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Abstract

This thesis is concerned with the question “Given a set of knowledge about propo-

sitional variables, what is the ‘best’ way to assign probability values to those vari-

ables?” I present here an approach to this question based upon a philosophical

concept of negation and its role in perception. This concept is discussed in detail

before a mathematical analysis of it is presented, in the form of structures in

propositional logic which, it is claimed, embody the principles of the underlying

philosophy. There follows the definition and mathematical characterisation of an

inference process which utilises these logical structures and also adheres closely

to the principles of Maximum Entropy. The properties of this inference process

are analysed and discussed.

Another inference process is then described based upon a modified version of

the philosophical principles defined earlier. A class of graphs is found which are

intimately connected with this inference process, and two attempts at character-

ising this class are presented.
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Chapter 1

Introduction

Uncertain reasoning is an area of study that stretches back to the Greek’s early

attempts to formalise reasoning. In recent years it has become a matter of prac-

ticality as interest in expert systems and artificial intelligence has grown with

the explosion of readily available computers. This thesis addresses the question

of how to formalise the drawing inferences from uncertain knowledge in a way

consistent with a number of philosophical principles concerning uncertainty and

perception.

In Chapter 2, I discuss the concept of uncertain reasoning and some of the

attempts to formalise it. The principle of maximum entropy is considered in

some detail, in preparation for the systems of uncertain reasoning defined later

in the thesis. I also consider the nature of negation in the process of perception

observable properties in Section 2.2, and propose two logical principles which I

believe embody the intuitions discussed in this section. These are the Classifi-

cation Principle, which states that negative propositions are never observed but

only inferred from incompatibilities with positive observed propositions, and the

Principle of Conjunctive Closure, which states that consistent conjunctions of

observable properties are themselves observable properties.

10
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Chapter 3 formalises the principles discussed in Chapter 2 and presents struc-

tures in propositional logic called Positive Frames which capture the philosophical

notions discussed earlier. Some results are presented which lend support to the

thesis that our intuitions are sound. A 1-1 correspondence between certain types

of positive frame and hypergraphs which allows us to use elements of graph theory

in our discussions.

In Chapter 4 a probabilistic inference process called CFE is presented which

is based upon the principle of maximum entropy in conjunction with the two

principles proposed in Chapter 2. The technical definition of the process is ac-

complished via a restriction of the maximum entropy principle to the logical

structures defined in Chapter 3. Two characterisations of the CFE process are

presented as evidence for the justifiability of CFE. In Chapter 5 we analyse some

of the properties of CFE.

An alternative approach is taken in Chapter 6. Another inference process is

defined, this time by considering a strengthening of the Classification Principle

and dropping the Principle of Conjunctive Closure, and restricting maximum en-

tropy again, this time to the “normal positive frames” defined by the modified

principles. Via the correspondence with graphs defined in Chapter 3, we discover

that a certain class of graph is chosen by this inference process. These L-minimal

graphs can can be defined as the minimal graphs in a quasi-ordering defined on

the class of simple graphs with no isolated vertices. We present two attempts

at characterising these graphs — one graph theoretical and one logical. Unfor-

tunately both these attempts are only partial results, with the result that the

inference process can only currently be realistically studied for small knowledge

sets. A list of the L1-minimal graphs is found, with proof, and these are used to

study the behaviour of the inference process in the one-dimensional case.

Finally, in Chapter 7, we discuss the inference processes and their properties
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and present our conclusions and recommendations for further research.



Chapter 2

Philosophy & Motivation

We concentrate in this thesis on defining systems of uncertain reasoning and

analysing their behaviour mathematically. In Section 2.1 we will briefly discuss

uncertain reasoning and some of the attempts at defining and justifying systems of

uncertain reasoning. In particular we will be interested in principles of reasoning

which define “desirable” properties of such systems. One such principle is the

Principle of Maximum Entropy which is fundamental to the systems defined in

this thesis. Indeed, our systems will be essentially a combination of this principle

combined with a hypothesis about the nature of perception. For this reason we

discuss Maximum Entropy in more detail in Section 2.1.1.

In Section 2.2 a hypothesis concerning the nature of perception and the role

of negation and negative propositions is advanced. The implications of this hy-

pothesis are discussed and two logical principles are proposed which claim to

capture the essence of the hypothesis. These principles are used in Chapter 3 to

define types of structure in propositional logic with which we develop systems of

uncertain reasoning in Chapter 4 and Chapter 6.

13
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2.1 Uncertain Reasoning

Uncertain reasoning is that area of logic which deals with how we come to conclu-

sions upon uncertain sets of knowledge. If we have uncertain information about

a situation how should we choose the “best” representation of it?

Many attempts have been made at formalising and answering these ideas. In

this thesis we will be concerned with systems of probabilistic inference. These

systems attempt make an identification between the uncertain knowledge itself

and a set of probability functions on the language in which the knowledge is

specified (see [12]. The process of uncertain reasoning is then to pick from this

set of probability functions some subset which is considered to be the “best”

representation of the knowledge. It should be noted however, that probabilistic

inference is not the only way of conducting uncertain reasoning. Non-monotonic

reasoning, for example, offers a qualitative method of dealing with inductive

inference, while other quantitative efforts at dealing with uncertainty include

Dempster-Shafer belief functions ([9]) and possibility theory ([26]), for example.

However, we will not go into detail on those theories here.

We have been using “best” in the scare-quoted sense here because there is

considerable debate over what constitutes the correct way to pick probability

functions. There seems to be no a priori correct way to judge what is the best

way to pick a set of probability functions to represent our knowledge — indeed

there is some debate over the matter. Howson gives in [20] a comprehensive

account of the problems involved in inductive inference and the many attempts

that have been made to solve them. In [34], Paris describes the problem of

probabilistic inference clearly, and goes on to describe a selection of proposed

“inference processes.”

We remark that in general, the method of attack upon these problems seems
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to be as follows. Some principle of reasoning is posited and argument are given

in justification of it, and then the consequences of assuming that principle are

analysed. One such principle is the Principle of Equivalence — this, broadly

speaking, says that if two sets of uncertain knowledge are essentially equivalent

then any process of uncertain reasoning should arrive at the same conclusions on

both sets.

Another important principle is that of maximum entropy, and it is that which

we describe in the following section:

2.1.1 The Maximum Entropy Principle

The concept of entropy was introduced in the late 19th century as a concept in

statistical physics. In that context, it is regarded as a measure of the disorder

of a physical system. The principle of maximum entropy in this situation claims

that since there are many more disordered states than ordered ones, we should

assume that any system will be in one of the most disordered stated consistent

with the observed properties of the system — that is, a state with the maximum

entropy.

Shannon introduced the concept of entropy into information theory in the mid

20th century as a measure of the “uncertainty” of a probability function — see

[48] for his justification. It proceeds via the assumption of a few simple properties

that any measure of uncertainty should satisfy, and from these derives the fact

that any such measure must be (a multiple of) the entropy function.

The principle of maximum entropy then states that we should pick, as our

representation of uncertain knowledge, that probability function which has great-

est uncertainty (i.e., maximum Shannon entropy). The justification given for this

is that maximising the entropy is equivalent to maximising the uncertainty in the
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representation of our uncertain knowledge given by a probability function. That

is, we are picking the representation which “makes the least assumptions” beyond

that which is contained in the original knowledge set.

Another justification for maximum entropy is given by Jaynes in Chapter 11

of [24], and is also formalised by Paris in [35]. This justification is similar to

Boltzmann’s justification of maximum entropy in the physical sense. The idea

is that, of all the myriad ways in which a particular set of uncertain knowledge

could come about, most of them have high entropy. Jaynes and Paris both show

that the vast majority of the situations in which our uncertain knowledge could

be generated are “close” (in some sense) to the situation with maximum entropy.

Therefore, we should choose the maximum entropy solution as the correct method

of representing out uncertain knowledge.

There are many other justifications given for the principle of maximum en-

tropy — for example, Paris also provides a characterisation of this principle as

equivalent to the conjunction of several other simpler “common sense” principles

in [33]. However, this is not to claim that maximum entropy is without its critics.

However we remark here that we feel the principle of maximum entropy to be a

sound one on the basis of the justifications mentioned here, and so shall use it

as a guiding principle in constructing our own inference processes in Chapters 4

and 6.

2.2 Perception and Negation

The fundamental philosophical motivation for this thesis is a hypothesis about the

nature of the process of perception, in particular the role that negation plays in

that process. The hypothesis comes from an observation about the way in which

we perceive our environment — put roughly, this observation is that we do not
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seem to actually observe or perceive negations of attributes. Rather, negations

are deduced from the totality of our positive perceptions.

The concepts of “positive perception” and “negation of attributes” need some

explaining. A positive perception is the reception of information to the effect that

some object has a certain property. On the other hand, here the negation of an

attribute should be taken to mean that an object does not possess that attribute

(or property). Then our hypothesis claims that we do not directly perceive that

observable objects do not possess certain properties — instead, we deduce that

these properties do not hold from the information we have received about which

properties do hold for the the given objects1.

Now, to give a simple example of our hypothesis, consider the statement

“The paper on which this page is printed is not red” (2.1)

While the truth of this statement is obvious, in what sense do we infer this from

our perceptions? There is no “not red” attribute of the page that we directly

perceive. Instead, we perceive a number of things about the colour of the paper

— one of which is that it is white. Our contention is that from this perception of

the whiteness of the paper, the “not red”-ness is deduced via some prior knowledge

of incompatibility between redness and whiteness. In other words, we have some

prior knowledge about colours of the form

“The attributes ‘White’ and ‘Red’ are incompatible” (2.2)

1An obvious problem with this hypothesis is the symmetry in most logics between a property
and its negation. To address this issue we will make the assumption that the observable
properties are “natural” in some sense. Our approach to this problem is covered in the discussion
of Natural Kinds in Section 2.2.3
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which, when combined with

“We perceive that the page is white” (2.3)

allows us to deduce (2.1).

Of course, this is a very simple example — in particular it ignores the many

gradations of colour. The incompatibility between red and white seems obvious

enough but how would we model, for example, the difference between white and a

very light pink? As we make the pink lighter and lighter, at what point does the

shade cease to be “red?” These questions are considered in more detail in Pears’

Incompatibilities of Colours [40], and Gärdenfors’ work on conceptual spaces ([13],

[14], [15]) attempts to impose more topological structure on attributes.

However, crude as this example may be, it does serve to illustrate our thesis.

Despite the difficulties inherent in dealing with “fuzzy” attributes such as colours,

certain attributes are mutually incompatible, and we use our knowledge of these

incompatibilities to deduce the negation of attributes. Consider as another ex-

ample an empty coffee mug. I do not directly perceive the emptiness of the mug

— I perceive many other things about it though. I can see the bottom of the mug

for one thing, and this is incompatible with me having any coffee left to drink.

Hence I have deduced the negation of the proposition

“There is coffee in my mug” (2.4)

Both of the examples we have considered thus far rely on the visual sense.

However, when we refer to “perception” here, we are not simply talking about the

act of seeing. Rather, we intend “perception” to be understood as the reception

of information about an agent’s environment.



CHAPTER 2. PHILOSOPHY & MOTIVATION 19

Suppose we consider the coffee cup example in a different manner. Suppose

I were to dip my fingers in my (still empty) coffee cup: the sensations I would

receive from my fingers would be incompatible with the “burning” and “wet”

sensations I would receive if there were coffee in the cup. So my perception of my

environment would be incompatible with the proposition (2.4), which we would

deduce to be untrue. Hence we are indeed talking about perception rather than

just “seeing.”

Note that in the previous example, it may be argued that we have already

denied our thesis. Surely I am claiming that I have perceived a lack of sensation

from my fingers, and thus I am in fact directly perceiving the negation of an

attribute? On the contrary though, I am claiming no such thing. In fact, I am

claiming that there are (at least) two distinct positive sensations I may perceive

from my fingers. The most obvious “direct sensation” is that of being dipped in

scalding hot coffee — no doubt this is something I would directly perceive from

my fingers. The second, and more subtle sensation, is that of “normality”, where

my fingers are at a comfortable temperature and are dry. While this sensation

is unarguably less urgent than the first perception, I claim it is something that

I directly perceive nonetheless — it is not a lack of perception. In this case, a

lack of perception would correspond to the loss of all feeling in my fingers, a very

different state from that of the (almost subconscious) sensation of one’s fingers

feeling “normal.”

It is worth expanding upon this point. We do so with another example that

shows also that we are not restricting ourselves solely to human, or even animal,

perception. In this example we consider a computer receiving information from

some device as a string of 0s and 1s — perhaps a keyboard on which someone is

typing, or maybe a modem connected to the Internet. It is clear that when the

computer receives a 0, it has not perceived “the absence of a 1” — on the contrary
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the computer has directly perceived the presence of a certain voltage level in some

circuit which it interprets as a 0. The absence of any information being passed

to the computer would not mean that the computer would “perceive” a 0. When

formulated this way, we can clearly see that there is a difference between a lack

of perception and “default” perceptions.

2.2.1 Perspectives on the Philosophy of Negation

This section relies heavily on the excellent survey of the many varying views of

negation proposed through history by Cleave in [5].

The example of the computer discussed at the end of the previous section sug-

gests a 3-valued logic may be appropriate for modelling our putative principle.

While we will in fact use classical propositional logic for the main body of this

thesis, a search of the literature on many-valued logics reveals that N.A. Vasil’ev

proposed a similar principle in 1913 ([51]). Kline’s investigation [25] of this logi-

cian’s work includes Vasil’ev’s claim that

“. . . negative predicates are not primitive but are inferred from posi-

tive predicates. Negative propositions concerning perceptions are in-

ferred from propositions about incompatible properties: a denial that

an object has a property P is founded on the the presence of a witness

having a property N which excludes P .”2

This claim is very similar to that which we make at the beginning of this sec-

tion. In fact, the concept of the existence of a witness possessing an incompatible

property will be crucial to our discussion. While Vasil’ev’s work concentrated on

many-valued logics however, we will use these intuitions to develop systems of

uncertain reasoning.

2Quoted from p. 112 of [5].
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Cleave’s survey [5], from which the above quotation is taken, also discusses

some of Wittgenstein’s views on negation. Negation, Wittgenstein believed, is

“not something in the world,” although it is “constitutive with reality in some

sense,” a view which is consistent with the argument we are putting forward here.

For we claim that a negative fact cannot be perceived as part of the observable

world, even though it is true. However, the fact that we may (possibly) infer that

fact from the properties of the world that we have observed indicates that it does

have some connection with reality.

Cleave cites Wittgenstein’s Tractatus ([55]) in a context which is important

to our argument:

(2.04) The totality of existent atomic facts is the world.

(2.05) The totality of existent atomic facts also determines which atomic

facts do not exist.

(2.06) The existence and non-existence of atomic facts is the reality.

(The existence of atomic facts we also call a positive fact, their

non-existence a negative fact.)

This sits well with our hypothesis of positive perceptions. Our positive per-

ceptions correspond to Wittgenstein’s existent atomic facts, and in turn they

determine the non-existent atomic facts — statements about properties which do

not hold in our framework.

However, Priest challenges our hypothesis directly in [42]. Addressing Vasil’ev’s

contention that we cannot perceive something that is not the case, Priest dis-

agrees:

When we perceive, we can see that something is the case. Can

we also perceive that something is not the case? Some have thought
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not. We can only perceive that something is the case. For example,

we cannot see that something is not green. We can only see that it is

red. Any judgement to the effect that it is not green has to be added

to what we see by inference. This, as we now see, is false. I can see

directly that something is not green. Or consider another example:

you enter a room; the whole room is visible from where you stand;

there is no one there. You can see that Pierre is not in the room. No

Pierre-shaped objects meet the eye3.

I disagree with this criticism on two counts. Firstly, it is not clear what it

means to “see directly that something is not green.” Seeing that something is

green seems to be a reasonable candidate for something we can perceive directly

— we could define it as being the event of light of a certain minimum intensity,

whose wavelength falls within a certain range, falling upon one’s retina.

However, to see directly that something is not green does not seem to admit

of such a convenient definition. To be sure, we could define the act of seeing

directly that something is not green as being the event whereby light of a certain

minimum intensity, whose wavelength is outside a certain range, falls upon one’s

retina. The problem with this is that even this apparently simple definition relies

upon there being an a priori incompatibility between those wavelengths called

green and those called not-green. We see that the problem of direct perception

here has simply been removed to a different level of abstraction.

To answer Priest’s (and Sartre’s) second example — that of the absence of

Pierre — we turn to Wittgenstein’s conception of the totality of existent atomic

facts. Priest claims that we can directly perceive the absence of Pierre because

“no Pierre-shaped object meets the eye.” But by what means do we know this?

3Priest notes that this second example comes from Sartre [47]
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It is simply by the fact that we have directly perceived a totality of positive

stimuli about the room, the sum total of which is incompatible with any Pierre-

shaped object being observed. So we have in fact inferred Pierre’s absence from

that which we have observed — we have not perceived it directly at all. In

Wittgenstein’s terminology, according to (2.05) above, it is the totality of existent

atomic facts (i.e. the observed world) that determines the non-existent atomic

facts — in particular, that Pierre is absent.

Our critic may not accept this argument though. A possible counter-argument

could be that we might mentally list all the objects that we have observed, and

note that no Pierre-shaped objects are in that list. Again though, this is a process

of inferring knowledge from what has been perceived — not direct perception

itself. Another answer to this argument turns it on its head: we need only to

observe that no “absence-of-Pierre”-shaped object meets the eye either. So how

are we justified in concluding the absence or otherwise of Pierre? It must be

because we have some a priori incompatibility between the presence of Pierre

and the list of observed shapes, which we use to infer his absence.

This last argument raises an important point about perception — is it in

fact a consistent process? In other words, can we observe contradictions? This

question, and some of the debate surrounding it, is discussed in the next section.

To further clarify matters, we note a distinction made by Beall and Colyvan

in [2] on the difference between weakly and strongly observable properties. They

make the definition that a state of affairs σ is called a) weakly observable iff it can

be observed that σ holds, and b) strongly observable iff that state of affairs itself

can be observed. In this thesis, we note that we consider the act of perception to

correspond to observing strongly observable properties. That is, that we perceive

only that which we can directly observe — any further information is inferred

from these perceptions. Thus, observing that an object is green is a case of
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strong observability, whereas deducing from this fact that it is not-red is a case

of weak observability: we have observed that the “not-red” state of affairs holds,

but we have not directly perceived the “not-red” property.

Finally, Priest raises another important point — the question of distinguishing

between attributes and their negation, and which of these we can reasonably call

positive perceptions. This question is addressed in Section 2.2.3

2.2.2 Observable Contradictions

The concept of negation in logic has a long and controversial philosophical history,

one which is tied intimately to the concept of contradiction and stretches back to

Greek philosophers such as Zeno, Plato and Aristotle. Some recent discussion on

“observable contradictions” and the question of whether the observable world is

consistent would seem to be relevant this exposition. We are basing our argument

upon the assumption that we can only acquire “positive perceptions,” and that

it is not possible to perceive a negation.

The question of whether or not there are true contradictions has attracted

some debate recently. Dialetheists, such as Priest, hold that there are such things

as true contradictions — for a good survey of the arguments proposed, see [43].

We are not concerned overly with the question of whether or not there are such

things here, but an important point does get raised in this argument. If we accept

that there are true contradictions, it is natural to ask what they would look like,

and whether or not we do see any. This is certainly important to the argument

presented here — if it were possible to observe a contradiction, this would count

as perception of a negation. Such a perception would of course discredit our

hypothesis.

Priest claims in [42] that whether or not there are true contradictions, they
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are not observable. That is, the observable world is consistent. The argument

runs along the lines that if there are observable contradictions, we would observe

them, and since we do not observe any contradictions then the observable world

must be consistent.

As Beall and Colyvan point out in [1] and [2], this argument relies on the

assumptions that observable contradictions would be observed, that we would

recognise a contradiction if we saw one, and that we do not in fact observe any

contradictions. They criticise these assumptions and give arguments to claim

that we do in fact observe contradictions. In fact, they claim that contradictions

are strongly observable, in the sense described in the last section, and describe

the first steps toward a para-consistent theory of vagueness, as posited by Hyde

([21]), to outline their argument.

However, I would argue that, if there are true contradictions, then they are

only weakly observable — that is, that we can infer that a contradiction is true

from what we directly perceive, but that we cannot directly perceive a contra-

diction (true or not). The reasoning behind this argument is that to observe a

contradiction, we must directly perceive that something is the case, and that it

is also not the case. Leaving aside the question of whether or not it is possible to

directly perceive something which is not the case (and of course we argue that it

is not), if we were to directly perceive that some property holds of an object, and

also that it does not hold of that same object, this is not the same as directly

perceiving the contradiction that it does and does not hold of that object. Rather

the observation that a contradiction is true of that object is an inference from the

two direct perceptions and their incompatibility. In this sense, a contradiction is

only weakly observable.

In other words, if we were to perceive that an object is green, and also to

perceive that it is not-green, then we could infer that it is green and not-green —
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a contradiction. But this is only a contradiction by the incompatibility of green

and not-green.

In summary then, I would hold that a weaker version of Priest’s hypothesis

that the observable world is consistent is true. Drawing on Beall and Colyvan’s

arguments, I suggest that in fact the strongly observable world is consistent, but

the weakly observable world may not be.

2.2.3 Observable and Inferred Properties

We mentioned at the beginning of this section (see footnote on page 16)and in

subsection 2.2.1 that there is a problem with the concept of perception as we

have thus far outlined it, one that is due to the inherent symmetry in naming

properties. Priest for example claims in [41] that

. . . the very distinction between seeing what is the case and what is

not the case is a false one. Some seeings are both. With respect to

physical objects, to be transparent is not to be opaque, and vice versa.

But you can see that something is transparent and you can see that

something is opaque.

This is indeed a problem for our embryonic systems. It is clear from our earlier

discussions of the nature of perception that we require some distinction to be

made amongst properties. Some properties are intuitively more “natural” than

others in this context.

One concept seems to be quite obviously applicable to this problem — the idea

of “natural kinds.” This is a concept which dates back to Aristotle (see [16]),

and which essentially refers to classes of objects which are “natural” in some

way. They are classes which share some underlying commonality — according to

Wilkerson ([53]), “An object is a member of a natural kind in virtue of having a
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real essence: a set of properties necessary and sufficient for membership of that

kind.”

There is some difficulty in the definition of natural kinds though. Quine, for

example, explains in [46] that many notions in philosophy can be definable in

terms of natural kinds, but that any general definition of ‘natural kind’ is not

possible. Theories of natural kinds have also been developed by Kripke ([27],

[28]) and Putnam ([44]), but theories of natural kinds often come under attack

for (Aristotelian) essentialism - “the doctrine that some of the attributes of a

thing . . .may be essential to the thing, and others accidental.” ([45]

For our purposes, we do not concern ourselves overly with the exact definition

of natural kinds here. It is sufficient for us to note that natural kinds are classes of

object which share some common necessary and sufficient properties (beyond that

of belonging to the same class). We simply note that some classes are “natural”

and examine the implications for our theory. To take one of Hardegree’s examples

in [18], of the two classes

1. the class of all humans;

2. the class of consisting of Mozart, the planet Jupiter, and the number 41

the first class seems, intuitively, more natural than the second.

The logic that Hardegree proposes for natural kinds in [18] is based on the

supposition that there are “traits,” or properties that can hold for objects. A

natural class is a class for which there is a set of traits such that all and only

members that class share that particular set of traits. Hardegree goes on to

develop a logic of natural classes and traits which, under a particular Galois

connection assigning sets of traits to the classes that hold them, form a lattice

structure. A natural kind is then an ordered pair consisting of a set of individuals

and a set of traits such that the traits are those corresponding to the class of
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individuals, and the individuals form that natural class determined by the set of

traits.

It seems obvious to me that strongly observable properties must be instances

of Hardegree’s traits. As Cocchiarella points out in [6], “natural kinds are material

and not logical essences.” That is, traits are properties of the objects in the world,

and this must include strongly observable properties.

We remark then that we assume for the purposes of this thesis that our prop-

erties are “natural” in the sense discussed here.

2.2.4 Some logical principles

We describe in this section some more formal logical principles based on the

discussion thus far. Firstly we formalise our fundamental insight as the following

principle, phrased around Kline’s interpretation of Vasil’ev’s work in [25]:

Definition 2.1 (The Classification Principle).

The assertion that an object does not have a property P is only effected by the

assertion that it has a property N , or conjunction of such properties, which is

incompatible with P .

This principle will be important in defining the structures of propositional

logic which we present in the next chapter and which we propose capture the

notions discussed here. Notice that we do not insist that N is a directly per-

ceived property. N itself may have been inferred from some directly perceived

information, or from other inferred properties.

The second part of this definition is important too. For it may be the case that

some combination of properties is incompatible with P , but that that particular

conjunction has no name in the language of discourse.
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Note that we insist upon conjunction here — we do not allow disjunction.

This arises from consideration of the logic of natural kinds as discussed in the

previous section. Following a similar argument to that of Hardegree in his logic

of natural kinds, it seems clear that the conjunction of two or more (strongly)

observable properties would itself be (strongly) observable — that is, if we could

directly perceive α and β then we could also directly perceive α&β. However,

the disjunction of two such properties does not seem to determine a strongly

observable or natural property at all. Consider for example, the two properties

“green” and “Pierre.” In our previous discussions in this chapter we have argued

that these are directly perceivable properties. However, it seems clear that there

is no sensible conception of “green or Pierre” as a directly perceivable property,

especially in light of our consideration of observable properties as being “natural”

in some sense.

Our second principle arises from consideration of the second part of the Clas-

sification Principle, and also from the logic of observable properties. If, as we say,

some combination of observable properties can determine the denial of some other

property, then surely that conjunction, being observable, should have a name:

Definition 2.2 (The Principle of Conjunctive Closure).

