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A Noisy Chaotic Neural Network for Solving
Combinatorial Optimization Problems:
Stochastic Chaotic Simulated Annealing

Lipo Wang, Sa Li, Fuyu Tian, and Xiuju Fu

Abstract—Recently Chen and Aihara have demonstrated both experi-
mentally and mathematically that their chaotic simulated annealing (CSA)
has better search ability for solving combinatorial optimization problems
compared to both the Hopfield-Tank approach and stochastic simulated an-
nealing (SSA). However, CSA may not find a globally optimal solution no
matter how slowly annealing is carried out, because the chaotic dynamics
are completely deterministic. In contrast, SSA tends to settle down to a
global optimum if the temperature is reduced sufficiently slowly. Here we
combine the best features of both SSA and CSA, thereby proposing a new
approach for solving optimization problems, i.e., stochastic chaotic simu-
lated annealing, by using a noisy chaotic neural network. We show the ef-
fectiveness of this new approach with two difficult combinatorial optimiza-
tion problems, i.e., a traveling salesman problem and a channel assignment
problem for cellular mobile communications.

Index Terms—Channel assignment, chaos, combinatorial optimization,
neural network.

I. INTRODUCTION

Chaotic neural networks have a richer spectrum of dynamic behav-
iors, such as stable fixed points, periodic oscillations, and chaos, in
comparison with static neural network models. Recently, there have
been extensive research interests and efforts in theory and applications
of chaotic neural networks (for example, see [1]–[22]).

A chaotic neural network based on a modified Nagumo–Sato neuron
model was proposed by Aihara et al. [4] in order to explain complex dy-
namics observed in a biological neural system. Nozawa [5] showed that
the Euler approximation of the continuous-time Hopfield neural net-
work [23] (EA-HNN) with a negative neuronal self-coupling exhibits
chaotic dynamics and that this model is equivalent to a special case
of a Aihara–Takabe–Toyoda chaotic neural network [4] after a vari-
able transformation. Nozawa further showed [5], [7] that the EA-HNN
has a much better searching ability in solving the traveling salesman
problem (TSP), in comparison with the original Hopfield neural net-
work [23]–[25], the Boltzmann machine, and the Gaussian machine.

Chen and Aihara [8], [9] proposed chaotic simulated annealing
(CSA) by starting with a sufficiently large negative self-coupling in the
Aihara–Takabe–Toyoda network when the dynamics is chaotic, and
gradually decreasing the self-coupling so that the network eventually
stabilizes, thereby obtaining a transiently chaotic neural network.
Their computer simulations showed that CSA leads to good solutions
for the TSP much more easily compared to the Hopfield-Tank ap-
proach [23], [24] and stochastic simulated annealing (SSA) [26]. Chen
and Aihara [18] offered the following theoretical explanation for the
global searching ability of the chaotic neural network: its attracting set
contains all global and local optima of the optimization problem under
certain conditions, and since the chaotic attracting set has a fractal
structure and covers only a very small fraction of the entire state space,
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CSA is more efficient in searching for good solutions for optimization
problems compared to other global search algorithms such as SSA.

It is well-known that SSA tends to find a global optimum if the
annealing process is carried out sufficiently slowly [27]. Practically
speaking, this implies that SSA is able to find high-quality solutions
(global optima or near-global-optima), if the annealing parameter (tem-
perature) is reduced exponentially but with a sufficiently small expo-
nent. However, for many applications, this may mean prohibitively long
relaxation time in order to find solutions of acceptable quality, and con-
versely, reasonably long periods of time may still result in poor solu-
tions. In this sense, SSA searches through the solution space in a much
less efficient way compared to CSA, i.e., the stochastic search in SSA
covers the entire solution space, rather than a fraction of the solution
space covered by the search in CSA.

Although CSA searches in an efficient manner, CSA has completely
deterministic dynamics and is not guaranteed to settle down at a global
optimum no matter how slowly the annealing parameter (the neuronal
self-coupling) is reduced [14]. In practical terms, this means that CSA
may sometimes be unable to provide a good solution at the end of
annealing for some initial conditions of the network, no matter how
slowly annealing takes place.

