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Abstract
Background: According to the Global Tuberculosis Report for three consecutive years, tuberculosis (TB) is
the second leading infectious killer. Primary pulmonary tuberculosis( PTB) leads to the highest mortality
among TB diseases. Regretfully,no previous studies targeted the PTB of a speci�c type or in a speci�c
course, so models established in previous studies cannot be accurately feasible for clinical
treatments.This study aimed to construct a nomogram prognostic model to quickly recognize death-
related risk factors in patients initially diagnosed with PTB to intervene and treat high-risk patients as
early as possible in the clinic to reduce mortality.

Methods: We retrospectively analyzed the clinical data of 1,809 in-hospital patients initially diagnosed
with primary PTB at Hunan Chest Hospital from January 1, 2019, to December 31, 2019. Binary logistic
regression analysis was used to identify the risk factors. A nomogram prognostic model for mortality
prediction was constructed using R software and was validated using a validation set.

Results: Univariate and multivariate logistic regression analyses revealed that drinking, hepatitis B virus
(HBV), body mass index (BMI), age, albumin (ALB), and hemoglobin (Hb) were six independent predictors
of death in in-hospital patients initially diagnosed with primary PTB. Based on these predictors, a
nomogram prognostic model was established with high prediction accuracy, of which the area under the
curve (AUC) was 0.881 (95% con�dence interval [Cl]: 0.777-0.847), the sensitivity was 84.7%, and the
speci�city was 77.7%internal and external validations con�rmed that the constructed model �t the real
situation well.

Conclusion: The constructed nomogram prognostic model can recognize risk factors and accurately
predict the mortality of patients initially diagnosed with primary PTB. This is expected to guide early
clinical intervention and treatment for high-risk patients.

Background
According to the Global Tuberculosis Report for three consecutive years, tuberculosis (TB) is the second
leading infectious killer after COVID-19, with higher mortality than human immunode�ciency virus
(HIV)/acquired immunode�ciency syndrome (AIDS). It is also noted that 2022 is the �rst year when TB
incidence and death rates have increased. Impacted by COVID-19 pandemic, the effects of TB prevention
and treatment can be interrupted or changed over the years (1, 2). In 2021, China ranked third worldwide,
with TB incidence (new cases per 100,000 population) estimated at 55 and TB mortality at 4% (3).
Moreover, in 2021, there were 780,000 new TB cases in China, of which new pulmonary tuberculosis
(PTB) cases accounted for 95%. These results indicate the high TB burden in China. In the new era of
COVID-19 pandemic, China has faced huge challenges in TB prevention and treatment. Recently, high-
sensitivity tools have been introduced to screen out, intervene, and treat TB to reduce TB mortality (4).

The lungs are the most common site of TB infection, and PTB leads to the highest mortality among TB
diseases. Patients with different types of PTB or with different courses of PTB will differ in various
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aspects, such as clinical symptoms, hematologic manifestations, treatment methods, intervention
methods, and even treatment outcomes (5–7). Regretfully, in previous TB prognostic studies, the research
objects were classi�ed mainly based on: 1) drug resistance; 2) HIV status; 3) comorbidities; 4) PTB or
extrapulmonary TB (EPTB) (8–10). No previous studies targeted the PTB of a speci�c type or in a speci�c
course, so models established in previous studies cannot be accurately feasible for clinical treatments.

This study aimed to construct a nomogram prognostic model to identify the risk factors for in-hospital
patients initially diagnosed with primary PTB to offer the most effective therapeutic schemes, the most
appropriate case management, and the optimal resource allocation for patients who are the least likely to
be cured but most likely to bene�t from the intervention measures. The study breaks through the
limitations of the same type of study in terms of the lack of segmentation of the target population and
the lack of clinical usefulness of the selection of predictors. To precisely move the intervention study
population forward, patients with a primary diagnosis of tuberculosis were selected, and statistically
signi�cant risk factors for mortality were screened. A prognostic intervention model for death was then
constructed, which was suitable for clinical applications. This study’s �ndings have three signi�cant
advantages. First, primary TB patients account for 95% of new TB cases annually, and the model is
highly targeted and applicable to a wide range of targets. Second, risk predictors of mortality prognosis
are easily accessible and identi�able in the clinical setting. Third, internal model validation was
performed; the model �t and predictive value were better, and the prediction method was simple and fast.

