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A Noise Subspace Projection Approach to Target
Signature Detection and Extraction in an

Unknown Background for Hyperspectral Images
Te-Ming Tu, Chin-Hsing Chen, and Chein-I Chang,Senior Member, IEEE

Abstract—A noise subspace projection (NSP) approach to
extraction and subpixel detection of target signatures in an un-
known background is presented. The proposed NSP approach is
derived from a recently developed subspace orthogonal projection
(OSP) method and can be shown to be approximated by an
adaptive filter with the optimal weight given by the Wiener–Hopf
equation. As a result, the operator resulting from the NSP
approach can be used as an OSP operator for scene classification
and subpixel detection, on one hand, and also implemented as
an adaptive filter, on the other. These advantages make the NSP
approach very attractive in practical applications. In particular,
the NSP operator takes advantage of the noise subspace projec-
tion to prevent from inverting correlation matrices, as required
by an adaptive filter.

Index Terms—Adaptive filter, hyperspectral image, noise sub-
space projection (NSP), orthogonal subspace projection (OSP).

I. INTRODUCTION

H YPERSPECTRAL imagery provides more information
than multispectral imagery in the sense that the spectral

resolution of the former is much better than that of the latter.
For example, an airborne visible/infrared imaging spectrometer
(AVIRIS) image is acquired by 224 bands, while a multi-
spectral image generally requires only five to seven bands. In
particular, when a scene covers distinct materials more than the
number of spectral bands used by multispectral imagery, the
multispectral capability of distinguishing image endmembers
degrades significantly, and in this case, we must rely on
hyperspectral imagery, which offers the spectral resolution

10 nm and expands detection and classification activities to
targets unresolved in multispectral images [1].

In this paper, the main focus is the detection of target sig-
natures in an unknown background. The considered detection
problem is not quite the same as ones encountered in image
processing. Since the targets of interest are generally smaller
than the spatial resolution of hyperspectral images (e.g., pixel
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resolution 20 m 20 m), it is necessary to develop subpixel
detection techniques for this purpose. An approach recently
developed by Harsanyi and Chang [2] called the orthogonal
subspace projection (OSP) method has demonstrated a promis-
ing application to subpixel detection problems, but requires
knowledge of signatures and background. Some related works
in the comparative analysis of subspace projection methods
can be found in [3]–[7].

In [8], the OSP method is further extended and designed
for subpixel detection and classification in an unknown back-
ground, where the developed OSP-based subpixel technique,
called low probability detection (LPD), was used to detect
targets appearing in an image with low probability. A low
probability target is defined as a target that occurs in very few
pixels in the image; thus, it can be viewed as an insignificant
target. In most cases, such insignificant targets are very impor-
tant, but generally overlooked or discarded, such as detecting
a tank in a field. The LPD approach not only can detect
low probability targets, but also assumes no prior knowledge
about the background. It was proved to be very effective and
practically useful. Another approach proposed in [8], called the
constrained energy minimization (CEM) method, was to apply
the concept of linearly constrained adaptive beamforming
to the case where the exact knowledge of signatures and
background is not knowna priori. Under these circumstances,
an adaptive beamforming-type classifier and subpixel detector
were developed to complement the OSP and LPD methods. In
analogy to the CEM method, an adaptive method for optimal
jammer suppression in adaptive array processing by using the
orthogonal projection was also suggested in [9] and shown to
be superior to the commonly used sample correlation matrix
inversion (SMI) algorithm.

Motivated by the ideas in [2]–[9], a noise subspace projec-
tion (NSP) approach to target signature detection and extrac-
tion in an unknown background is proposed. It originates from
the concept of orthogonal subspace projection (OSP) [2] and
is developed in conjunction with the idea in [9]. In particular,
it is shown in this paper that the operator resulting from the
NSP approach can be approximated by an adaptive filter with
the optimal weight specified by the celebrated Wiener–Hopf
equation, provided that the total energy of signatures is large
compared to the noise energy and, particularly, for the case
where the target signature is weak. As a result, the NSP
operator can be implemented as an adaptive filter without need
for specific knowledge of signatures except the correlation
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matrix. On the other hand, the NSP operator can be also
used as an OSP-based interference rejecter that eliminates
the undesired signatures/interferences while preserving the
desired target signatures. Since the OSP uses the spectral
decomposition of a covariance matrix to design an orthogonal
projection interference rejecter, the matrix inversion is done by
finding the inverses of eigenvalues. Therefore, direct matrix
inversion is not necessary in the NSP operator. This is a
significant advantage over adaptive filters, especially, when
the dimensionality of the correlation matrix is very high, e.g.,
hyperspectral image data.