We attempt in this paper to combine the best of both SSA and CSA,
i.e., stochastic wandering and efficient chaotic searching, by adding
a decaying stochastic noise in the transiently chaotic neural network
of Chen and Aihara [8], [9], [18]. We thus obtain a novel method for
solving a general class of combinatorial optimization problems: sto-
chastic chaotic simulated annealing (SCSA). Next, to demonstrate the
effectiveness of the proposed SCSA, we apply the proposed SCSA to
solving two difficult combinatorial optimization problems, i.e., a TSP
and a channel assignment problem (CAP) for cellular mobile commu-
nications. Our simulation results show that SCSA leads to remarkable
improvements over CSA.

This paper is organized as follows. Section II formulates SCSA. Sec-
tions III and IV present applications of SCSA to a TSP and a CAP,
respectively, including problem statements, mappings of the problems
onto chaotic neural networks, and results of computer simulations. Sec-
tion V concludes the paper.

II. SCSA

By adding decaying stochastic noise into Chen and Aihara’s tran-
siently chaotic neural network [8], [9], [18], we propose SCSA as fol-
lows:

xij(t) =
1

1 + e�
(1)

yij(t+ 1) = kyij(t) + �

n

k;l=1;k;l6=i;j

wijklxkl(t) + Iij

� z(t) (xij(t)� I0) + n(t) (2)

z(t+ 1) = (1� �1)z(t); i; j; k; l = 1; . . . ; n (3)

A [n(t+ 1)] = (1� �2)A [n(t)] (4)

where the variables are
xij output of neuron ij;
yij internal state of neuron ij;
Iij input bias of neuron ij;
k damping factor of the nerve membrane (0 � k � 1);
� positive scaling parameter for the inputs;
z(t) self-feedback neuronal connection weight or refractory

strength (z(t) � 0);
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�1, �2 damping factors for the time-dependent neuronal self
coupling and the added random noise, respectively
(0 � �1 � 1, 0 � �2 � 1);

I0 positive parameter;
" steepness parameter of the neuronal output function (" >

0);
n(t) random noise injected into the neurons, with its actual

value being in the range [�A;A] and with a uniform dis-
tribution, where A[n] is the noise amplitude;

wijkl connection weight from neuron kl to neuron ij.
The connection weights can be obtained from

n

k;l=1;k;l6=i;j

wijklxkl + Iij = �
@E

@xij
(5)

where E is the energy function of the network or the cost function to be
minimized in a give combinatorial optimization problem. In addition,
the connection weights satisfy wijkl = wklij and wijij = 0. In the
absence of noise, i.e., n(t) = 0, for all t, SCSA as proposed in (1)–(5)
reduces to CSA of Chen and Aihara [8], [9], [18].

Furthermore, in the absence of noise and damping of the self-neu-
ronal coupling, i.e., n(t) = 0, for all t, and �1 = 0, (1)–(5) become the
Aihara–Takabe–Toyoda chaotic neural network [4], which is known to
have a variety of different dynamical behaviors, including stable fixed
points, periodic oscillations, and chaos, depending on the values of the
network parameters.

III. SOLVING THE TSP USING SCSA

The TSP is a classical combinatorial optimization problem. The goal
of the TSP is to find the shortest route throughn cities, visiting each city
once and only once, and returning to the starting point. Since Hopfield
and Tank [18] first applied their neural networks to solving the TSP,
the TSP is often used as a benchmarking problem for testing neural
network approaches to solving combinatorial optimization problems.

Hopfield and Tank [24] mapped the solution of an n-city TSP to a
network with n � n neurons. xij = 1 represents the fact that city i

is visited in visiting order j, whereas xij = 0 represents that city i

is not visited in visiting order j. The energy function to be minimized
consists of two parts, as follows:

E =
W1

2

n

i=1

n

j=1

xij � 1

2

+

n

j=1

n

i=1

xij � 1

2

+
W2

2

n

i=1

n

j=1

n

k=1

(xkj+1 + xkj�1)xijdik (6)

where xi0 = xin and xin+1 = xi1. dij is the distance between city
i and city j. The first two terms in (6) (inside {}) represent the con-
straints, i.e., one and only one xij is 1 for each j, and one and only
one xij is 1 for each i (each city is visited once and only once). The
last term in (6) (without the coefficient W2) represents the total length
of the tour. Coefficients W1 and W2 reflect the relative strength of the
constraint and the tour length terms. Thus, a global minimum of E rep-
resents a shortest valid tour.