Methods
The retrospective case-control method included 1,809 in-hospital patients initially diagnosed with primary
PTB at Hunan Chest Hospital from January 1, 2019, to December 31, 2019. In China, patients are received
and treated at designated points and can obtain partial subsidies from health insurance (11). Hunan
Chest Hospital is one of the provincial-level designated points for TB treatment in China, which has
received and treated the most TB patients in Hunan province. Therefore, TB cases in Hunan Chest
Hospital re�ect the epidemiological trends and disease characteristics of TB throughout Hunan province.

Research objects

The research objects were included based on the following criteria. 1) The patients were diagnosed with
primary PTB based on the Health Industry Standard of the People's Republic of China—Diagnosis for
pulmonary tuberculosis (WS 288–2017) (12). 2) The patients never took anti-TB drugs or received
irregular chemotherapy within one month after being diagnosed with primary PTB (13). 3) During the
hospital stay and after discharge, the patients received standardized chemotherapy for initially diagnosed
primary PTB according to the recommendations of WHO and Technical Speci�cations for TB Prevention
and Control in China (14). 4) The patients were equal to or older than 18 years old with a hospital stay of
more than three days. 5) Before a hospitalization, the patients never took cortin or drugs that affected the
lab-tested albumin (ALB), lymphocyte count, and other indicators for the long term. 6) The patients were
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not pregnant or lactating women. 7) The patients were not severe with HIV/AIDS, benign or malignant
tumors, organ failure, or other diseases. 8) The clinical baseline data of patients were complete.

The study was conducted in accordance with the Declaration of Helsinki. As this study was based on
retrospective research of patient data from a case management system, with visa-free informed consent
for ethical approvals, and oral knowledge with respondents during telephone surveys with
respondents.This visa-free informed consent for ethical approvals was approved by the Nursing and
Behavioral Medicine Research Ethics Review Committee,Xiangya Nursing School of Central South
University(ID:E2022104).

Data collection

This study collected data on in-hospital PTB patients from the case management system in Hunan Chest
Hospital, including general demographic data (gender, age, marital status, type of health insurance,
smoking history, drinking history, and dust exposure history), in-hospital comorbidity data [hypertension,
diabetes, chronic gastritis, and coronary heart disease (CHD)], clinic-related data, and experimental
parameters [height, weight, ALB, lymphocyte count, creatinine, cholinesterase (CHE), total cholesterol, C-
reactive protein (CRP), hemoglobin (Hb), and platelet (PLT)]. The above data are from the �rst week of
admission of patients initially diagnosed with primary PTB. Smoking no less than 20 cigarettes per week
was considered a smoking history. Drinking no less than �ve times or 500 mL weekly was considered to
have a drinking history. Exposure to an extremely dusty environment of no less than �ve times was
considered to have a dust exposure history. In-hospital comorbidity data were obtained from the chief
complaints of patients, which is consistent with the review results after admission to the hospital. For
re�ecting the nutritional status of research objects, this study converted the height and weight into the
body mass index (BMI) according to Medical Nutrition Treatment of Overweight/Obesity in China (2021),
where BMI values less than 18.5 kg/m² are considered underweight, BMI values from 18.5 to 24.99 kg/m²
are normal weight. BMI values > 25 kg/m² were overweight or obese (15, 16).