Any consistent conjunction of observable properties is an observable property.



Chapter 3

Positive Frames

In this chapter we define some logical structures which we claim capture the intu-

itions discussed in the previous chapter. We work here with finite propositional

languages, which although lacking in expressive power, have the advantage of

being simple to work with. In some of the technical discussions of Chapters 4–6,

this will prove to be very important in keeping our discourse coherent. Explana-

tions of propositional logic can be found in most textbooks on logic, such as [10]

for example.

Of course, we can always consider the propositions to be unary predicates to

be applied to a single individual at a time. This sits well with the discussion in

the previous chapter, where we considered observable properties of objects in the

world. Throughout this chapter we consider the propositions of our language to

be observable properties in the sense discussed in Chapter 2.

We begin with the definitions that we will require to build the logical struc-

tures encompassing the principles in Section 2.2.4.

30
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3.1 Basic Concepts

We begin with the idea that the process of perception corresponds to the recep-

tion of some positive information. We start with a weaker principle than those

discussed in Chapter 2.2.4, and consider a perception to be some statement about

only positive properties which hold.

Definition 3.1 (Positive Sentences).

In a language L for propositional logic a positive sentence is a sentence of L in

which no negation or implication signs occur.

More precisely, in a language L, the set of positive sentences PL ⊆ SL is

defined inductively by:

1. PL0 := L ,

2. PLk+1 := {θ � φ | θ ∈ PLi, φ ∈ PLj for some i, j ≤ k, � ∈ {∧,∨}}

and finally set

PL :=
∞⋃

k=0

PLk .

We now define a framework in which everything can be related to the positive

perceptions described by the previous definition.

Definition 3.2 (General Positive Frames).

A general positive frame on a propositional language L is a theory T of SL

relative to which all sentences of L are equivalent to a positive sentence. That is,

T is such that for all θ ∈ SL there is some θ∗ ∈ PL for which

T |= θ ↔ θ∗ .

This corresponds to the notion that we must infer everything we know from
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only our positive perceptions. The next definition, that of an atom of a positive

frame, will be very important in the technical discussions to follow later in this

thesis.

Definition 3.3 (Atoms of positive frames).

Take L to be a finite propositional language. We follow the usual convention1 of

calling a maximal conjunctions of literals of L an atom of L. That is, an atom

of L is any conjunction of the form

∧

p∈L

pǫp

where ǫp ∈ 0, 1 and p1 = p while p0 = ¬p.

Notice that if L = Ln then there are 2n atoms of Ln. In this thesis we will

denote by α1, α2, . . . , α2n the atoms of Ln unless otherwise stated.

We denote the set of all atoms of L by At(T ). For any general positive frame

T on L, denote by At(T ) the set of atoms of L which satisfy T .

The General Positive Frames described above give us a framework in which we

can discuss positive perceptions. However, we would like to be able to formulate

our logical principles of Section 2.2.4 in such a way as to allow us to investigate

their formal consequences. We begin with the Classification Principle.

Definition 3.4 (The Classification Principle).

Within a propositional language L we can specify the Classification Principle of

Definition 2.1 in the following way. For some p ∈ L, call any sentence of the

1See, for example, [34] page 13
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following type a classification sentence for p

¬p↔
k∨

i=1

∧

Wi

when k ≥ 1 and the sets W1, W2, . . . , Wk are s.t. ∅ 
= Wi ⊆ L \ {p}.

Call the sets W1, . . . , Wk witness sets for ¬p. If there is some Wi s.t.

Wi = {q} then call q a witness for ¬p.

Now we consider the arguments about totality of perception to give the fol-

lowing definitions

Definition 3.5 (Positive Frames).

A positive frame is a theory T of SL which has a classification sentence for

every p ∈ L.

That is, if L = {p1, p2, . . . , pn}, say, then there are k1, . . . , kn ≥ 0 and for

every 1 ≤ i ≤ n there are sets Wi,1, Wi,2, . . . , Wi,ki
such that

T |= ¬pi ↔
ki∨

j=1

∧

Wi,j

and ∅ 
= Wi,j ⊆ L \ {pi}.

The next definition imposes some more conditions on these structures.

Definition 3.6 (Reflexive Classification Sentences).

A set of classification sentences on Ln is said to be reflexive if there is exactly

one classification sentence for each p ∈ Ln and the following conditions hold:

1. For every i, i′ = 1, 2, . . . , n and j = 1, 2, . . . , ki

pi′ ∈Wi,j ⇒ ∃1 ≤ j′ ≤ ki′ s.t. Wi′,j′ = (Wi,j \ {pi′}) ∪ {pi} ;
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2. For every i = 1, 2, . . . , n and j, l = 1, 2, . . . , ki if j 
= l then Wi,j 
⊆Wi,l .

These seem reasonable conditions to us. Surely if we believe that P is in-

compatible with N , then we must also take N incompatible with P . The second

condition simply says that if we already consider the conjunction of a set W to

be incompatible with P , then there is no reason to include any supersets in the

definition of P ’s incompatibilities.

Corollary 3.1 Notice that from the second condition in the above definition

a stronger condition actually follows: Namely that for every i, j ∈ 1, 2, . . . , n,

r ∈ 1, 2, . . . , ki and s ∈ 1, 2, . . . , kj we have Wi,r ∪ {pi} 
⊂Wj,s ∪ {pj}.

Proof. Suppose Wi,r ∪ {pi} ⊂Wj,s ∪ {pj}. Then pj ∈Wi,r and so, since this is

a reflexive set of classification sentences there must be some t ∈ 1, 2, . . . , kj

such that Wj,t = (Wi,r \ {pj}) ∪ {pi}. Hence

Wi,r = (Wj,t \ {pi}) ∪ {pj}

⇒ Wj,t ∪ {pi, pj} ⊂Wj,s ∪ {pj}

⇒ Wj,t = Wj,t ∪ {pi} ⊂Wk,l

which is a contradiction to the 2nd condition of Definition 3.6.

For technical reasons we will make a connection between the sets of reflexive

classification sentences and the theories they determine:

Definition 3.7 (Normal Positive Frames).

A normal positive frame on a propositional language L is a theory of L which

is generated by a reflexive set of classification sentences for L.
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There is another property of positive frames which seems relevant to us: that

of contingency. In the discussion in chapter 2 we outlined our theory of observable

properties. There is an argument to be made that properties that are either ever-

present or never observed are not observable properties at all. It seems obvious

that a property that is never observed is not an observable property, but what

of ever-present properties? I would contend that a property which is always the

case cannot be proper subject of a perception: a logical necessity is something

that is deduced. It is unclear what it would mean to directly perceive a logical

truth. For this reason we make the following definition:

Definition 3.8 (Contingent Frames).

A general positive frame T on a propositional language L is called contingent if

for every for every p ∈ L we have both T 
|= p and T 
|= ¬p.

3.1.1 Relationships between types of Positive Frame

In this section we explore some of the relationships between the different types

of structures defined above, and study some of their properties.

To begin with, it turns out that even in their most general form, positive

frames allow us to consider statements as being equivalent to a disjunction of

some conjunctions of positive perceptions. In other words, we have a sort of

“positive normal form” for sentences in General Positive Frames:

Lemma 3.2 If θ is a positive sentence of L then there are k ≥ 1 distinct sets

∅ 
= S1, . . . , Sk ⊆ L s.t.

|= θ ↔
k∨

i=1

∧

Si .

Proof. We prove the claim by induction on the complexity of θ. If θ ∈ PL0

then θ = p for some p ∈ L, and so the claim is true.
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Now suppose that the claim is true for all θ ∈ ⋃r
i=0 PLr for some r ≥ 0,

and take θ ∈ PLr+1 \ PLr.

By construction of PL, either θ = φ∨ψ or θ = φ∧ψ for some φ, ψ ∈
r⋃

j=0

PLj.

By hypothesis we have k1, k2 ≥ 1 non-empty sets S1, . . . , Sk1 and T1, . . . , Tk2

s.t.

and

|= φ↔
k1∨

i=1

∧

Si

|= ψ ↔
k2∨

i=1

∧

Ti

where S = {S1, . . . , Sk1} and T = {T1, . . . , Tk2} are collections of pairwise

distinct sets.

Alternatively, if θ = φ ∨ ψ then

|= θ ↔ (

k1∨

i=1

∧

Si) ∨ (

k2∨

i=1

∧

Ti)

⇒ |= θ ↔
∨

X∈S∪T

∧

X

and so the claim is true for θ = φ ∨ ψ.

If θ = φ ∧ ψ then

|= θ ↔ (

k1∨

i=1

∧

Si) ∧ (

k2∨

i=1

∧

Ti)

⇒ |= θ ↔
k1∨

i=1

k2∨

j=1

(
∧

Si ∧
∧

Tj)

⇒ |= θ ↔
k1k2∨

i=1

∧

Ri
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where R(i−1)k2+j = Si ∪ Tj . Clearly we can eliminate any repetitions from

this list, and so the claim is true for θ = φ ∧ ψ.

Hence the claim is true for any θ ∈ PLr+1 \ PLr and so by induction the

Lemma is proved for all θ ∈ PL.

Now, the argument about contingency of frames turns out to be important. If

a general positive frame is contingent then we can express it as a positive frame —

in other words, the Classification Principle holds for contingent general positive

frames.

Proposition 3.3 If T is a contingent general positive frame on Ln, then T is

a positive frame on Ln.

Proof. Since T is a general positive frame then for each 1 ≤ i ≤ n there is

θi ∈ PLn such that

T |= ¬pi ↔ θi .

Then by Lemma 3.2 for each i = 1, 2, . . . , n there are ki ≥ 1 distinct non-

empty sets Wi,1, Wi,2, . . . , Wi,ki
such that

|= θi ↔
ki∨

j=1

∧

Wi,j

Hence we have

T |= ¬pi ↔
ki∨

j=1

∧

Wi,j .

Now it remains only to show that pi 
∈Wi,j . So for each i = 1, 2, . . . , n let

li = | {Wi,j | pi 
∈Wi,j } | .

Notice that since T is contingent li > 0. For if not, then let Vi,j = Wi,j \{pi}
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for j = 1, 2, . . . , ki. Then we have

T |=¬pi ↔
ki∨

j=1

[
pi ∧

∧

Vi,j

]

⇒ T |=¬pi ↔ pi ∧
[

ki∨

j=1

∧

Vi,j

]

⇒ T |=pi

which contradicts T being contingent.

So we have 1 ≤ li ≤ ki. Relabel the Wi,j ’s so that pi ∈ Wi,j ⇔ j > li and

for j > li let Vi,j be as above. Then

T |= ¬pi ↔
(

li∨

j=1

∧

Wi,j

)

∨
(

pi ∧
ki∨

j=li+1

∧

Vi,j

)

⇒ T |= ¬pi →
li∨

j=1

∧

Wi,j .

Now note that

T |=
(

ki∨

j=1

∧

Wi,j

)

→ ¬pi

⇒ T |=
(

li∨

j=1

∧

Wi,j

)

→ ¬pi

and so

T |= ¬pi ↔
li∨

j=1

∧

Wi,j .

Hence T is indeed a positive frame on Ln.
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3.2 Hypergraphs

We will find there is a close relationship between positive frames and hypergraphs,

which allows us to study more properties of positive frames. It will also turn out

to be a very important relationship in the definition of inference processes in

Chapters 4 and 6. We take this definition from Berge [3],(pp.3):

Definition 3.9 (Hypergraph).

Let X = {x1, x2, . . . , xn} be a finite set. A hypergraph on X is a family H =

(E1, E2, . . . , Em) of subsets of X such that:

1. Ei 
= ∅ (i = 1, 2, . . . , m) ;

2. ∪m
i=1Ei = X .

A simple hypergraph (or “Sperner family”) is a hypergraph

H = (E1, E2, . . . , Em) such that

3. Ei ⊆ Ej ⇒ i = j .

The elements x1, x2, . . . , xn of X are called vertices, and the sets E1, E2, . . . , Em

are the edges of the hypergraph. A simple graph is a simple hypergraph each of

whose edges has cardinality 2; we shall not consider isolated points of a graph to

be vertices.

A hypergraph H may be drawn as a set of points representing the vertices.

The edge Ej is represented by a continuous curve joining the two elements if

|Ej| = 2, by a loop if |Ej| = 1, and by a simple closed curve enclosing the

elements if |Ej | > 3.

The anti-rank of a hypergraph is the minimum cardinality of its edges ([3],

pp. 4).
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For the purposes of this discourse we will be concerned with simple hyper-

graphs of anti-rank 2. The following concept from graph theory will be of central

importance:

Definition 3.10 (Maximal Independent Set).

Given a hypergraph H = (E1, E2, . . . , Em) on a set X, A ⊆ X is called an

independent set of H if there is no Ei ∈ H such that Ei ⊆ A.

A is called a maximal independent set of H if there is no independent set

B of H such that A ⊂ B.

Theorem 3.4 There is a 1-1 correspondence between reflexive sets of classifi-

cation sentences and simple hypergraphs of anti-rank 2.

Proof. We give a construction for a mapping from the set of reflexive sets of

classification to simple hypergraphs of anti-rank 2, and a construction for

its inverse:

1. Let X be a reflexive set of classification sentences on Ln. For each

i = 1, 2, . . . , n, j = 1, 2, . . . , ki define Ei,j = Wi,j ∪ {pi}, and let

H∗ = {Vi,j | i = 1, 2, . . . , n, j = 1, 2, . . . , ki} .

Now consider Vi,j ∈ H∗ of cardinality k. Since X is a reflexive set

of classification sentences H∗ will contain exactly k − 1 other sets

Vi′,j′ = Vi,j. Let H be H∗ with all such repetitions deleted.

Then H is a hypergraph on Ln: indeed, it is obvious that Vi,j 
= ∅.

Secondly, each pi ∈ Ln appears in
∑ki

j=1 |Vi,j| sets of H∗, of which
∑ki

j=1 |Vi,j| − 1 are deleted to form H . Hence every pi ∈ Ln appears in
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some set of H and so
⋃

V ∈H

V = Ln .

Suppose now that we have E, F ∈ H such that E ⊂ F ; then there

must be some pi ∈ E ∩ F . By construction of H we must have some

distinct j, j′ such that E = Wi,j∪{pi} and F = Wi,j′∪{pi}. This gives

Wi,j ⊂ Wi,j′, which is a contradiction to the second condition for the

reflexivity of the set X. Hence H is a simple hypergraph, and is also

trivially of anti-rank 2 since Wi,j 
= ∅ ⇒ |Vi,j| ≥ 2|.

2. Take H to be a simple hypergraph of anti-rank 2 on Ln, and for each

i = 1, 2, . . . , n let ki = | {E ∈ H | pi ∈ E } |. Set Di,1, Di,2, . . . , Di,ki
to

be the ki distinct edges of H which contain pi. We now define a set of

classification sentences for Ln by setting Wi,j = Di,j \{pi} and putting

X =

{

¬pi ↔
ki∨

j=1

∧

Wi,j | 1 ≤ i ≤ n

}

Note first that X is indeed a set of genuine classification sentences

since each pi must be in some edge of H and so ki ≥ 1. Also H being

of anti-rank 2 implies that |Di,j| ≥ 2, and so Wi,j 
= ∅.

We check now the two conditions for reflexivity given in Definition 3.6:

(a) Suppose that for some i′ 
= i we have pi′ ∈ Wi,j for some j. Then

by construction of X there is an edge E of H such that E =
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Wi,j ∪ {pi}. Since pi′ ∈ E then there is some Di′,j′ = E. Then

Wi′,j′ = Si′,j′ \ {pi′}

= Di,j \ {pi′}

= (Wi,j ∪ {pi}) \ {pi′}

= (Wi,j \ {pi′}) ∪ {pi} as required.

(b) Suppose for some i there are j, l such that Wi,j ⊆Wi,l. Then there

are edges E1 = Wi,j ∪ {pi} and E2 = Wi,l ∪ {pi} of H for which

E1 ⊆ E2. But H is simple and so we must have E1 = E2. Hence

Wi,j = Wi,l and so j = l.

It is easy to check that each of the constructions given above defines an

injective mapping and that the mappings so defined are the inverse of each

other. Hence the 1-1 correspondence is established.

This theorem shows us that there is a very nice graphical representation of

reflexive sets of classification sentences. However, we are more interested in the

consequences of such reflexive sets, so we would prefer to have a graphical repre-

sentation of normal positive frames. We will now construct such a representation.

Firstly, we construct a link between maximal independent sets of a hypergraph

and the valuations of its corresponding reflexive set of classification sentences.

Proposition 3.5 Let X be a reflexive set of classification sentences for Ln,

let H be the hypergraph generated by X, and let A be a subset of Ln. Then the

valuation v defined on Ln by setting

v(pi) = 1⇔ pi ∈ A
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is consistent with X iff A is a maximal independent set of H.

Proof. ⇒⇒⇒ Let v be a valuation on Ln consistent with X. Suppose the set

A ⊆ Ln defined by v is not independent. Then there is some edge

E of H such that A ⊇ E. By construction of H then there is some

p ∈ Ln and some witness set W for ¬p such that W ∪ {p} ⊆ A.

Hence v(p) = v(
∧

W ) = 1. But since W is a witness set for ¬p, this

contradicts v being consistent with X, and so A is indeed independent

w.r.t. H .

Suppose then that A is independent w.r.t H , but not maximal such.

Then there is some p ∈ Ln \A such that A ∪ {p} is independent. But

p 
∈ A ⇒ v(p) = 0. Since v is consistent with X then this gives us

v(
∧

W ) = 1 for some witness set W for ¬p.

By construction of H though, there exists some edge E of H such that

E = W ∪{p}. Then E ⊆ A∪{p}, which contradicts the independence

of A ∪ {p}, and so A is indeed maximally independent.

⇐⇐⇐ Let A be a maximal independent set of H . Consider pi ∈ Ln. If pi ∈ A

then v(pi) = 1, and so for v to be consistent with X we must have

v(
∨ki

j=1

∧
Wi,j = 0.

That is, for every j = 1, 2, . . . , ki we must have v(
∧

Wi,j) = 0. Suppose

not: then there is some Wi,j such that v(p) = 1 for all p ∈Wi,j . Then

by construction of H there is an edge E = {pi} ∪Wi,j of H such that

E ⊆ A, contradicting the independence of A. So v is indeed consistent

with the classification sentence for pi.

Now suppose that v(pi) = 0. To ensure v’s consistency we must then

have v
∨ki

j=1

∧
Wi,j) = 1. Suppose not: then for every j = 1, 2, . . . , ki

we have at least one p ∈ Wi,j such that v(p) = 0. That is, for every
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witness set W for ¬pi there is at least one p ∈ W for which p 
∈ A.

Then A ∪ {pi} is independent w.r.t H : since for every edge E of H

which contains E there is at least one p ∈ E such that p 
∈ A ∪ {pi},

and any edge of E which does not contain pi is not a subset of A∪{pi}

by the independence of A. This contradicts the maximality of A, and

so v is again consistent with the classification sentence for pi.

Hence for all θ ∈ X, v(θ) = 1.

Corollary 3.6 Let X be a reflexive set of classification sentences on Ln. Then

for any A ⊆ Ln, X |= ¬∧A iff there is some p ∈ Ln and witness set W for ¬p

such that A ⊇W ∪ {p}.

Further, if A is such that for any B ⊂ A we have X 
|= ¬∧B then in fact

A = W ∪ {p}.

Proof. ⇒ Let H be the hypergraph generated by X. By Proposition 3.5 A

is not maximally independent w.r.t H . Further, since X |= ¬∧A, we

know that B is not maximally independent w.r.t. H for any B ⊇ A,

and so in fact A is not independent w.r.t. H . Then there must be

some edge E of H such that E ⊆ A. By construction of H there must

be some p ∈ Ln and witness set W for ¬p for which E = W ∪{p}, and

so the claim is proved.

⇐ Trivial.

The second part of the corollary is also clear. Indeed, A must contain

W ∪{p}, but if A ⊃W ∪{p} then there is a proper subset B of A for which

X |= ¬∧B, namely B = W ∪ {p}.
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Now we are ready to make the link between normal positive frames and hy-

pergraphs. See Figure 3.2 for an example of how we can use this correspondence

to give graphical representations of normal positive frames.

Theorem 3.7 There is a 1-1 correspondence between normal positive frames

and reflexive sets of classification sentences.

Proof. Denote by f the mapping that takes a reflexive set of classification

sentences to its corresponding normal positive frame. By definition there

corresponds at least one reflexive set of classification sentences to each nor-

mal positive frame and so the mapping f is trivially surjective. To prove

injectivity consider two reflexive sets X, Y of classification sentences on Ln,

and suppose that they both determine the same normal positive frame T ;

that is f(X) = f(Y ) = T . Notice then that, by definition of T , for any

sentence θ ∈ SLn, X |= θ⇔ Y |= θ. Let

X =

{

¬pi ↔
ki∨

j=1

∧

Wi,j | 1 ≤ i ≤ n

}

and

Y =

{

¬pi ↔
κi∨

j=1

∧

Vi,j | 1 ≤ i ≤ n

}

.

Consider some Wi,j. By Corollary 3.6 X |= ¬∧(Wi,j ∪ {pi}), and for any

B ⊂Wi,j ∪ {pi}, X 
|= ¬∧B.

Of course then these same properties hold for Y . Again by Corollary 3.6

we can see that there is some pl and witness set Vl,m for which Wi,j ∪{pi} =

Vl,m ∪ {pl}.

Now if l 
= i then pi ∈ Vl,m, and since Y is a reflexive set there must be

some witness set Vi,j′ such that Vi,j′ ∪ {pi} = Vl,m ∪ {pl}. If l = i we can
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This hypergraph is equivalent to the normal positive frame defined by
¬p1 ↔ (p2 ∧ p3)

¬p2 ↔ (p1 ∧ p3) ∨ p4

¬p3 ↔ (p1 ∧ p2)
¬p4 ↔ p2

Figure 3.1: Correspondence between normal positive frames and hypergraphs

just set j′ = m.

Hence for every Wi,j there is some Vi,j′ = Wi,j. A similar argument provides

the converse relationship, and so we see that up to a reordering of the

witness sets X = Y . Hence the mapping f is indeed injective.

Corollary 3.8 There is a 1-1 correspondence between normal positive frames

and simple hypergraphs of anti-rank 2.

Proof. Immediate from Theorem 3.4 and Theorem 3.7.

3.2.1 Positive Frames and Hypergraph Results

In this section we present some results which rely on the correspondence defined

by Corollary 3.8 for their proof.

Firstly, we see that contingency is a property of all normal positive frames.

In other words, the fairly natural constraints (of symmetry and efficiency of rep-

resentation — see Definition 3.6) we imposed on positive frames to make them

“normal” have contingency as a consequence.



CHAPTER 3. POSITIVE FRAMES 47

Proposition 3.9 Normal positive frames are consistent and contingent.

Proof. Let T be a normal positive frame on Ln and let H be the hypergraph

generated by T . Since H is of anti-rank 2 there must exist non-empty

independent sets of H , and hence there must exist non-empty maximal

independent sets of H . Hence by Proposition 3.5 there is at least one

valuation on Ln which makes T true, and so T is consistent.

For contingency, consider p ∈ Ln. Since every edge of H has cardinality at

least 2, {p} is independent w.r.t. H and so there exists at least one maximal

independent set of H which contains p. Again by Proposition 3.5 then there

exists at least one valuation v consistent with T for which v(p) = 1 and

hence T 
|= ¬p.

Finally, to prove T 
|= p take any witness set W for ¬p. Since W does not

contain any edge of H then by Corollary 3.6 then T 
|= ¬∧W . Then since

T |= ∧
W → ¬p we have T 
|= p, and so T is contingent as required.

Our final result in this shows that normal positive frames are the weakest

contingent positive frames — that is, “normality” is a stronger condition than

contingency.

Proposition 3.10 If T is a contingent positive frame on Ln there is a normal

positive frame T ∗ on Ln s.t. T |= T ∗.

Proof. Take a contingent positive frame T on Ln. Then for 1 ≤ i ≤ n there

are ki ≥ 1 distinct witness sets ∅ 
= Wi,1, . . . , Wi,ki
⊆ \{pi} s.t.

T |=
{

¬pi ↔
ki∨

j=1

∧

Wi,j

∣
∣ 1 ≤ i ≤ n

}

.
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For each i, j set Di,j = Wi,j ∪ {pi}. Then put

H =
{

Di,j

∣
∣ 1 ≤ i ≤ n, 1 ≤ j ≤ ki

}

and let H+ be H with all repetitions deleted.

Now remove every F ∈ H+ for which ∃ E ∈ H+ s.t. E � F and call the

resulting family H∗. That is,

H∗ = H+
{

F ∈ H+ | ∃E ∈ H+, E � F
}

.

Claim: H∗ is a simple hypergraph of anti-rank 2.

Clearly, for all E ∈ H∗, |E| ≥ 2 since E = Wi,j ∪ {pi} for some i, j and so

H∗ is clearly of anti-rank 2. Now, suppose that

⋃

E∈H∗

E 
= Ln .

Then there is some pi ∈ Ln s.t. pi /∈ ⋃

E∈H∗ E. But

⋃

E∈H+

E = Ln

⇒ ∀ F ∈ H+ containing pi, ∃ E ∈ H+ s.t. E ⊆ F \ {pi}

⇒ ∀ 1 ≤ j ≤ ki, ∃ E ∈ H+ s.t. E � Wi,j .