This paper is organized as follows. Section II describes
the linear mixture model for multispectral/hyperspectral
imagery. Section III reviews three widely used estimation
techniques used in adaptive filtering theory, based on
minimum mean-squared error (MMSE) and maximum signal-
to-interference/noise (MSINR) ratio. Section IV derives the
relationship between inverses of two correlation matrices
of which one contains the desired signatures and the other
does not. Section V shows that the OSP method recently
developed by Harsanyi and Chang in [2] can be approximated
by an adaptive filter solved by the Wiener–Hopf equation
when the energy of signatures is large compared to noise
energy. Section VI presents a noise subspace projection
approach, which is derived from the OSP method and
Wiener–Hopf equation and can be used for subpixel detection
and extraction in an unknown background. Section VII
conducts three experiments to demonstrate the power and
potential applications of the NSP approach. Section VIII is
a brief conclusion.

Typographic Conventions:Throughout this paper, vec-
tors are denoted by boldface lowercase letters, matrices by
boldface uppercase, and transpose and matrix inverse by
superscripts , respectively. denotes the identity matrix.

II. L INEAR MIXTURE MODEL FOR

MULTISPECTRAL/HYPERSPECTRALIMAGES

Let be an column vector that denotes a pixel
in a hyperspectral scene at spatial location , where

is the number of spectral bands. Assume that is an
matrix denoted by where is an
column vector representing the spectral signature ofth

material. We also let be a column vector given by
where is the number

of materials and denotes the fraction of theth
signature present in the pixel . A linear mixture model
for the hyperspectral image pixel can be described by
[10]–[12]

(1)

where is an column vector representing additive-
white Gaussian noise with zero mean and varianceand
is the identity matrix.

III. STATISTICAL ESTIMATION OF

There have been many approaches proposed to solve image
classification problems for the model given by (1), such
as principal components analysis, maximum likelihood, and

minimum distance classification. Of particular interest is one
reported in [2], which applied the concept of the OSP to (1)
and resulted in an interference rejecter, which improved clas-
sification performance. Unfortunately, most currently existing
classification techniques applied to multispectral/hyperspectral
imagery assume completea priori information about the
spectral signatures, including the abundance . This is
generally not true in many practical applications. Specifically,
the prior knowledge of is either very difficult to
obtain or too expensive to collect. In this case, an estimate
of must be used in place of the true unknown
in (1). In what follows, three commonly used estimation
techniques will be reviewed and discussed in the context
of the estimation of where and are
assumed to be random vectors. In order to simplify notations,
the spatial location in (1) will be suppressed throughout
this paper. The first approach solves the Wiener filtering-type
unconstrained problem. The second is a linearly constrained
optimization technique, which is widely used in adaptive
beamforming. The optimal adaptive filters derived by these
two approaches are determined by the correlation matrix of
. In contrast, the third approach involves maximizing the

signal-to-noise/interference ratio (SNIR), as determined by two
separate correlation matrices: that of the desired signature
vector and that of the interference vector, which includes
undesired signatures and noise [13]–[15].

A. MMSE Approaches

1) Wiener Filtering Approach:For convenience in the
present discussion, we rewrite (1) in the following form:

where

desired signature assumed without loss of generality to
be the column vector ;

matrix given by ;
and
a vector which contains the first components of

, .