This study obtained follow-up data from the research subjects and understood patient death on a phone
visit from September 1, 2022, to September 31, 2022. The outcomes were collected from the �rst
hospitalized treatment upon initial diagnosis of primary PTB to the end of the phone visit, the average
duration of which was three years. According to WHO classi�cation standards, this study classi�ed the
treatment results of research subjects into non-survivor group (died) and survivor group (cured, drug-
resistant, and relapsing) (17).

Statistical analysis
R software V4.2.2 (http//www.R-project) was used for data input and statistical analysis. Continuous
variables were normally distributed and described as mean and standard deviation (SD), whereas
categorical variables were expressed as frequency percentages. The con�dence interval (Cl) was 95% (α 
= 0.05), and p < 0.05 (bilateral) is statistically signi�cant. The t-test was conducted to compare the
continuous variables with the research results, and chi-square (χ²) test was adopted to compare the



Page 5/25

categorized variables with research results. Binary logistic regression was used for univariate analysis,
and backward stepwise logistic regression was used for multivariate analysis to screen for statistically
signi�cant prognostic risk factors for patients initially diagnosed with primary PTB. R software was used
to construct the nomogram prediction model based on independent risk factors in the training set and to
validate the constructed model using the validation set.

Results
Characteristics of research objects

This study included 1,809 in-hospital patients initially diagnosed with primary PTB who were screened, as
presented in Fig. 1. The research objects were randomly split into a training set (n = 1449) and a
validation set (n = 360) at a ratio of 8:2 and a random seed of 1314.

Among 1,809 research subjects, 83 patients (4.6%) died within three years of treatment, including 72
patients (4.9%) in the training set and 11 patients (3.1%) in the validation set. In this study, 22 variables
were analyzed, the results of which were as follows. 1) The average age of the research subjects was 48
years. 2) The number of male patients (64%) was higher than that of female patients (37%). 3) Smokers
(65.2%) and drinkers (76.2%) accounted for relatively high proportions. 4) Patients with comorbidities
accounted for 25.5%, including 8.9% hypertension, 10.6% diabetes, 2.9% HBV, 5.7% chronic gastritis, and
5.7% CHD. 5) Bachelordom represented 24.6% of the participants. 6) Patients without health insurance
accounted for 13.9% of the patients. 7) Underweight patients accounted for 24.5%, and overweight
patients accounted for 9.3%, for details about the demographic variables and clinical characteristics of
the research subjects (Table 1).
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Table 1
Baseline characteristics of included in-hospital patients initially dragonized with primary PTB.

Variable Total cohort (n 
= 1809)

Training set (n = 
1449)

Validation set (n = 360)

number
(percentage)

number
(percentage)

number
(percentage)

 

Treatment outcomes      

Survivors 1726 (95.4%) 1377 (95.1%) 348 (96.9%)

Non-survivors 83 (4.6%) 72 (4.9%) 12 (3.1% )

Gender      

Male 1157 (64.0%) 942 (65.0%) 215 (59.7%)

Female 652 (36.0%) 507 (35.0%) 145 (40.3%)

Smoking      

No 1179 (65.2%) 947 (65.4%) 232 (64.4%)

Yes 630 (34.8%) 502 (34.6%) 128 (35.6%)

Drinking      

No 1378 (76.2%) 1107 (76.4%) 271 (75.3%)

Yes 431 (23.8%) 342 (23.6%) 89 (24.7%)

Dust exposure      

No 1688(93.3%) 1358 (93.7%) 33 (91.7%)

Yes 121 (6.7%) 91 (6.3%) 30 (8.3%)

Hypertension      

No 1648(91.1%) 1319 (91.0%) 329 (91.4%)

Yes 161 (8.9%) 130 (9.0%) 31 (8.6%)

Diabetes      

No 1618 (89.4%) 1304 (90.0%) 314 (87.2%)

Yes 191 (10.6%) 145 (10.0%) 46 (12.8%)

Hepatitis B virus (HBV)      

No 1756 (97.1%) 1406 (97.0%) 350 (97.2%)

Yes 53 (2.9%) 43 (3.0%) 10 (2.8%)