We note that Hopfield and Tank’s prescription of mapping the TSP
onto a neural network as described above (6) is not the most effective
way for solving the TSP using either neural networks or chaotic dy-
namics. Because of the need for n2 neurons for an n-city TSP, the size
of the TSP that can be handled by this prescription is limited. Other
prescriptions specially tailored for the TSP can significantly increase
the size of the TSP that can be handled (e.g., [22]). In this paper, we
shall not attempt to adopt other mapping prescriptions in order to solve

Fig. 1. The optimal tour of the Hopfield-Tank 10 city TSP.

larger TSP’s. Rather, the purpose of the present work is to demonstrate
the improved solving ability of SCSA over CSA for a given objective
function. In other words, neither the 10-city and the 21-city nor 52-city
and 70-city TSP studied below may be considered difficult; however,
finding the global optima for the objective functions given by (6) with
parameters specified below (i.e., parameters drawn for the 10-city TSP,
21-city TSP, 52-city TSP and 70-city TSP) is indeed nontrivial and
can therefore be used as benchmarking optimization problems to com-
pare various optimization algorithms, such as CSA and SCSA. Hence,
a more precise title for this Section would be “Searching for Global
Minima of the Function Given by (6) Using SCSA”.

From (2), (5), and (6), we derive the dynamics of the SCSA for the
TSP as follows:

yij(t+1)= kyij(t)�z(t) (xij(t)�I0)

+� �W1

n

l6=j

xil(t)+

n

k 6=i

xkj(t)

+W1�W2

n

k 6=i

(xkj+1(t)+xkj�1(t))dik

+n(t): (7)

We first minimize the function given by (6) derived from the Hop-
field-Tank 10-city TSP (Fig. 1) [24] using our SCSA. To compare the
performance with that of CSA, we use a set of k, �, �, ", W1, W2 that
are the same as Chen and Aihara’s [9]

k = 0:90; " = 0:004; I0 = 0:65; z(0) = 0:10

� = 0:015; �1 = �2 = 0:01; W1 = W2 = 1: (8)

In SCSA, we choose A[n(0)] = 0:002. We repeat the simulations
with 5000 different initial conditions of yij generated randomly in the
region [�1; 1]. The results are summarized in Table I.

As shown in Table I, the performances of CSA and SCSA are about
the same for such a relatively small problem.

Next, we minimize the energy function given by (6) with parameters
drawn from a 21-city TSP [28]. The optimal tour length is known to
be 2707 [28], which is the global minimum of the energy function.
The distance matrix dij is given as follows (only dij with i � j are
shown—we assume dij = dji, i.e., a symmetric TSP):

The system parameters for the noisy chaotic neural network, also
shown at the bottom of the next page, are set as follows:

k = 0:90; " = 0:004; I0 = 0:5; z(0) = 0:10

� = 0:015; �1 = 5� 10�5; W1 = W2 = 1: (9)
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Fig. 2. The optimal tour in the 21-city TSP with tour length 2707. The numbers underlined represent the cities, whereas the numbers not underlined represent
the distances between the cities.

TABLE I
COMPARISON OF CSA AND SCSA ON THE HOPFIELD-TANK

10-CITY TSP FOR 5000 RUNS WITH DIFFERENT

RANDOM INITIAL CONDITIONS OF THE NETWORK

TABLE II
RESULTS OF CSA AND SCSA USING VARIOUS � WITH 100 DIFFERENT

INITIAL CONDITIONS

Compared to the 10-city TSP, we use smaller �1 and �2 to allow for
longer searching. For SCSA, the initial noise amplitude is set to be the
same as in the 10-city case, i.e., A[n(0)] = 0:002.

The results are summarized in Table II with 100 different randomly
selected initial yij in the region [�1; 1]. Table II shows that both
CSA and SCSA can find the optimal route with a tour length 2707
(Fig. 2). In contrast, CSA use longer computational time than SCSA.
The minimum time of obtain the global optima by CSA is 86 s
(the computer we use is x86 Family 6 Model 8 Stepping 6, AT/AT
Compatible).

