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A Noise Subspace Projection Approach to Target
Signature Detection and Extraction in an
Unknown Background for Hyperspectral Images

Te-Ming Tu, Chin-Hsing Chen, and Chein-l Charggnior Member, IEEE

Abstract—A noise subspace projection (NSP) approach to resolution 20 mx 20 m), it is necessary to develop subpixel
extraction and subpixel detection of target signatures in an un- detection techniques for this purpose. An approach recently

known background is presented. The proposed NSP approach is developed by Harsanyi and Chang [2] called the orthogonal
derived from a recently developed subspace orthogonal projection

(OSP) method and can be shown to be approximated by an _subspac_e pr_ojection (OSP) methoc_i has demonstrated apr_omis-
adaptive filter with the optimal weight given by the Wiener—Hopf ing application to subpixel detection problems, but requires
equation. As a result, the operator resulting from the NSP knowledge of signatures and background. Some related works

approach can be usgd as an OSP operator for scene classificationy the comparative analysis of subspace projection methods
and subpixel detection, on one hand, and also implemented as .
can be found in [3]-[7].

an adaptive filter, on the other. These advantages make the NSP . .
approach very attractive in practical applications. In particular, In [8], the OSP method is further extended and designed

the NSP operator takes advantage of the noise subspace projec-for subpixel detection and classification in an unknown back-
tion to prevent from inverting correlation matrices, as required  ground, where the developed OSP-based subpixel technique,
by an adaptive filter. called low probability detection (LPD), was used to detect

Index Terms—Adaptive filter, hyperspectral image, noise sub- targets appearing in an image with low probability. A low
space projection (NSP), orthogonal subspace projection (OSP).  probability target is defined as a target that occurs in very few

pixels in the image; thus, it can be viewed as an insignificant

|. INTRODUCTION target. In most cases, such insignificant targets are very impor-
YPERSPECTRAL imagery provides more informatior%am’ but. generally overlooked or discarded, such as detecting
than multispectral imagery in the sense that the spectf‘altank in a field. The LPD approach not only can detect
resolution of the former is much better than that of the lattep Vglir?::%'gtgk;?;%?;’ Ik:uvtv:_l,sgrg\?zgT(?Sb:(\)/grgoéﬁlznc?iv\\//:aegaz
For example, an airborne visible/infrared imaging spectrome . ' :
(AVIRIS) ?mage is acquired by 224 bandsg V\?h”g a rnultipracucally useful. Another approach proposed in [8], called the
spectral image generally requires only five to seven bandS'(h?]nsct:?r:rcl:idteg?rﬂz;alrﬁ“m;egls?rnai(r?eiM;(;T;ett?\?:’t\:\(/azsr‘r:g)?rglior:y
particular, when a scene covers distinct materials more than {AE h P h hy « | P ‘i 9
number of spectral bands used by multispectral imagery, t tke cas;_ w etri the exact Unc:jw etorllge 0 _S|gna'E[ures and
multispectral capability of distinguishing image endmembeR&¢ é]rotj_n IL;S no f nowa rinorl. I n _ef_r esz C|r<t:)umsla(jr\(i[es}
degrades significantly, and in this case, we must rely & 2 gp 'Vle egm ormm?- ype Cssségéa”dsl_upg'xe hec(iec (I)r
hyperspectral imagery, which offers the spectral resoluti(WPr? eve Oﬁe to compr(]an:jentt ed Fan o ;“et 0ds. l”
<10 nm and expands detection and classification activitiesgarﬁrgg?’ st,zp}pfegslizx meatdgp:[i 32 aarrZ)F/)tlpvr(caJchE;ir?g b?/ruc;ﬁ)rtllgr]na .
targets unresolved in multispectral images [1].