Gastritis      
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Variable Total cohort (n 
= 1809)

Training set (n = 
1449)

Validation set (n = 360)

number
(percentage)

number
(percentage)

number
(percentage)

 

No 1706 (94.3%) 1369 (94.5%) 337 (93.6%)

Yes 103 (5.7%) 80 (5.5%) 23 (6.4%)

Coronary heart disease (CHD)    

No 1706 (94.3%) 1369 (94.5%) 337 (93.6%)

Yes 103 (5.7%) 80 (5.5%) 23 (6.4%)

Comorbidity      

No 1348 (74.5%) 1087 (75.0%) 261 (72.5%)

Yes 461 (25.5%) 362 (25.0%) 99 (27.5%)

Bachelordom      

No 445 (24.6%) 361 (24.9%) 84 (23.3%)

Yes 1364 (75.4%) 1088 (75.1%) 276 (76.7%)

Health insurance      

No 251 (13.9%) 199 (13.7%) 52 (14.4%)

Yes 1558 (86.1%) 1250 (86.3%) 308 (85.6%)

BMI (kg/m2)      

Normal 1196 (66.1%) 937 (64.7%) 259 (71.9%)

Underweight 444 (24.5%) 372 (25.7%) 72 (20%)

Overweight 169 (9.3%) 140 (9.6%) 29 (8.1%)

Age, years 47.59 ± 17.65 47.44 ± 17.62 48.18 ± 16.55

Albumin (ALB) (g/L) 40.90 ± 5.61 40.95 ± 5.55 40.74 ± 5.22

Creatinine (Cr) (µmol/L) 69.26 ± 25.31 69.43 ± 24.93 68.60 ± 25.16

Cholinesterase (CHE)
(U/L)

7964.37 ± 
2453.63

7960.79 ± 
2426.87

7981.94 ± 2479.55

Total cholesterol (TC)
(mmol/L)

4.29 ± 1.02 4.28 ± 1.00 4.32 ± 0.99

C-reactive protein (CRP)
(mg/L)

25.99 ± 43.04 25.85 ± 43.78 26.56 ± 38.18
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Variable Total cohort (n 
= 1809)

Training set (n = 
1449)

Validation set (n = 360)

number
(percentage)

number
(percentage)

number
(percentage)

 

Lymphocyte count (Lym)
(*109/L)

1.60 ± 0.66 1.59 ± 0.67 1.63 ± 0.65

Hemoglobin (Hb) (g/L) 122.32 ± 17.66 122.40 ± 17.42 122.20 ± 18.14

Platelet count (PLT)
(*109/L)

253.73 ± 91.58 255.70 ± 91.40 245.80 ± 88.97

Univariate analysis was performed for 1,448 cases in the training set. The results demonstrated that 13
variables, including sex, smoking, drinking, hypertension, HBV, comorbidity, BMI, age, ALB, CHE, CRP,
lymphocyte count, and Hb, were statistically different between the survivor and non-survivor group
(p 0.05), as illustrated in Table 2.
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Table 2
Demographics and clinical characteristics of the population of in-hospital patients initially dragonized

with primary PTB
Variable Total (n = 

1449)
Survivors (n = 
1377)

Non-survivors (n = 
72)

P
value

number
(percentage)

number
(percentage)

Gender        

Male 942 884 (64.2%) 58 (80.6%) 0.007

Female 507 493 (35.8%) 14 (19.4%)  

Smoking        

No 947 914 (66.4%) 33 (45.8%) 0.001

Yes 502 463 (33.6%) 39 (54.2%)  

Drinking        

No 1107 1065 (77.3%) 42 (58.3%) 0.001

Yes 342 312 (22.7%) 30 (41.7%)  

Dust exposure        

No 1358 1291 (93.8%) 67 (93.1%) 1.000

Yes 91 86 (6.2%) 5 (6.9%)