Now E ∈ H+ gives T |= ¬∧E and so for for each 1 ≤ j ≤ ki we have

T |= ¬
∧

Wi,j .
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But since T |= ¬pi ↔
∨ki

j=1

∧
Wi,j then

T |= ¬pi ↔
ki∨

j=1

⊥

⇒ T |= pi

which is a contradiction to the contingency of T . Hence
⋃

E∈H∗ E = Ln,

and so H∗ is indeed a hypergraph of anti-rank 2. It is clearly simple by its

construction from H+, and so the claim is proved.

So by Corollary 3.8 there is a normal positive frame T ∗ corresponding to

H∗. Suppose T ∗ is

T ∗ =

⎧

⎨

⎩
¬pi ↔

k′

i∨

j=1

∧

W ′
i,j

∣
∣ 1 ≤ i ≤ n, ∅ 
= W ′

i,j ⊆ Ln \ {pi}

⎫

⎬

⎭
.

It remains to show that T |= T ∗. First note that since T is contingent it is

also consistent. Take some α ∈ At(T ) and consider each pi. There are two

cases:

1. α |= pi Suppose there is some W ′
i,j s.t. α |= pi ∧

∧
W ′

i,j. Then by

construction of T ∗ there is some E ∈ H∗ s.t. E = {pi}∪W ′
i,j. Similarly,

by construction of H∗ there is some pi′ ∈ E and j′ s.t. Wi′,j′ = E\{pi′}.

Thus we have

α |= pi′ ∧
∧

Wi′,j′

which contradicts α |= ¬pi′ ↔
∨ki′

j=1

∧
Wi′,j′. Hence

α |= pi → ¬
k′

i∨

j=1

∧

W ′
i,j . (3.1)
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2. α |= ¬pi

Since α |= T then there is a witness set Wi,j s.t. α |= ¬pi ∧
∧

Wi,j.

By construction of H∗ there is E ∈ H∗ s.t. E = Wi,j ∪ {pi} and

by construction of T ∗ there is some 1 ≤ j′ ≤ k′
i s.t. W ′

i,j′ = Wi,j.

Therefore

α |= ¬pi ∧
∧

W ′
i,j′

⇒ α |= ¬pi →
k′

i∨

j=1

∧

W ′
i,j (3.2)

So for each 1 ≤ i ≤ n and α ∈ At(T ) we have from (3.1) and (3.2)

α |= ¬pi ↔
k′

i∨

j=1

∧

W ′
i,j

and so T |= T ∗.

3.3 1-frames

In Definition 2.1 we allowed unnamed conjunctions of observable properties to

be witnesses to the negation of other properties. In this section now deny this

possibility, and insist upon the stronger principle that the negation of a property

P can only be asserted by the assertion of a witness property N which is incom-

patible with P . translating this into the terminology of this chapter we get the

following definition:

Definition 3.11 (1-frames).

A 1-frame is a positive frame T for which |Wi,j| = 1 for every witness set Wi,j.

Notice that an immediate consequence of Corollary 3.8 is that there is a 1-1
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correspondence between normal 1-frames and simple undirected graphs with no

isolated vertices. This gives us a very nice visual representation of the “incom-

patibility structure” of normal 1-frames. Two nodes in the graph corresponding

to a normal 1-frame T are connected by an edge if and only iff their respective

propositions are mutually incompatible in T . For example,
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This graph is equivalent to the normal 1-frame defined by
¬p1 ↔ p2 ∨ p3 ¬p2 ↔ p1 ∨ p3

¬p3 ↔ p1 ∨ p2 ¬p4 ↔ p5

¬p5 ↔ p4 ∨ p6 ¬p6 ↔ p5

Figure 3.2: Correspondence between normal 1-frames and simple graphs

3.3.1 Interpretation of 1-frames

There seems to be a sense in which 1-frames are more “natural” than positive

frames as a model of the perceptual process described in Section 2.2. We outlined

in that section a theory of what it means to directly perceive a property or an

attribute. There is an argument to be made then, that unless a particular con-

junction of observable properties is itself a property, then it is not an observable

property itself — rather it is one which must be inferred. This approach to the

process of perception and subsequent inference appears to be a much closer model

of the thesis outlined in Chapter 2 in that the perception part of the process is

much simpler.
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For this reason, we will later examine 1-frames as a model for uncertain rea-

soning.

3.3.2 Some results from graph theory

In Chapter 6 we will study an inference process which uses normal 1-frames as its

starting point. The correspondence between normal 1-frames and simple graphs

will become very useful for this purpose, especially the correspondence between

the maximal independent sets of a graph and the valuations of the corresponding

1-frame. In particular, the maximum possible number of maximal independent

sets is important. This is a problem solved for simple graphs by Moon and Moser2

in [32], and so give the following definition:

Definition 3.12 (Moon and Moser function).

The maximum number of maximal independent sets of a graph of order n is

denoted m (n) and is called the Moon and Moser function.

The following theorem from [32] gives the value of m (n) and the graphs on

which this maximum is attained:

Theorem 3.11 (Moon and Moser [32]) If n ≥ 2 then the largest possible

number m (n) of maximal independent sets for a graph on n vertices is given by

m (n) =

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

3n/3 if n ≡ 0 (mod 3)

4.3[n/3]−1 if n ≡ 1 (mod 3)

2.3[n/3] if n ≡ 2 (mod 3)

[For completeness and convenience we will also set m (1) = 1]

2We note that the same problem was also solved by Erdös in [11], but the Moon & Moser
solution also gives a constructive method for finding the graphs which realise the maximum.
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Figure 3.3: The Moon & Moser Graphs for n > 2

Furthermore, for n ≥ 2 these values of m (n) are attained by the graphs de-

noted by Mn and shown in Figure 3.11.

We will also find it useful to be able to count the maximum number of maximal

independent sets in a connected graph. This was calculated by Griggs et al. in

[17]. We define

Definition 3.13 (Griggs Function).

The maximum number of maximal independent sets of a connected graph of order

n is denoted g (n) and is called the Griggs function.

Theorem 3.12 (Griggs et al [17]) The maximum number g (n) of maximal

independent sets of a connected graph on n vertices is given by

g (n) = n
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for n ≡ 1 (mod 3), and
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for n ≡ 2 (mod 3).

Figure 3.4: The Griggs graphs for n ≥ 6

for n ≤ 5, and

g (n) =

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

2.3
n−3

3 + 2
n−3

3 if n ≡ 0 mod 3

3
n−1

3 + 2
n−4

3 if n ≡ 1 mod 3

4.3
n−5

3 + 3.2
n−8

3 if n ≡ 2 mod 3

for n ≥ 6. As for m (n), g (0) = 1.

Furthermore, for n ≥ 6 the extremal graphs En which realise these values of

g (n) are shown in Figure 3.12.

For n ≤ 4 we have En = Kn, the complete graphs on n vertices. For n = 5
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however, there are four extremal graphs E5. One of these is C5, the circuit on 5

vertices, and the other three are shown in Figure 3.5.
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Figure 3.5: The Griggs graphs E5 for n = 5

3.4 Conjunctively Closed Frames

we turn now to the second principle proposed in Section 2.2.4. Definition 2.2

gives the Principle of Conjunctive Closure as the prescription that any consistent

conjunction of observable properties must be an observable property itself. In

other words, that conjunction should have a name in our logical structure. In our

propositional logic framework this can be expressed by the following definition:

Definition 3.14 (Conjunctively Closed Frames).

A positive frame T on a propositional language L is called conjunctively closed

if for all X ⊆ L s.t. T 
|= ¬∧X there is some p ∈ L s.t.

T |= p↔
∧

X

In other words, for every set X of L consistent with T there is some p in

L which is T -equivalent to the conjunction of X. For brevity’s sake we will

write “c-frame” as an abbreviation for Conjunctively Closed Frame throughout

the remainder of this thesis, and we will use the notation T to indicate that a
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positive frame T is a c-frame.

Notice that for any contingent c-frame T there is a conjunctively closed 1-

frame equivalent to T formed by the removing all witness sets W which are

inconsistent with T and then replacing all remaining witness sets W with their

corresponding names. Hence the remarks on 1-frames in Section 3.3.1 also apply.

C-frames therefore appear to be the “best” model of the perceptual process

that we have, in the sense that they most closely capture the notions involved in

our discussions of perception in Chapter 2. In the next chapter we will use them

to define an inference process.



Chapter 4

Inference Processes & Positive

Frames

This chapter begins with a brief discussion of probability functions and infer-

ence processes together with some of the mathematical definitions used later in

the chapter. We then define an inference process combining arguments from

maximum entropy with the c-frames developed in the previous chapter. This is

followed by two justifications for the use of this inference process, which present

characterisations of it as a model of expert reasoning based upon a large experi-

ence base.

4.1 Probabilistic Inference

This section describes some of the basic definitions required to develop a prob-

abilistic approach to uncertain reasoning with positive frames. We describe the

notation we use to work with probability functions, and what it means for a

probability function to be consistent with a positive frame. We then give a brief

discussion of what is meant by “probabilistic inference” before setting out some

57



CHAPTER 4. INFERENCE PROCESSES & POSITIVE FRAMES 58

technical details necessary to define and analyse the inference process set out in

Section 4.2.

Definition 4.1 (Probability functions).

We follow [34] (pages 10–14) in defining probability functions on propositional

languages. That is, given a finite propositional language L, w : SL → [0, 1] is a

probability function on L if, for all θ, φ ∈ SLn w satisfies the two axioms

(P1) If |= θ then w(θ) = 1

(P2) If |= ¬(θ ∧ φ) then w(θ ∨ φ) = w(θ) + w(φ)

An important representation theorem is also given in [34] which defines a

correspondence between a probability function on L and the value it gives to the

atoms of L. As such it is possible to identify a probability function w with the

vector

〈w(α1), w(α2), . . . , w(αJ)〉 ∈ DL =

{

	x ∈ RJ

∣
∣
∣
∣
∣
	x ≥ 0;

J∑

i=1

xi = 1

}

where α1, . . . , αJ run through all atoms of L. DL here denotes the set of all

vectors corresponding to probability functions on L. If we have L = Ln rather

than DLn , we will often write Dn.

It will be necessary for us to consider probability functions over different size

languages which are in some sense ‘the same.’ To this end for a probability

function w on Lk, for any n ≤ k we denote the restriction of w to Ln as w ↾ Ln,

and define it on the atoms of Ln by

w ↾ Ln(α) =
∑

β∈At(Lk); β|=α

w(β)

for all α ∈ At(Ln).
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We will be interested in studying probability functions which correspond to

positive frames. The natural way in which a probability function might be said

to ‘correspond to’ a logical theory is if it gives probability 1 to any sentence

which is true relative to that theory. That is, for a positive frame T on L, w is a

probability function for T iff w(θ) = 1 for each θ ∈ SL s.t. T |= θ. Notice then

that no probability function can correspond to an inconsistent theory, since that

would give w(θ) = w(¬θ) = 1, which contradicts (P1) and (P2) above.

Note that it is sufficient to check that the above condition holds for any set

X ⊆ SL s.t. X ≡ T , rather than checking for every sentence of SL. So for

example, if T is a normal positive frame, w is a probability function for T iff

w(θ) = 1 for all θ in the RCS corresponding to T (Recall that there is exactly

one such RCS by Theorem 3.7).

An immediate consequence of this definition is that a probability function w

corresponds to a general positive frame T iff we have
∑

w(α) = 1 where the sum

is over all α in At(T ).

Equivalently1, a probability function w can be said to correspond to a positive

frame T on L if it only gives non-zero probability to atoms of L which are in At(T ).

That is

α ∈ At(L) \ At(T )⇒ w(α) = 0

4.1.1 Inference Processes, Constraint Sets and Solution

Sets

Our aim in this chapter is to present an inference process for finite propositional

languages. An inference process is, generally speaking, some rule which, given

1It may seem a little excessive to give so many equivalent conditions for an essentially simple
concept, but all of them will have occasion to be useful in the course of this thesis so they are
given together here for the sake of clarity
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some information or data or knowledge about allowable or possible probability

functions, selects a subset of those probability functions. Phrased in the termi-

nology of uncertain reasoning and belief functions, inference processes are often

portrayed as being a way of picking the “best” belief function available under

a certain set of constraints (see for example [7], [8], [19], [30],[34], [35],[36],[37],

[38]). What constitutes “best” is a question of some debate. Indeed, in general,

for a given set of knowledge K there will be many probability functions consistent

with K — often uncountably many2.

An established approach within uncertain reasoning is to impose certain prin-

ciples or conditions on our inference process that we think are reasonable or

desirable, and to analyse the resulting inference processes. One such principle is

the Equivalence Principle (see [34], pp. 82–87), a principle which dates right back

to Laplace’s work on the founding of modern probabilistic reasoning, yet which

was not made explicitly clear until Jeffreys stated it in the 1930’s (see [23], p.7).

In essence, this principle states that in circumstances where we have the same

knowledge, we should assign the same probability function. We will see that the

inference processes described here satisfy this principle trivially, and shall study

their satisfaction or otherwise of a range of other principles.

Turning to the question of what we intend to denote by information or data

or knowledge, we comment that it is a common step in probabilistic uncertain

reasoning to formalise our knowledge as a constraint set: that is, some constraints

on the possible or allowable probability functions. We would like to think that a

constraint set arising from given knowledge (or information or data or beliefs) K

determines a set of probability functions which are “consistent” with the infor-

mation in K.

2Assuming of course that K is consistent, in the sense that there is a probability function
which agrees with K. This is by no means a trivial assumption, as discussed in [34], [50] and
[54]
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In general, we would like the set of probability functions determined by our

constraint sets to be both closed and convex for reasons of mathematical con-

venience. Obviously in practise it is not always convenient or even possible to

establish such a constraint set3; however an analysis of the more mathematically

convenient case is one way in which we can advance our understanding of the more

complicated situation. In practise we will impose a slightly more rigid restriction

on our constraint sets:

Definition 4.2 (Constraint Sets and Solution Sets).

Given a finite propositional language L a constraint set Σ is a finite set of linear

constraints on the values assigned to the atoms by a probability function w on

L. That is, for L = Ln we have m constraints of the form

2n
∑

j=1

ai,jw(αj) ≤ bi

where i = 1, . . . , m and ai,j, bi ∈ R. Denote the set of all such constraint sets on

L by CL. Notice that these constraints can also be given in matrix form as

A. 	w = 	b

where A is an m × 2n matrix given by A = (ai,j) while 	w and 	b are vectors of

size 2n given by 	w = 〈w(α1), w(α2), . . . , w(α2n)〉 and 	b = 〈b1, b2, . . . , b2n〉.

For a constraint set Σ on L, we denote the set of probability functions on L

which satisfy the constraints given in Σ by V(Σ). If Σ is given on Ln then for all

k ≥ n denote by Vk(Σ) the set of all probability functions on Lk whose restriction

to Ln satisfies the constraints in Σ. Denote by DL(Σ) and Dk(Σ) the subsets of

3See [54] for a discussion of the problems involved and a suggestion of how to establish such
sets
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DL and Dk corresponding to V(Σ) and Vk(Σ).

Note that both V(Σ) and DL(Σ) are closed and convex. We turn now to some

special types of constraint set that we will be particularly interested in.

A proper constraint set Σ ∈ CLn is one which does not forces the elements

of Ln to be contingent — i.e., it does not permit probability functions to insist

that any of the elements of Ln are either necessarily true or false. We formalise

this as the condition that each w ∈ Vn(Σ) has the property that for all pi ∈ Ln,

w(pi) ∈ (0, 1) — that is, w(pi) 
= 0 or 1.

We say that a constraint set Σ ∈ CLn is called adamant (on Ln) if there

is some subset {pi1 , pi2, . . . , pir}of Ln such that Σ forces the disjunction of this

subset to be always true. Formally, for all w ∈ Vn(Σ) we have

w(pi1 ∨ pi2 ∨ . . . ∨ pin) = 1

Constraint sets which are not adamant are called ethereal.

Now that we have made the notion of a probability function being consistent

with a constraint set clear, we consider what it means for a (general) positive

frame to be consistent with a constraint set. We think of the constraint set

Σ embodying our knowledge about a certain language L, say, whilst a positive

frame imposes a certain logical structure on that language. Therefore, for a GPF

T to be consistent with Σ, the logical structure of T must be realisable under the

constraints of Σ. Recalling our remarks on Definition 4.1 then, there must exist

some probability function w ∈ V(Σ) s.t. w(α) = 1 for all α ∈ At(T ). In the case

that T is on Ln and Σ is defined on Lk, where k ≤ n, then we say T is consistent

with Σ if there is some w ∈ Vn(Σ) such that w(α) = 1 for all atoms of T .
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For yet further notational convenience we denote by V(Σ, T ) the set of prob-

ability functions consistent with both T and Σ, and let D(Σ, T ) denote the cor-

responding subset of DL. Note that here we do not need to index these sets with

the language size since it must be the same as the size of T .

Finally, now that we are clear on probability functions and constraint sets we

can define what we take to be an inference process:

Definition 4.3 (Inference Processes).

An inference process on a propositional language Ln is a function N : CLn →P0(D
n)

which assigns to every constraint set on Ln a finite set of probability functions

which are each consistent with that constraint set.

That is, for each constraint set Σ ∈ CLn, N(Σ) is a finite set

{w1, w2, . . . , wr} ⊆ Vn(Σ)

4.2 The CFEk Inference Process

4.2.1 The Concept

We present here an inference process (in the sense defined in the last section)

which combines the principle of maximum entropy with the Classification Prin-

ciple and the Principle of Conjunctive Closure, as discussed in Chapter 2 and

given mathematical formalisation in Chapter 3. The concept is to restrict the

maximum entropy inference process to c-frames.

As discussed in Chapter 3, I claim that as propositional structures, c-frames

capture the principles outlined in Section 2.2.4. I also claim that the principle of

maximum entropy should be applied to uncertain reasoning with these structures,

for the reasons outlined in Section 2.1.1. The CFE inference process defined in
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the next section is an application of the principle of maximum entropy with

the additional conditions that the Classification Principle and the Principle of

Conjunctive Closure also apply.

4.2.2 Formalisation

Definition 4.4 (The Entropy Function).

For a probability function w on Ln let the indexed entropy of w be

Hn(w) =
∏

α∈Ln

w(α)−w(α)

Note that this is the exponent of the entropy function as it is usually used

and derived elsewhere (for example in [24], Chapter 11) — we use this form of

the function purely for convenience with certain of the calculations performed in

this thesis. For the sake of conformity, we also define

hn(w) = −
∑

α∈Ln

w(α) lnw(α)

which we will also have some use for. Note that hn(w) = ln Hn(w), and since

most of our entropy calculations will be concerned with maximising entropy, and

specifically on which probability functions it is maximised, it will usually be

irrelevant which form of the function we use in a given case.

Definition 4.5 (Molecular Weight and Σ-minimality).

Suppose that Σ is a constraint set on Lk. The minimum n for which there is a

c-frame T on Ln which is consistent with Σ is called the molecular weight of

Σ and is denoted ξ(Σ).

Any c-frame T on a language Ln where n = ξ(Σ) is called Σ-minimal.
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Definition 4.6 (The CFEk Inference Process).

We give here a definition of an indexed inference process CFEk from the set of

adamant constraint sets on Lk to the set Dk of probability functions on Lk.

Suppose Σ is an adamant constraint set on Lk. Let the Σ-minimal c-frames

which are consistent with Σ be denoted T1, T2, . . . , TK .

For each Ti let wi be that w ∈ Vξ(Σ)(Σ, Ti) which maximises the entropy. That

is, set

wi = argmax
w∈Vξ(Σ)(Σ,Ti)

Hξ(Σ)(w)

Let HMAX = max
{
Hξ(Σ)(w1), Hξ(Σ)(w2), . . . , Hξ(Σ)(wk)

}
and then, finally we

can set

CFEk(Σ) =
{
w ↾ Lk

∣
∣ w = wi for some i = 1, . . . , K and Hξ(Σ)(wi) = HMAX

}

4.3 A Simple Characterisation of CFEk

We now move on to providing a characterisation of the CFEk process in an at-

tempt to justify its use. The general concept is similar to that of Jaynes’ justifica-

tion of Maximum Entropy given in Chapter 11 of [24] and, in a slightly different

form, explained in detail by Paris and Vencovská in [35]. Indeed, the justifica-

tion given here follows that given in [35] quite closely, and uses or adapts many

of the results given there. The argument is essentially a version of Boltzmann’s

derivation of the Maximum Entropy method as discussed in [22].

The idea is simple: we consider ‘examples’ distributed at random, which in

some sense satisfy a set of constraints. In [35] it is shown that when these ex-

amples are distributed according to the constraints, then as their number grows
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without limit the vast majority of them will be near the classical maximum en-

tropy solution. In our case we also impose the restriction that each example

corresponds to some c-frame, in a sense which we will make clear later. It is the

aim of this section to show that distributing the examples in this way leads to

the examples clustering around the (finite number of) CFEk solutions.

4.3.1 The Model

The concept we use to justify the CFEk inference process here is similar to that

used in [35] — in fact it is the same model, but with an extra condition imposed.

Essentially, the idea is that we consider an expert who has a great deal of expe-

rience of a certain field. This experience is modelled as a large set of examples

of the expert’s field, and various properties are identified with subsets of this

set. The expert’s knowledge, drawn from this experience, is modelled as a set of

approximate constraints on the relations between the properties. A typical such

approximation may be “About half the examples have property P .” The next

step in the process is to consider the many ways of assigning the subsets of the

example set to the properties in such a way as to conform with the constraints.

This is where we differ slightly from Paris and Vencovská in [35]. Whereas there is

no restriction on the way in which these subsets are assigned in their paper, here

we impose the restriction that each assignment must correspond to a c-frame.

There is a natural way to define a probability function from each assignment,

and it turns out that as the number of examples grows without bound then so

the vast majority of probability functions so defined become arbitrarily close to

the solutions of CFEk. The remainder of this section gives a more detailed ex-

planation of this process. It is in the nature of such abstract ideas that they can

seem quite vague at times, and so a detailed example is given to illustrate the
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method described.

Suppose we have an expert in some field whose knowledge we wish to model

mathematically — this may be for the purpose of making predictions, or perhaps

we simply wish to understand better how they themselves reason from their expe-

rience to conclusions. Our hypothetical agent could be expert in locating valuable

oil fields for example, a gambler betting on horse racing, or a pathologist studying

tumour slides. This last example is indeed the motivation of Paris and Vencovská

in [35]. Such an agent is a common starting point for the study and application

of intelligent reasoning and “artificial intelligence”, and predictive systems aris-

ing from their consideration are naturally known as expert systems. However, we

should note that the nature of the expert, whether an oil prospector, a stockbro-

ker or a pathologist, is not important to our argument here; what is important is

the way in which we model their knowledge and experience.

We make a connection between “experience” and “knowledge” here. The field

of epistemology is a fascinating area of philosophy4, but we shall not be overly

concerned with the status of our expert’s “knowledge” here. Instead,we simply

remark that we consider the expert to have a certain amount of information

on their field which has been acquired in a number of ways — they will have

read a certain amount of literature on their field of expertise; they may have

discussed certain phenomena with other experts; they will (ideally) have seen a

large number of examples of their field — from which they have formed their

opinions and beliefs. Hence experience seems a suitable term to describe the

many ways in which our expert has acquired his/her information, while we use

the term knowledge to describe the more general beliefs formed and distilled from

this experience. Note that this is not an attempt at defining what “knowledge”

4For a stimulating introduction to this field, [49] contains a selection of articles covering
many different aspects of the theory of knowledge.
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is in the strict epistemological sense, it is simply a convenient terminology for the

purposes of this thesis.

As remarked above, we will be following quite closely the model of experience

developed in [35]. Paris and Vencovská there illustrate the modelling of what they

term old knowledge by developing the example of a pathologist visually examining

lymphoma/epithelial tumour slides — it is worth noting that this arose from a

real attempt to create an expert system to study such slides. A different example

is developed in this thesis for two reasons: the first is simply to give the reader

a fresh example to consider alongside that set out in [35]. Secondly, I wish to

illustrate that this method of modelling experience is applicable to a wide range

of expert knowledge — there is nothing special about tumour slides per se in this

context5.

For these reasons, the example we give will be one of a gambler whose specific

field of expertise is horse racing. Far from being a trivial or frivolous example of

uncertain reasoning, this is in fact an ideal field for analysis of how experts come

to decisions based on their experience. One of the primary reasons for this is that

serious gamblers will have a huge body of experience. A professional gambler will

almost certainly have seen (and bet on) thousands, if not tens of thousands, of

races. That our expert has experienced a large number of examples of their field

is essential to the argument presented here.

Further, the field lends itself well to statistical analysis. There are a multitude

of daily, weekly and annual statistics published on the subject of horse racing,

ranging from the minimal daily form guides and results services published in

tabloid newspapers, through the more detailed analysis in specialist newspapers

such as The Racing Post to in-depth statistical analysis of results provided by

weightier tomes such as Timeform.

5Other authors have also modelled experience in a similar way; see for example [39] and [4]
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Finally, the whole point of gambling is that it is a question of forecasting

a result. As discussed in various places earlier, one of the major problems in

developing real-life expert systems is that of eliciting consistent information from

the experts that accurately reflects their state of knowledge and experience. This

problem is likely to be reduced in the case of a professional gambler — they are

likely to have a fairly shrewd idea of how to represent their knowledge in a useful

format. Indeed, the vast number of books touting “racing systems” available in

any moderately sized bookshop is testament to this fact. A superb and practical

discussion of “The Horse Racing Problem” is given in [31], especially the first and

second chapters. Many professional gamblers do indeed use such systems.

Of course, it may be argued that the fact that our expert is likely to have

given such thought as to how to represent their knowledge is likely to distort

such a representation. For example, an expert who has previously worked with a

particular system, such as one of the rule-based systems presented in [31], may

have forced the representation of his/her experience into a format consistent with

the rules of the system — and as such does not accurately reflect their experience.