In this paper, the main focus is the detection of target Sig;:hogongl projection was also suggested in [9] and shown to
natures in an unknown background. The considered detect! superlczr to )thel‘ coT]monly used sample correlation matrix
problem is not quite the same as ones encountered in imdg¢éersion (SM) algorithm. _ _
processing. Since the targets of interest are generally smalleMotivated by the ideas in [2]-[9], a noise subspace projec-
than the spatial resolution of hyperspectral images (e.g., piXé@in (NSP) approach to target signature detection and extrac-

tion in an unknown background is proposed. It originates from
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matrix. On the other hand, the NSP operator can be alsonimum distance classification. Of particular interest is one
used as an OSP-based interference rejecter that eliminatgmorted in [2], which applied the concept of the OSP to (1)
the undesired signatures/interferences while preserving #red resulted in an interference rejecter, which improved clas-
desired target signatures. Since the OSP uses the spedifaiation performance. Unfortunately, most currently existing
decomposition of a covariance matrix to design an orthogor@assification techniques applied to multispectral/hyperspectral
projection interference rejecter, the matrix inversion is done limagery assume completa priori information about the
finding the inverses of eigenvalues. Therefore, direct matrspectral signatures, including the abundange, v). This is
inversion is not necessary in the NSP operator. This isganerally not true in many practical applications. Specifically,
significant advantage over adaptive filters, especially, whéme prior knowledge ofa(zx, y) is either very difficult to
the dimensionality of the correlation matrix is very high, e.ggbtain or too expensive to collect. In this case, an estimate
hyperspectral image data. of a(x, i) must be used in place of the true unknomfx, y)

This paper is organized as follows. Section Il describés (1). In what follows, three commonly used estimation
the linear mixture model for multispectral/hyperspectrabchniques will be reviewed and discussed in the context
imagery. Section Il reviews three widely used estimatioof the estimation of(x, y) wherer(z, y) and a(z, y) are
techniques used in adaptive filtering theory, based @ssumed to be random vectors. In order to simplify notations,
minimum mean-squared error (MMSE) and maximum signahe spatial locatiofix, y) in (1) will be suppressed throughout
to-interference/noise (MSINR) ratio. Section IV derives ththis paper. The first approach solves the Wiener filtering-type
relationship between inverses of two correlation matricemconstrained problem. The second is a linearly constrained
of which one contains the desired signatures and the otlogrtimization technique, which is widely used in adaptive
does not. Section V shows that the OSP method recentigamforming. The optimal adaptive filters derived by these
developed by Harsanyi and Chang in [2] can be approximatedo approaches are determined by the correlation matrix of
by an adaptive filter solved by the Wiener—Hopf equation In contrast, the third approach involves maximizing the
when the energy of signatures is large compared to notsignal-to-noise/interference ratio (SNIR), as determined by two
energy. Section VI presents a noise subspace project&eparate correlation matrices: that of the desired signature
approach, which is derived from the OSP method angctor and that of the interference vector, which includes
Wiener—Hopf equation and can be used for subpixel detectiondesired signatures and noise [13]-[15].
and extraction in an unknown background. Section VII
conducts three experiments to demonstrate the power @hdMMSE Approaches
potential applications of the NSP approach. Section VIII is 1) Wiener Filtering Approach:For convenience in the
a brief conclusion. present discussion, we rewrite (1) in the following form:

Typographic ConventionsThroughout this paper, vec- o T o
tors are denoted by boldface lowercase letters, matrices by ' (rir, ooy ) = Mot n=doy + Uy +n
boldface uppercase, and transpose and matrix inverse v&ere
superscriptd’, —1, respectivelyI denotes the identity matrix. d desired signature assumed without loss of generality to
be the column vectorn,,;

II. LINEAR MIXTURE MODEL FOR U Ix(p—1) matrix given byU = (my, ma, - -+, mp_1);
MULTISPECTRAL/HYPERSPECTRALIMAGES and
Let r(z, y) be anl x 1 column vector that denotes a pixel 7 @ vector which contains the firgp — 1) components of
in a hyperspectral scene at spatial locatign y), where a, v = (a1, ag, -+, ap_1)t.
[ is the number of spectral bands. Assume tiMitis an Let the abundance of desired signatwtebe denoted by
I x p matrix denoted bym,, my, ---, m;,) wherem; is an «,; «, will be estimated by an adaptive filter, whose design