Let the abundance of desired signaturebe denoted by
; will be estimated by an adaptive filter, whose design

is based on Wiener filtering theory. Suppose that the output
of an adaptive filter, whose weights are given by

is expressed by .
Let . Then the mean square error

(MSE) is given by

(2)

and the solution to minimization of (2) can be obtained by the
Wiener–Hopf equation [13], [14]

(3)

where is the correlation matrix of the observation vector
given by

(4)

and , the energy of the desired signature, is sum
of variance var and squared mean of , , i.e.,

var .



TU et al.: NSP APPROACH 173

2) Minimum Variance Distortionless Response (MVDR):
The basic idea behind MVDR is to impose a constraint on the
response of the to be designed adaptive filter so that the desired
signals will pass through the filter with a specific gain, while
the output-to-interference/undesired signatures is minimized.
This constrained problem can be formulated as follows:

subject to (5)

The solution to (5) is found by forming the Lagrangian given
by and solving for as well as forming
the Lagrange multiplier to minimize the Lagrangian. This
yields the same Wiener–Hopf solution, as given in (3)

(6)

except for the constant . However, this constant is not
important, since both and produce
the same SINR defined in (8).

B. MSINR Approach

One widely used criteria for signal processing is the max-
imization of SINR. Let be the correlation matrix of the
interference, which consists of undesired signatures plus the
noise. Namely

(7)

Therefore, the maximum SINR is defined by

(8)

which is equivalent to the following generalized eigenvalue
problem:

(9)

Assume that is the correlation matrix of a random vector
comprising the desired signatureand interference/undesired
signatures plus noise. Then, is given by (4), i.e., the
sum of the desired signature energy and . For
simplicity of analysis, the desired signatureis assumed to be
a one column signature vector. Extension to multiple signature
vectors is straightforward.

Since is a rank-one matrix and is positive
definite, there is only one nonzero (and positive) eigenvalue

and the optimal weight vector is given by

(10)

where is a nonzero constant and the SINR is independent
of the constant due to (8).

It should be noted that there is a crucial difference between
the weight vector in (10) and in (3) and (6). While
the former is calculated from the correlation matrix of the
interference, , the latter is calculated from the correlation
matrix of the observation, .

IV. RELATIONSHIP BETWEEN AND

As shown in the previous section, all three approaches
generated weight vectors of the same form given by (3), (6),
and (10) with different and . This section develops
the relationship between and that will be exploited

and used in the derivation of a target signature detector in
Section V.

Recalling given by (7), can be
reexpressed in terms of and the desired signature energy
as follows:

(11)

From Woodbury’s identity [16]

(12)

we obtain

(13)

thus

(14)

Equation (14) shows that and differ by the factor
. This factor has no effect on the

choice of the weight vector in adaptive-array processing
since or is scale-invariant in
calculating SINR. For example, suppose that a pulse radar has
a duty cycle of 0.001 and a target signal pulse occurs only
0.1% of the time. As a result, the presence of the target signal
occupies such a small fraction of time that its contribution
to can be neglected. Analogous concepts are generally not
true in remote-sensing imagery, which will be discussed in
the following section.

V. INTERPRETATION ORTHOGONAL SUBSPACE

CLASSIFIER AS AN ADAPTIVE FILTER

The relationship between and , described by (13)
and (14) in Section IV, is important when the target signature
is very weak, i.e., the energy of the target signature is
small or . In other words, the interference/undesired
signatures dominate the target signature. In this case, it will be
shown that the optimal weights given by Wiener–Hopf type
solutions (3), (6), and (10) can be approximated by the same
operator derived in [2]. This result is shown in the
following expression (18) and has a very important implication
in applications, which will be described later.

Let us first return to (11). For mathematical simplicity, we
assume the undesired signature/interference to be a column
vector denoted by . Then (11) can be simplified as

(15)

where is the abundance of the undesired signature vector
and is the energy of defined in the same manner

as .
Combining (3) or (6) with (15) renders

(16)

where is the constant defined by .
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(a)

(b)

(c)

Fig. 1. (a) Reflectance spectra of data set 1, (b) reflectance spectra of data
set 2, and (c) reflectance spectra of data set 3.