In our simulations, we used different damping factors �1 and �2

for chaos and noise, respectively, i.e., chaos and noise have different
cooling schedules during annealing. Table II also shows the simulation
results using various �2, when �1 was fixed at 5� 10�5. With the
decrease of the annealing rate of noise, SCSA will find the global
optima faster. When �2 is set as 10�5, it can use the minimum
iteration times 27 638 to get the global optima (see Table II).

Coefficients W1 and W2, which reflect the relative strength of the
constraint and the tour length energy terms (6), are selected such that

Fig. 3. The energy terms in (6) (TSP) as a function of time in SCSA: (a) the
total energy; (b) the constraint energy term; (c) the tour-length energy term.

these two terms are comparable in magnitude, so that neither of them
dominates. For this purpose, as well as to show system dynamics during
the search, we plot in Fig. 3 the total energy E in (6), the constraint
energy

EConstr =
W1

2

n

i=1

n

j=1

xij � 1

2

+

n

j=1

n

i=1

xij � 1

2

(10)

and the tour-length energy

ELength =
W2

2

n

i=1

n

j=1

n

k=1

(xkj+1 + xkj�1)xijdik: (11)

Similarly, to help us select the other parameters in (9), we show the
three input terms in (7) in Fig. 4 as follows:

the single neuron input term

kyjk(t)�zjk(t)(xjk(t)�I0)+n(t) (12)
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Fig. 4. The three input terms in (7) (TSP) as functions of time in SCSA: (a)
the single neuron term; (b) the constraint term; (c) the optimization term.

the constraint input term

� �W1

n

l 6=j

xil(t)+

n

k 6=i

xkj(t) +W1 (13)

the optimization term

� 1�W2

n

k 6=i

(xkj+1(t)+xkj�1(t))dik : (14)

Why can SCSA find the global optimum 2707 faster than CSA? One
possible reason may be the stochastic nature of SCSA. For compar-
isons, in Figs. 5 and 6 we plot the corresponding energy and input terms
for CSA.

To test our algorithm further, we handle a relatively larger size TSP
problem, Berlin52, [28] which includes 52 cities. The best-known tour
length listed in TSPLIB is 7542.

We run the simulations with 200 different randomly selected initial
yij in the region [�1; 1]. Table III shows the simulation results using
various strengths of the tour length energy terms W2, when the coeffi-
cient W1 is fixed as 1. The system parameters are set as follows:

k = 0:90; " = 0:004; I0 = 0:5; z(0) = 0:10

� = 0:02; �1 = �2 = 3� 10�6; A [n(0)] = 0:02: (15)

From Table III, SCSA shows better performance for the large TSP
Berlin52. When W2 is set as 1.6, SCSA can find the result 7525 better
than 7542. Here, we provide one optimal tour of our simulation, which
is obtained in a PC computational environment (x86 Family 6 Model 8
Stepping 6, AT/AT Compatible)

[24� 48� 38� 37� 40� 39� 36� 35� 34� 44� 46�

16� 29� 50� 20� 23� 30� 2� 7� 42� 21� 17�

3� 18� 31� 22� 1� 49� 32� 45� 19� 41� 8�

9� 10� 43� 33� 51� 11� 52� 14� 13� 47� 26�

27� 28� 12� 25� 4� 6� 15� 5]:

For comparison, we extract the case of W2 = 1:6, and fix �1 =
3 � 10�6 and compare the different performance of CSA and SCSA
by using various �2 in Table IV. In Table IV, the minimum tour length
that CSA can find is 7555, which is far greater than the minimum tour
length 7525 obtained by SCSA. For the number of valid in the 100 runs,
the number obtained by CSA is apparently much lower than the number
of valid tours found by SCSA. According to the simulations, the SCSA
shows noticeable improvement over CSA.