Hypertension        

No 1319 1259 (91.4%) 60 (83.3%) 0.033

Yes 130 118 (8.6%) 12 (16.7%)

Diabetes        

No 1304 1244 (90.3%) 60 (83.3%) 0.084

Yes 145 133 (9.7%) 12 (16.7%)

Hepatitis B virus (HBV)        

No 1406 1340 (97.3%) 66 (91.7%) 0.017

Yes 43 37 (2.7%) 6 (8.3%)

Gastritis        

No 1369 1300 (94.4%) 69 (95.8%) 0.801

Yes 80 77 (5.6%) 3 (4.2%)



Page 10/25

Variable Total (n = 
1449)

Survivors (n = 
1377)

Non-survivors (n = 
72)

P
value

number
(percentage)

number
(percentage)

Coronary heart disease (CHD)      

No 1369 1300 (94.4%) 69 (95.8%) 0.801

Yes 80 77 (5.6%) 3 (4.2%)

Comorbidity        

No 1087 1045 (75.9%) 42 (58.3%) 0.001

Yes 362 332 (24.1%) 30 (41.7%)

Bachelordom        

No 361 348 (25.3%) 13 (18.1%) 0.215

Yes 1088 1029 (74.7%) 59 (81.9%)

Health insurance        

No 199 185 (13.4%) 14 (19.4%) 0.205

Yes 1250 1192 (86.6%) 58 (80.6%)

BMI (kg/m2)        

Normal 937 905 (65.7%) 32 (44.4%) < .001

Underweight 372 337 (24.5%) 35 (48.6%)

Overweight 140 135 (9.8%) 5 (6.9%)

Age, years 47.4 ± 17.6 46.4 ± 17.3 67.2 ± 12.5 < .001

Albumin (ALB) (g/L) 40.9 ± 5.6 41.3 ± 5.4 35.0 ± 5.4 < .001

Creatinine (Cr) (µmol/L) 69.4 ± 24.9 69.2 ± 24.1 73.4 ± 32.0 0.273

Cholinesterase (CHE) (U/L) 7960.8 ± 
2426.9

8066.1 ± 2422.0 5933.6 ± 2745.4 < .001

Total cholesterol (TC)
(mmol/L)

4.3 ± 1.0 4.3 ± 1.0 4.2 ± 1.4 0.438

C-reactive protein (CRP)
(mg/L)

25.9 ± 43.8 24.9 ± 41.8 43.4 ± 51.6 0.004

Lymphocyte count (Lym)
(*109/L)

1.6 ± 0.7 1.6 ± 0.6 1.3 ± 0.8 0.002

Hemoglobin (Hb) (g/L) 122.4 ± 17.4 123.1 ± 17.3 108.1 ± 17.2 < .001
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Variable Total (n = 
1449)

Survivors (n = 
1377)

Non-survivors (n = 
72)

P
value

number
(percentage)

number
(percentage)

Platelet count (PLT) (*109/L) 255.7 ± 91.4 254.4 ± 91.2 280.2 ± 126.8 0.093

Risk predictors for in-hospital patients initially diagnosed with primary PTB

Statistically signi�cant variables were included in multivariate binary logistic regression analysis. The
results in Fig. 2 indicate that drinking (p = 0.03; OR = 1.97; 95% CI: 1.07–3.60), HBV (p = 0.02; OR = 3.58;
95% CI: 1.14–9.95), BMI (p = 0.04; OR = 1.79; 95% CI: 1.01–3.16), age (p 0.001; OR = 1.08; 95% CI: 1.06–
1.11), ALB (p = 0.003; OR = 0.90; 95% CI: 0.84–0.96), and Hb (p = 0.035; OR = 0.98; 95% CI: 0.96–1.00)
were independent risk predictors for death (p 0.05) in the prognosis of in-hospital patients initially
diagnosed with primary PTB (Fig. 2).