Applying Woodbury’s identity (12) to and setting
to unity for convenience yields

(17)

If (i.e., ), substituting (17) into (10)
and letting results in

(18)

which can be viewed as a projector mapping the desired
signature vector into the orthogonal complement of the space
spanned by . This shows that (18) is nearly optimal when the
energy of the interference/undesired signatures is very strong
or, conversely, the energy of the desired signature vector is
very small. If the is replaced by an interference/undesired
signature matrix to include more than a one column interfer-
ence/undesired signature vector, (18) becomes

(19)

where is the pseudoinverse of .

(a)

(b)

Fig. 2. Simulation results for OSP, NSP, SMI operators for data set 1: (a)
normalized output versus pixel’s number for SINR=50:1 and (b) normalized
output versus pixel’s number for SINR= 30:1.

It is not surprising to note that the right side of (19) is
exactly the classifier derived in [2]. That is (19)
is the OSP , followed by a matched filter,
based on the desired signature vector. This is obviously not
a coincidence because (due to the fact that
) and the OSP approach is also based on MSINR, which

results in a Wiener–Hopf-type solution. Most importantly,
(19) provides an alternative view to the OSP approach: the
classifier can be implemented as an adaptive filter,
determined as follows by the Wiener–Hopf equation:

(20)

As shown in (20), both approaches achieve nearly the same
performance if the energy of the desired signature vector
is very small. However, an apparent advantage of using the
optimal weight vector is that it only requires knowledge
of the sample correlation matrix and the desired signature
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(a)

(b)

Fig. 3. Simulation results for OSP, NSP, SMI operators for data set 2: (a)
normalized output versus pixel’s number for SINR= 50:1 and (b) normalized
output versus pixel’s number for SINR= 30:1.

vector ; does not require specific information about
interference/undesired signature vectors, as are required by
the OSP classifier. This advantage is particularly significant
when the background is unknown and cannot be obtaineda
priori .

VI. NSP OPERATOR

Until now, knowledge of signature vectors including
the interference/undesired signature vectorsand the desired
signature vector is assumed to be given. However, in most
applications, such prior knowledge is either too expensive to
collect due to the lack of samples or too difficult to obtain
in practice. Under these circumstances, one must estimate the
environment based on observations. In this section, the prob-
lem of target signature detection in an unknown background is
considered, particularly when knowledge of signature vectors

is not necessarily given. It should be noted that
constitutes the desired signature vectorand the undesired

(a)

(b)

Fig. 4. Simulation results for OSP, NSP, SMI operators for data set 3: (a)
normalized output versus pixel’s number for SINR= 50:1 and (b) normalized
output versus pixel’s number for SINR= 30:1.

Fig. 5. A subsection of the upper left corner of the LCVF scene.

signature vectors . Since is the main interest and will be
viewed as the target signature vector, the only information
required for our problem is, not thebackground, which will
be hereafter referred to as plus the noise.



176 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 36, NO. 1, JANUARY 1998

(a) (b)

(c) (d)

Fig. 6. NSP method: (a) target signature is red oxidized basaltic cinders, (b) target signature is rhyolite, (c) target signature is dry playa lakebed, and
(d) target signature is vegetation.

In order to estimate , we assume that knowledge of the
occurrence of is available beforehand so that can be
estimated from the pixels in the area where it resides. Let

be the observation vector made up of these pixels and
be the estimate of based on . As defined in (4), is the
correlation matrix of (which contains the desired signature
vector ) and , given by (7), is the correlation matrix of the
background. Since is nonnegative, it can be decomposed as

(21)

where is a matrix, whose columns are made up of eigen-
vectors of with and , corresponding to interfer-
ence/undesired signature vectorsand noise , respectively.

diag with and
diag with

where are eigenvalues of . From (21), the inverse
of can be found as

(22)

If the energy of the interference/undesired vectorstends to
be very large compared to the noise energy, i.e., ,
then . So, can be approximated by the second

term in (22), i.e.,

(23)

As a result of (23), the optimal weight vector can be
further approximated by

(24)

In analogy to (21), can be written as

(25)

where . It should be noted that is
different from in (22) because is produced by both
interference/undesired signature vectors and, while is
produced by only interference/undesired signature vectors. If
the desired signature in is very weak, i.e., is very
small, then

(26)

so that and is also approximated by

(27)
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(a) (b)

(c) (d)

Fig. 7. OSP method: (a) target signature is red oxidized basaltic cinders, (b) target signature is rhyolite, (c) target signature is dry playa lakebed, and
(d) target signature is vegetation.