0

510 0

635 355 0

91 415 605 0

385 585 390 350 0

155 475 495 120 240 0

110 480 570 78 320 96 0

130 500 540 97 285 36 29 0

490 605 295 460 120 350 425 390 0

370 320 700 280 590 365 350 370 625 0

155 380 640 63 430 200 160 175 535 240 0

68 440 575 27 320 91 48 67 430 300 90 0

610 360 705 520 835 605 590 610 865 250 480 545 0

655 235 585 555 750 615 625 645 775 285 515 585 190 0

480 81 435 380 575 440 455 465 600 245 345 415 295 170 0

265 480 420 235 125 125 200 165 230 475 310 205 715 650 475 0

255 440 755 235 650 370 320 350 680 150 175 265 400 435 385 485 0

450 270 625 345 660 430 420 440 690 77 310 380 180 215 190 545 225 0

170 445 750 160 495 265 220 240 600 235 125 170 485 525 405 375 87 315 0

240 290 590 140 480 255 205 220 515 150 100 170 390 425 255 395 205 220 155 0

380 140 495 280 480 340 350 370 505 185 240 310 345 280 105 380 280 165 305 150 0
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Fig. 5. Same as Fig. 3, for CSA.

Fig. 6. Same as Fig. 4, for CSA.

To make our work more convincing, a 70-city TSP (ST70) [28] is
further used. The best-known tour length listed in TSPLIB is 675. We

TABLE III
RESULTS FOR BERLIN52 TSP USING SCSA WITH VARIOUS W AND 200

DIFFERENT INITIAL CONDITIONS

TABLE IV
RESULTS OF CSA AND SCSA IN BERLIN52 USING VARIOUS � WITH 200

DIFFERENT INITIAL CONDITIONS IN W = 1, W = 1:6

did the simulations by SCSA with 20 different randomly selected initial
yij in the region [�1; 1]. The system parameters are set as same as in
(15).

While fixing �1 = 3 � 10�6, different performances of CSA and
SCSA are compared by using various �2 in Table V. In Table V, SCSA
not only finds the valid tours more frequently than CSA, but also ob-
tains the minimum tour length 666 that is far better than that of CSA,
722. Here, we also provide the optimal tour of our simulation

[25� 45� 39� 61� 40� 9� 43� 17� 21� 34�

12� 33� 62� 54� 48� 67� 11� 56� 65� 64�

51� 60� 52� 53� 5� 10� 50� 58� 37� 47�

16� 23� 1� 36� 29� 13� 31� 70� 35� 69�

38� 59� 22� 66� 63� 57� 15� 24� 19� 7�

2� 4� 18� 6� 41� 42� 32� 3� 8� 26� 55�

49� 28� 14� 20� 30� 44� 68� 27� 46]:

The simulation results show that CSA performs as well as SCSA
in the small-size TSPs, such as 10-city, 21-city. But when used on the
larger size TSP’s, such as 52-city and 70-city, SCSA indeed achieves a
much better performance than CSA.

IV. SOLVING THE CAP USING SCSA

In this section, we test SCSA in another combinatorial optimiza-
tion problem, i.e., the CAP in cellular mobile communications. Due
to rising demand and limited frequency channels available, an effec-
tive solution to the CAP is very important to the telecommunications
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TABLE V
RESULTS OF CSA AND SCSA IN ST70 USING VARIOUS � WITH 20

DIFFERENT INITIAL CONDITIONS

industry and many excellent results have been obtained using different
algorithms (e.g. [29]–[35]).

CAP’s are often divided into two categories, i.e., CAP1 and CAP2
[34]. CAP1 is to minimize the span of channels subject to demand and
interference-free constraints. CAP2 is to minimize interference subject
to demand constraints. In this paper, we are concerned with only CAP2
because it is more useful in practical cases compared to CAP1 due
to limited frequency channels available and high demands in mobile
communications.

SupposeamobileradionetworkhasN cellsandM frequencychannels
available. The number of calls in cell i isDi. The constraints specify the
minimum distance in the frequency domain by which two calls must be
separatedinordertoguaranteeanacceptablylowsignal/interferenceratio
ineachcell.Theseminimumdistancesarestored in anN�N symmetric
compatibility matrixC , i.e.,Cij is the required separation in frequency
channels between a call in cell i and another call in cell j for the two calls
to have no interference with each other.