I x 1 column vector representing the spectral signaturélof is based on Wiener filtering theory. Suppose that the output
material. We also lek(z, y) be apx1 column vector given by 5 of an adaptive filter, whose weights are given @y =
[ar (2, 9), oz, ), -+ -, aplz, v)]T wherep is the number (w;, wy, ---, w;)T is expressed by = 3L _| wyrs.

of materials ande;(z, y) denotes the fraction of théth Lete = a, — y = a;, — w!'r. Then the mean square error
signature present in the pixe{x, y). A linear mixture model (MSE) is given by

for the hyperspectral image pixe{x, y) can be described by o 2 o827 T N2
[10]-[12] ¢ = E.[E |= E[(O‘p y) | = E[(ap —w™r) ] 2
and the solution to minimization of (2) can be obtained by the
r(z, y) = Ma(z, y) + n(z, y) 1) Wiener—Hopf equation [13], [14]

wheren(z, y) is anl x 1 column vector representing additive- Wopt = R 'd 3
white Gaussian noise with zero mean and variasitandl  \yhere R is the correlation matrix of the observation vector
is the [ x [ identity matrix.  given by

Il. STATISTICAL ESTIMATION OF a(z, %) R=E[rr"] = E[a2]ldd" + UE[y'|U" +0°1  (4)

There have been many approaches proposed to solve imagé E[af,], the energy of the desired signatude is sum
classification problems for the model given by (1), sucbf variance vafo,] and squared mean af,, E[o,)?, ie.,
as principal components analysis, maximum likelihood, anl[eZ] = var[a,] + E[a,]*.
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2) Minimum Variance Distortionless Response (MVDRand used in the derivation of a target signature detector in
The basic idea behind MVDR is to impose a constraint on tt&ection V.

response of the to be designed adaptive filter so that the desireRecallingR; = UE[yy'|U* + o2I given by (7),R can be
signals will pass through the filter with a specific gain, whileeexpressed in terms dt; and the desired signature energy
the output-to-interference/undesired signatures is minimizexs follows:

This constrained problem can be formulated as follows: R=R, + E[QQ]ddT (11)
» .
: T H T _
win w” Rw subject tow;,.d = 1. (3)  From Woodbury’s identity [16]
The solution to (5) is found by forming the Lagrangian given . o, ATxxTa!
by w? Rw — A\(w”d— 1) and solving forw as well as forming (A+XX")"'=A" - 1+ xTA'x (12)

the Lagrange multipliex to minimize the Lagrangian. This
yields the same Wiener—Hopf solution, as given in (3)

we obtain
E[2|R; dd" R

Wopt = kiR'd (6) R = By - 1+ E[oﬂ]dTRfld (13)
except for the constank;. However, this constant is not hus i
important, since botaw = R™'d andw = k;R™'d produce
the same SINR defined in (8). 1 R;'d (14)

T 1+ Bl2d RN
B. MSINR Approach ) ) .
Equation (14) shows thd®™"d and R} "d differ by the factor

One widely used criteria for signal processing is the maﬁ + E[OéQ]dTR;Id)—l This factor has no effect on the
- .

imization of SINR. LetR; be the correlation matrix of the choice of the weight vectow in adaptive-array processing
interference, which consists of undesired signatures plus g]ﬁcew . = R~'d or wsing = R-1d is scale-invariant in
opt — - I

noise. Namely calculating SINR. For example, suppose that a pulse radar has

R; = UE[WHUT + o1 (7) a duty cycle of 0.001 and a target signal pulse occurs only
Therefore, the maximum SINR is defined by 0.1% pf the time. As a result,. the presence of 'the targgt signal
21007 g T occupies such a small fraction of time that its contribution
max Blojlw” dd” w (8) to R can be neglected. Analogous concepts are generally not
w! Rrw true in remote-sensing imagery, which will be discussed in
which is equivalent to the following generalized eigenvaluge following section.

problem:

V. INTERPRETATION ORTHOGONAL SUBSPACE

—1 T _
Ry dd” w = Apaxw. ©) CLASSIFIER AS AN ADAPTIVE FILTER

. . _1 _1 .