Since both and contain the same , we define a new
operator, the noise subspace projection operator by

(28)

An important observation can be made on (27). As shown
previously, (27) is true for weak target signature vectors.
However, it should be noted that (27) is also true if the energy
of total signature vectors is much larger than that of noise,
i.e., for . In this case,
which implies that dominates and

(29)

As a result of (29), (28) is also true for the case of weak target
signature vector as described by (26). It’s worth noting that a
similar idea to (29) was also proposed in [9].

In addition to the advantage that no prior information is
required for signature vectors and , two more advantages
can be gained by using (28). One is that the detection
capability of the weak target signaturecan be significantly
improved since the matched filter is applied after the inter-
ference/undesired signature vectors are removed. A second
advantage is that no matrix inversion is needed for . This
is in contrast to adaptive filter methods that require inversion of
the correlation matrix, based on the sample matrix inversion
(SMI) algorithm.

In practical applications, the probability distributions gov-
erning are not known. Consequently, the statistical correla-
tion matrices used in the above derivations are not available
but must be estimated by the sample correlation matrix

, where is a sequence of obser-
vation vectors. Let be the weighted sum
of the bands in the th observation vector given by

, and where are the noise processes.
Substituting into (27) yields a sample version of noise
subspace projection operator, , given by

(30)

VII. EXPERIMENTAL RESULTS

Three experiments are conducted in this section. The first
experiment used computer simulations to verify the supe-
riority of the NSP approach. The second experiment used
an airborne visible infrared imaging spectrometer (AVIRIS)
image to demonstrate that the classifier resulting from the NSP
approach outperforms the OSP classifier in [2] and an adaptive
filter using the SMI method. The third experiment shows the
impressive subpixel detection capability of the NSP operator,
which cannot be accomplished by the OSP operator in [2].

A. Experiment 1 (Computer Simulations)

In this experiment, we use the Field Spectrometer System
(FSS) data with 60 spectral bands [17]. The major parameters
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(a) (b)

(c) (d)

Fig. 8. SMI method: (a) target signature is red oxidized basaltic cinders, (b) target signature is rhyolite, (c) target signature is dry playa lakebed, and
(d) target signature is vegetation.

TABLE I
PARAMETERS USED FOR FSS

of the FSS data are listed in Table I. Since bands corresponding
to the water absorption regions have no useful energy, they
are removed prior to processing so that only 56 bands are
of interest in this study. Let the number of materials
and be a spectral abundance vector
corresponding to a signature vector with

as the desired signature and as its associated spectral
abundance. is the undesired signature vector.
Each data set contains three signatures from five materials
listed in Table II. Data set 1 contains three distinct signatures,
as shown in Fig. 1(a), where spring wheat is designated as
the desired signature and oats, summer fallow are undesired
signatures. Data set 2, shown in Fig. 1(b), contains summer
fallow and two signatures with similar spectral reflectances,
spring wheat and native grass with native grass selected as
the desired signature. Data set 3 contains spring wheat, grain
sorghum, and native grass, whose spectral reflectances are
nearly indistinguishable, as shown in Fig. 1(c), with native
grass chosen as the desired signature. All three data sets are

TABLE II
SIMULATIONS OF DESIRED AND UNDESIRED SIGNATURES FORTHREE DATA SETS

simulated, based on ground truth, and 100 pixels are simulated,
as given in Table III. Each pixel contains three different
signatures with various spectral reflectance abundances. The
100 pixels are divided equally into five classes, each of which
contains 20 pixels. The 20 pixels in each class contain the same
amount of signature abundance. For example, the pixels in the
first class contain 1% abundance of the desired signature and
49.5% for each of the two undesired signatures. In addition to
these three signatures, three white Gaussian noises were also
simulated and added to each pixel to generate two SINR’s,
50:1 and 30:1, respectively, and where the SINR was the same
as the SINR defined in [2].