Following Smith and Palaniswami [34], we map the CAP2 onto a
neural network withN�M neurons. Assume xjk the output of neuron
jk and

xjk =
1; if cell j is assigned to channel k
0; otherwise

(16)

for j = 1; � � � ; N and k = 1; � � � ;M .
If xjk = xil = 1, i.e., cell j is assigned to channel k and at the

same time, cell i is assigned to channel l, the interference should be at
its maximum when k = l and decreases until the two channels are far
enough that no interference exists. For simplicity, we assume linear re-
duction in interference with respect to channel distance [34]. The inter-
ference caused by such assignments is therefore given by the following
cost tensor Pji(m+1) (where m = jl�kj is the distance in the channel
domain between channels k and l):

Pji(m+1) = max(0; Pjim � 1); 8m = 1; . . . ;M � 1 (17)

Pji1 =Cji; 8j; i 6= j (18)

Pjj1 =0; 8j: (19)

Then the CAP2 can be formulated to minimize the following cost:

minimize

f(x) =

N

j=1

M

k=1

xjk

N

i=1

M

l=1

Pji(jk�lj+1)xil (20)

subject to

M

k=1

xjk = Dj ; 8j = 1; . . . ; N (21)

xjk 2 f0; 1g; 8j = 1; . . . ; N; 8k = 1; . . . ;M (22)

where f(x) is the total interference and x � fxjkg.

TABLE VI
TOTAL INTERFERENCE OBTAINED FROM SSA, CSA, AND SCSA

FOR VARIOUS CAP2S

With (20) and (21), the following computational energy may be de-
fined as a sum of the total interferences and constraints:

E =
W1

2

N

j=1

M

k=1

xjk �Dj

2

+
W2

2

N

j=1

M

k=1

xjk

N

i=1

M

l=1

Pji(jk�lj+1)xil (23)

which is similar to (6), in the previous section. W1 and W2 are the
weighting coefficients corresponding to the constraints and severity of
interferences, respectively.

Connection weight Wjkil between neuron jk and neuron il can be
obtained similarly using (5) and (23). Thus, the network dynamics of
the SCSA for the CAP is as follows:

yjk(t+ 1) = kyjk(t)� z(t) (xjk(t)� I0)

+ � �W1

M

q 6=k

xjq +W1Dj �W2

�

N

p=1;p6=j

M

q=1;q 6=k

Pj;p;jk�qj+1xpq

+ n(t): (24)

Here, we use the data set of a 21-cell cellular system, i.e., HEX1
in [29], [34], to test our algorithm. In HEX1, the number of cells N
is 21 and the number of available channels M is 37. The demand is
DT
1 =(2; 6; 2; 2; 2; 4; 4; 13; 19; 7; 4; 4; 7; 4; 9; 14; 7; 2; 2; 4; 2), where

AT stands for the transposed matrix of matrix A. The minimum dis-
tance in frequency domain between two channels in the same cell is 2.
A smaller test problem with 4 cells and 11 channels, i.e., the EX prob-
lems in Table V.

Table V shows the simulation results of the HEX and EX CAP’s
using SCSA and we also show the results obtained using SSA and CSA
for a comparison. Each of those heuristics is run from ten different
random initial conditions and an average is calculated. In Table V,
“Min” means the minimum total interference (20) found during these
ten times, and “Ave” is the average total interference for the ten runs.
These results show that the overall interference obtained from SCSA
is lower than the interference obtained from CSA, i.e., SCSA results in
better channel assignments compared to CSA. The network parameters
are set in Table VI.

V. CONCLUSIONS

In this paper, we proposed a noisy chaotic neural network (NCNN) or
SCSA by adding noise to Chen and Aihara’s transiently chaotic neural
network. Application of this noisy chaotic neural network to a TSP
and a CAP showed marked improvements over CSA. In contrast to
the conventional SSA, SCSA restricts the random search to a subspace
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TABLE VII
PARAMETERS FOR VARIOUS CAP2S

of chaotic attracting sets which is much smaller than the entire state
space searched by SSA. In contrast to CSA, SCSA is not completely
deterministic and continues to search after the disappearance of chaos.
SCSA can be a powerful approach to solving a general class of combi-
natorial optimization problems and our future work will include appli-
cations of SCSA to other practical optimization problems.
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