(k,m), the mean squared error is given
by

E
{(

λ̂y(k,m + 1)− λd(k,m)
)2∣∣∣λ̂y(k,m)

}
= α2(k,m)

(
λ̂y(k,m)− λd(k,m)

)2
+ λ2d(k,m)

(
1− α(k,m)

)2
,

(31)

where we also assumed the statistical independence of suc-
cessive signal frames. Setting the first derivative with respect
to α(k,m) to zero yields

αopt(k,m) = 1

1 +
(
λ̂y(k,m)/λd(k,m)− 1

)2 , (32)

and the second derivative, being nonnegative, reveals that

this is indeed a minimum. The term λ̂y(k,m)/λd(k,m) =
γ(k,m) on the right hand side of (32) is a smoothed version
of the a posteriori SNR. Figure 5 plots the optimal smooth-
ing parameter αopt for 0 ≤ γ ≤ 10. This parameter is be-
tween zero and one, thus guaranteeing a stable and nonneg-

ative noise power estimate λ̂y(k,m).
Assuming a pause in speech in the above derivation does

not pose any major problems. The optimal smoothing pro-
cedure reacts to speech activity in the same way as to highly
nonstationary noise. During speech activity, the smoothing
parameter is small, allowing the PSD estimate to closely fol-
low the time-varying PSD of the noisy speech signal.

To compute the optimal smoothing parameter in (32),
we replace the true noise PSD λd(k,m) with an estimate

λ̂d(k,m). However, since the estimated noise PSD may be
either too small or too large, we have to take special pre-
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Figure 5: Optimal smoothing parameter αopt as a function of the
smoothed a posteriori SNR γ(k,m).

cautions. If the computed smoothing parameter is smaller

than the optimal value, the smoothed PSD estimate λ̂y(k,m)
will have an increased variance. This is not a problem if the
noise estimator is unbiased, since the smoothed PSD will still
track the true signal PSD, and the estimated noise PSD will
eventually converge to the true noise PSD. However, if the
computed smoothing parameter is too large, the smoothed
power will not accurately track the true signal PSD, leading
to noise PSD estimation errors. We therefore introduce an
additional factor αc(m) in the numerator of the smoothing
parameter which decreases whenever deviations between the
average smoothed PSD estimate and the average signal power
are detected. Now the smoothing parameter has the form

α(k,m) = αc(m)

1 +
(
λ̂y(k,m)/λ̂d(k,m)− 1

)2 , (33)

where

αc(m) = cmaxαc(m−1) +
(
1−cmax

)
max

(
α̃c(m), 0.7

)
, (34)

α̃c(m) = αmax

1 +
(∑L−1

k=0 λ̂y(k,m)/
∑L−1

k=0
∣∣Y(k,m)

∣∣2 − 1
)2 . (35)

αmax is a constant smaller than but close to 1 and prevents the
freezing of the PSD estimator. cmax does not appear to be a
sensitive parameter and was set to 0.7. Equation (35) ensures
that the average smoothed power of the noisy signal cannot
deviate by a large factor from the power of the current frame.

The ratio of powers Ξ = ∑L−1
k=0 λ̂y(k,m)/

∑L−1
k=0 |Y(k,m)|2 in

(35) is evaluated in terms of the soft weighting function
αmax/(1 + (Ξ − 1)2), which we found very suitable for this
purpose [11].

To improve the performance of the noise estimator in
nonstationary noise environments, we found it necessary to
also apply a lower limit αmin to α(k,m). Since αmin limits the
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rise and decay times of λ̂y(k,m), this lower limit is a func-
tion of the overall SNR of the speech sample. To avoid at-
tenuating weak consonants at the end of a word we require

λ̂y(k,m) to decay from its peak values to the noise level in
about ∆T = 64ms. Therefore, αmin can be computed as

αmin = SNR
−ME/∆T fs
LT . (36)

6.2. Theminimum tracking algorithm

If λ̂min(k,m) denotes the minimum ofD consecutive PSD es-
timates λ̂y(k, �), � = m−D+1, . . . ,m, an unbiased estimator
of the noise PSD λd(k,m) is given by

λ̂d(k,m) = Bmin
(
D,Q(k,m)

)
λmin(k,m), (37)

where the bias compensation factor Bmin(D,Q(k,m)) can be
approximated by [11, 23]