Three methods are evaluated in this experiment.

1) The proposed NSP operator, given by (30).
2) The OSP operator, given by (20).
3) The SMI method given by .

The latter includes the calculation of direct inverting, which
is estimated from 100 samples. Figs. 2–4 are generated by
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Fig. 9. Nine spectral images taken from 200 AVIRIS spectral bands (the IPTS scene) with specifications indicated in Table IV (top row: from left to right
are band 8, band 16, band 27; middle row: band 39, band 46, band 70; bottom row: band 86, band 136, band 186).

TABLE III
ABUNDANCE FOR 100 SIMULATED PIXELS FOR THREE DATA SETS

these three methods, based on the above three data sets for
SINR 50:1 and 30:1. The outputs are normalized by .
As we can see in these figures, the SMI produced the worst
performance, while the NSP operator yields the best results.
It is interesting to note that unlike the OSP and SMI methods,
the normalized output in the NSP approach produces
negative values with zero mean. This is due to the way we
simulate the data sets. However, if we shift all curves by an
amount, referred to as a bias calculated by the variance of the
projected noise , the results would be similar to those
produced by the OSP and SMI methods.

B. Experiment 2

In this experiment, we use the same 158-band AVIRIS data
set as in [2], Fig. 5 is a subsection of this AVIRIS scene of
the Lunar Crater Volcanic Field (LCVF) located in Northern
Nye County, NV. Unlike [2], where the signatures were
known and taken from [18], including undesired signatures,

the NSP operator estimates the desired signatures from the
areas in which they reside, and then the estimated signatures
are used to classify various materials. In order to compare
the performance of the NSP approach relative to the OSP and
SMI methods, we conduct the same experiments done in [2].
Figs. 6–8 show results from the NSP, OSP, and SMI methods,
respectively. The NSP generates the best results, while the
SMI method produces the worst performance. Comparing
Fig. 6(a)–(d) to Fig. 7(a)–(d), considerable improvements are
evident, particularly in Fig. 6(a), (c), and (d), the background
is cleared and the undesired signatures are nulled out. Also,
the desired signatures in Fig. 6(a), (c), and (d) are more salient
than those in Fig. 7(a), (c), and (d).

C. Experiment 3

The data set used in this experiment is a June 1992 AVIRIS
data set of a mixed agriculture/forestry landscape in the Indian
Pine Test Site (IPTS) in northwestern Indiana provided by
Prof. Landgrebe and Prof. Biehl from the Purdue University
School of Electrical Engineering [19]. It contains nine images,
as shown in Fig. 9, of size 145 145 pixels from nine of
the 200 spectral bands, as indicated in Table IV. Fig. 10 is a
map, which provides the ground truth of Fig. 9. As we can
see in Fig. 9, the United States Highways 52 and 231 in the
top of the right corner are barely visible. Three additional
roads (one is across the top from east to west, another is a
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Fig. 10. Portion of a USGS Quadrangle map of the IPTS scene.

TABLE IV
THE BAND DESCRIPTION OF THEEXPERIMENT 3

north–southbound West Road, and the third road crosses from
southeast to northwest) are almost invisible in the image.

Since there is no prior knowledge of the signatures of roads
and the background available from the image in Fig. 9, the
OSP method cannot be applied. However, estimates of the
signatures of these three roads are possible. For this example,
we select six pixels from a visible portion of the road across
from east to west, then find these six corresponding pixels
in all nine bands and average them. The averaged six pixels
were used as the estimate of the desired target signature for
Highways 52, 231, and the three roads. Finally, the NSP
operator (30) was applied to the image in Fig. 9 to produce
the image given by Fig. 11. This image clearly shows the two

Fig. 11. Image resulting from the NSP operator.

highways and three roads. In this experiment, it was noted that
a road near the right boundary of the image in Fig. 11, which
connects the United States highways and the country road
across from southeast to northwest is picked up in Fig. 11,
but is not visible in Fig. 9 nor shown in the map (Fig. 10).
However, it does exist when we examine all nine spectral
images in Fig. 9 carefully. The selection of pixels to estimate
the desired signatures is not unique. Several areas, for example,
areas on the north–southbound west road and the road crossing
from southeast to northwest, were tried and produced nearly
the same results.