With drinking, HBV, BMI, age, ALB, and Hb included in the prognosis of in-hospital patients initially
diagnosed with primary PTB as independent risk predictors for death, R software established the
nomogram prognostic model for mortality prediction to obtain the points corresponding to every
predictor. The sum of these points was considered the death probability of in-hospital patients initially
diagnosed with primary PTB, as described in Fig. 3.

The nomogram model was adopted to obtain the points corresponding to every predictor and then
calculate the total points considered as the death probability of in-hospital patients initially diagnosed
with primary PTB. The total number of points is then calculated.

The area under the receiver operating characteristic (ROC) curve (AUC) was used to evaluate the
predictive accuracy of the constructed nomogram model. In the training set, AUC of the model was 0.881,
with a sensitivity of 84.7% and speci�city of 77.7% (Fig. 4). In the validation set, AUC of the model was
0.907 (Fig. 4). Consequently, the internal and external validation results were relatively consistent (Fig. 4).
R software was adopted to establish the calibration curves (1,000 bootstrapping samples) of the training
set (Fig. 5A) and the validation set (Fig. 5B), where X-axis represents the predicted death probability of in-
hospital patients initially diagnosed with primary PTB and Y-axis represents the observed death
probability of in-hospital patients initially diagnosed with primary PTB. The calibration curves determined
that the model effectively �tted the actual situation and had a high predictive value. Moreover, R software
was used to draw the clinical decision curves for the training set (Fig. 6A) and validation set (Fig. 6B), the
area of which was greater than 0, indicating that the model had high clinical effectiveness.

Discussion
Mycobacterium tuberculosis (MTB) infection is a dynamic process in which the systemic immune
response is passively activated. The damaging immune and in�ammatory responses of human tissues
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are subject to the infection site, infection cycle, and bacterial aggregation (18). Based on the Health
Industry Standard of the People's Republic of China—Classi�cation of Tuberculosis (WS 196–2017), PTB
is categorized into primary PTB, hematogenous PTB, secondary PTB, tuberculous pleurisy, and EPTB.
From the perspective of histology, the organs of patients with any of the �ve types of PTB generate
granulomatous in�ammation (2). However, because of different immune and in�ammatory responses,
there will be a signi�cant difference in aspects such as imagology, clinical course, test indicators, and
therapeutic scheme (19, 20). Previous studies generally selected a wide range of research objects to
establish TB-related prediction models, especially prognosis prediction models, reducing the practicability
of these models in the clinic (21–24).

Numerous studies have con�rmed that different types and courses of PTB have different immune
mechanisms, treatment outcomes, outcome probabilities, and risk factors (25–30). Based on this, this
study accurately selected the patients initially diagnosed with primary PTB as the research objects to
construct the prediction model and selected the predictors by combining the sensitive indicators and
commonly used clinical indicators from previous relevant studies. These predictors can be routinely
acquired in the clinical setting. Therefore, the constructed nomogram prediction model is highly operable
to quickly predict the outcomes of patients initially diagnosed with primary PTB for accurate and targeted
intervention in the clinic.

The selection of a follow-up period was a peculiarity in this study because the survival cycle of PTB
patients varies greatly from country to country. A previous study on 8,240 TB patients in Andhra Pradesh,
southern India, demonstrated that the death frequency in the four-year follow-up period was even (31).
Another previous study on time-related death factors of the 604 TB patients in southwestern Ethiopia
indicated that the average time to death was �ve months (32). A survival analysis of TB deaths from the
Tuberculosis Disease and Mortality Surveillance Information System in Zhejiang province, China,
concluded that 71.1% of 283 deaths caused by TB occurred within three years of diagnosis and treatment
(33). The main reason for this difference is that TB is closely related to body nutrition as a type of
immune disease, and individual nutritional status is closely related to individual economic and
socioeconomic status (34–36). Therefore, we discovered that the results of a prognostic model are
different for TB patients in different regions. Therefore, accurately matching the characteristics of the
clinical application population is the �rst step toward constructing a prognostic model. The regions of
patients with TB and their in�uence on their survival cycle by region must be considered. Combining case
studies on PTB patients in China and the estimated probability of TB death in China, this study found
that over the 3-year follow-up period, 4.89% of patients who had been initially diagnosed with primary
PTB died. This indicated that the selection of the follow-up period reduced the bias error and greatly
increased the clinical applicability of the model.