Bmin(k,m) ≈ 1 + (D − 1)
2
(
1−M(D)

)
Q(k,m)− 2M(D)

. (38)

M(D) is approximated by

M(D) = 0.025 + 0.23
(
1 + log(D)0.8

)
+ 2.7 · 10−6D2 − 1.14 · 10−3D − 7 · 10−2. (39)

The unbiased estimator requires the knowledge of the
degrees of freedom Q(k,m) of the smoothed PSD estimate

λ̂y(k,m) at any given time and frequency index. In our con-
text, Q(k,m) can attain noninteger values since the PSD
is obtained via recursive smoothing and consecutive sig-
nal frames might be correlated. Since the variance of the

smoothed PSD estimate λ̂y(k,m) is inversely proportional to
Q(k,m), we compute 1/Q(k,m) as

1
Q(k,m)

=
var
(
λ̂y(k,m)

)
2λ2d(k,m)

, (40)

which then allows us to approximate Bmin(D,Q(k,m)) via
(38).

To compute the variance of the smoothed PSD estimate

λ̂y(k,m), we estimate the first and the second moments,

E{λ̂y(k,m)} and E{λ̂2y(k,m)}, of λ̂y(k,m) by means of first-
order recursive systems,

P(k,m + 1) = β(k,m)P(k,m) +
(
1− β(k,m)

)
λ̂y(k,m + 1),

P2(k,m + 1) = β(k,m)P2(k,m) +
(
1− β(k,m)

)
λ̂2y(k,m + 1),

v̂ar
{
λ̂y(k,m)

}
= P2(k,m)− P

2
(k,m).

(41)

We choose β(k,m) = α2(k,m) and limit β(k,m) below 0.8.
Finally, we estimate 1/Q(k,m) by

1
Q(k,m)

≈
v̂ar
(
λ̂y(k,m)

)
2λ̂2d(k,m)

(42)

and limit this estimate below 0.5. This limit corresponds to
the minimum degrees of freedom, Q = 2, which we ob-
tain when no smoothing is in effect (α(k,m) = 0). Fur-
thermore, since the error variance of the minimum statis-
tics noise estimator is larger than the error variance of an
ideal moving average estimator [11], we increase the in-

verse bias Bmin(k,m) by a factor Bc(m) = 1 + av
√
Q−1(m)

with Q−1(m) = 1/L
∑L−1

k=0(1/Q(k,m)) and av typically set to
av = 1.5.

6.3. Tracking nonstationary noise

The minimum statistics method searches for the bias-
compensated minimum λmin(k,m) of D consecutive PSD es-

timates λ̂y(k, l), l = m−D+1, . . . ,m. For each frequency bin
k, theD samples are selected by sliding a rectangular window

over the smoothed power data λ̂y(k, l). Furthermore, we di-
vide the window ofD samples intoU subwindows of V sam-
ples each (UV = D). This allows us to update the minimum

of λ̂y(k,m) everyV samples while keeping the computational
complexity low. For every V samples read, we compute the
minimum of the current subwindow and store it for later
use.We obtain an overall minimum after considering all such
subwindowminima. Also, we achieve better tracking of non-
stationary noise when we take local minima in the vicinity of
the overall minimum λmin(k,m) into account. For our pur-
poses, we ignore subwindow minima where the minimum
value is attained in the first or the last frame of a subwindow.
Since (37) is a function of the window length, computing
power estimates on the subwindow level requires a bias com-
pensation for the minima obtained from subwindows as well
(i.e., put D = V in (37)). A local (subwindow) minimum
may then override the overall minimum λmin(k,m) when it is
close to the overall minimum λmin(k,m) of theD consecutive
power estimates. This procedure uses the spectral minima
of the shorter subwindows for improved tracking. To reduce
the likelihood of large estimation errors when using subwin-
dow minima, we apply a threshold noise slope max to the
difference between the subwindow minima and the overall
minimum. This threshold depends on the normalized aver-

aged varianceQ−1(m) of λ̂y(k,m) according to the procedure
shown in Algorithm 1. A large update is only possible when
the normalized averaged variance Q−1(m) is small and hence
when speech is most likely absent. Thus, we update the noise
PSD estimate when a local minimum is found, and when the
difference between the subwindowminimum and the overall
minimum does not exceed the threshold noise slope max. A
pseudocode program of the complete noise estimation algo-
rithm is shown in Algorithm 2. All computations are embed-
ded into loops over all frequency indices k and all frame in-
dicesm. Subwindow quantities are subscripted by sub; subwc
is a sub-window counter which is initialized to subwc = V at
the start of the program; actmin(k,m) and actmin sub(k,m)
are the spectral minima of the current window and subwin-
dow up to framem, respectively.