Assume thail? is the correlation matrix of a random vector 1he relationship betweeR; ~ and B™", described by (13)
comprising the desired signatugeand interference/undesired@nd (14) in Section IV, is important when the target 52|gr1ature
signaturesU/’ plus noise. ThenR is given by (4), i.e., the IS Very weak, i.e., the energy of the target signathfe;] is
sum of the desired signature energja2]dd” and R;. For small orE[a]%] — 0. In other words, the interference/undesired
simplicity of analysis, the desired signaItJdes assumed to be Signatures dominatg the target sigr_1ature. In this case, it will be
a one column signature vector. Extension to multiple signatifBOWn that the optimal weights given by Wiener—Hopf type
vectors is straightforward. solutions (3), (6), and (10) can be approximated by the same

Since E[a2]dd” is a rank-one matrix and; is positive OPeratolg = Pospd derived in [2]. This result is shown in the
definite, there is only one nonzero (and positive) eigenvalff@lowing expression (18) and has a very important implication

Amax and the optimal weight vector is given by in applications, which will be described later.
1 Let us first return to (11). For mathematical simplicity, we
wsINg = k2R d (10)

assume the undesired signature/interference to be a column
wherek; is a nonzero constant and the SINR is independevdctor denoted bw. Then (11) can be simplified as
of the constant, due to (8). ) oy T o T

It should be noted that there is a crucial difference between R =071+ Elog,Juv” + Ela|dd (15)

the weight vectowsxr, in (10) anduw,y, in (3) and (6). While wherea, is the abundance of the undesired signature vector

the former is calculated from the correlation matrix of th% and E[a2] is the energy ofu defined in the same manner
interference R; !, the latter is calculated from the correlation u 9y

: ] as Ela2].
matrix of the observationft™. Combining (3) or (6) with (15) renders

IV. RELATIONSHIP BETWEEN R;' AND R} .
_ 2 21,7 _ 2
As shown in the previous section, all three approaches @ = 4= ("I +uBlaJu" )w = d(1 — Elo;]d" w)
generated weight vectors of the same form given by (3), (6), = Ryw = k3d (16)

and (10) with differentR;! and R~*. This section develops
the relationship betweeR;* and R~ that will be exploited wherek; is the constant defined by— E[a?)]dTw.
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R— "2 hhad— (17) Fig. 2. Simulation results for OSP, NSP, SMI operators for data set 1: (a)
1+ E[a2|uTw

normalized output versus pixel’s number for SIN#0:1 and (b) normalized
output versus pixel's number for SINR 30:1.

Ri'=1I

) . ) - .
It Efoq,] = oo (i€, Elaj] — 0), substituting (17) into (10) It is not surprising to note that the right side of (19) is

and lettingks = 1 results in exactly the classifieq = Pospd derived in [2]. That is (19)
T is the OSPPosp = I — UU¥, followed by a matched filter,
Wopy, A {I — #} d (18) based on the desired signature veetoT his is obviously not

uu a coincidence becaudé~ R; (due to the fact that[a3] —

) ] ) ] . 0) and the OSP approach is also based on MSINR, which
which can be viewed as a projector mapping the desirgly,its in a Wiener—Hopf-type solution. Most importantly,
signature vectod into the orthogonal complement of the spacg) g) provides an alternative view to the OSP approach: the
spanned by:. This shows that (18) is nearly optimal when the|assifierg = Pospd can be implemented as an adaptive filter,
energy of the interference/undesired signatures is very straftermined as follows by the Wiener—Hopf equation:
or, conversely, the energy of the desired signature vector is

—plg . Rl —
very small. If theu is replaced by an interference/undesired Wopt =R "d~wswp =Ry d~q=Pd

signature matrix to include more than a one column interfer- = -UU*d. (20)
ence/undesired signature vecior, (18) becomes As shown in (20), both approaches achieve nearly the same
" performance if the energy of the desired signature vedtor
Wopt ~ WSINR ~ [I — UU™]d (19) is very small. However, an apparent advantage of using the

optimal weight vectotwsing is that it only requires knowledge
whereU# = (UTU)~1U” is the pseudoinverse df. of the sample correlation matri®; and the desired signature
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vector d; wsiyg does not require specific information about
interference/undesired signature vectbrsas are required by
the OSP classifieg. This advantage is particularly significant
when the background is unknown and cannot be obtamed
priori.