This may introduce a distorting factor into the representation of their experience

that we can elicit from them, if they are “set in their ways” of representing knowl-

edge about the field of horse-racing. The fact that many professional gamblers do

indeed use such systems, and are likely to have considered or used a large number

of them over time lends weight to this criticism.

The counter-argument to this point is that the effect of using such a system,

presumably with a conscious or sub-conscious evaluation of the success of using

the system, will be present in the statements that our expert gives us when we

are forming our representation of their experience. That is, all of our expert’s

experience of their field, including such indirect experience as using “racing sys-

tems,” is contained with the statements that we elicit from them. Indeed, it can
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be argued that the fact that use of a previous system may have distorted the

statements given to us by our expert is not in fact a distortion, but is essential

to these statements containing all of the expert’s experience and knowledge. In

other words, this is the Watts Assumption that our knowledge base contains all

of our expert’s experience, not just some of it (See [34]).

Therefore we can be fairly certain that our expert has access to a great deal of

experience, both direct and indirect, about their chosen field, and is reasonably

likely to be able to present us with a useful representation of their knowledge.

There is one final criticism to be levelled at the choice of a horse racing expert

as a useful example of an “expert”, and it is an important one. That is simply

that most gamblers are not very good! Indeed, the very existence of bookmakers,

together with their substantial profits, illustrates this fact. What sense can be

found in an analysis of such inadequate reasoning? The answer is twofold: firstly,

a practical rebuttal is possible. While it is true that the vast majority of gamblers

do lose in the long run, this is partly as a result of the lop-sided books that

bookmakers keep. The average bookie keeps his book “over-round” to the tune

of 20–30% — that is, if horses were picked at random a loss of 30p could be

expected for every £1 staked. Compare this to roulette which operates at 3%

over-round [31]. This is an important point — bookmakers must increase their

margins to turn a profit as the average punter does better than simply picking

horses at random, so the gambler as expert is not such an inadequate choice as

it initially appears. Further, there are of course professional gamblers, who make

a living out of “beating the bookies,” turning that 30% loss into a profit. These

are the people we should consider an expert in this field.

The second answer to the ‘problem’ of gambler-as-expert is that the success

or otherwise of our expert is, to a certain extent, irrelevant. We are simply

trying to model how the expert might evaluate certain probabilities based on their
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experience. Whether the probabilities so evaluated are profitable to our gambler

is not the issue here — we are concerned with the effectiveness or otherwise of

our modelling of the expert’s reasoning, not the success of that reasoning.

Now, there are many factors involved in choosing a horse to bet on. Racing

systems vary in their complexity from those that rely on only a few factors such

as the Topspeed or Postmark speed ratings of a horse to those that take in a vast

array of factors such as the horse’s form, the jockey, the trainer, the weather,

the number of days since the horse ran, and so on and on. In this example we

shall consider only a few factors — we are not attempting to present a working

forecasting system, simply to illustrate how our expert’s knowledge can indeed

correspond to the mathematical analysis we will give in the next section. Of

course, being a gambler our expert is interested in which horse should be expected

to win a race under consideration. This is however, far too complicated a problem

to serve as a sufficiently illuminating example here. Therefore we will present

here an example of how a gambler might judge two important factors which will

influence their decision on whether to consider a particular horse as a valid betting

proposition, with the information gleaned from such a judgement used in a further

decision on whether to bet on a horse or not. These factors will be the horse’s

standard of fitness and whether it can be judged to be ‘trying.’ The first factor

is a fairly obvious choice — an unfit horse is unlikely to win a race. The second

factor however is slightly different. While it would seem obvious that every horse

will try to win every race, in reality this is not always the case. Trainers may

enter horses into races without the intention of winning for a variety of reasons:

to increase its fitness levels, to improve a young horse’s experience of racing, or

possibly even to lower the handicap for a later race which the trainer has set

his/her sights on winning.

Unlike many of the statistical data available to race followers such as form,
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handicap, distance, etc., these are two factors which are relatively difficult to

judge before a race has been run, but will usually be apparent to the experienced

gambler after the race. This makes these factors ideal for the purposes of this

illustration: the experience the expert has of past races will include which horses

were fit and/or trying, but this data is not apparent for the next race to be run.

They are however factors which our expert may well need to consider, and a

certain number of other factors, of which our expert can have knowledge, may

influence the expert’s decision on whether the horse is fit and/or trying. For

example, it seems likely that our expert may use a simple rule-based system to

rule out betting on horses which are either not fit or not trying. Unfortunately,

unlike the horse’s form, the information on these factors is not available in the

newspapers and so our expert must make a judgement based on what data is

available.

Let us assume that our expert has given us the following information:

Most horses which have run recently are fit (4.1a)

Top class trainers usually produce fit horses (4.1b)

where the expert has given us some indication of how to judge who counts as a

top class trainer in their opinion, perhaps a list of the ‘elite.’ The next statement

might be about the fact that ‘not trying’ does occur, but comparatively rarely:

The majority of horses try to win (4.1c)
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This is obviously not a huge amount of information to go on for our putative

system — most obviously the question of a whether or not a horse is trying

is still a bit vague. We have information about the circumstances which affect

whether a horse is trying or not. Suppose we ask our expert to clarify and receive

the following statement

For races classed as Group 1, the horse is almost certainly trying to win

(4.1d)

We now have a (small) set of statements from our expert about horse-racing.

We would like to rephrase these in a useful fashion. As discussed earlier, we are

taking the approach of considering a large set of examples, in this case the runners

that the gambler has previously seen or has knowledge of. Let this set be H . We

would like to attach some mathematical meaning to phrases like “most. . . are

. . . ”, “usually” and “almost certainly.” There are numerous ways of doing this,

for example the verbal-numerical scale proposed in [54]. However, for the sake of

simplicity let us ask our expert to simply give approximate frequencies to these

statements, based on the experience contained in H . We would be led to a set of

statements such as

Approximately 60% of horses which have run recently are fit (4.2a)

About 70% of horses produced by top trainers are fit (4.2b)

Around 75% of horses try to win (4.2c)

About 95% of horses try to win Group 1 races (4.2d)

Now we identify (unspecified) subsets of H with the different properties of
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runners described in the statements as follows. Let

The set of runners which were fit be F

The set of runners which ran recently be R

The set of runners which are trying be T

The set of runners with a top class trainer be C

The set of runners which ran in Group 1 races be G

Now, if for the time being we express “about” and “approximately” as ≈,

leaving the exact definition until later, we can express (4.2a)–(4.2d) as

|R ∩ F | ≈ .6|R| (4.3a)

|C ∩ F | ≈ .7|C| (4.3b)

|T | ≈ .75|H| (4.3c)

|G ∩ T | ≈ .95|G| (4.3d)

We now have a set of approximate constraints on the subsets of H which

correspond to our named properties. That is, however we assign the elements

of H to the various subsets F, R, T, C and G, this assignment must conform to

these constraints — with the additional constraint that the assignment must also

correspond to some c-frame, where the precise meaning of such a correspondence

is defined in the next section.

Notice that each assignment naturally defines a probability function on the

propositional language L = {F, R, T, C, G}. Suppose we have an assignment

A : L→P(H) which ‘satisfies’ our approximate constraints and also corresponds



CHAPTER 4. INFERENCE PROCESSES & POSITIVE FRAMES 75

to a c-frame. Each α ∈ At(L) will be of the form F ǫ1 ∧ Rǫ2 ∧ T ǫ3 ∧ Cǫ4 ∧ Gǫ5

where ǫi ∈ {0, 1}. Define a probability function a from A by

a(α) =
|A(F )ǫ1 ∩A(R)ǫ2 ∩A(T )ǫ3 ∩A(C)ǫ4 ∩ A(G)ǫ5|

|H|

where for any X ⊆ H we set X0 = H \X and X1 = X.

The next step is to consider all possible assignments of H . In general, for

large H there will be a vast number of such assignments. As we have no more

information about the assignments than that contained in the constraints, to-

gether with the additional condition that they should conform to c-frames, it

seems reasonable to insist that we should take the most ‘common’ assignments as

being representative of the expert’s knowledge. In other words, while we do not

know exactly which of the many possible assignments of H corresponds to our

expert’s actual experience, if there is a class of assignments which constitutes the

majority of such assignments, it seems reasonable to assume that our expert’s

experience is one of this class. We will show in the next section that majority

of the probability functions arising from these assignments will tend to cluster

around the CFE solutions to the constraints when H is sufficiently large.

4.3.2 A Mathematical Description

We first give a general outline of the mathematical argument presented in this

section. We begin with some preliminary technical definitions such as what we

take to be a constraint set, and the precise meaning that we give to ≈. We then

state our characterisation theorem, and follow it with a proof. To give a brief

description of the proof: first we restrict our attention to a single c-frame and

apply Theorems6 1 and 2 of [35] to show that assignments of examples which

6These theorems are stated in Appendix A as Theorem A.2 and Theorem A.3
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correspond to a particular c-frame cluster around the maximum entropy solution

on that c-frame. This is a fairly standard argument in maximum entropy but will

require some careful analysis of technical details to do with how we impose the

condition of “corresponding with a c-frame.”

We then present a number of Lemmas to illustrate that as the number of

examples grows without bound then the assignments of the examples will tend

to cluster around a finite set of c-frames. These will be shown to be those c-

frames whose probability functions (as selected in the first step) have greatest

entropy — in other words the CFEk solutions to the constraint set. Between

them these Lemmas essentially amount to a reworking of the proof of Theorem 1

of [35] to take into account the fact that we are dealing with both the restriction

of the argument given there to c-frames and the fact that in general we will

have multiple solutions in the case of CFEk, unlike the unique solution given by

classical maximum entropy.

Definition 4.7 (Examples and Properties).

We define an example set to be simply a non-empty set E of cardinality N .

Properties P1, . . . , Pk (k > 0) defined on E are subsets of E. We identify

¬Pi with E \ Pi

Pi ∧ Pj with Pi ∩ Pj

Let the set of example sets of size N with k properties be denoted EX(N, k).

From such an example set E we name the atomic properties of E as A1, A2, . . . , A2k

and are defined to be the sets of the form

P ǫ1
1 ∧ P ǫ2

2 ∧ · · · ∧ P ǫk

k
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where ǫi ∈ {0, 1}, P 0
i = ¬Pi and P 1

i = Pi. Let the set of atomic properties of an

example set E be denoted At(E).

From this definition it is easy to take the constraints given to us by our expert,

as in the derivation in the previous section, and present them in a cardinal form:

Definition 4.8 (Expert Constraint Sets).

Let E be an example set of size N with properties P1, . . . , Pk defining atomic

properties A1, . . . , A2k . An expert constraint set on E is a set of m constraints,

each of which is either of the form

2k
∑

i=1

xi,j|Ai| ≈ cjN (4.4)

or

2k
∑

i=1

yi,j|Ai| ≈ 0 (4.5)

where xi,j ∈ {0, 1}, yi,j ∈ R and cj ∈ (0, 1).

Define the set of expert constraint sets on example sets of size N with k

properties P1, . . . , Pk to be EL(N, k).

Note that since the A1, . . . , A2k form a partition of E we also have the (manda-

tory) constraint that
2k
∑

i=1

|Ai| = N (4.6)

and of course for each i we also have

|Ai| ≥ 0 (4.7)

Definition 4.9 (Approximation Relation).

Suppose For N and m as given we now define the relationship ≈ on integers
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X, Y ≤ N as

|X − Y | ≤ 2k
√

m ⇒ X ≈ Y (4.8)

and

X ≈ Y ⇒ |X − Y | ≤ ǫN (4.9)

for some ǫ > 0. Obviously these relationships require 2k
√

m ≤ ǫN .

A brief word on the ≈ relationship: the two relationships which specify ≈ are

indeed reasonable ones when N is large. (4.8) states that if X and Y differ by less

than a specified and constant absolute amount (i.e., 2k
√

m), then they should be

considered approximately equal — this makes sense if N is large compared to this

value. (4.9) states that if X and Y are approximately equal then they differ by less

than a specified proportion of N . Again this seems reasonable. Strictly speaking

≈ should be indexed by ǫ, N, k and m, but since this would make our notation

cumbersome and almost certainly illegible we shall restrict ourselves to using ≈

and commenting on its dependence on these parameters where appropriate.

Set zi = |Ai|
N

for each i = 1, 2, . . . , 2k. Then (4.4)-(4.7) become

2k
∑

i=1

xi,jziN ≈ cjN (4.10)

2k
∑

i=1

yi,jziN ≈ 0 (4.11)

2k
∑

i=1

ziN = N (4.12)

ziN ≥ 0 (4.13)
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Notice here that each vector Z = 〈z1, z2, . . . , z2k〉 where
∑2k

i=1 zi = N corre-

sponds to

N !
∏2k

i=1 zi!

assignments of the elements of E to the partition formed by A1, A2, . . . , A2k . The

following notation will aid in the clarifying the meaning of this thesis:

Notation: If X is a vector of size 2n whose entries are all non-negative integers

which sum to N , we define
[
N

X

]

=
N !

∏2n

i=1 Xi!

Denote by X
N

the probability function corresponding to the point in Dn defined

by the vector
〈

X1

N
, . . . ,

X2n

N

〉

Now, taking the limit form of ≈ as N →∞ and ǫ→ 0 we get

2k
∑

j=1

xi,jzj = ci (4.14)

2k
∑

j=1

yi,jzj = 0 (4.15)

2k
∑

j=1

zj = 1 (4.16)

zj ≥ 0 (4.17)

Recall that in Definition 4.6 the inference process CFEk is defined on con-

straint sets where each constraint has the form

2k
∑

j=1

ai,jw(αj) ≤ bi
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There are also conditions which arise from w being a probability function. Namely,

2k
∑

j=1

w(αj) = 1

w(αj) ≥ 0

Hence the limit form of the expert constraint set E expressed by (4.14)–(4.17)

defines a constraint set to which we can apply CFEk if we replace each equality

with a pair of inequalities. For convenience let us now denote the set of constraints

defined by (4.4)–(4.7) as Σ, the constraints defined by (4.10)–(4.13) as Σ′, and

the set defined by (4.14)–(4.17) as Σ′′.

To develop our model further, we need to introduce the concept of an assign-

ment of subsets corresponding to a c-frame. To that end we make the following

definition

Definition 4.10 (C-distribution).

Let E ∈ EX(N, n) and take a function f : At(E) → P(E). f is said to be a

c-distribution if there is some c-frame T on Ln such that for each i = 1, 2, . . . , 2n

αi ∈ At(Ln) \ At(T )⇒ f(Ai) = ∅

where αi runs through the atoms of Lk and Ai runs through the atomic properties

of E. We assume an ordering of At(Ln) and At(E) to be such that for each

j = 1, 2, . . . , n

αi |= pj ⇔ Ai ⊆ Pj

where Ln = {p1, p2, . . . , pn} and the properties of E are P1, P2, . . . , Pn. Denote the

set of all c-distributions on E as CD(E), and for an expert constraint set Σ denote

the set of all c-distributions on E which are consistent with Σ by CD(E, Σ).
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The idea of course is that a c-distribution corresponding to T is an assignment

of the examples in E in such a way that only assigns examples to the atoms of

T . This amounts to a constraint

∑

αj∈Ln\At(T )

zj = 0 (4.18)

Notice that this constraint is equally applicable to the expert constraints (4.10)–

(4.13) and to the limit constraints in Σ′′.

Each c-distribution also describes a probability function on Lk of course. We

define the probability function wf ∈ Dn by

wf(αi) =
|f(Ai)|

N

where the correspondence between αi and Ai is as described above. Intuitively,

a c-distribution corresponds to a c-frame iff its probability function is consistent

with that c-frame.

Now, the intuitive idea behind this characterisation is that the probability

functions derived from “most” c-distributions will be “close” to the solutions of

Σ′′ provided by CFEk. However, it is not necessarily the case there will be a

c-frame on Lk consistent with these constraints. To this end we need to enlarge

the language until there is a c-frame which is consistent with Σ′′. That is, we

need to enlarge the language to the size of the molecular weight of Σ′′, ξ(Σ′′) —

this will exist iff Σ is a consistent set of constraints, due to a result in [35] which

states that Σ′′ will be consistent iff Σ is. Then there will be a c-distribution which

is consistent with Σ.

Definition 4.11 (Expansions of constraint and example sets).
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Take an example set E ∈ EX(N, k). For n > k, the expansion of E to n prop-

erties is an example set En ∈ EX(N, n) which has the same set of examples and

properties P1, P2, . . . , Pk, Pk+1, . . . , Pn. The atomic properties of En correspond

to those of E as follows. Suppose A is an atomic property of E. Then

A =
⋃

B∈At(En),
B⊆A

B

We can define an expansion of expert constraint sets directly from the above.

For the expansion of Σ ∈ EL(N, k) to n properties is defined as Σn ∈ EL(N, n)

where each constraint is defined from those in Σ by replacing each A ∈ At(E)

by its expansion to At(En) as shown above. That is for every A ∈ At(E) each

occurrence of |A| in Σ is replaced in Σn by

∑

B∈At(En),
B⊆A

|B|

The relationship ≈ will also change for Σn — the condition (4.8) changes from

|X − Y | ≤ 2k
√

m ⇒ X ≈ Y

to

|X − Y | ≤ 2n
√

m ⇒ X ≈ Y

Finally, the expansion to n properties of the limit form of Σ is simply the

limit form of the expansion to n properties of Σ.

We are now ready to state the theorem characterising CFEk:

Theorem 4.1 (First Characterisation Theorem) Assume Σ ∈ EL(N, k)
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is a consistent expert constraint set on an example set E ∈ EX(N, k). Set n =

ξ(Σ′′), where Σ′′ is the limit form of Σ as described by (4.14)-(4.17), and let En,Σn

and Σ′′
n be the expansions to n properties of E, Σ and Σ′′ respectively. Then for

each μ, ν > 0 there exist N0 and ǫ > 0 such that for all N ≥ N0 and ≈ satisfying

(4.8) and (4.9) there is a finite set of probability functions ρ1, ρ2, . . . , ρt ∈ Dn for

which the ratio

|{f ∈ CD(En, Σn) | ‖wf − ρi‖ ≥ ν for all ρi}|
|CD(En, Σn)|

is at most μ.

Furthermore, the set of probability functions ρ1, ρ2, . . . , ρt is exactly the set

chosen by CFEn(Σ′′
n).

Notice that since n = ξ(Σ′′), when restricted to Lk, each probability function

ρi is a member of CFEk. Hence this theorem does indeed characterise CFEk as

defined in Definition 4.6.

To begin the proof we first utilise Theorem 1 of [35]. For each c-frame T on Ln

which is consistent with Σ′′
n define ΣT

n as being Σn together with the constraint:

∑

αj∈Ln\At(T )

|Aj| = 0 (4.19)

Notice then that any f ∈ CD(En, ΣT
n ) is consistent with T . Suppose T is the

set of all c-frames on Ln which are consistent with Σ′′
n. Now, applying Theorem

1 of [35] to ΣT
n we get the result that

Lemma 4.2 Suppose T is a c-frame on Ln which is consistent with Σn as

above.Then for each μ, ν > 0 there exists NT and ǫT such that for all N ≥ NT
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and ≈ satisfying (4.8) and (4.9) the ratio

∣
∣
∣

{

f ∈ CD(En, ΣT
n ) | ‖wf − ρT‖ ≥ ν

}∣
∣
∣

∣
∣CD(En, ΣT

n )
∣
∣

is at most μ/|T|, where ρT is the maximum entropy solution on the limit form of

ΣT
n .

Notice that the sets CD(En, ΣT
n ), where T ranges over T, form a partition of

CD(En, Σn). This gives us

∣
∣
{
f ∈ CD(En, Σn)

∣
∣ ‖wf − ρT‖ ≥ ν for every T ∈ T

}∣
∣

|CD(En, Σn)|

≤
∑

T∈T

∣
∣
∣

{

f ∈ CD(En, ΣT
n ) | ‖wf − ρT‖ ≥ ν

}∣
∣
∣

∑

T∈T

∣
∣CD(En, ΣT

n )
∣
∣

≤
∑

T∈T

∣
∣
∣

{

f ∈ CD(En, ΣT
n ) | ‖wf − ρT‖ ≥ ν

}∣
∣
∣

∣
∣CD(En, ΣT

n )
∣
∣

where the last step is by Lemma A.1. By Lemma 4.2 if N > max
{
NT

∣
∣ T ∈ T

}

and ≈ satisfies (4.8) and (4.9) for ǫ < min
{
ǫT

∣
∣ T ∈ T

}
then this is less than μ.

In other words, a weaker version of the First Characterisation Theorem fol-

lows immediately from Theorem 1 of [35] — namely that as N grows large, the

c-distributions consistent with Σn will tend to cluster around the maximum en-

tropy solutions of each c-frame consistent with Σn. However, we wish to prove

something slightly stronger. Our characterisation theorem states that as N grows

large, then certain of these c-frames will come to dominate, in the sense that more

c-distributions will be near them. The rest of this section is the proof that the

c-frames that do so dominate will be those selected by CFEk. First we define a

relationship that will be useful for this proof; that of a real number being “close
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to” a given integer.

Definition 4.12 (Closeness).

For the purposes of this proof, we define a relationship ∼ between the set of real

numbers R and the integers Z. For x ∈ R and n ∈ Z, we say that “x is close to

n”, denoted7 x ∼ n if

n = [x] or n = [x] + 1

where [x] denotes the smallest integer less than or equal to x.

We will require two Lemmas from the Proof of Theorem 1 in [35], namely

Lemmas 2 and 3 on pages 21–23. We restate them here, slightly changing some

notation:

Lemma 4.3 Let p = (p1, . . . , p2n), 0 ≤ pi ≤ 1 for all i, and Σ2n

i=1pi = 1. Let

d = min {pi | pi 
= 0} and N ≥ 2
d
. Suppose P = (P1, . . . , P2n) is a vector such

that for all i, Pi ∼ Npi, Pi = 0 whenever pi = 0 and
∑2n

i=1 Pi = N . Then

∣
∣
∣
∣
hn(p)− hn

(
P

N

)∣
∣
∣
∣
≤ 2n

N

∣
∣
∣
∣
ln

d

2

∣
∣
∣
∣
+

2

dN

Lemma 4.4 Let T = (T1, . . . , T2n) be a vector such that
∑2n

i=1 Ti = N , where

the Ti are non-negative integers. Let t = T
N

. Then

∣
∣
∣
∣
ln

[
N

T

]

−N. hn(t)

∣
∣
∣
∣
≤ 2n − 1

2
ln 2πN +

2n + 1

4

The following Lemma uses a method similar, yet not identical, to Lemma 4 of

[35] to estimate how many frames cluster around the maximum entropy solutions

7We may sometimes write n ∼ x to mean the same thing. The meaning is apparent in any
case - i.e., the real number is “close to” the integer.
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corresponding to different c-frames.

Lemma 4.5 Suppose that ρ is the maximum entropy solution corresponding

to a c-frame Tρ and σ is the same for Tσ, where both Tρ and Tσ are c-frames on

Ln. Suppose further that there is some κ > 0 such that hn(ρ) ≥ hn(σ) + κ.

Now let R and Q be vectors of size 2n where Ri, Qi are non-negative integers

and
2n
∑

i=1

Ri =

2n
∑

i=1

Qi = N

and suppose further that

Ri ∼ Nρi and Qi ∼ Nσi

Define dR and dQ to be

dR = min
Ri>0

(
Ri

N

)

and dQ = min
Qi>0

(
Qi

N

)

Finally, if

N ≥ 2

κ

{

(2n − 1) ln 2πN + 2n

∣
∣
∣
∣
ln

dR

2

∣
∣
∣
∣
+

2

dR
+ 2n

∣
∣
∣
∣
ln

dQ

2

∣
∣
∣
∣
+

2

dQ

}

Then

ln

[
N

R

]

− ln

[
N

Q

]

≥ 1

2
Nκ

Proof. Define f(R,Q) := ln
[
N
R

]
− ln

[
N
Q

]
. Then

f(R,Q) = ln

[
N

R

]

−N. hn

(
R

N

)

+ N. hn

(
R

N

)

−N. hn

(
Q

N

)

+ N. hn

(
Q

N

)

− ln

[
N

Q

]
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From this re-arrangement we can see that

f(R,Q) ≥ N.

(

hn

(
R

N

)

− hn

(
Q

N

))

−
∣
∣
∣
∣
ln

[
N

R

]

−N. hn

(
R

N

)∣
∣
∣
∣

−
∣
∣
∣
∣
ln

[
N

Q

]

−N. hn

(
Q

N

)∣
∣
∣
∣

≥ N.

(

hn

(
R

N

)

− hn

(
Q

N

))

−
(

(2n − 1) ln 2πN +
2n + 1

2

)

by Lemma 4.4. Now, we effect a further rearrangement of the terms in the

first brackets to give us

f(R,Q) ≥ N.

(

hn

(
R

N

)

− hn(ρ) + hn(ρ)

− hn(σ) + hn(σ)− hn

(
Q

N

))

−Δ

where

Δ = (2n − 1) ln 2πN +
2n + 1

2

Hence

f(R,Q) ≥ N. (hn(ρ)− hn(σ))

−N.

∣
∣
∣
∣
hn(ρ)− hn

(
R

N

)∣
∣
∣
∣

−N.

∣
∣
∣
∣
hn(σ)− hn

(
Q

N

)∣
∣
∣
∣
−Δ

≥ Nκ−
(

Δ + 2n

∣
∣
∣
∣
ln

dR

2

∣
∣
∣
∣
+ 2n

∣
∣
∣
∣
ln

dQ

2

∣
∣
∣
∣

)

by Lemma 4.3, and by definition of κ. Now, by our condition on the mini-

mum size of N we see that

f(R,Q) ≥ 1

2
Nκ
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as required.

Lemma 4.6 Take Σ ∈ CLk, and suppose δ, ν > 0. Let Tσ and Tρ be c-frames

on Ln, where n ≥ ξ(Σ), and let σ, ρ be the probability functions with maximum

entropy in Vn(Σ, Tσ) and Vn(Σ, Tρ) respectively. As in Lemma 4.5 suppose they

are such that hn(ρ) ≥ hn(σ) + κ for some κ > 0.