In addition to extracting roads, some other areas with the
same estimated signature are also extracted in the image,
such as a substation shown in the top of the left corner.
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This experiment demonstrates a potential application of the
proposed NSP approach for the detection of weak target
signatures in an unknown background.

VIII. C ONCLUSION

In this paper, a noise subspace projection (NSP) is pre-
sented. The resultant NSP operator can be designed as a
classifier or a subpixel detector to detect and extract target
signatures in an unknown background. The advantages of the
NSP operator are 1) that no prior knowledge of signatures
and background is required and 2) implementation does not
require matrix inversion. The former can be estimated from
observations and the latter is done by simply inverting the
eigenvalues of the correlation matrix. The proposed NSP
approach offers an attractive alternative method for subpixel
target detection and scene pixel classification in high data
dimensionality, hyperspectral imagery.

ACKNOWLEDGMENT

The authors would like to thank Prof. D. A. Landgrebe
of Purdue University for providing the FSS data and the
AVIRIS data set of the Indian Pine Test Site. We also thank
Dr. C. Harsanyi for providing the AVIRIS data of the Lunar
Crater Volcanic Field. We also want to express our apprecia-
tion for the anonymous reviewers’ suggestions, which greatly
improved this paper’s quality and presentation.

REFERENCES

[1] G. Vane and A. F. H. Goetz, “Terrestrial imaging spectroscopy,”Remote
Sens. Environ.,vol. 24, no. 1, pp. 1–29, 1988.

[2] C. Harsanyi and C.-I. Chang, “Hyperspectral image classification and
dimensionality reduction: An orthogonal subspace projection approach,”
IEEE Trans. Geosci. Remote Sensing,vol. 32, pp. 779–785, July 1994.

[3] Zhao, “Subspace projection approach to hyperspectral image classifica-
tion using linear spectral mixture model,” M.S. thesis, Dept. Comput.
Sci. Elect. Eng., Univ. Maryland-Baltimore County, May 1996.

[4] T.-M. Tu, C.-H. Chen, and C.-I. Chang, “A posteriori least squares
orthogonal subspace projection approach to desired signature extraction
and detection,”IEEE Trans. Geosci. Remote Sensing,vol. 35, pp.
127–139, Jan. 1997.

[5] C.-I. Chang, “Error analysis of least squares subspace projection ap-
proach to linear mixing problems,” to be published.

[6] T.-M. Tu et al.,“An oblique subspace projection approach to mixed pixel
classification in multispectral/hyperspectral images,” to be published.

[7] J. Settle, “On the relationship between spectral unmixing and sub-
space projection,”IEEE Trans. Geosci. Remote Sensing,vol. 34, pp.
1045–1046, July 1996.

[8] J. C. Harsanyi, “Detection and classification of subpixel spectral signa-
tures in hyperspectral image sequences,” Ph.D. dissertation, Dept. Elect.
Eng., Univ. Maryland-Baltimore County, Aug. 1993.

[9] H. Subbaram and K. Abend, “Interference suppression via orthogonal
projections: A performance analysis,”IEEE Trans. Antennas Propagat.,
vol. 41, pp. 1187–1193, Sept. 1994.

[10] J. B. Adams and M. O. Smith, “Spectral mixture modeling: A new
analysis of rock and soil types at the Viking Lander 1 site,”J. Geophys.
Res.,vol. 91, pp. 8098–8112, July 1986.

[11] Y. E. Shimabukuro and J. A. Smith, “Least squares mixing models to
generate fraction images derived from multispectral data,”IEEE Trans.
Geosci. Remote Sensing,vol. 29, pp. 16–20, Jan. 1991.

[12] A. R. Gillespie, M. O. Smith, J. B. Willis, S. C. Fischer, A. F. III, and D.
E. Sabol, “Interpretation of residual images: Spectral mixture analysis
of AVIRIS images,” inProc. 2nd AVIRIS Workshop,Owens Valley, CA,
JPL Publ. 4/5, June 1990, pp. 243–270.