VI. NSP OPERATOR

Until now, knowledge of signature vecto® including
the interference/undesired signature vectdgrand the desired
signature vectodl is assumed to be given. However, in most
applications, such prior knowledge is either too expensive to
collect due to the lack of samples or too difficult to obtain
in practice. Under these circumstances, one must estimate lghe
environment based on observations. In this section, the prob-
lem of target signature detection in an unknown backgroundsgnature vector$/. Sinced is the main interest and will be
considered, particularly when knowledge of signature vectoreewed as the target signature vector, the only information
M is not necessarily given. It should be noted thMt required for our problem id, not thebackgroundwhich will
constitutes the desired signature veaband the undesired be hereafter referred to d$ plus the noise.

5. A subsection of the upper left corner of the LCVF scene.
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(© (d)

Fig. 6. NSP method: (a) target signature is red oxidized basaltic cinders, (b) target signature is rhyolite, (c) target signature is dry playandkebed
(d) target signature is vegetation.

In order to estimatel, we assume that knowledge of thaerm in (22), i.e.,
occurrence ofd is available beforehand so that can be
estimated from the pixels in the area where it resides. Let Ri'~ &, A 9L =070, 8L. (23)
r be the observation vector made up of these pixelsd{nil
be the estimate off based orr. As defined in (4),R is the As a result of (23), the optimal weight vectagsmvg can be
correlation matrix ofr (which contains the desired signaturdurther approximated by
vectord) and Ry, given by (7), is the correlation matrix of the

background. Sinc&; is nonnegative, it can be decomposed as wsing & €,9;,d = [ — 2,97 ]d. (24)
In analogy to (21),R can be written as
R = 040" = [0, @, [’(1)1 /;) }[451 2" (21 o to GD R
" Ay O
R=vwrv’ =[w, v, ]|"M }y? v, |7
where@ is a matrix, whose columns are made up of eigen- s ][ 0 4, Was @]

vectors of Ry with @#; and &,,, corresponding to interfer- =Wy Ay 4w, A 0T (25)
ence/undesired signature vectéfsand noisen, respectively.

A = diag(oy, o2, -+, om) With {oi}iL = A + 0% and \ypere = [Ad‘f A ]. It should be noted thawy, is

A, = dia%amﬂ, Om+2, -+, 01) With {oitomat = 07 different from A; in (22) becaused,; is produced by both
where{o;}., are eigenvalues ab;. From (21), the inverse jnterference/undesired signature vectors ahdvhile A; is
of R; can be found as produced by only interference/undesired signature vectors. If
i A5 0 . the desired signaturé in R is very weak, i.e.E[ag] is very
R;" =[¢7 9,] 0 AL @7 D,] small, then
=&, A; O] + D, A D] (22) Wy Ay WY + 0, A 0T ~ W AWT + W, A, 07 (26)

If the energy of the interference/undesired vecidréends to so thatR ~ R; and R~! is also approximated by
be very large compared to the noise enesdyi.e., \; > o2,
then\; ! <« o~2. So,R;* can be approximated by the second R'~R'~w AW =720, 0T, (27)
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(© (d)

Fig. 7. OSP method: (a) target signature is red oxidized basaltic cinders, (b) target signature is rhyolite, (c) target signature is dry playanidkebed
(d) target signature is vegetation.