Now take some large integer N and let X range over all vectors of size 2n such

that Xi is a non-negative integer and
∑2n

i=1 Xi = N . Then if N ≥ N0, where N0

is such that

(2N0ν + 1)2n

exp

(

− 1

2
N0κ

)

≤ δ (∗)

and

N0 ≥
2n

ν2
(†)

then
∑{[

N
X

] ∣
∣ ||X

N
− σ|| < ν, X

N
∈ V(Σ, Tσ)

}

∑{[
N
X

] ∣
∣ ||X

N
− ρ|| < ν, X

N
∈ V(Σ, Tσ)

} < δ

Proof. First notice that for any N ≥ N0 the conditions (∗) and (†) still hold

with N replacing N0 throughout.

Now, there are less than (2Nν + 1)2n

vectors X such that ||X
N
− σ|| < ν.

Indeed, take some σi 
= 0. The range (σi −Nν, σi + Nν) contains at most

2Nν +1 integers. Hence there are at most (2Nν +1)2n

vectors X such that

for each 1 ≤ i ≤ 2n, X ∈ (σi −Nν, σi + Nν). These vectors will include at

least all those that satisfy ||X
N
− σ|| < ν.

There is also at least one vector X such that ||X
N
− ρ|| < ν since if a vector

X is such that Xi ∼ Nρi then by (†)

∣
∣
∣
∣

Xi

N
− ρi

∣
∣
∣
∣
≤ 1

N
≤ ν2

2n
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Clearly there is at least one vector X for which Xi ∼ N.ρi for each i, and

so for such an X we see that

∥
∥
∥
∥

X

N
− ρ

∥
∥
∥
∥
≤

√
√
√
√

2n
∑

i=1

ν2

2n
= ν

Clearly by choosing N large enough we can pick such a vector to be arbi-

trarily close to Nρ and hence X
N

will be in V(Σ, Tρ) as this set is closed and

convex. We choose one such vector and denote it R.

Now consider the value
[
N
X

]
for each of the vectors X in

{

X

∣
∣
∣
∣

∥
∥
∥
∥

X

N
− σ

∥
∥
∥
∥

< ν,
X

N
∈ V(Σ, Tσ)

}

Clearly, if X is such that Nσi ∼ Xi for each i then Lemma 4.5 holds and

we have
[
N

X

]

≤
[
N

R

]

exp

(

−1

2
Nκ

)

(‡)

Suppose however that X is such that Nσi 
∼ Xi for some i. There will be

some probability function τ ∈ V(Σ, Tσ) for which Nτi ∼ Xi for every i.

Moreover, since σ has maximum entropy on V(Σ, Tσ) then there is some κ1

for which hn(σ) ≥ hn(τ)+κ1. Now take S to be a vector such that Nσi ∼ Si

for each i. Then we can apply Lemma 4.5 again to X and S to get

[
N

X

]

≤
[
N

S

]

exp

(

−1

2
Nκ1

)

Together with (‡) this gives us

[
N

X

]

≤
[
N

R

]

exp

(

−1

2
N(κ + κ1)

)
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and so we see that (‡) holds for all vectors X in

{

X

∣
∣
∣
∣

∥
∥
∥
∥

X

N
− σ

∥
∥
∥
∥

< ν,
X

N
∈ V(Σ, Tσ)

}

Hence the ratio

∑{[
N
X

] ∣
∣ ||X

N
− σ|| < ν, X

N
∈ V(Σ, Tσ)

}

∑{[
N
X

] ∣
∣ ||X

N
− ρ|| < ν, X

N
∈ V(Σ, Tσ)

}

is at most

(2Nν + 1)2n exp
(
−1

2
Nκ

) [
N
R

]

[
N
R

]

which by condition (∗) is at most δ, as required.

We are now ready to finish the proof of Theorem 4.1:

Proof of Theorem 4.1. Recall from the discussion of Lemma 4.2 that for

each c-frame T on Ln which is consistent with Σ′′
n there is a probability

function ρT which has the maximum entropy on V(Σ′′
n, T ). Let T denote

the set of all c-frames on Ln which are consistent with Σ′′
n. Then let S be

that subset of T where the entropy of the probability function associated

with each c-frame in S is the maximum possible. In other words, define

S =

{

T ∈ T

∣
∣
∣
∣

Hn(ρT ) = max
T∈T

Hn(ρT )

}

Then S is the set of c-frames whose corresponding probability functions

form the set CFEn(Σ′′
n).

Now, we are interested in the ratio

∣
∣
{
f ∈ CD(En, Σn)

∣
∣ ‖wf − ρT‖ ≥ ν for all T ∈ S

}∣
∣

|CD(En, Σn)| (4.20)
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To calculate (4.20) we count how many c-distributions have associated prob-

ability functions which are close to the ρT ’s first. Indeed, if we first set set,

for each S ∈ T , rS to be such that

∣
∣
∣

{

f ∈ CD(En, ΣS
n)

∣
∣ ‖wf − ρT‖ < ν for some T ∈ T

}∣
∣
∣

= rS

∣
∣
∣

{

f ∈ CD(En, ΣS
n) | ‖wf − ρS‖ < ν

}∣
∣
∣ (4.21)

then we can split the set of all c-distributions according to which c-frame

they correspond to:

∣
∣
{
f ∈ CD(En, Σn)

∣
∣ ‖wf − ρT‖ < ν for some T ∈ T

}∣
∣

=
∑

S∈T

rS

∣
∣
∣

{

f ∈ CD(En, ΣS
n) | ‖wf − ρS‖ < ν

}∣
∣
∣

=
∑

S∈S

rS

∣
∣
∣

{

f ∈ CD(En, ΣS
n) | ‖wf − ρS‖ < ν

}∣
∣
∣

+
∑

S∈T \S

rS

∣
∣
∣

{

f ∈ CD(En, ΣS
n) | ‖wf − ρS‖ < ν

}∣
∣
∣ (4.22)

Now, as we discussed earlier, for each probability function

wf = 〈w1, w2, . . . , w2n〉

there are
[
N
F

]
distributions f ∈ CD(En, ΣS

n) s.t. wf = F
N

, where

F =

〈 |f(A1)|
N

,
|f(A2)|

N
, . . . ,

|f(A2n)|
N

〉

where A1, A2, . . . , A2n are the atomic properties of En. Then, setting

X =

{

X ∈ Z2n

∣
∣
∣
∣
∣

2n
∑

i=1

xi = N, xi ≥ 0

}
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we see that (4.22) becomes

=
∑

S∈S

rS

∑

X∈X

∣
∣
∣
∣

{[
N

X

] ∣
∣
∣
∣

∥
∥
∥
∥

X

N
− ρS

∥
∥
∥
∥

< ν,
X

N
∈ V(Σ′′

n, S)

}∣
∣
∣
∣

+
∑

S∈T \S

rS

∑

X∈X

∣
∣
∣
∣

{[
N

X

] ∣
∣
∣
∣

∥
∥
∥
∥

X

N
− ρS

∥
∥
∥
∥

< ν,
X

N
∈ V(Σ′′

n, S)

}∣
∣
∣
∣

(4.23)

Since for each pair S ∈ S and T ∈ S it is the case that Hn(ρS) > Hn(ρT ),

then by Lemma 4.6 for any δT > 0 and sufficiently large N we have

∑{[
N
X

] ∣
∣ ||X

N
− ρT || < ν, X

N
∈ V(Σ, T )

}

∑{[
N
X

] ∣
∣ ||X

N
− ρS|| < ν, X

N
∈ V(Σ, S)

} < δT

Let R be that c-frame in S for which

rR ×
∑

X∈X

{[
N

X

] ∣
∣
∣
∣
||X
N
− ρR|| < ν,

X

N
∈ V(Σ, R)

}

is minimal. Now, given δ > 0, for each T ∈ T \S choose δT such that

δT = δ
rR

rT

.
|S |
|T \S |
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Then for sufficiently large N we see that

∑

S∈T \S

rS

∑

X∈X

∣
∣
∣
∣

{[
N

X

] ∣
∣
∣
∣

∥
∥
∥
∥

X

N
− ρS

∥
∥
∥
∥

< ν,
X

N
∈ V(Σ′′

n, S)

}∣
∣
∣
∣

<
∑

S∈T \S

rSδS

∑

X∈X

∣
∣
∣
∣

{[
N

X

] ∣
∣
∣
∣

∥
∥
∥
∥

X

N
− ρR

∥
∥
∥
∥

< ν,
X

N
∈ V(Σ′′

n, R)

}∣
∣
∣
∣

<
∑

S∈T \S

rR

|S |
|T \S |δ

∑

X∈X

∣
∣
∣
∣

{[
N

X

] ∣
∣
∣
∣

∥
∥
∥
∥

X

N
− ρR

∥
∥
∥
∥

< ν,
X

N
∈ V(Σ′′

n, R)

}∣
∣
∣
∣

=
∑

S∈S

rRδ
∑

X∈X

∣
∣
∣
∣

{[
N

X

] ∣
∣
∣
∣

∥
∥
∥
∥

X

N
− ρR

∥
∥
∥
∥

< ν,
X

N
∈ V(Σ′′

n, R)

}∣
∣
∣
∣

<δ
∑

S∈S

rS

∑

X∈X

∣
∣
∣
∣

{[
N

X

] ∣
∣
∣
∣

∥
∥
∥
∥

X

N
− ρS

∥
∥
∥
∥

< ν,
X

N
∈ V(Σ′′

n, S)

}∣
∣
∣
∣

Hence (4.23) is less than

(
1 + δ

) ∑

S∈S

rS

∑

X∈X

∣
∣
∣
∣

{[
N

X

] ∣
∣
∣
∣

∥
∥
∥
∥

X

N
− ρS

∥
∥
∥
∥

< ν,
X

N
∈ V(Σ′′

n, S)

}∣
∣
∣
∣

We now replace vectors X with c-distributions to see that this is equal to

(
1 + δ

) ∑

S∈S

rS

∣
∣
∣

{

f ∈ CD(En, ΣS
n) | ‖wf − ρS‖ < ν

}∣
∣
∣ (4.24)

Now, for each S ∈ S set tS and sS to be such that

∣
∣
∣

{

f ∈ CD(En, ΣS
n)

∣
∣ ‖wf − ρT‖ < ν for some T ∈ S

}∣
∣
∣

= tS

∣
∣
∣

{

f ∈ CD(En, ΣS
n) | ‖wf − ρS‖ < ν

}∣
∣
∣
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and

∣
∣
∣

{

f ∈ CD(En, ΣS
n)

∣
∣ ‖wf − ρT‖ < ν for some T ∈ T \S

}∣
∣
∣

= sS

∣
∣
∣

{

f ∈ CD(En, ΣS
n) | ‖wf − ρS‖ < ν

}∣
∣
∣

then rS = tS+sS. Of course, by Lemma 4.2, given any ǫS > 0 for sufficiently

large N we have

sS < ǫS.tS

So (4.24) is less than

(
1 + δ

) ∑

S∈S

(1 + ǫS)tS

∣
∣
∣

{

f ∈ CD(En, ΣS
n) | ‖wf − ρS‖ < ν

}∣
∣
∣

=
(
1 + δ

) ∑

S∈S

(1 + ǫS)
∣
∣
∣

{

f ∈ CD(En, ΣS
n)

∣
∣ ‖wf − ρT‖ < ν for some T ∈ S

}∣
∣
∣

Given some ǫ > 0, then by appropriate choices of ǫS this is then less than

(
1 + δ

)(
1 + ǫ

) ∣
∣
{
f ∈ CD(En, Σn)

∣
∣ ‖wf − ρT‖ < ν for some T ∈ S

}∣
∣

Hence, referring back to (4.22), we see that given ǫ, δ > 0, for sufficiently

large N the following holds:

∣
∣
{
f ∈ CD(En, Σn)

∣
∣ ‖wf − ρT‖ < ν for some T ∈ T

}∣
∣

<
(
1 + δ

)(
1 + ǫ

) ∣
∣
{
f ∈ CD(En, Σn)

∣
∣ ‖wf − ρT‖ < ν for some T ∈ S

}∣
∣

(4.25)

It will be more convenient for us to re-write (4.25) in the following way.
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Given any Δ > 0 then for sufficiently large N we have

∣
∣
{
f ∈ CD(En, Σn)

∣
∣ ‖wf − ρT‖ < ν for some T ∈ S

}∣
∣

>
(
1−Δ

) ∣
∣
{
f ∈ CD(En, Σn)

∣
∣ ‖wf − ρT‖ < ν for some T ∈ T

}∣
∣ (4.26)

Returning now to (4.20), and setting Γ = |CD(En, Σn)|,we can now calcu-

late that

∣
∣
{
f ∈ CD(En, Σn)

∣
∣ ‖wf − ρT‖ ≥ ν for all T ∈ S

}∣
∣

Γ

=
Γ−

∣
∣
{
f ∈ CD(En, Σn)

∣
∣ ‖wf − ρT‖ < ν for some T ∈ S

}∣
∣

Γ

<
Γ−

(
1−Δ

) ∣
∣
{
f ∈ CD(En, Σn)

∣
∣ ‖wf − ρT‖ < ν for some T ∈ T

}∣
∣

Γ

=
Γ−

(
1−Δ

) ∣
∣
{
f ∈ CD(En, Σn)

∣
∣ ‖wf − ρT‖ < ν for some T ∈ T

}∣
∣

Γ

=
Γ−

(
1−Δ

)[

Γ−
∣
∣
{
f ∈ CD(En, Σn)

∣
∣ ‖wf − ρT‖ ≥ ν for all T ∈ T

}∣
∣

]

Γ

= Δ +
(
1−Δ

)
∣
∣
{
f ∈ CD(En, Σn)

∣
∣ ‖wf − ρT‖ ≥ ν for all T ∈ T

}∣
∣

Γ

Now, by the discussion after Lemma 4.2, we know that given any μ′ > 0,

for sufficiently large N the fraction in the above equation is less than μ′.

Hence (4.20) is less than

Δ + (1−Δ)μ′

Setting μ′ = μ−∆
1−∆

we then see that given μ, ν > 0, then for sufficiently large

N
∣
∣
{
f ∈ CD(En, Σn)

∣
∣ ‖wf − ρT‖ ≥ ν for all T ∈ S

}∣
∣

|CD(En, Σn)| < μ

This completes the proof of the First Characterisation Theorem.
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4.3.3 Analysis

We have provided here a proof that there is some “intuitive” justification for the

adoption of CFEk as an inference process. The First Characterisation Theorem

states that as the size of our example sets grow without bound, an arbitrarily large

proportion of them will produce probability functions arbitrarily close to those

given by CFEk on the same constraints. Our motivation for such a characterisa-

tion was discussed in terms of an “expert gambler” in Section 4.3.1. Theorem 4.1

re-phrased in this terminology essentially says that if our expert’s experience in-

cludes enough examples, then we should expect with probability arbitrarily close

to 1 that that experience gives rise to a probability function arbitrarily close to

a CFEk solution of the knowledge embodied by the constraints given to us by

our expert. In other words, under the assumption that the expert’s knowledge

is structured as a c-frame and that they have “enough experience,” we should

expect their conclusions to agree closely with (one of) the solutions provided by

CFEk.

While this seems to be an agreeable conclusion to reach, there are certain

criticisms that can be made of this model of the reasoning process. While there

are other important arguments to be made in criticism of this formulation, we

save those until later. Instead we focus on one criticism here: namely, why do

we only investigate the smallest possible c-frames, the Σ-minimal c-frame? It

might be argued that to restrict our attention solely to those c-frames is simply

an ad hoc constraint, and given the definition of CFEk it is hardly surprising that

the probability functions arising from this model correspond to these c-frames.

Surely there might be larger c-frames which are more suited (in the sense of being

more “common”) to a given c-frame?

In answer to this criticism, we could draw upon Ockham’s Razor, which states



CHAPTER 4. INFERENCE PROCESSES & POSITIVE FRAMES 97

(see [29]):

Pluralitas non est ponenda sine neccesitate

which is translated as

“entities should not be multiplied unnecessarily”

In the context of this discussion, the fallacy of needless multiplication of entities

can be invoked to ascribe a reason to restricting ourselves to the smallest c-frames.

The smallest possible c-frames, the Σ-minimal c-frame, require the addition of

the fewest possible propositional variables. That is, we have “multiplied entities”

only up to the point where it becomes possible to apply our model of reasoning.

However, as we shall see in the next section, such a defence is unnecessary.

If we accept the argument that it is unjustifiable to restrict our attention to the

smallest c-frames, the natural approach now is to ask what happens when we

consider all c-frames.

4.4 A Further Characterisation of CFEk

We respond to the criticism that it is unjustified to restrict attention to the

smallest c-frames here by giving another characterisation theorem for CFEk. The

concept here is that we allow the size of the c-frames under consideration to

grow without bound. This allows us to consider assignments of the example sets

which correspond to all possible c-frames, no matter their size. The theorem is

as follows:

Theorem 4.7 (Second Characterisation Theorem) Let Σ ∈ EL(N, k) be

a consistent expert constraint set on an example set E ∈ EX(N, k), such that the

limit form Σ′′ of Σ is adamant. Set n = ξ(Σ′′) and take M ≫ n. Let EM ,ΣM
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and Σ′′
M be the expansions to M properties of E, Σ and Σ′′ respectively. Then

for each μ, ν > 0 there exist N0, M0 and ǫ > 0 such that for all N ≥ N0,

M ≥ M0 and ≈ satisfying (4.8) and (4.9) there is a finite set of probability

functions ρ1, ρ2, . . . , ρt ∈ Dn for which the ratio

∣
∣
{
f ∈ CD(EM , ΣM)

∣
∣
∥
∥w′

f − ρi

∥
∥ ≥ ν for all ρi

}∣
∣

|CD(EM , ΣM )|

where w′
f = wf ↾ Ln, is at most μ.

Furthermore, the set of probability functions ρ1, ρ2, . . . , ρt is exactly the set

chosen by CFEn(Σ′′
n).

In other words, if we insist upon considering all c-frames consistent with Σ

of whatever size, then as we let the c-frames grow there comes a point where the

majority of c-distributions consistent with the c-frames in question will determine

probability functions arbitrarily close to those selected by CFEk. Hence the

problem raised by the criticism of the simpler characterisation of CFEk described

at the end of the last section is averted.

The outline of the proof is as follows: we consider certain c-frames on LM

which are certain type of extension of those of minimal size to LM , which we call

“natural extensions”. We then show that these c-frames have the highest entropy

of all c-frames on LM : then by the arguments presented in the previous section,

namely Lemma 4.6 and the proof of Theorem 4.1, the majority of c-distributions

will be close to these natural extensions. Finally, we show that there are many

more c-frames corresponding to extensions of the c-frames of minimal size which

have highest entropy.

To begin the proof, we define what we mean by the extension of a c-frame to

a larger language:
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Definition 4.13 (Extension of a c-frame).

Suppose T is a c-frame on Ln. For M > n, T ∗ is an extension of T to LM iff:

1. T ∗ is a c-frame on LM ;

2. T ∗ |= T

3. For each q ∈ LM \ Ln, either:

(a) T ∗ |= q ↔ p for some p ∈ Ln, or;

(b) T ∗ |= q → α for some α ∈ At(T ).

The idea behind such a definition is of course that the extension of a c-frame T

has the same structure as T on Ln — the extension simply adds further structure

“below” the atoms of T , or makes elements of LM equivalent to Ln. In the course

of the argument to follow we will have occasion to count the number of atoms of

the extension which imply a given atom of the original c-frame. Hence, for an

extension T ∗ of T we define, for each α ∈ At(T )

kα =
∣
∣
{
β ∈ At(T ∗) | β |= α

}∣
∣

Consider now a c-frame T on Ln and a probability function w ∈ Dn consistent

with T , and an extension T ∗ to LM . With kα defined as above define the function

w∗ ∈ DM for each β ∈ At(T ∗) as

w∗(β) =
w(α)

kα

where α is that atom of T such that β |= α. Then by a simple maximum entropy

argument w∗ has the highest entropy of all probability functions in DM which are

consistent with T ∗ and whose restriction to Ln is w.
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We now use a constructive argument to show that given a c-frame and a

probability function on that c-frame, there is a certain type of extension whose

corresponding probability functions have the highest entropy.

Lemma 4.8 Let T be a c-frame on Ln and let w ∈ V(∅, T ). Let M ≫ n and let

TF , TG be extensions of T to LM . Define functions F, G : At(T )→ N by setting,

for each α ∈ At(T ),

F (α) = |
{
β ∈ At(TF ) | β |= α

}
|

G(α) = |
{
β ∈ At(TG) | β |= α

}
|

Define probability functions wF , wG by the following:

wF (α) =
wα

F (α)
for all α ∈ At(TF )

wG(α) =
wα

G(α)
for all α ∈ At(TG)

Suppose the following also holds:

1. There are distinct α, β ∈ At(T ) s.t.

(a) F (α) ≥ w(α).|At(TF )|+ 1

(b) F (β) ≤ w(β).|At(TF )| − 1

(c) G(α) = F (α)− 1

(d) G(β) = F (β) + 1

2. For all γ ∈ At(T ) \ {α, β}, F (γ) = G(γ).
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Then we have

HM(wG) > HM(wF )

Proof. For the purposes of this proof we will work with the log form of the

entropy function h.

hM(wF )− hM(wG) =
∑

γ∈At(TG)

w(γ) lnw(γ)−
∑

γ∈At(TF )

w(γ) lnw(γ)

=
∑

γ∈At(T )

w(γ)
(
ln

w(γ)

G(γ)
− ln

w(γ)

F (γ)

)

= w(α)(ln
w(α)

G(α)
− ln

w(α)

F (α)
) + w(β)(ln

w(β)

G(β)
− ln

w(β)

F (β)
)

since F (γ) = G(γ) for γ 
= α, β. So

hM(wF )− hM(wG) = w(α) ln
F (α)

G(α)
+ w(β) ln

F (β)

G(β)

= w(α) ln
F (α)

F (α)− 1
+ w(β) ln

F (β)

F (β) + 1

Now, by elementary calculus ln x ≤ x− 1, with equality iff x = 1. Hence

hM(wF )− hM(wG) < w(α)

(
F (α)

F (α)− 1
− 1

)

+ w(β)

(
F (β)

F (β) + 1
− 1

)

=
w(α)

F (α)− 1
− w(β)

F (β) + 1

≤ 1

|At(TF )|
− 1

|At(TF )|
= 0

Corollary The preceding Lemma clearly shows that given any extension TF to

LM of a c-frame T as above, there is some extension T ∗ such that:
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1. w(α).|At(T ∗)| ∼ kα, where

kα = |
{
β ∈ At(T ∗) | β |= α

}
|

, and;

2. With wF defined as in the Lemma, and with w∗ defined as

w∗(β) =
w(α)

kα

for all β ∈ At(T ∗) such that β |= α, then we have

HM(w∗) > HM(wF )

The proof of this statement is by repeated application of the Lemma.

We now take the intuition afforded by this Corollary and define a set of exten-

sions of a given c-frame which are “natural” with respect to a given probability

function, in the sense that the probability functions associated with them have

the highest entropy.

Definition 4.14 (Natural Extension of a c-frame).

Suppose T is a c-frame on Ln, and w ∈ Dn is a probability function consistent

with T . Now take T ∗ to be an extension of T to LM ⊇ Ln. Then T ∗ is called a

natural extension of T with respect to w if:

1. For every α ∈ At(T ∗) we have

w(α).|At(T ∗)| ∼ kα

where kα is as defined in Definition 4.13, and;
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2. For every p ∈ LM \ Ln, p is an atom of T ∗

3. For every distinct pair p, q ∈ Lk \ Ln T∗ |= p 
↔ q.

Lemma 4.9 Take Σ ∈ CLk adamant and n≫ ξ(Σ). Then of those w ∈ Vn(Σ)

which correspond to c-frames of size n, Hn(w) will be greatest for those w whose

corresponding c-frame is a natural extension of a Σ-minimal c-frame.

Proof. Suppose w ∈ Vn corresponds to some c-frame T ∗ on Ln. Then

Hn(w) =
∏

β∈At(T ∗)

w(β)−w(β)

=
∏

α∈At(T )

∏

β∈At(T ∗),
β|=α

w(β)−w(β)

where T is the smallest c-frame s.t. T ∗ is an extension of T to Ln. Suppose

|T | = t.

Now suppose that w(α) is fixed for each α ∈ At(T ). Then Hn(w) takes it

highest value when for each β ∈ At(T ∗) we have

w(β) =
w(α)

kα

where kα = |
{
β ∈ At(T ∗) | β |= α

}
|. Then

Hn(w) =
∏

α∈At(T )

(
w(α)

kα

)−w(α)

= Ht(w)×
∏

α∈At(T )

kw(α)
α

Subject to the condition
∑

kα = |At(T ∗)|, by the Corollary to Lemma 4.8
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this is greatest when

kα ∼ w(α).|At(T ∗)|

Now set δα to be

δα =
kα

w(α).|At(T ∗)|

By the definition of ∼ in Definition 4.12 it is easy to see that

δα ∈
(

1− 1

w(α).|At(T ∗)|
, 1 +

1

w(α).|At(T ∗)|

)

Hence

Hn(w) = Ht(w).|At(T ∗)|.
∏

α∈At(T )

(δα.w(α))w(α)

= |At(T ∗)|.
∏

α∈At(T )

δw(α)
α

Clearly, as |At(T ∗)| → ∞ then δα → 1, and so Hn(w) → |At(T ∗)|. Ob-

viously, |At(T ∗)| ≤ n − t, and so we require a sufficiently large n for this

convergence to occur. Given such a n, Hn(w) is largest when |At(T ∗)| is.