We point out that the tracking of nonstationary noise
is significantly influenced by this mechanism and may be
improved (at the expense of speech signal distortion) by
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If Q−1(m) < 0.03,
noise slope max = 8.
Elseif Q−1(m) < 0.05,
noise slope max = 4.
Elseif Q−1(m) < 0.06,
noise slope max = 2.
Else noise slope max = 1.2.

Algorithm 1: Computation of noise slope max.

Compute smoothing parameter α(k,m), (33).

Compute smoothed power λ̂y(k,m), (29).
Compute Q−1(m) =∑k 1/Q(k,m).
Compute bias correction Bmin(k,m) and Bmin sub(k,m),
(38), (39), (42), and Bc(m)

Set update-flag k mod(k) = 0 for all k.

If λ̂y(k,m)Bmin(k,m)Bc(m) < actmin(k,m),

actmin(k,m) = λ̂y(k,m)Bmin(k,m)Bc(m),

actmin sub(k,m) = λ̂y(k,m)Bmin sub(k,m)Bc(m),
set k mod(k) = 1.

If subwc == V ,
if k mod(k) == 1,

lmin flag(k,m) = 0,
store actmin(k,m),
find λmin(k,m), the minimum of the last U stored
values of actmin,

compute noise slope max,
if lmin flag(k,m) and (actmin sub(k,m)
< noise slope max λmin(k,m))
and (actmin sub(k,m) > λmin(k,m)),

λmin(k,m) = actmin sub(k,m),
replace all previously stored values
of actmin(k, �) by actmin sub(k,m),

lmin flag(k,m) = 0;
set subwc = 1 and actmin(k,m) to its maximum
initial value.

Else
if subwc > 1,

if k mod(k) == 1,
set lmin flag(k,m) = 1,

compute λ̂d(k,m)
= min(actmin sub(k,m), λmin(k,m)),

set λmin(k,m) = λ̂d(k,m),
set subwc = subwc+1.

Algorithm 2: The minimum statistics noise estimation algorithm
[11].

increasing the noise slope max threshold. We also note that
it is important to use an adaptive smoothing parameter
α(k,m) as in (33). Otherwise, for a high SNR and a fixed
smoothing parameter close to 1, the estimated signal power
will decay too slowly after a period of speech activity. Hence,
the minimum search window might then be too small to
track the noise floor without being biased by the speech.

Although the minimum statistics approach [11, 23] was
originally developed for a sampling rate of fs = 8000Hz
and a frame advance of 128 samples, it can be easily adapted
to other sampling rates and frame advance schemes. The
length D of the minimum search window must be set pro-
portional to the frame rate. For a given sampling rate fs
and frame advance ME, the duration of the time window
for minimum search, D ·ME/ fs, should be equal to approx-
imately 1.5 seconds. For U = 8 subwindows, we therefore
use V = �0.1875 fs/ME	, where �x	 denotes the smallest in-
teger larger than or equal to x. When a constant smoothing
parameter [23] is used in (29), the length D of the window
for minimum search must be at least 50% larger than that for
the adaptive smoothing algorithm.

7. EXPERIMENTAL RESULTS

The evaluation of noise reduction algorithms using instru-
mental (“objective”) measures is an ongoing research topic
[24, 25]. Frequently, quality improvements are evaluated in
terms of (segmental) SNR and the achieved noise attenua-
tion. These measures, however, can be misleading as speech
signal distortions and unnatural-sounding residual noise are
not properly reflected. Also, as long as the reduction of noise
power is larger than the reduction of speech power, the per-
formance with respect to these metrics may be improved
by applying more attenuation to the noisy signal at the ex-
pense of speech quality. The basic noise attenuation ver-
sus speech distortion trade-off is application- and possibly
listener-dependent. Even listening tests do not always lead
to conclusive results, as was experienced during the stan-
dardization process of a noise reduction preprocessor for the
ETSI/3GPP AMR coder [26, 27]. Specifically, the outcome
of these tests depends on whether an absolute category rat-
ing (ACR) or a comparison category rating (CCR) method is
favored.