Since bothR and R; contain the samél,,, we define a new In practical applications, the probability distributions gov-

operator, the noise subspace projection operaigsr by erningr are not known. Consequently, the statistical correla-
T tion matrices used in the above derivations are not available
wnsp =¥V, d. (28)  put must be estimated by the sample correlation ma¥ix

, , LN S rirT, where {r;}¥ | is a sequence oN obser-
An important observation can be made on (27). As shown,. - l :

X . . vation vectors. Lety; = >, _, wiri, be the weighted sum
previously, (27) is true for weak target signature vectorgf the I bands in theith observation vector. given b
However, it should be noted that (27) is also true if the ener i 9 y

Y — Mo ‘ AN i

of total signature vectordf is much larger than that of noise, | .. Qi + i, and Wher?{m}ml are the NOISE Processes.
) 9 . . 2 _1 'Substituting R into (27) yields a sample version of noise
i.e., 05> 0% for j=1,2 .-, m. Inthis caseg™ > o

which implies thatA;;! dominatesA,;} and subspace projection operat@i\lsi,Tglven by
wnsp =¥, ¥, d. (30)
VA ~ @ADL (29)
VII. EXPERIMENTAL RESULTS

As a result of (29), (28) is also true for the case of weak targetThree experiments are conducted in this section. The first
signature vector as described by (26). It's worth noting thatexperiment used computer simulations to verify the supe-
similar idea to (29) was also proposed in [9]. riority of the NSP approach. The second experiment used

In addition to the advantage that no prior information ian airborne visible infrared imaging spectrometer (AVIRIS)
required for signature vectol$ andd, two more advantagesimage to demonstrate that the classifier resulting from the NSP
can be gained by usingnsp (28). One is that the detectionapproach outperforms the OSP classifier in [2] and an adaptive
capability of the weak target signatudecan be significantly filter using the SMI method. The third experiment shows the
improved since the matched filter is applied after the inteimpressive subpixel detection capability of the NSP operator,
ference/undesired signature vectors are removed. A secoyitich cannot be accomplished by the OSP operator in [2].
advantage is that no matrix inversion is neededdggkpr. This . i .
is in contrast to adaptive filter methods that require inversion 6f EXPeriment 1 (Computer Simulations)
the correlation matrix, based on the sample matrix inversionin this experiment, we use the Field Spectrometer System
(SMI) algorithm. (FSS) data with 60 spectral bands [17]. The major parameters
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(@) (b)
(© (d)

Fig. 8. SMI method: (a) target signature is red oxidized basaltic cinders, (b) target signature is rhyolite, (c) target signature is dry playatakebed
(d) target signature is vegetation.

TABLE | TABLE I
PARAMETERS USED FOR FSS SIMULATIONS OF DESIRED AND UNDESIRED SIGNATURES FOR THREE DATA SETS
Number of Bands 60 bands Data set Undersired Signatures Desired Signature
Spectral Converge | 0.4-2.4 pm Data set-1 [oats and summer fallow spring wheat
Altitude 60 m Data set-2 |spring wheat and summer fallow [native grass
IFOV 25 m Data set-3 |spring wheat and grain sorghum  |native grass

ofthe FSS data are I|§ted n Table |. Since bands correspondg’ilig]ulated' based on ground truth, and 100 pixels are simulated,
to the water absorption regions have no useiul energy, th d given in Table lll. Each pixel contains three different

are removgd prior to processing so that only 56. bands agi%natures with various spectral reflectance abundances. The
of interest in this study. Let the number of materigls= 3

T 100 pixels are divided equally into five classes, each of which
and @« = (o, a2, a3)’ be a spectral abundance vector . . . . .