This clearly occurs when T ∗ is a natural extension8 of the smallest possible

c-frame — that is, a Σ-minimal c-frame.

The final part of the argument that we require here is to investigate how the

number of natural extensions of a given c-frame and probability function grows

with the size of the extensions. We will show in Lemma 4.10 that this number

depends crucially on the entropy of the selected probability function. We make

the following definition to allow us to count natural extensions which are “the

8Notice that it does not matter which probability function T ∗ is a natural extension with
respect to — as their size grows they will all tend to have the same entropy.
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same” with respect to a given c-frame.

Definition 4.15 (T -isomorphism).

Take a c-frame T on Ln and let T1 and T2 be extensions of T to LM for some

M > n. A bijection f : LM → LM is called a T-isomorphism between T1 and

T2 if it is constant on Ln and it preserves the structure of T1. More precisely, f

is such that

f(p) = p for any p ∈ Ln

and for any θ ∈ SLM

T1 |= θ⇔ T2 |= f(θ)

where the extension of f to SLM is defined in the usual inductive way, i.e. for

θ, φ ∈ SLM

• f(θ) = f(p) if θ = p ∈ LM

• f(¬θ) = ¬f(θ)

• f(θ ∧ φ) = f(θ) ∧ f(φ)

Lemma 4.10 Let T be a c-frame of size N and take w1, w2 ∈ Dn to be proba-

bility functions consistent with T s.t.

HN(w1) > HN(w2)

Now take M ≫ N . Let T1, T2 be natural extensions to LM of w1 and w2

respectively. Let Xi denote the number of c-frames which are T -isomorphic to Ti.

Then X1 > X2. Furthermore, as M →∞, X2

X1
→ 0.
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Proof.

Xi =
|At(Ti)|!
∏

α∈At(T )

ki
α!

where ki
α = |

{
β ∈ At(Ti) | β |= α

}
| for all α ∈ At(T ).

As T1 and T2 are chosen so as maximise the entropy of their corresponding

probability functions then

ki
α ∼ wi(α).|At(Ti)|

Hence by the Wallis Derivation (See Chapter 11 of [24]), as |At(Ti)| grows

without bound then

Xi →
(

HN(wi)
)|At(Ti)|

Now since T1 and T2 are natural extensions of the same c-frame T then

|At(T1)| = |At(T2)| = M − |At(T )|. Hence, as M →∞ we do indeed have

X1 > X2. And of course we also see that as M →∞ then

X2

X1
→

(
HN(w2)

HN(w1)

)M

→ 0

We are now ready to give a proof of Theorem 4.7. We give a heuristic proof

using the previous two Lemmas and Theorem 4.1 to outline the argument. The

majority of the work is done by the proof of Theorem 4.1 — here we characterise

which are the c-frames of maximum entropy as n grows.

Proof of Theorem 4.7. Consider the c-distributions onto Ln for a constraint

set Σ, where Σ′′ is adamant and n ≥ ξ(Σ′′). By Theorem 4.1, the majority

of the c-distributions will be arbitrarily close to the CFEn solutions of Σ′′.
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Now, Lemma 4.9 shows that for sufficiently large n these CFEn solutions of

Σ will correspond to c-frames which are natural extensions of the Sigma′′-

minimal c-frames. Hence, the majority of c-distributions will cluster around

natural extensions of the Σ-minimal c-frames.

Finally then, we count which natural extensions of the Σ′′-minimal c-frames

are most common. Lemma 4.10 shows that as n grows the natural exten-

sions which correspond to the probability functions on Lξ(Σ′′) of highest

entropy will come to dominate. Therefore, for sufficiently large n, then an

arbitrarily high proportion of the c-distributions consistent with Σn will be

arbitrarily close to natural extensions of the Σ′′-minimal c-frames. This

proves the theorem.

4.5 Discussion

We have given an example in this chapter of an inference process defined on

conjunctively closed frames, and presented two characterisations of its use as an

attempt at providing some justification for it. The first justification suffers from

the defect of being too simple in conception, although technically quite difficult.

The assumption that we should only consider c-distributions onto Σ-minimal c-

frames is far too limiting, and therefore it is no surprise that this characterisation

agrees with the CFE process.

However, the second characterisation is much more sound. In effect we con-

sider all possible c-frames which are consistent with our constraints, and show

that the Σ-minimal c-frames still dominate.

Unfortunately the second characterisation, and the CFE process itself, are

only defined on adamant constraint sets. While the first characterisation of CFE

will work equally well on ethereal constraint sets, we have already seen that this
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is not really an adequate justification for the adoption of CFE as an inference

process.

Now, it could be argued that adamant constraint sets do have a coherent

meaning in terms of our original motivation discussed in Chapter 2, specifically

the principles discussed in Section 2.2.4. If we are to consider CFE as a model

of the perceptual process then it seems reasonable to insist that we do in fact

perceive something - to receive no perceptions at all would correspond to total

sensory deprivation (or perhaps death!). In this case, it would seem reasonable

to insist that our inference process, based as it is upon direct perceptions and

observations of the world, should fail. For example, the extensive horse-racing

example considered in Section 4.3.1 does not describe an adamant constraint set,

and so this constraint set would not be susceptible to analysis by CFE9.

However, the condition that our constraint set is adamant still seems a rather

severe one. The condition that we must perceive something is surely not part

of our agent’s knowledge, but rather a constraint on the inference process itself.

It would be interesting therefore to investigate how the second characterisation

would behave on ethereal constraint sets.

Some preliminary investigations seem to indicate that, for ethereal constraint

sets defined on Ln, the process will assign the maximum possible probability

consistent with the constraints to

¬p1 ∧ ¬p2 ∧ · · · ∧ ¬pn

, and then behave as CFE on the other atoms. Unfortunately, we have no results

concerning this conjecture yet. Also, it seems likely that this process will fail one

9Note that this does not disqualify the horse-racing discussion as a useful example of expert
knowledge — only that the simplified knowledge presented in Section 4.3.1 is inadequate for
analysis by CFE. It still serves to illustrate the nature of this conception of expert knowledge.
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of our desiderata for inference processes, that of language invariance, which as

we will see in the next chapter does hold for CFE on adamant constraints.



Chapter 5

Properties of CFE

In this chapter we discuss some of the properties of CFE, and what they mean

for the process.

5.1 Language Invariance

Roughly speaking, an inference process is called language invariant if the addition

of extra propositional variables to the language of the constraint set, but without

the addition of any information about these new variables, does not change the

probabilities it assigns to the original.

In the terminology of Chapter 4, this can be formulated as the following:

Take Nk to be an indexed inference process, so that Nn is an inference

process on Ln. Suppose that Σ is a constraint set on Ln. Now take

m > n and let Σm be the expansion of Σ to Lm ⊃ Ln. Then the

family Nk is said to be language invariant if for all n and m we have

(w ↾ Ln) ∈ Nn(Σ)

110
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for each w ∈ Nm(Σm).

Language Invariance is an important property of inference processes. Surely

the probability one ascribes to a property should not be changed by considering

some additional properties, about which we know nothing? Fortunately, CFE is

language invariant:

Theorem 5.1 CFE is Language Invariant

Proof. We give a heuristic proof. First note that if Σ is adamant then there is

some subset {pi1 , pi2, . . . , pit} of Ln for which for every w ∈ Vn(Σ) we have

w(pi1 ∨ pi2 ∨ · · · ∨ pit) = 1 (5.1)

Now, since for every w′ ∈ solsm(Σm), we have w′ ↾ Ln ∈ Vn(Σ) then

w′(pi1 ∨ pi2 ∨ · · · ∨ pit) = 1

and so Σm is also adamant. Therefore it is meaningful to talk of CFE being

language invariant.

Now, for all n ≤ m ≤ ξ(()Σ) we have

CFEm(Σm) = CFEξ(Σ)(Σξ(Σ)) ↾ Lm

And so

CFEm(Σm) ↾ Ln =(CFEξ(Σ)(Σξ(Σ))) ↾ Ln

= CFEξ(Σξ(Σ)) ↾ Ln

= CFEn(Σ)
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Hence CFE is trivially language invariant in this case.

Now, suppose that m > ξ(Σ). By the preceding discussion we need only

show that

CFEm(Σm) ↾ Lξ(Σ) = CFEξ(Σ)(Σξ(Σ))

Consider then the Σm-minimal c-frames. Since m > ξ(Σ), we will have

ξ(Σm) = m. Then by the arguments presented for the proof of Theorem 4.7,

each Σm-minimal c-frame will be a natural extension of a Σ-minimal c-

frame. Furthermore, the probability function picked by CFEm on each of

these natural extensions will have maximum possible entropy and so, when

restricted to Lξ(Σ), it will be an element of CFEξ(Σ)(Σξ(Σ)). Finally, each

Σξ(Σ)-minimal c-frame will have some natural extension to Lm, and hence

we will indeed have

CFEm(Σm) ↾ Lξ(Σ) = CFEξ(Σ)(Σξ(Σ))

5.2 Continuity

There is an argument to be made (see e.g. [7], [30], [34]) for the claim that

inference processes should be in some sense “continuous” - that is, that small

changes in the information contained in the constraint sets should only lead to

small changes in the conclusion reached by the inference process, whatever “small”

may mean in this context. Indeed, some of the simpler metrics which can be

applied to measure closeness of constraint sets turn out to not quite capture the

correct notion. A convincing argument is given in [34] that the correct metric

to use is the Blaschke metric △ on the solution sets defined by the constraints,
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which is defined on convex subsets C, D of Dn by

△(C, D) = inf {δ | ∀	x ∈ C ∃	y ∈ D, |	x− 	y| ≤ δ & ∀	y ∈ D ∃	x ∈ C, |	x− 	y| ≤ δ}

where |	x−	y| is just the Euclidean distance between 	x and 	y. The Blaschke metric

essentially finds the smallest δ s.t. every point in C is at most δ from some point

in D and every point in D is at most δ from some point in C.

Then the continuity requirement as stated in [34] for an inference process N

on a language L is

If θ ∈ SL, K, Ki ∈ CL for i ∈ N and lim
i→∞
△(V L(K), V L(Ki)) = 0

then lim
i→∞

N(Ki)(θ) = N(K)(θ)

However, as before, we should need to reformulate this definition to take

into account that CFE may have multiple solutions. Such a reformulation is

unnecessary though, as we can show immediately that CFE is not continuous in

the above sense even when it has a single solution.

Let Σǫ =
{
w(p1 ∧ p2) ≥ ǫ, w(p1) ≥ 1

2
+ ǫ, w(p2) ≥ 1

2
+ ǫ

}
, where 0 < ǫ < 1

2
.

Then Σǫ is adamant and the molecular weight of Σǫ is ξ(Σǫ) = 3, with the unique

Σǫ-minimal c-frame being Tǫ represented diagrammatically as
p1 = p2 = p1 ∧ p2 p3

Now, also let Σ =
{
w(p1) ≥ 1

2
, w(p2) ≥ 1

2

}
. Then Σ is adamant with ξ(Σ) = 2

and the unique Σ-minimal c-frame is T , represented as
p1 p2
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Hence we can see that

CFE2(Σǫ) = 〈1
2

+ ǫ, 0, 0,
1

2
− ǫ〉

CFE2(Σ) = 〈0, 1

2
,
1

2
, 0〉

Now it is clear that the Σǫ-minimal and Σ-minimal c-frames are very differ-

ent. Indeed, Tǫ treats p1 and p2 as being equivalent, whereas T treats them as

contradictory. However, the constraint sets that generate them are quite similar

- it is easy to see that any solution of Σǫ is a solution of Σ. Conversely, for any

solution 	x ∈ D2 of Σ, there is a solution 	y of Σǫ s.t. |xi − yi| ≤ ǫ for i = 1, . . . , 4.

Hence, in the Blaschke metric,

△(V (Σ), V (Σǫ)) ≤ 2
√

ǫ (5.2)

Now, let ǫi = 1
i+2

for i = 1, 2, . . . . Then clearly

lim
i→∞
△(V (Σ), V (Σǫi

)) ≤ lim
i→∞

2√
i + 2

= 0

but

lim
i→∞

CFE2(Σǫi
) = 〈1

2
, 0, 0,

1

2
〉


= 〈0, 1

2
,
1

2
, 0〉 = CFE2(Σ)

Hence CFE does not satisfy this version of the continuity principle, in the

case of CFE having a single solution.
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5.3 Renaming

The renaming principle is stated in [34] for an inference process N on a language

L as

Suppose K1, K2 ∈ CL,

K1 =

{
J∑

j=1

ajiw(γj) = bi | i = 1, . . . , m

}

,

K1 =

{
J∑

j=1

ajiw(δj) = bi | i = 1, . . . , m

}

,

where γ1, . . . , γJ , δ1, . . . , δJ are permutations of the atoms α1, . . . , αJ

of L. Then

N(K1)(γj) = N(K2)(δj)

The justification given for this principle is that “the atoms of SL all share the

same status of being simple possible worlds and so the particular ordering of

α1, . . . , αJ of these atoms which we choose should not be significant. In a sense

this principle can be viewed as a restricted version of the principle of indifference.”

In light of this, we should not expect CFE to satisfy this principle, as of course

CFE is not indifferent to the atoms, and indeed some of the initial motivation for

studying this inference process was that we should not be indifferent to renaming,

especially with regard to negations. Now to show this by a concrete example, let

Σ be given by

{w(p1 ∧ p2 ∧ p3) + w(p1 ∧ p2 ∧ ¬p3) + w(¬p1 ∧ ¬p2 ∧ p3) = 1}

Then Σ is adamant, and has molecular weight 6 with unique minimal c-frame T

given by
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p5 = p1 ∧ p2 ∧ ¬p3

p1 = p2 = p1 ∧ p2

p4 = p1 ∧ p2 ∧ p3

p3

p6 = ¬p1 ∧ ¬p2 ∧ p3

Then, if w = CFE3(Σ) we see that

w(p1 ∧ p2 ∧ p3) = w(p1 ∧ p2 ∧ ¬p3) = w(¬p1 ∧ ¬p2 ∧ p3) =
1

3

and w(α) = 0 for all other α ∈ At(L3).

However, consider

Σ′ = {w(p1 ∧ p2 ∧ p3) + w(p1 ∧ p2 ∧ ¬p3) + w(¬p1 ∧ ¬p2¬ ∧ p3) = 1}

obtained from Σ by exchanging the atoms ¬p1 ∧ ¬p2 ∧ p3 and ¬p1 ∧ ¬p2 ∧ ¬p3.

Σ′ is ephemeral, and so CFE gives only the solution

w(p1) = w(p2) = w(p3) = 0

w(¬p1 ∧ ¬p2¬ ∧ p3) = 1

and so CFE clearly does not satisfy this version of renaming. However, CFE may

well satisfy some weaker versions of renaming. There are two particular versions

of renaming that would seem appropriate to CFE. Firstly, what would happen if

we were only to allow permutations of all the atoms except ¬p1∧¬p2∧· · ·∧¬pn?

It seems that this principle would clash strongly with the idea, embodied by the

Classification Principle, that propositions and their negations are fundamentally

different, and so CFE seems unlikely to satisfy it. Indeed, the following example

shows just that.
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Let the constraint sets be defined as

Σ1 =

{

w(p1 ∧ p2) + w(p1 ∧ ¬p2) =
1

2

}

and

Σ2 =

{

w(¬p1 ∧ p2) + w(p1 ∧ ¬p2) =
1

2

}

Then Σ2 is clearly obtained from Σ1 by the permutation of At(L2) which only

exchanges p1 ∧ p2 and ¬p1 ∧ p2.

Now, again ξ(Σ1) = 2 and the unique Σ1-minimal c-frame is
p1 p2

which has CFE2(Σ1) = 〈0, 1
2
, 1

2
, 0〉. However, ξ(Σ2) = 3 and the Σ2-minimal

c-frame is
p1 p2 p3

and for this we have CFE(Σ2) = 〈0, 1
4
, 1

4
, 1

2
〉, which is clearly not any permu-

tation of the CFE solution to Σ1, let alone the permutation which gives rise to

Σ2 from Σ1.

Now that even this weakened principle of renaming has been shown to be too

strong to be satisfied by CFE, we could consider the n! permutations that only

permute the pi’s - that is permutations of Ln, along with their natural extensions

to SLn. This principle would just amount to a relabelling of the elements of the

Σ-minimal c-frames, and so should give the “same” solutions. However, a formal

proof of this is yet to be produced.



Chapter 6

An Alternative Inference Process

In this chapter we present another inference process defined using the principles of

maximum entropy and the concept of normal 1-frames, which we will designate as

the frame entropy inference process. The motivation behind such an inference

process is discussed and a technical definition of the process is given. A theorem

is proved which characterises which normal 1-frames are the “most entropic.”

Unfortunately, we will see that these “L-minimal” 1-frames, as we term them,

are quite difficult to find — it is shown that there are only 3 such 1-frames in the

case where L consists of only a single propositional variable, but we have found

no characterisation of the L-minimal 1-frames for larger languages. However,

a number of avenues of attack on this problem are presented along with some

partial results which suggest that such a characterisation may be possible.

Finally we study how the inference process behaves in the case where L has

only one variable. The process behaves quite unpredictably — we discuss the

plausibility of eliciting any meaningful results from this inference process.

118
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6.1 Concept

The inference process we will be investigating here will be a restriction of max-

imum entropy to the logical structures called normal 1-frames defined in Chap-

ter 3. Due to the correspondence1 between 1-frames as logical structures and

simple undirected graphs with no isolated vertices, we shall tend to make no dis-

tinction between a normal 1-frame and its corresponding graph unless we need

to.

In this chapter we will be interested primarily in normal 1-frames. For the

sake of convenience it is to be understood that in this chapter when we refer to

1-frames we are actually referring to normal 1-frames.

The concept behind the inference process discussed here is very similar to that

of the CFE inference process defined in Chapter 4. For CFE we restricted the

maximum entropy process to consider only conjunctively closed positive frames.

Here we consider a slightly different approach. The intuition is to restrict max-

imum entropy to normal 1-frames, capturing as they do the a simplified version

of the Classification Principle, as discussed in Section 3.3. However, whereas in

Chapter 4 we took the inference process as being defined on the smallest possible

c-frames, in this chapter we shall look at an inference process which is defined on

all possible 1-frames

6.2 Definitions and Notation

As in Chapter 4, we will be interested in probability functions that correspond

to a certain type of logical structure — in this case normal 1-frames. If F is a

1-frame on a language L, and w is a probability function on a language L′ ⊇ L

1See Corollary 3.8
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then we say that w is consistent with F if for all α ∈ At(L′)

w(α) 
= 0⇒ α |= F

That is, w only assigns non-zero weight to atoms which are consistent with F .

For a constraint set Σ on L we defined the set of probability functions which

satisfy Σ by V L(Σ), and where L = Ln we write V n(Σ). Also, write V n(Σ, F ) for

the set of probability functions on Ln which satisfy Σ and are consistent with the

normal 1-frame F . As an extension of this notation we will also write Vn(Σ) for

the set of probability functions on Lm which satisfy Σ and which are consistent

with some 1-frame on Ln.

Definition 6.1.

We define a two-dimensional series of inference processes. Define the (n,k)−frame

entropy inference process as FEk
n : CLn →P0(D

n) where

FEk
n(Σ) = {w1, w2, . . . , wt} ⊆ V n(Σ)

s.t. each wi is the restriction to Ln of some w′ ∈ Vk(Σ) for which Hk(w
′) is

maximal (i.e. there is no w∗ ∈ Vk(Σ) for which Hk(w
∗) > Hk(w

′)).

Let FEn be the (infinite) sequence of inference processes

〈
FEn

n, FEn+1
n , FEn+2

n , . . .
〉

The motivation behind this definition is that we will examine how the terms

of the infinite sequence FEn behaves as k → ∞. To examine which 1-frames

will have the corresponding probability functions of maximum entropy, we now

define an ordering on them. It will later turn out that the number of maximal
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independent sets that the graph of a given 1-frame has is crucial in determining

which 1-frames are the “most entropic.”

6.3 Ordering of 1-frames

Definition 6.2 (Weight of a valuation).

For a 1-frame G containing a language L and a valuation v ∈ Val (L), define

Val (G)v = {w ∈ Val (G) | w ↾ L = v}

Define the weight of a valuation v ∈ Val (L) w.r.t. G to be

‖v‖G =
∣
∣Val (G)v

∣
∣

For reasons of clarity we also define the following. Suppose G is a 1-frame

which has a non-empty intersection with a language L. For a valuation v ∈ Val (L)

we define the weight of v w.r.t. G as the weight w.r.t. G of v restricted to L:

‖v‖G := ‖v ↾ L‖G

Definition 6.3 (L ordering).

We define an ordering ≺L on 1-frames containing a language L. For 1-frames F

and G containing L set F #L G iff |F | ≤ |G| and for all valuations v ∈ Val (L),

m
(
|G| − |F |

)
. ‖v‖F ≥ ‖v‖G

Finally, set F ≺L G iff F #L G and G 
#L F .

Recall from Section 3.3.2 that m (n) is the Moon & Moser function for the
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maximum number of maximal independent sets on a graph of order n, and is

given by m (1) = 1 and

m (n) =

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

3
n
3 if n ≡ 0 mod 3

4.3
n−4

3 if n ≡ 1 mod 3

2.3
n−2

3 if n ≡ 2 mod 3

for n ≥ 2. We also set m (0) = 1, since the empty graph has precisely one

maximal independent set, namely ∅..

Definition 6.4 (L-minimal 1-frame).

A 1-frame F containing L is called L-minimal if there is no 1-frame G ⊃ L s.t.

G ≺L F .

Definition 6.5 (Determination in G).

For a valuation v ∈ Val (L) and a 1-frame G ⊃ L, say v determines q ∈ G \ L

if every extension of v to G gives the same valuation to q. That is, for all

w1, w2 ∈ Val (G)v, we have w1(q) = w2(q).

Similarly, say v determines Q ⊆ G \ L if v determines q for all q ∈ Q.

Lemma 6.1 For any valuation v ∈ Val (L), if v determines Q = {q1, . . . , qr}

in a 1-frame G ⊃ L, and there is no q′ ∈ G \ (L ∪Q) which is determined by v,

then

‖v‖G ≤ m
(
|G| − (|L|+ r)

)

Proof. Suppose |G| = N and |L| = n. Every maximal independent set A of G

is of the form A = X ∪ Y , where X = A ∩ (L ∪ Q) and Y = A \X. Now,

consider the set V of maximal independent sets of G which correspond to
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v. That is,

V = {A ⊂ G | A is max. ind. in G and ∀p ∈ G v(p) = 1⇒ p ∈ A}

Note that |V| = ‖v‖G.

Now, for all A1, A2 ∈ V, since v determines Q we see that A1 ∩ (L ∪Q) =

A2 ∩ (L ∪Q). So, if we set

V ′ = {A \ (L ∪Q) | A ∈ V }

it is clear that |V ′| = |V|.

Let G′ = G \ (L ∪ Q). Since every A ∈ V ′ is independent w.r.t. G it must

also be independent w.r.t. G′.

Now, suppose A is not maximal independent w.r.t. G′. Then there is some

q′ ∈ G′ s.t. q′ is not connected in G to any p ∈ A, and which is connected

in G to some p ∈ L ∪ Q for which w(p) = 1 for all w ∈ Val (G)v. Hence,

w(q′) = 0 for all w ∈ Val (G)v: i.e., q′ is determined by v, contradictory to

assumption. So A is maximal independent w.r.t. G′.

Therefore |V ′| ≤ m
(
|G′|

)
= m

(
N − (n + r)

)
.

Proposition 6.2 If v ∈ Val (L) determines at least r elements of G \ L, then

‖v‖G ≤ m
(
|G| − (|L|+ r)

)

Proof. Suppose the r elements of G \ L determined by v are {q1, . . . , qr} = Q.

Let Q′ be the set of all elements of G \ L determined by v, and suppose

|Q′| = r′.
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Clearly Q ⊆ Q′ and r ≤ r′. So, by Lemma 6.1,

‖v‖G ≤ m
(
|G| − (|L|+ r′)

)
≤ m

(
|G| − (|L|+ r)

)

6.4 A Characterisation of FE

In this section we present a Theorem which describes which 1-frames the FE

process picks out as being “most entropic.” Roughly speaking, we see that those

1-frames which have the “most efficient” distribution of their valuations will be

the most entropic. First we make a definition:

Definition 6.6 (Connective Closure of a set in a 1-frame).

Suppose F is a normal 1-frame defined on Lk, and that X is some non-empty

subset of Lk. The connective closure of X in F is that set which is “reachable”

from some vertex of X. Formally, y ∈ Lk is in the connective closure of X in F

if there is some finite ordered set {z1, z2, . . . , zt} ⊆ Lk such that

1. z1 = y and zt ∈ X

2. zi and zi+1 are connected in the graph corresponding to F

We see that in the language of positive frames, the second condition of this

definition becomes “zi+1 is a witness for zi in F .”

This definition allows us to capture the natural intuition that those elements

of the language Lk which are “close” to the underlying language Ln in the in-

compatibility structure of F are more important than those which are not in

determining which 1-frames are most entropic. We are now able to state our

theorem.
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Theorem 6.3 Let Σ be a constraint set on Ln. The maximum frame entropy

of a probability function on Lk ⊃ Ln satisfying Σ occurs at a probability function

w which is consistent with a 1-frame F of the form

F ∼= C ∪Ml

where C is the connective closure of Ln in F and is Ln-minimal, and Ml is the

Moon-Moser graph of order l = k − |C|.