To capture the possible degradations of both the speech
signal and the background noise, a multifaceted approach
such as the well-established diagnostic acceptability mea-
sure (DAM) is useful. The DAM evaluates a large number
of quality characteristics, including the nature of the residual
background noise in the enhanced signal. Intelligibility tests
are more conclusive and reproducible despite being rarely
used. In our investigation, we evaluated intelligibility using
the standard diagnostic rhyme test (DRT). For both tests,
higher scores are an indication of better quality. More in-
formation about the DAM and the DRT may be found in
[28].

While preliminary results for a floating-point implemen-
tation of the preprocessor were presented in [2], we sum-
marize our results here for a 16-bit fixed-point implemen-
tation, used in conjunction with the MELP coder. We eval-
uate quality and intelligibility, respectively, all using DAM
and DRT scores obtained via formal listening tests. To pro-
vide an additional reference, we compare the 2.4-kbps MELP
coder using our enhancement preprocessor (denoted in [1]
by MELPe) with the toll quality 8-kbps ITU-T coder, G.729a
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Table 1: DAM scores and standard error without environmental
noise.

Coder DAM Standard error

MELPe 68.6 0.90

G.729a 80.9 1.80

Table 2: DAM scores and standard error with vehicular noise (av-
erage SNR ≈ 6 dB).

Coder DAM Standard error

Unprocessed 45.0 1.2

MELP 38.9 1.1

MELPe 50.3 0.80

G.729a 46.3 0.90

(without a preprocessor). Compared to the results reported
for the floating-point implementation [2], the fixed-point
implementation scores about 2 points less on both the DAM
and the DRT scales. Table 1 presents DAM scores for the
MELPe and the G.729a coders without environmental noise.
Clearly, the G.729a coder, operating at a much higher rate
than the MELPe coder, delivers significantly better quality.
In the presence of vehicular noise with an average SNR of
about 6 dB (Table 2), the MELPe scores significantly higher
than the standalone MELP coder, the unprocessed signal,
and the G.729a coder. Note that the G.729a achieves ap-
proximately the same DAM score as the unprocessed sig-
nal.

Tables 3 and 4 show intelligibility results for the clean
and noisy conditions. For the clean condition, the higher bit
rate G.729a coder is clearly more transparent, but the intel-
ligibility of the MELPe is surprisingly close. This reinforces
the frequently made observation that high intelligibility can
be achieved with low bit rate coders. For the noisy envi-
ronment (Table 4), we find that the unprocessed (and un-
encoded) signal achieves the best intelligibility. The MELPe
coder, containing the noise reduction preprocessor, results in
a significant intelligibility improvement. These intelligibility
improvements are mostly due to the conservative noise esti-
mation algorithm which is unbiased for stationary noise but
underestimates the noise floor for nonstationary noise [11].
More detailed results for different noise environments may
be found in [29].

8. CONCLUSION

We have presented a noise reduction preprocessor based on
MMSE estimation techniques and the minimum statistics
noise estimation approach. The combination of these algo-
rithms and the careful selection of parameters lead to a noise
reduction preprocessor that achieves improvements both in
quality and intelligibility when used with the 2.4 kbps MELP

Table 3: DRT scores and standard error without environmental
noise.

Coder DRT Standard error

MELPe 93.9 0.53

G.729a 94.7 0.25

Table 4: DRT scores and standard error with vehicular noise (aver-
age SNR ≈ 6 dB).

Coder DRT Standard error

Unprocessed 91.1 0.37

MELP 67.3 0.8

MELPe 72.5 0.58

G.729a 77.8 0.58

coder. Thus, in the context of low bit rate coding, single mi-
crophone enhancement algorithms can result in intelligibil-
ity improvements. The loss of intelligibility is not as severe
for high bit rate coders as for low bit rate coders, such as the
MELP coder.

We believe that the potential for further improving
speech transmission in noisy conditions has not yet been
fully exploited. Further improvements might be obtained by
using optimal enhancement algorithms for the various pa-
rameters found in speech coders, such as the LPC coeffi-
cients, the pitch, and the representation of the prediction
residual signal. Such an approach is proposed in [30]. Novel
noise PSD and a priori SNR estimation procedures [14, 15],
as well as more realistic assumptions for the probability den-
sity functions of the speech and noise spectral coefficients
[31, 32], could also lead to improved performance.
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