. ) . contains 20 pixels. The 20 pixels in each class contain the same
corresponding to a signature vect® = (m;, mg, ms) with

. : . . mount of signature abundance. For example, the pixels in the
mg3 as the desired signature ang as its associated spectral. a0 . .
. . : first class contain 1% abundance of the desired sighature and
abundancelU = (m4, my) is the undesired signature vector

: ) ) 49.5% for each of the two undesired signatures. In addition to
Each data set contains three signatures from five materlfahs

. ) 7 - : thr ignatures, three whit ian noi were al
listed in Table II. Data set 1 contains three distinct S|gnaturesese ee sighatures, three e Gaussian noises were also

as shown in Fig. 1(a), where spring wheat is designated Simulated and added to each pixel to generate two SINR’s,

. . 50:1 and 30:1, respectively, and where the SINR was the same
the desired signature and oats, summer fallow are undesired . .
as the SINR defined in [2].

signatures. Data set 2, shown in Fig. 1(b), contains summetl_hree methods are evaluated in this experiment
fallow and two signatures with similar spectral reflectances, '

spring wheat and native grass with native grass selected ag) The proposed NSP operatgr= ENVEPT given by (30).

the desired signature. Data set 3 contains spring wheat, graif) | "€ OSP operatoy, = [d” (I -UU™)|r g|vgn_£)y (20).
sorghum, and native grass, whose spectral reflectances ard The SMI method given by = wl,r =d"R r.

nearly indistinguishable, as shown in Fig. 1(c), with nativ&he latter includes the calculation of direct invertiRgwhich
grass chosen as the desired signature. All three data setsiarestimated from 100 samples. Figs. 2—-4 are generated by
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Fig. 9. Nine spectral images taken from 200 AVIRIS spectral bands (the IPTS scene) with specifications indicated in Table IV (top row: from left to right
are band 8, band 16, band 27; middle row: band 39, band 46, band 70; bottom row: band 86, band 136, band 186).

TABLE Il the NSP operator estimates the desired signatures from the

ABUNDANCE FOR 100 SMULATED PIXELS FOR THREE DATA SETS areas in which they reside, and then the estimated signatures
Spec.\ pixel 120] 21-40] 41-60] 61-80] 81-100 are used to classify various materials. In order to compare
Desired Signatare o sl Toul 159 20% the performance of the NSP approach relative to the OSP and

SMI methods, we conduct the same experiments done in [2].
Figs. 6-8 show results from the NSP, OSP, and SMI methods,
respectively. The NSP generates the best results, while the
SMI method produces the worst performance. Comparing
these three methods, based on the above three data setsigre6(a)—(d) to Fig. 7(a)—(d), considerable improvements are
SINR =50:1 and 30:1. The outputs are normalizedidd” d. evident, particularly in Fig. 6(a), (c), and (d), the background

As we can see in these figures, the SMI produced the wofstcleared and the undesired signatures are nulled out. Also,
performance, while the NSP operator yields the best resulise desired signatures in Fig. 6(a), (c), and (d) are more salient
It is interesting to note that unlike the OSP and SMI methodgan those in Fig. 7(a), (c), and (d).

the normalized outpuy/de in the NSP approach produces

negative values with zero mean. This is due to the way W& Experiment 3

simulate the data sets. However, if we shift all curves by an
amount, referred to as a bias calculated by the variance of {
projected noisawgpn, the results would be similar to those
produced by the OSP and SMI methods.

Undesired Signature 1] 49.5%| 47.5% 45%;| 42.5%| 40%
Undesired Signature 2| 49.5%| 47.5%| 45%| 42.5%| 40%

The data set used in this experiment is a June 1992 AVIRIS
Kta set of a mixed agriculture/forestry landscape in the Indian
Pine Test Site (IPTS) in northwestern Indiana provided by
Prof. Landgrebe and Prof. Biehl from the Purdue University
. School of Electrical Engineering [19]. It contains nine images,
B. Experiment 2 as shown in Fig. 9, of size 145 145 pixels from nine of
In this experiment, we use the same 158-band AVIRIS datse 200 spectral bands, as indicated in Table IV. Fig. 10 is a
set as in [2], Fig. 5 is a subsection of this AVIRIS scene ahap, which provides the ground truth of Fig. 9. As we can
the Lunar Crater Volcanic Field (LCVF) located in Northerrsee in Fig. 9, the United States Highways 52 and 231 in the
Nye County, NV. Unlike [2], where the signatures werd¢op of the right corner are barely visible. Three additional
known and taken from [18], including undesired signaturemyjads (one is across the top from east to west, another is a
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Fig. 10. Portion of a USGS Quadrangle map of the IPTS scene.