That is, FEk
n(Σ) will be the restriction to Ln of a probability function on Lk

consistent with such a frame.

Proof. Define FHk(Σ) to be the maximum entropy of a probability function on

Lk which satisfies Σ and is consistent with a 1-frame on Lk. We proceed as

follows:

Let F be some fixed 1-frame on Lk. Define FHk(Σ, F ) to be the maximum

entropy of a probability function on Lk which satisfies Σ and is consistent

with F . Then

FHk(Σ) = max {FHk(Σ, F ) | F is a 1-frame on Lk }
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Now, by the definition of entropy,

FHk(Σ, F ) = max
w∈V k(Σ,F )

⎧

⎨

⎩

∏

β∈At(F )

w(β)−w(β)

⎫

⎬

⎭

= max
w∈V k(Σ,F )

⎧

⎪⎪⎨

⎪⎪⎩

∏

α∈At(Ln)
	|=¬(α∧F )

∏

β∈At(F )
β|=α

w(β)−w(β)

⎫

⎪⎪⎬

⎪⎪⎭

= max
w∈V n(Σ)

⎧

⎪⎪⎨

⎪⎪⎩

∏

α∈At(Ln)
	|=¬(α∧F )

max

⎧

⎪⎪⎨

⎪⎪⎩

∏

β∈At(F )
β|=α

w′(β)−w′(β)

∣
∣
∣
∣
∣
∣
∣

w′ ∈ V n(Σ, F )

w′ ↾ Ln = w

⎫

⎪⎪⎬

⎪⎪⎭

⎫

⎪⎪⎬

⎪⎪⎭

= max
w∈V n(Σ)

⎧

⎪⎪⎨

⎪⎪⎩

∏

α∈At(Ln)
	|=¬(α∧F )

(
w(α)

‖vα‖F

)−w(α)

⎫

⎪⎪⎬

⎪⎪⎭

where this last step is by an argument similar to that of the Corollary to

Lemma 4.8.

Now, consider G $n F , |G| = k. Then ‖vα‖G ≤ ‖vα‖F for all α ∈ At(Ln).

Then, since any w ∈ Vn(Σ) consistent with G is also consistent with F , we

then have

F #n G⇒ FHk(Σ, F ) ≥ FHk(Σ, G)

Also,

F ≺n G⇒ FHk(Σ, F ) > FHk(Σ, G)

since there is some α ∈ At(Ln) s.t. ‖vα‖F > ‖vα‖G. Hence,

FHk(Σ) = max

⎧

⎪⎨

⎪⎩

FHk(Σ, F )

∣
∣
∣
∣
∣
∣
∣

F is a 1-frame on Lk for which


 ∃ a 1-frame G on Lk s.t. G ≺n F

⎫

⎪⎬

⎪⎭

These 1-frames are exactly those of the form F ∼= C ∪Ml.
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Now that we have shown that there is a characterisation of which 1-frames

are important to the FE process, we examine how we may go about finding such

frames. We begin with the one-dimensional case where Σ is defined on a language

containing only one propositional variable.

6.5 The L1-minimal frames

In this section, as we will be dealing exclusively with the language L1 of order 1,

for convenience we will write ≺ for ≺L1 . First we note that the complete graphs

of orders 2, 3 and 4 are L1-minimal:

Proposition 6.4 K2, K3 and K4 are L1-minimal, and are the only L1-minimal

frames of order 2, 3 or 4.

Proof. We take L1 = {p}, and assume of course that the Ki’s do actually

contain L1. For reasons of brevity write ‖1‖F for the weight of v w.r.t. F

when v(p) = 1. Similarly, write ‖0‖F for the weight of v w.r.t. F when

v(p) = 0.

1. K2

It is clear that K2 is L1-minimal since there is no smaller 1-frame

containing L1, and K2 is the only 1-frame of order 2. We have ‖1‖K2
=

‖0‖K2
= 1.

2. K3

We have ‖1‖K3
= 1 and ‖0‖K3

= 2. Hence K2 
≺ K3. Now, there are

only two other 1-frames of order 3 which contain L1, namely:
p

p

and

G1 G2



CHAPTER 6. AN ALTERNATIVE INFERENCE PROCESS 128

It is easy to see that for both G1 and G2 we have ‖1‖Gi
= ‖0‖Gi

= 1.

Hence, for both Gi’s we have K3 ≺ Gi, and so K3 is indeed L1-minimal,

and is the only such graph of order 3.

3. K4

We have ‖1‖K4
= 1 and ‖0‖K4

= 3, and hence K2 
≺ K4 and K3 
≺ K4.

Now, suppose there is some 1-frame G of order 4 containing L1 s.t.

G #1 K4. Hence ‖1‖G ≥ 1 and ‖0‖G ≥ 3.

Now, m (4) = 4 and so in fact ‖1‖G = 1 and ‖0‖G = 3. Then we have

|Val (G) | = 4 = m (4), and so G is the extremal Moon & Moser graph

of order 4 - that is, G = K4. So K4 is indeed L1-minimal.

Now take G to be any other graph G of order 4 which is L1-minimal.

Then K3 
≺ and so either a) ‖1‖G ≥ 2, or b) ‖0‖G ≥ 3.

a) First, if ‖1‖G = 3, then |Val (G) | = 4 = m (4), and so G is

the extremal Moon & Moser graph of order 4, K4, contradictory

to assumption. Hence ‖1‖G = 2. This gives ‖0‖G = 1, since

otherwise we again get G = K4. Now, K2 ≺ G, and so G is not

L1-minimal.

b) Obviously, ‖0‖G ≥ 3 gives |Val (G) | = 4 = m (4), and so again

G = K4.

So K4 is the only L1-minimal graph of order 4.

Next we see that any L1-minimal 1-frame must correspond to a connected

graph:

Proposition 6.5 If G ⊃ L1 = {p} is L1-minimal then G is connected.

Proof. Notice that G = H1∪H2, where p ∈ H1 and H1 is the maximal connected

subgraph of G which contains p — the connective closure of L1 in fact.
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Suppose G is disconnected: that is, H2 
= ∅. Then H1 ≺ G.

Indeed, for each v ∈ Val (L1),

‖v‖G = |Val (H2) |. ‖v‖H1

and

|Val (H2) | ≤ m
(
|G| − |H1|

)

⇒‖v‖H1
.m

(
|G| − |H1|

)
≥ ‖v‖G

⇒H1 # G

Since H1 # G and |H1| < |G| then H1 ≺ G, and so G is not L1-minimal.

The last step is to show that there is a maximum size on L1-minimal frames.

Theorem 6.6 If G ⊃ L1 = {p} is a 1-frame of order n ≥ 5 then G is not

L1-minimal.

Proof. Suppose G is L1-minimal. Then

K2 
≺ G ⇒ ‖0‖G ≥ m (n− 2) + 1 or ‖1‖G ≥ m (n− 2) + 1 (6.1)

K3 
≺ G ⇒ ‖0‖G ≥ 2.m (n− 3) + 1 or ‖1‖G ≥ m (n− 3) + 1 (6.2)

K4 
≺ G ⇒ ‖0‖G ≥ 3.m (n− 4) + 1 or ‖1‖G ≥ m (n− 4) + 1 (6.3)

Also, G is connected by Proposition 6.5 and so,

‖0‖G + ‖1‖G ≤ g (n) (6.4)

Now, the valuation v(p) = 1 determines at least one other element of G,

and so ‖1‖G ≤ m (n− 2) by Proposition 6.2. Hence, to satisfy (6.1) we
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must have

‖0‖G ≥ m (n− 2) + 1

Then (6.4) gives, by Lemma A.6,

‖1‖G ≤ g (n)− (m (n− 2) + 1)

< m (n− 3) + 1

Hence to satisfy (6.2), we have

‖0‖G ≥ 2.m (n− 3) + 1

Again, (6.4) gives, by Lemma A.6,

‖1‖G ≤ g (n)− (2.m (n− 3) + 1)

< m (n− 4) + 1

So to satisfy (6.3), we must now have

‖0‖G ≥ 3.m (n− 4) + 1

= m (n− 1) + 1 by Lemma A.4.

The valuation v which fixes v(p) = 0 does not necessarily determine any

elements of G\L1, and so by Proposition 6.2, we see that ‖0‖G ≤ m (n− 1),

which is a contradiction. Hence, G is not L1-minimal.

Theorem 6.7 The only L1-minimal 1-frames are K2, K3, and K4.

Proof. Immediate from Proposition 6.4 and Theorem 6.6.
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6.6 A Graph Theoretical approach to L-minimal

frames

In this section, we will describe an attempt to construct Ln-minimal frames by

means of successive graph operations.

Definition 6.7.

For a valuation v ∈ Val (F ) of a 1-frame F and a maximal independent set X

of F , we write X |= v iff for all p ∈ Ln we have p ∈ X ⇔ v(p) = 1. We say X

satisfies v in this case.

Definition 6.8 (Moon-Moser Operation on a Graph).

Suppose F is a graph containing adjacent vertices x, y. Denote by F (x; y) the

graph obtained by:

1. Deleting all edges (x, z) where z 
= y, and;

2. Adding edges (x, z) for all z ∈ NF (y) \ {x}.

This is called the Moon-Moser operation on F . It is fundamental to the argu-

ment presented in [32] where the graphs with the maximum number of maximal

independent sets are determined.

Definition 6.9 (Depth of a vertex).

Let F be a graph defined on a set Lk, and let X be a non-empty proper subset

of Lk. Suppose p ∈ Lk \ X. Then the depth of p from X is defined as being

the minimum length of a path in F from p to any vertex in X, and we denote it

d(p, X).

If there is no such path, then we set d(p, X) to be ∞.

The depth of a set of vertices X from a set of vertices Y is the minimal depth
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of any vertex x ∈ X from Y , i.e.

d(X, Y ) = min
x∈X

d(x, Y )

Our first result shows that we cannot destroy a valuation by removing vertices

at maximal depth from Ln.

Proposition 6.8 Suppose F ⊃ Ln is a 1-frame and there is some q ∈ F \ Ln

for which d(q, Ln) is maximal ≥ 2. Then, for any valuation v ∈ Val (Ln), if

‖v‖F > 0, then ‖v‖F\q > 0.

Proof. Take X to be a maximal independent set of F s.t. X |= v.

1. Suppose q 
∈ X. Then X \ {q} is a maximal independent set of F \ q

which satisfies v. Hence ‖v‖F\q > 0.

2. Suppose q ∈ X. Then Y = X \ {q} is an independent set of F \ q.

Suppose Y is not maximal such.

Then there is Z ⊆ NF (q) s.t. Z is independent in F and no vertex in

Z is adjacent to any in B. Pick a maximal such Z, and then Y ∪ Z

is maximal independent in F \ q. Also, d(q, Ln) ≥ 2 implies that

Z ∩ Ln = ∅. Hence Y ∪ Z |= v, and so ‖v‖F\q > 0.

A leaf of a graph is a vertex of degree 1. The next result shows that if a 1-frame

has a leaf at depth geq2 from Ln then conducting the Moon-Moser operation on

this vertex produces a graph which precedes the original in the ≺n ordering.

Proposition 6.9 Suppose a 1-frame F ⊃ Ln has a leaf x at depth ≥ 2, and

that x is connected to y ∈ F \ Ln. Then F (x; y) #n F .
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Proof. Take v ∈ V al(Ln). Let G = F (x; y) and set

AF = {X a max. ind. set of F | X |= v, y ∈ X }

BF = {X a max. ind. set of F | X |= v, y 
∈ X, NF (y) ∩X = {x}}

CF = {X a max. ind. set of F | X |= v, y 
∈ X, NF (y) ∩X \ {x} 
= ∅}

Similarly, set

AG = {X a max. ind. set of G | X |= v, y ∈ X }

BG = {X a max. ind. set of G | X |= v, x ∈ X }

CG = {X a max. ind. set of G | X |= v, x, y 
∈ X }

Then,

‖v‖F = |AF |+ |BF |+ |CF | (6.5)

‖v‖G = |AG|+ |BG|+ |CG| (6.6)

and so

1. If X ∈ AF then X ∈ AG, and vice-versa

⇒AF = AG

⇒|AF | = |AG|
(6.7)

2. If X ∈ BF then X ∈ BG, hence

|BF | ≤ |BG| (6.8)
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3. If X ∈ CF then X \ {x} ∈ CG, and so

|CF | ≤ |CG| (6.9)

Now, using equations (6.5) - (6.9), we see that

‖v‖F = |AF |+ |BF |+ |CF |

≤ |AG|+ |BG|+ |CG|

= ‖v‖G

Hence, G #n F as required.

Now, a clique of a graph is a subset of its vertices, each of which is connected

to every other vertex in the clique. A maximal clique is a clique which will cease

to be a clique if we add any other vertex of the graph. The following result shows

that certain types of clique can be removed from graphs to produce graphs which

precede the original in the ≺n ordering:

Proposition 6.10 Consider a 1-frame F ⊃ Ln with vertex set G ∪ H which

is the connective closure of Ln. Suppose that:

1. F has no leaves at depth ≥ 2;

2. H is a maximal clique of of F , and r = |H| ≥ 2;

3. There is no maximal clique of F at greater depth than H, and the depth of

H is ≥ 2, and;

4. There are exactly 1 ≤ k < r edges (xi, yi) s.t. xi ∈ G and yi ∈ H, and for

i 
= j, xi 
= xj and yi 
= yj.

Then the 1-frame GF induced by F on G has GF ≺n F .
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Proof. Pick v ∈ Val (Ln) s.t. ‖v‖F > 0. Now, let 	ǫ range over {0, 1}k and set:

A
ǫ
F = {X max. ind. set of F | X |= v, xi ∈ X ⇔ ǫi = 1 y1, . . . , yk 
∈ X }

BF = {X max. ind. set of F | X |= v, x1, . . . , xk, y1, . . . , yk 
∈ X }

Ci,
ǫ
F = {X max. ind. set of F | X |= v, yi ∈ X, NGF

(xi) ∩X = ∅}

Di,
ǫ
F = {X max. ind. set of F | X |= v, yi ∈ X, NGF

(xi) ∩X 
= ∅}

Then

‖v‖F =
∑


ǫ 	=
0

|A
ǫ
F |+ |BF |+

k∑

i=1

∑


ǫ

(
Ci,
ǫ

F + Di,
ǫ
F

)
(6.10)

Now also set

A
ǫ
G = {X max. ind. set of G | X |= v, xi ∈ X ⇔ ǫi = 1}

BG = {X max. ind. set of G | X |= v, x1, . . . , xk 
∈ X }

Then

‖v‖G =
∑


ǫ	=
0

|A
ǫ
G|+ |BG| (6.11)

We proceed by restricting maximal independent sets of F to maximal in-

dependent sets of G, and counting them according to their type:

1. Take X ∈ A
ǫ
F . Then X ∩ G ∈ A
ǫ

G. Further, for every Y ∈ A
ǫ
G, there

are r − k sets X ∈ A
ǫ
F s.t. X ∩G = Y . Hence,

|A
ǫ
F | = (r − k)|A
ǫ

G| (6.12)

2. Take X ∈ BF . Then X ∩ G ∈ BG. Also, for every Y ∈ BG, there are
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r − k sets X ∈ BF s.t. X ∩G = Y . Therefore,

|BF | = (r − k)|BG| (6.13)

3. Take X ∈ Ci,
ǫ
F .

A) Suppose ǫi = 1. Then X ⊃ {xi, yi}, contradicting the indepen-

dence of X. ∴

|Ci,
ǫ
F | = 0 (6.14)

B) Suppose ǫi = 0. Then (X∩G)∪{xi} ∈ A
ǫ+
ei

G , where 	ei is the vector

of length k with zeroes everywhere except in the ith position,

which is 1. Hence,

|Ci,
ǫ
F | ≤ |A
ǫ+
ei

G |

⇒
∑


ǫ,ǫi=0

|Ci,
ǫ
F | ≤

∑


ǫ,ǫi=1

|A
ǫ
G| (6.15)

4. Take X ∈ Di,
ǫ
F .

A) Suppose ǫi = 1. Then X ⊃ {xi, yi}, contradicting independence

of X. So,

|Di,
ǫ
F | = 0 (6.16)

B) Suppose ǫi = 0 and 	ǫ 
= 	0. Then X ∩G ∈ A
ǫ
G, and therefore

|Di,
ǫ
F | ≤ |A
ǫ

G| (6.17)

C) Suppose 	ǫ = 	0. Then X ∩ G ∈ BG and for all Y ∈ BG there is

exactly one X ∈ Di,
ǫ
F s.t. X ∩ G = Y , namely X = Y ∪ {yi}.
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Hence,

|Di,
0
F | = |BG| (6.18)

Substituting the above into (6.10), we see that, by (6.12) and (6.13),

‖v‖F = (r − k)

(

|BG|+
∑


ǫ	=
0

|A
ǫ
G|
)

+

k∑

i=1

∑


ǫ

(

|Ci,
ǫ
F |+ |Di,
ǫ

F |
)

Rearranging, and using (6.14), (6.16), (6.17) and (6.18),

‖v‖F ≤ r|BG|+
r − k

k

k∑

i=1

(
∑


ǫ 	=
0,
ǫi=0

|A
ǫ
G|+

∑


ǫ,ǫi=1

|A
ǫ
G|
)

+
k∑

i=1

[

|Ci,
0
F |+

∑


ǫ	=
0,ǫi=0

(
|Ci,
ǫ

F |+ |A
ǫ
G|
)
]

which gives

‖v‖F ≤ r|BG|+
r

k

( k∑

i=1

∑


ǫ 	=
0,
ǫi=0

|A
ǫ
G|
)

+
r − k

k

( k∑

i=1

∑


ǫ,ǫi=1

|A
ǫ
G|
)

+

k∑

i=1

∑

ǫi=0

|Ci,
ǫ
F |
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and so by (6.15),

‖v‖F ≤ r|BG|+
r

k

k∑

i=1

(
∑


ǫ	=
0,
ǫi=0

|A
ǫ
G|+

∑


ǫ,ǫi=1

|A
ǫ
G|
)

= r|BG|+
r

k

k∑

i=1

∑


ǫ 	=
0

|A
ǫ
G|

= r

(

|BG|+
∑


ǫ 	=
0

|A
ǫ
G|
)

= r ‖v‖GF

≤ m(r) ‖v‖GF

Then, since also |G| ≤ |F |, we have GF ≺n F as claimed.

Unfortunately, we have managed no further results in this vein. It may be

possible to use this technique to give a constructive process for finding Ln-minimal

graphs, but as yet we cannot see how. The results presented in this section lead

us to conjecture that the maximal depth of vertex in an L-minimal frame from L

is 1. A major step toward this conjecture this would be an answer to the following

question:

Conjecture If we remove maximal cliques at maximal depth from L, no matter

what the connections between the clique and the rest of the graph, does the resulting

graph precede the original in the ≺L ordering?

6.7 Toward a Logical Characterisation of Ln-minimal

frames

In this section, we turn away from the graph-theoretical characterisation of 1-

minimal frames, and consider the logical properties that L-minimal frames must
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have. It was hoped that this would lead to a characterisation of L-minimal frames

allowing us to find them.

Definition 6.10 (p-Negation).

For a normal 1-frame F , set NF for each p ∈ F to be the set of witnesses for

p ∈ F .

Now, for any p, q ∈ F let
∨

(NF (q) \ {p}) be denoted by Negp(q), called the

“p-negation of q.”

Note that if p 
∈ NF (q) then Negp(q) ≡ q. Also, if NF (q) = {p} then Negp(q) ≡

⊥.

First we state a result that allows us to make connections between the different

orderings on 1-frames:

Lemma 6.11 Suppose F, G are 1-frames with Ln+1 ⊆ |F | ⊆ |G|. Then

F ≺n+1 G⇒ F ≺n G

Proof. Relabel |F | and |G| so that |F | = Ln+k and |G| = Ln+l where 1 ≤ k ≤ l.

Since |F | ⊆ |G| and F ≺n+1 G, then

∀v ∈ Val (Ln+1) , ‖v‖F .m (l − k) ≥ ‖v‖G (6.19)

If l = k then ∃w ∈ Val (Ln+1) , ‖w‖F > ‖w‖G (6.20)

Consider α ∈ At(Ln). There are (unique) α+, α− ∈ At(Ln+1) s.t. α ≡ α+ ∨ α−,

namely α+ = α ∧ pn+1 and α− = α ∧ pn+1.

For any atom α of a language L, let vα be the valuation in Val (L) cor-

responding to α in the usual way. Then it is easy to see that for any
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α ∈ At(Ln) and any 1-frame H s.t. |H| ⊇ Ln+1,

‖vα‖H = ‖vα+‖H + ‖vα−‖H (6.21)

Now, (6.19) and (6.21) give, for all α ∈ At(Ln)

‖vα‖F .m (l − k) = ‖vα+‖F .m (l − k) + ‖vα−‖F .m (l − k)

≥ ‖vα+‖G + ‖vα−‖G

= ‖vα‖G

That is

∀v ∈ Val (Ln) , ‖v‖F .m (l − k) ≥ ‖v‖G (6.22)

So if l > k then the claim is proved.

Suppose now l = k and pick w ∈ Val (Ln+1) s.t. ‖w‖F > ‖w‖G, which

exists by (6.20). Then there is α ∈ At(Ln) s.t. either w = vα+ or w = vα− .

Suppose the former holds. Then by (6.19),(6.20) and (6.21)

‖vα‖F = ‖w‖F + ‖vα−‖F

> ‖w‖G + ‖vα−‖G

= ‖vα‖G

This argument clearly also holds if w = vα− . Hence if l = k

∃v ∈ Val (Ln) , ‖v‖F > ‖v‖G (6.23)

namely v = vα. Considering (6.22) and (6.23) together the claim is also

proved for the case l = k.
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By applying induction with the Lemma 6.11 we get the following immediate

corollary.

Corollary 6.12 Suppose F, G are 1-frames with Ln+1 ⊆ |F | ⊆ |G|. Then

F ≺n+k G⇒ F ≺n G

The following Lemma describes how the valuations of a 1-frame must change

if one of its incompatibilities is deleted:

Lemma 6.13 Let F be a 1-frame with distinct elements p, q ∈ |F | s.t. p ∈

NF (q). Suppose F ′ is obtained from F by deleting the edge {p, q} and R =

Val (F ) \ Val (F ′) is non-empty. Then for all v ∈ R

either v(p) = 1 and v(q) = v(Negp(q)) = 0

or v(q) = 1 and v(p) = v(Negq(p)) = 0

Proof. Consider v ∈ R. Let X be the maximal independent set of F corre-

sponding to v (i.e. X = {p ∈ |F | | v(p) = 1}). Now since v 
∈ R, X is not

maximal independent in F ′. But since X is still independent in F ′ there

must be x ∈ |F | \X s.t. X ∪ {x} is independent in G.

Let H be the graph formed from F by deleting the vertices p and q. Then

for any set A ⊆ |H| it is easy to see that the following are equivalent:

1. A is independent in H

2. A is independent in F

3. A is independent in G
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Suppose now that x 
∈ {p, q}. Then, since X ∪ {x} is independent in G

(X ∪ {x}) \ {p, q} is independent in G

⇒ (X ∪ {x}) \ {p, q} is independent in F (6.24)

Now suppose p ∈ X. Then x 
∈ NG(p) since otherwise X ∪ {x} would not

be independent in G. Similarly if q ∈ X then x 
∈ NG(q). Then, since also

x 
= p, q, (6.24) gives

X ∪ {x} is independent in F

which contradicts the maximality of X. Hence x ∈ {p, q}.

Suppose, wolog, that x = p. Then p 
∈ X

⇒ v(p) = 0 (6.25)

Also, since X ∪ {p} is independent in G we have NG(p) ∩X = ∅

⇒ v(Negq(p)) = 0 (6.26)

Next, since X is maximal independent in F and p 
∈ X, we must have

NF (p) ∩X 
= ∅
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But NF (p) = NG(p) ∪ {q}. So the above gives

{q} ∩X 
= ∅

⇒ q ∈ X

⇒ v(q) = 1 (6.27)

So (6.25),(6.26) and (6.27) give

v(q) = 1 and v(p) = v(Negq(p)) = 0

as required. Similarly, if x = q then

v(p) = 1 and v(q) = v(Negp(q)) = 0

We now present a series of lemmas stating various properties of Ln-minimal

1-frames discovered by considering various operations upon their graphs. These

results are used later to give some limited characterisation theorems.

Lemma 6.14 If F is an Ln-minimal 1-frame s.t. |F | = Ln ∪X (where Ln ∩

X = ∅) then

∀p, q ∈ |F |, F 
|= (p→ Negp(q)) ∧ (q → Negq(p))

Proof. First we relabel the elements of X so that |F | = Ln+k, where k = |X|.

Consider p, q ∈ |F |. If p 
∈ NF (q) then trivially F 
|= p → Negp(q), since

v(p) = v(q) = 1 is consistent with F . The same also holds trivially if

NF (q) = {p}, since then Negp(q) = ⊥, or if p = q since then Negp(p) = p.

Now consider the case where p 
= q, {p} ⊂ NF (q). Construct the 1-frame
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F ′ by deleting the edge {p, q} from F . Since F is Ln-minimal we have

F ′ 
≺n F . By Corollary 6.12 we then have F ′ 
≺n+k F . Hence at least one

of the following is true

∃w ∈ Val (Ln+k) , ‖w‖F > ‖w‖F ′ (6.28)

∀v ∈ Val (Ln+k) , ‖v‖F ≥ ‖v‖F ′ (6.29)

Suppose (6.29) holds. But there is a valuation v ∈ Val (F ′) for which

v(p) = v(q) = 1, and for any such valuation v 
∈ Val (F ). Hence for such a

v,

‖v‖F ′ > 0 = ‖v‖F

which contradicts (6.29). Hence (6.28) must hold.