Compared with the treatment outcome prediction model for adult patients with the same type of PTB, age
and BMI are common predictive risk factors affecting treatment outcomes. On the one hand, older PTB
patients have a higher death possibility than younger patients (24). According to the statistical data in
PTB case reports (2006–2020) from the Tuberculosis Information Management System (TBIMS) in
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China, PTB incidence and mortality in China increased with age (37). On the other hand, undernutrition is
a risk factor for immunode�ciency and an important risk factor for PTB incidence and adverse outcomes
(38). BMI is the macro indicator of human nutritional status, and ALB and Hb are the biomarkers to re�ect
human nutritional status (39). Therefore, BMI, ALB, and Hb are mutually the cause and effect, also
re�ected in TB patients in China (40–42). Therefore, this study considered age, BMI, ALB, and Hb as the
core and easy-to-quantify indicators in the prediction model. These are important monitoring indicators
for quantifying the intervention effects in high-risk patients initially diagnosed with primary PTB.

In demographic characteristics, drinking and HBV infection are also important risk predictors for death in
the prognosis of in-hospital patients initially diagnosed with primary PTB because chronic alcohol and
HBV reduce the expression of immune proteins in infected patients, further decreasing their immune
function (43). HBV infection cycle and the amount or frequency of drinking are positively correlated with
TB susceptibility, indicating that both drinking and HBV infection are high-risk factors for the death of TB
patients (44–47). In the later stage of standard anti-TB chemotherapy, as prescribed, the anti-TB drugs
such as isoniazid (INH), rifampicin (RIF), and pyrazinamide (PZA) have hepatotoxic side effects for
patients initially diagnosed with primary PTB. Drinking and HBV infection can exacerbate liver damage
and increase fatality (48, 49). Accordingly, to reduce the prognostic mortality of patients initially
diagnosed with primary PTB, it is necessary to conduct routine lifestyle surveys and HBV screening
before treatment to facilitate early clinical recognition, adjustment of therapeutic schemes, and disease
management, further improving anti-TB treatment and reducing death outcomes.

Limitations of the study

One limitation of this study was that the evidence level of this retrospective study was relatively inferior.
Second, the clinically relevant data and experimental parameters adopted in this study are only part of
the clinical data of the patients, and other meaningful data may not be included. Further studies are
required to widen the scope of these variables.

Conclusion
The constructed nomogram prognostic model veri�ed that drinking, HBV, BMI, age, ALB, and Hb were the
six independent risk predictors of death in hospital patients with primary PTB who were initially
diagnosed. Consequently, the six risk predictors of in-hospital patients initially diagnosed with primary
PTB must be screened, recognized, and intervened as early as possible to reduce patient mortality.
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Figure 1

Study design. 1809 in-hospital patients initially diagnosed with primary PTB were enrolled in this study
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Figure 2

Backward logistic regression of the training set of in-hospital patients initially diagnosed with primary
PTB
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Figure 3

Nomogram to predict the outcome of patients initially diagnosed with primary PTB
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Figure 4

Calibration curves of the nomogram in training set and validation set
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Figure 5

Calibration curves of the nomogram to predict death in training set(A) and validation set(B)

Figure 6
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Decision cure analysis (DCA) for the nomogram in the training set(A) and validation set(B)

Supplementary Files

This is a list of supplementary �les associated with this preprint. Click to download.

AdditionalFile1.xlsx

https://assets.researchsquare.com/files/rs-2717271/v1/8f95c1e5e8aee335b6c54ca0.xlsx