TABLE IV
THE BAND DESCRIPTION OF THEEXPERIMENT 3
AVIRIS | Wavelength
Band #. | center, um
8 0.4795
16 0.5584
27 0.6675
39 0.7560
46 0.8235
70 1.0550
86 1.2092
136 1.6589
186 22186 Fig. 11. Image resulting from the NSP operator.

. highways and three roads. In this experiment, it was noted that
north—southbound West Road, and the third road crosses frgr% Y P

h h I invisible in the i oad near the right boundary of the image in Fig. 11, which
southeast to northwest) are almost invisible in the image. connects the United States highways and the country road

Since there is no prior knowledge of the signatures of roads, g from southeast to northwest is picked up in Fig. 11,
and the background available from the image in Fig. 9, thg: is not visible in Fig. 9 nor shown in the map (Fig. 10).
OSP method cannot be applied. However, estimates of fjgever, it does exist when we examine all nine spectral
signatures of these three roads are possible. For this examplgyges in Fig. 9 carefully. The selection of pixels to estimate
we select six pixels from a visible portion of the road acrogpe desired signatures is not unique. Several areas, for example,
from east to west, then find these six corresponding pixe{feas on the north—-southbound west road and the road crossing
in all nine bands and average them. The averaged six pixgtm southeast to northwest, were tried and produced nearly
were used as the estimate of the desired target signaturetf@ same results.

Highways 52, 231, and the three roads. Finally, the NSPIn addition to extracting roads, some other areas with the
operator (30) was applied to the image in Fig. 9 to produgame estimated signature are also extracted in the image,
the image given by Fig. 11. This image clearly shows the twsuch as a substation shown in the top of the left corner.



TU et al: NSP APPROACH 181

This experiment demonstrates a potential application of tie] J. E. HudsonAdaptive Array Principles. London, U.K.: Peregrinus,
i 1981.
proposed NSP approach for the detection of weak tarq%] S. Haykin, Advances in Spectrum Analysis and Array Processing, Vol.
signatures in an unknown background. 2. Englewood Cliffs, NJ: Prentice-Hall, 1991.
[16] L. Scharf,Statistical Signal Processing: Detection, Estimation, and Time
Series Analysis. Reading, MA: Addison-Wesley, 1991.
VIIl. CONCLUSION [17] L. L. Biehl et al., “A crops and soils data base for scene radiation
research,” inProc. Machine Processing Remotely Sensed Data Symp.,
In this paper, a noise subspace projection (NSP) is pre- 1982, pp. 169-177.

; 8], W. H. Farrand and R. B. Singer, “Analysis of altered volcanic pyroclasts
sented. The resultant NSP operator can be designed al 13‘using AVIRIS data,” inProc. Third AVIRIS WorkshoPasadena, CA,
classifier or a subpixel detector to detect and extract target 1991, JPL Publ. 91-28.
signatures in an unknown background. The advantages of {h D. A. Landgrebe and L. L. Biehln Introduction to MultiSpecSchool
NSP operator are 1) that no prior knowledge of signatures E'ect Eng., Purdue Univ., West Lafayette, IN, 1995.
and background is required and 2) implementation does not
require matrix inversion. The former can be estimated from
observations and the latter is done by simply inverting th~ Te-Ming Tu was born in Kaohsiung, Taiwan,
eigenvalues of the correlation matrix. The proposed NS R.0.C., in 1959. He received the B.S.E.E. degree

h offers an attractive alternative method for subpi» from Chung Cheng Institute ~of Technology.
approach o - ’ e . ; p Taoyuan, Taiwan, in 1986, the M.S.E.E. degree
target detection and scene pixel classification in high de from National Sun Yat-Sen University in 1991, and
dimensionality, hyperspectral imagery.

the Ph.D. degree in electrical engineering from the
National Cheng Kung University, Tainan, Taiwan,
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