[13] B. D. Van Veen and K. M. Buckley, “Beamforming: A versatile approach
to spatial filtering,”IEEE ASSP Mag.,pp. 4–24, Apr. 1988.

[14] J. E. Hudson,Adaptive Array Principles. London, U.K.: Peregrinus,
1981.

[15] S. Haykin,Advances in Spectrum Analysis and Array Processing, Vol.
2. Englewood Cliffs, NJ: Prentice-Hall, 1991.

[16] L. Scharf,Statistical Signal Processing: Detection, Estimation, and Time
Series Analysis. Reading, MA: Addison-Wesley, 1991.

[17] L. L. Biehl et al., “A crops and soils data base for scene radiation
research,” inProc. Machine Processing Remotely Sensed Data Symp.,
1982, pp. 169–177.

[18] W. H. Farrand and R. B. Singer, “Analysis of altered volcanic pyroclasts
using AVIRIS data,” inProc. Third AVIRIS Workshop,Pasadena, CA,
1991, JPL Publ. 91-28.

[19] D. A. Landgrebe and L. L. Biehl,An Introduction to MultiSpec,School
Elect. Eng., Purdue Univ., West Lafayette, IN, 1995.

Te-Ming Tu was born in Kaohsiung, Taiwan,
R.O.C., in 1959. He received the B.S.E.E. degree
from Chung Cheng Institute of Technology,
Taoyuan, Taiwan, in 1986, the M.S.E.E. degree
from National Sun Yat-Sen University in 1991, and
the Ph.D. degree in electrical engineering from the
National Cheng Kung University, Tainan, Taiwan,
in 1996.

Since 1981, he has been employed by the R.O.C.
Army Command, working on communication
engineering. He was a Teaching Assistant from

1986 to 1989, an Instructor from 1991 to 1993, and is currently an Associate
Professor in the Department of Electrical Engineering, Chung Cheng Institute
of Technology. His research interests include remote sensing, medical
imaging, neural networks, and statistical pattern recognition.

Chin-Hsing Chen was born in Tainan, Taiwan,
R.O.C., in 1958. He studied at National Taiwan Uni-
versity, Taipei, where he received the B.S. degree
in electrical engineering in 1980. After serving as a
communication officer in the Chinese Marine Corps
for two years, he returned to graduate studies at
the University of California, Santa Barbara (UCSB),
where he worked on research projects joined by
the Santa Barbara Research Center and Delco Elec-
tronics. He received the M.S. and Ph.D. degrees in
electrical and computer engineering from UCSB in

1983 and 1987, respectively.
He was an Associate Professor from 1988 to 1996 and is currently a

Professor in the Department of Electrical Engineering, National Cheng Kung
University, Tainan. His current interests include medical imaging, remote
sensing, robot vision, fractal and chaos, wavelet transform, and systolic circuit
implementation.

Chein-I Chang (S’81–M’82–SM’92) received the
B.S. degree from Soochow University, Taipei, Tai-
wan, R.O.C., in 1973, the M.S. degree from National
Tsing Hua University, Hsinchu, Taiwan, in 1975,
and the M.A. degree from the State University of
New York at Stony Brook, in 1977, respectively,
all in mathematics. He also received the M.S. and
M.S.E.E. degrees from the University of Illinois,
Urbana-Champaign, in 1980 and 1982, respectively,
and the Ph.D. degree in electrical engineering from
the University of Maryland, College Park, in 1987.

He was a Visiting Assistant Professor from January 1987 to August 1987,
Assistant Professor from 1987 to 1993, and is currently an Associate Professor
in the Department of Computer Science and Electrical Engineering, University
of Maryland-Baltimore County. He was a Visiting Specialist in the Institute of
Information Engineering at National Cheng Kung University, Tainan, Taiwan,
from 1994 to 1995. His research interests include information theory and
coding, signal detection and estimation, multispectral/hyperspectral remote
sensing, neural networks, and pattern recognition.

Dr. Chang is a member of SPIE, INNS, Phi Kappa Phi, and Eta Kappa Nu.