So choose a valuation w that satisfies (6.28). Then by Lemma 6.13, either

w(p) = 1 and w(q) = w(Negp(q)) = 0

or

w(q) = 1 and w(p) = w(Negq(p)) = 0

Whichever of the above holds the claim is proved, since in each case w ∈

Val (F ) and

w
(
(p→ Negp(q)) ∧ (q → Negq(p))

)
= 0

Lemma 6.15 If F is an Ln-minimal 1-frame s.t. |F | = Ln ∪X (where Ln ∩

X = ∅) then for all p ∈ X there is some q ∈ NF (p) s.t.

F 
|= p→ Negp(q)
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Proof. Pick p ∈ X. Relabel X so that |F | = Ln+k and p = pn+k, where

k = |X|. We can assume that for all q ∈ NF (p), NF (q) \ {p} 
= ∅ since

otherwise Negp(q) ≡ ⊥ and so the claim follows trivially. Now obtain F ′

from F by deleting p - F ′ is a valid 1-frame since it’s corresponding graph

has no isolated vertices.

Now, since F is Ln-minimal, F ′ 
≺n F . Hence by Lemma 6.11, F ′ 
≺n+k−1 F .

Therefore

∃v ∈ Val (Ln+k−1) s.t. ‖v‖F > ‖v‖F ′

But since ‖v‖F ≤ 1, we see that ‖v‖F ′ = 0. Hence any such v must be of

the form

v(p′) = 0 ∀p′ ∈ NF (p)

v(Negp(q)) = 0 for some q ∈ NF (p)

and for any w ∈ Val (Ln+k) s.t. w ↾ Ln+k−1 = v we have w(p) = 1. Hence

for each p ∈ X there is q ∈ NF (p) s.t.

F 
|= p→ Negp(q)

We go on to extend this result to all vertices surrounding a vertex outside Ln.

Lemma 6.16 Let F be an Ln-minimal 1-frame s.t. |F | = Ln ∪ X where

Ln ∩X = ∅. Then for all p ∈ X, for all q ∈ NF (p)

F 
|= p→ Negp(q)

Proof. Consider p ∈ X and q ∈ NF (p). First notice that we can take, wolog,

NF (q)\{p} 
= ∅, since in this case Negp(q) ≡ ⊥ and so the claim is trivial for
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such a p and q. Also, if NF (p) = {q} then the result holds by Lemma 6.15.

Now, relabel X as Ln+k \ Ln so that p = pn+k, where k = |X|.

Suppose now that NF (p) \ {q} 
= ∅. Let F ′ be obtained from F by deleting

the edge {p, q}. Then since F ′ is Ln-minimal F ′ 
≺n F , and by Corollary 6.12

we then have F ′ 
≺n+k−1 F . That is, there is some v ∈ Val (Ln+k−1) s.t.

‖v‖F = 1 and ‖v‖F ′ = 0. Then for any such v, by Lemma 6.13, either

1. v(q) = 1 and v(Negq(p)) = 0, or

2. v(q) = 0, v(Negq(p)) = 0 and v(Negp(q)) = 0.

Now, if the first case holds then for the w ∈ Val (Ln+k) s.t. w ↾ Ln+k−1 = v

and w(p) = 1 we have w ∈ Val (F ′). Then ‖v‖F ′ = 1, which contradicts

‖v‖F ′ = 0. Hence the second case must hold.

So let w ∈ Val (LF ) be s.t. w ↾ Ln+k−1 = v. Then we must have w(p) = 1,

and so

F 
|= p→ Negp(q)

as required.

Lemma 6.17 Let F be an Ln-minimal 1-frame s.t. |F | = Ln ∪ X where

Ln ∩X = ∅. Then for all p ∈ X, for all p′ 
∈ NF (p) there is some q ∈ NF (p) s.t.

F 
|= (p ∧ p′)→ Negp(q)

Proof. 1. For p′ = p the claim is proved by Lemma 6.15.

2. Let p 
= p′. Relabel X as Ln+k \ Ln where k = |X| so that p = pn+k.

Form F ′ from F by adding the edge {p, p′}. Now since F is Ln-minimal

we have F ′ 
≺n F . Then by Corollary 6.12 we have F ′ 
≺n+k−1 F . That
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is, there is some v ∈ Val (Ln+k−1) s.t. ‖v‖F ′ = 0 and ‖v‖F = 1. Clearly

any such v must have

(a) v(p′) = 1

(b) v(Negp′(p)) = 0

(c) There is some q ∈ NF (p) s.t. v(Negp(q)) = 0

Notice that for any w ∈ Val (F ) s.t. w ↾ Ln+k−1 = v, we have w(p) = 1

and so w 
∈ Val (F ′). Hence

F 
|= (p ∧ p′)→ Negp(q)

as required.

We now give a logical characterisation of the Ln-minimal 1-frames of size n.

Theorem 6.18 If |F | = Ln then F is Ln-minimal iff for all p, q ∈ Ln

F 
|= (p→ Negp(q)) ∧ (q → Negq(p))

Proof.

⇒ Immediate from Lemma 6.14.

⇐ Suppose for all p, q that

F 
|= (p→ Negp(q)) ∧ (q → Negq(p))

Then for any p, q s.t. p ∈ NF (q) there is some v ∈ Val (F ) s.t. either

1. v(p) = 1 and v(q) = v(Negp(q)) = 0, or

2. v(q) = 1 and v(p) = v(Negq(p)) = 0.
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In either case removing the link {p, q} gives a 1-frame F ′ for which v

is not valid. Hence F ′ 
≺n F .

Also, if p 
∈ NF (q) then the valuation v(p) = v(q) = 1 is not consistent

with adding the link {p, q} and so any 1-frame F ′ so constructed has

F ′ 
≺n F .

Hence any 1-frame F ′ formed from F by adding or removing an edge

has F ′ 
≺n F , and hence F is Ln-minimal.

Corollary 6.19 For |F | = Ln, F is not Ln-minimal iff there is some p, q ∈ F

with p ∈ NF (q) and for which

F |= (Negp(q)↔ q) ∧ (Negq(p)↔ p)

Remark: The previous Theorem and Corollary can be interpreted as saying

that an Ln-minimal 1-frame on Ln has no “redundant” incompatibilities. Indeed,

the Corollary can be read as saying that a 1-frame is not Ln-minimal iff there

is some incompatibility p, q which may as well be removed - it will not affect

the 1-frame. That is, p never forces q to be false unless some other variable is

already forcing the same - and vice versa. In this sense, we may as well ignore

the incompatibility between p and q.

This is a reassuring interpretation of Ln-minimality - it is a concept which

selects as special those 1-frames which are most “efficient,” in terms of their

incompatibility structure.

We can also extend the previous result to 1-frames whose size is n + 1.

Theorem 6.20 If |F | = Ln+1 then F is Ln-minimal iff all of the following

hold:
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1. For all p, q ∈ Ln+1,

F 
|= (p→ Negp(q)) ∧ (q → Negq(p)) (6.30)

2. For all p ∈ NF (pn+1)

F 
|= pn+1 → Negpn+1
(p) (6.31)

3. For all p 
∈ NF (pn+1) there is some q ∈ NF (pn+1) s.t.

F 
|= (p ∧ pn+1)→ Negpn+1
(q) (6.32)

Proof. ⇒

1. By Lemma 6.14

2. By Lemma 6.16

3. By Lemma 6.17

⇐ Suppose F is s.t. (6.30), (6.31) and (6.32) above hold. Suppose F ′ is

s.t. |F ′| = Ln and F ′ ≺n F . As in the proof of Theorem 6.18 every

edge of F ′ must be an edge of F . Consider now some p ∈ NF (pn+1).

Then by (6.31) there is v ∈ Val (F ) s.t. v(pn+1) = 1, v(p) = 0 and

v(Negpn+1
(p)) = 0.

Let now w = v ↾ Ln. Then ‖w‖F = 1. But since NF ′(p) ⊂ NF (p) we

have

w(
∨

NF ′(p)) = v(
∨

NF ′(p)) ≤ v(
∨

NF (p)) = v(Negpn+1
(p)) = 0

Hence w 
∈ Val (F ′) and so ‖w‖F ′ = 0 < ‖w‖F . Therefore F ′ 
≺n F .
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So any 1-frame F ′ s.t. F ′ ≺n F must have |F ′| = Ln+1.

Now, suppose F ′ ≺n F with |F ′| = Ln+1. Again as in the proof of

Theorem 6.18, F ′ has exactly the same edges {p, q} where p, q ∈ Ln as

F .

Suppose now that F ′ has some edge {p, pn+1} which F does not. By

(6.32) there is some q ∈ NF (pn+1) and a valuation v ∈ Val (F ) s.t.

v(p) = 1 v(pn+1) = 1

v(q) = 0 v(Negpn+1
(q)) = 0

Let v′ = v ↾ Ln. Then ‖v′‖F = 1. Clearly v 
∈ Val (F ′) since v(p) =

v(pn+1) = 1 and p ∈ NF ′(pn+1). Let w ∈ Val (Ln+1) be s.t. w ↾ Ln = v′

and w(pn+1) = 0. Then

‖v′‖F ′ = ‖v‖F ′ + ‖w‖F ′ = ‖w‖F ′

But since w(q) = 0 and w(
∨

NF ′(q)) = 0, we have w 
∈ Val (F ′) and

so ‖w‖F ′ = 0. Hence ‖v′‖F ′ = 0 < 1 = ‖v′‖F , and so F ′ 
≺n F .

So suppose that F has an edge {p, pn+1} which F ′ does not. By

(6.31) there is some v ∈ Val (F ) s.t. v(pn+1) = 1, v(p) = 0 and

v(Negpn+1(p)) = 0. Let v′ = v ↾ Ln, so that ‖v′‖F = 1.

But it is clear to see that ‖v′‖F ′ = 0. Indeed, for any w ∈ Val (Ln+1)

s.t. w ↾ Ln = v′ we have w(p) = 0 and

w(
∨

NF ′(p)) = w(Negpn+1
(p))

= v(Negpn+1
(p))

= 0
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so that w 
∈ Val (F ′). Hence F ′ 
≺n F . So there is no F ′ s.t. F ′ ≺n F ,

and so F is indeed Ln-minimal.

Remark: Again we can interpret the preceding theorem in a useful manner.

Essentially it says that Ln-minimal frames on Ln+1 are characterised by the fol-

lowing features:

1. They have no redundant incompatibilities, as in the Remark on Theo-

rem 6.18.

2. The extra variable is not redundant - we cannot have an equally rich in-

compatibility structure without the extra variable pn+1.

3. The third condition is more complicated to understand, but it can be read

as claiming that the extra variable has “enough incompatibility.” That is,

adding further incompatibilities to the extra variable will result in redun-

dancy in the 1-frames incompatibility structure.

Unfortunately, we again have no further results in this section.It seems that

when we add 2 or more extra elements to Ln, logical characterisations become

exceedingly hard to calculated.

6.8 The Behaviour of FE1

To further explore the properties of the frame entropy inference processes we

will study in detail the 1-dimensional case where the constraint set is defined on

L1 = {p1}.

As stated in Section 6.4, we need only consider probability functions which are

consistent with 1-frames whose non-trivial2 part is L1-minimal, and whose trivial

2For this section, we will consider the non-trivial part of a 1-frame to be the connective
closure of L1, and the trivial part to be the rest of the 1-frame
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part is a Moon-Moser extremal graph. There are precisely three non-trivial 1-

frames, namely K2, K3 and K4, as shown in Section 6.53.

Now, since we wish to examine how the three different non-trivial parts will

interact, we must consider FEk
1 for k ≥ 6, since for k < 5 not all three are possible.

We proceed by defining a maximum entropy function for each of K2, K3 and K4.

Let

T k
1 = K2 ∪Mk−2

T k
2 = K3 ∪Mk−3

T k
3 = K4 ∪Mk−4

where in each case p1 is an element of the complete graph Ki, and Mr is a Moon-

Moser extremal graph of order r. Now set

fk
1 (x) =

(
x

m(k−2)

)−x (
1−x

m(k−2)

)−(1−x)

fk
2 (x) =

(
x

m(k−3)

)−x (
1−x

2m(k−3)

)−(1−x)

fk
3 (x) =

(
x

m(k−4)

)−x (
1−x

3m(k−4)

)−(1−x)

Then fk
i (x) is the maximum entropy of a probability function w on Lk which

is consistent with Ti and for which w(p1) = x. Hence, FEk
1(Σ) is that w ∈ V 1(Σ)

for which

max
{
fk

1 (x), fk
2 (x), fk

3 (x)
}

is maximal, where x = w(p1).

3Since there are no 1-frames of order 1, FE1

1
is undefined and so we will only look at FEk

1

for k ≥ 2.



CHAPTER 6. AN ALTERNATIVE INFERENCE PROCESS 153

0.2 0.4 0.6 0.8 1

5

6

7

8

9

x

F 6(x)

0.2 0.4 0.6 0.8 1

11.6

11.7

11.8

11.9

x
F 7(x)

0.2 0.4 0.6 0.8 1

16.5

17

17.5

18

x

F 8(x)

Figure 6.1: F k(x) for k = 6, 7, 8

So, now let F k(x) = max
{
fk

1 (x), fk
2 (x), fk

3 (x)
}
. It is clear that F k depends

on the Moon-Moser function m (k), which behaviour varies awkwardly with k

mod 3. However, we can easily see that for each fi,

fk+3
i = 3.fk

i

since m (k + 3) = 3.m (k). Hence, any maximum of F k will also be a maximum

of F k+3, and vice versa, and so we need only examine FEk
1 for three values of k

(pairwise distinct mod 3).

Although we might hope that the three cases turn out to be equivalent, the

graphs in Figure 6.1 show that this is not the case. We will examine the three sep-

arate cases to see how they behave in the simple case where Σ = {w(p1) ∈ [a, b] }

• k ≡ 0

FEk
1(Σ)(p1) is that x ∈ [a, b] for which |x− 1

3
| is minimal. This is reminiscent
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of classical ME, which (in the 1-dimensional case) minimises the distance

to 1
2
.

• k ≡ 1

In this case F k has two minima and three maxima and hence does not

always have a unique maximum on [a, b]. The maxima occur at 1
4
,1
3

and 1
2
,

while the minima occur at t1 = ln 9−ln 8
ln 3−ln 2

≈ 0.290 and t2 = ln 4−ln 3
ln 2

≈ 0.415.

Hence FEk
1(Σ) will have a unique solution for k ≡ 1 mod 3 iff:

1. [a, b] contains at most one of the points 1
4
, 1

3
and 1

2
, and;

2. If t1 ∈ [a, b] and 1
4

< a ≤ b < 1
3

then fk
3 (a) 
= fk

2 (b), and;

3. If t2 ∈ [a, b] and 1
3

< a ≤ b < 1
2

then fk
2 (a) 
= fk

1 (b).

• k ≡ 2

F k has two maxima and one minimum in this case, so again FEk
1(Σ) does

not necessarily have a unique solution. The maxima are at 1
3

and 1
2

while

the minimum is again at t2.

So FEk
1(Σ) will have a unique solution for k ≡ 2 mod 3 iff:

1. [a, b] contains at most one of the points 1
3

and 1
2
, and;

2. If t2 ∈ [a, b] and 1
3

< a ≤ b < 1
2

then fk
2 (a) 
= fk

1 (b).

So we see that in this case we get three different answers, depending on the

value of k mod 3. Also, note that the existence of multiple maxima in the k ≡ 1, 2

cases indicate that this process will behave highly discontinuously. Changing the

values of a and b (in the definition of Σ) by small amounts in the region of these

maxima will sometimes add extra solutions, and will sometimes destroy existing

solutions.
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6.9 Discussion

The frame entropy inference process as defined here seems to behave very errati-

cally, as evidenced by the example considered in Section 6.8. Also, as we saw in

Section 6.6 and Section 6.7 it is extremely difficult to calculate the Ln-minimal

frames. We cannot say even that there are a finite number of Ln-minimal 1-

frames, except in the 1-dimensional case. These problems mean that there is

very little we can learn from this inference process, at least at the current stage

of development.

However, all is not lost. The partial success of the two attempts at charac-

terisation of the Ln-minimal 1-frames suggests that it may in fact be possible to

formulate some process for finding such frames. It is to be hoped that the work

described here may give some clue as to how to proceed in this matter.

Also, the dependence of the inference process upon the values of k mod 3

may not turn out to be such a problem. If we could discover that there are

only a finite number of Ln-minimal frames then presumably the values given by

this inference process would depend upon the values of kmod3. Then we could

define the inference process so as to give the union of these 3 sets of answers.

Unfortunately, our current paucity of results concerning this inference process

means this can only be conjecture though.



Chapter 7

Conclusions

We present here a summary of the work in this thesis, and discuss further research

possibilities.

7.1 Positive Frames

The notion of a positive frame seems to capture successfully the intuitions con-

cerning perception and negation discussed in Chapter 2. The different types of

positive frame such as normal frames, 1 -frames, c-frame and general positive

frames allow for subtle distinctions between the different philosophical concepts

concerned. Certain of the results shed light on the relationships between the dif-

ferent types of positive frames, and the correspondence with (hyper)graphs is of

major importance in the study of these structures.

It would be interesting to investigate the theory of positive frames further,

looking for additional relationships between the various flavours of frame. In

particular, it may be of value to consider variations of the fundamental principles,

especially with respect to the criticisms levelled at the Classification Principle in

Chapter 2.

156
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7.2 The CFE Inference Process

The CFE inference process is one which is very simple to specify, however it is

quite complicated to understand how it behaves. The characterisations of the

process as a model of expert knowledge given in Chapter 4 give, I believe, a solid

justification to the process. However, due to the technical difficulty involved in

working with this process, we have only managed to give a description of CFE on

a certain small class of constraint sets (i.e., the adamant constraints). It would

certainly be of importance to extend these results to ethereal constraint sets also,

as discussed in Section 4.5.

Another problem with the complexity of the CFE process is the difficulty in

producing examples of its behaviour. Chapter 5 considers only three properties

of inference processes, two of which do not hold for CFE. The most important,

Language Invariance does hold though, and the failure of CFE to satisfy Renam-

ing and Continuity is not surprising given the nature of its definition. Further

research into understanding the detailed behaviour of CFE with more examples

would certainly be valuable.

7.3 The FE Inference Process

Our definition of FE in Chapter 6 seems to behave even more erratically than

CFE. Perhaps this should not be surprising given that the inspiration for FE

involves dropping the principle of Conjunctive Closure, a principle which goes

a long way toward making CFE possible to analyse. However, the concept of

specifying an inference process upon a (finite?) class of graphs is an attractive

one — if the problems in discovering the L-minimal graphs could be overcome

it may open the door to a easily calculable inference process. It is unfortunate
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that we only have partial characterisations of the class of L-minimal graphs. It is

hoped however that these very different approaches might be extended to further

results about this class of graphs.

The behaviour of FE in the one-dimensional case suggests that although this

inference process might behave in a confusing manner, it might exhibit some

interesting behaviour if we could easily analyse it. The discussion at the end of

Chapter 6 proposes a way in which this might be accomplished.

In summary then, we have developed two unorthodox inference processes from

a philosophical approach to perception and negation. The complexity of these

processes indicates that much further work may be necessary, into both the philo-

sophical fundamentals of the theory and its technical implementation.
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[36] J.B. Paris and A. Vencovská. A note of the inevitability of maximum entropy.

International Journal of Approximate Reasoning, 4:183–223, 1990.
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Appendix A

Useful Results

Some useful arithmetical results and results from other papers are stated here to

save space in the main thesis.

A.1 Arithmetical Results

Lemma A.1 Let x1, x2, . . . , xn be real numbers and let y1, y2, . . . , yn be positive

real numbers. Then
∑n

i=1 xi
∑n

i=1 yi

≤
n∑

i=1

xi

yi

Proof.
∑n

i=1 xi
∑n

i=1 yi
=

n∑

j=1

xj
∑n

i=1 yi
≤

n∑

j=1

xj

yj
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A.2 Maximum Entropy Results of Paris and

Vencovská

The two theorems given here are Theorems 1 and 2 of [35], stated here for con-

venience. We first give a brief summary of the notation used in that paper.

As in subsection 4.3.2 of this thesis they assume the existence of a constraint

set which is defined similarly to the expert constraint sets of Definition 4.8.

The conditions (1) and (2) referred to are the equivalents of (4.8) and (4.9)

— the conditions on the ≈ relationship. There is an example set M of size N

with subsets A0, A1, . . . , An−1. A “model of the constraints” is an assignment of

A0, A1, . . . , An−1 to specific subsets of M which satisfies the constraint set. B(A)

is a boolean combination of the subsets A1, A2, . . . , An and g1, g2, . . . , gw number

the “atoms” of B(A). That is,

B(A) = Cg1 ∪ Cg2 ∪ · · · ∪ Cgw

where C1, C2, . . . , C2n are the subsets of M formed by taking the intersections

Cf =
⋂

i<n

A
f(i)
i

over all functions f : {0, 1, . . . , n− 1} → {0, 1} where A1
i = Ai and A0

i = M \Ai.

ρ is the maximum entropy solution of the limit form of the constraint set, and ρi

denotes the value of ρ in its ith coordinate. The theorems are:

Theorem A.2 Assume the given constraints are consistent. Then for each

μ, ν > 0 there exist N0 and ǫ > 0 such that for all N ≥ N0 and ≈ satisfying (1)
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and (2) the proportion of the models of the constraints for which

∣
∣
∣
∣
∣

w∑

i=1

ρgi
− B(A)

N

∣
∣
∣
∣
∣
≥ ν

is at most μ.

That is, if M is taken sufficiently large the majority of the models of the

constraints will define a probability function arbitrarily close to the maximum

entropy solution.

Theorem A.3 If [the limit form of the constraints] and
∑w

i=1 pgi
> 0 has a so-

lution, then the maximum entropy solution ρ of [the limit form of the constraints]

also satisfies
∑w

i=1 ρgi
> 0.

This theorem states that the maximum entropy solution will not give zero

probability to any proposition unless forced to by the constraints.

A.3 Properties of the Moon & Moser and Griggs

functions

Lemma A.4 Let r and s be natural numbers. Then

m (r) .m (s) ≤ m (r + s) for r, s ≥ 0, and

m (3r) .m (s) = m (3r + s) for r ≥ 0, s ≥ 2.

Proof. • Firstly, let G1 and G2 be two graphs of order r and s respectively,

which have m (r) and m (s) maximal independent sets. Then G1 ∪G2

is a graph of order r + s which has m (r) .m (s) maximal independent
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sets, since any maximal independent set X of G1 ∪ G2 is of the form

X = X1 ∪X2 where Xi is a maximal independent set of Gi.

However, the maximum number of maximal independent sets that a

graph of order r + s may have is m (r + s), and so m (r) .m (s) ≤

m (r + s).

• The second part of the Lemma is by induction and is obvious from

inspection of m — for s ≥ 2, it is obvious that

m (3) .m (s) = 3.m (s) = m (s + 3)

Hence, by induction, for r ≥ 1

m (3r + s) =3.m (3(r − 1) + s)

=3.m (3(r − 1)) .m (s)

=m (3r) .m (s)

Corollary A.5 For r ≥ s ≥ 1,

m (r − s) ≤ m (r)

m (s)

Proof. Immediate from Lemma A.4 with r replaced with r − s.

Lemma A.6 For n ≥ 4,

m (n− 2) + m (n− 3) + 2 > g (n)

2.m (n− 3) + m (n− 4) + 2 > g (n)
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Proof. 1. m (n− 2) + m (n− 3) + 2 > g (n)

The claim is easily checked by inspection for 4 ≤ n ≤ 11. Now, for

n ≥ 12 let

x(n) =
m (n− 2) + m (n− 3)

g (n)

We examine x(n) for n ≡ 0, 1, 2 mod 3

• n ≡ 0

x(n) =
4.3

n−6
3 + 3

n−3
3

2.3
n−3

3 + 2
n−3

3

=
2.3

n−3
3 + 3

n−6
3

2.3
n−3

3 + 2
n−3

3

> 1

• n ≡ 1

x(n) =
2.3

n−4
3 + 4.3

n−7
3

3
n−1

3 + 2
n−4

3

=
3

n−1
3 + 3

n−7
3

3
n−1

3 + 2
n−4

3

> 1

• n ≡ 2

x(n) =
3

n−2
3 + 2.3

n−5
3

4.3
n−5

3 + 3.2
n−8

3

=
4.3

n−5
3 + 3

n−5
3

4.3
n−5

3 + 3.2
n−8

3

> 1

Hence x(n) > 1 for all n ≥ 12, and so the claim is proved.

2. 2.m (n− 3) + m (n− 4) + 2 > g (n)

Again, the claim can be easily checked by inspection for 4 ≤ n ≤ 7.

For n ≥ 8, set

y(n) =
2.m (n− 3) + m (n− 4)

g (n)
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We examine y(n) for n ≡ 0, 1, 2 mod 3

• n ≡ 0

y(n) =
2.3

n−3
3 + 2.3

n−6
3

2.3
n−3

3 + 2
n−3

3

> 1

• n ≡ 1

y(n) =
8.3

n−7
3 + 3

n−4
3

3
n−1

3 + 2
n−4

3

=
3

n−1
3 + 2.3

n−7
3

3
n−1

3 + 2
n−4

3

> 1

• n ≡ 2

y(n) =
4.3

n−5
3 + 4.3

n−8
3

4.3
n−5

3 + 3.2
n−8

3

> 1

Hence y(n) > 1 for all n ≥ 8, and so the claim is proved.


