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1. Introduction

It is well-known that MV -algebras (as algebras of type (⊕,�,¬, 0, 1) of signature

〈2, 2, 1, 0, 0〉) have been introduced and studied by C. C. Chang in [4] and [5] as an
algebraic counterpart of the �Lukasiewicz infinite valued propositional logic. More-

over, Chang proved in [5] that every linearly ordered MV -algebra is isomorphic to
an MV -algebra in the form Γ(G, u), where G is a commutative linearly ordered (ad-

ditive) group, 0 � u ∈ G is a strong order unit in G, Γ(G, u) = [0, u] = {x ∈ G ; 0 �
x � u}, and the operations on Γ(G, u) are as follows: 1 = u, x⊕ y = min(x + y, u),

¬x = u − x, x � y = max(x + y − u, 0) = ¬(¬x ⊕ ¬y) for any x, y ∈ Γ(G, u).
D. Mundici generalized this result in [11] to arbitrary MV -algebras. Namely, let,

in general, G be a commutative lattice ordered group (l-group) and 0 � u ∈ G.
If x ⊕ y = (x + y) ∧ u, ¬x = u − x, x � y = ¬(¬x ⊕ ¬y) for any x, y ∈ [0, u],

then Γ(G, u) = ([0, u],⊕,�,¬, 0, u) is an MV -algebra. Mundici proved that every
MV -algebra is isomorphic to Γ(G, u) for some commutative l-group G and some

strong unit u ∈ G, and moreover, that the category of MV -algebras is equivalent
to the category of commutative l-groups with strong units. Mundici further proved

in [12] that MV -algebras are also categorically equivalent to bounded commutative
BCK-algebras. The author in [13] and [14] showed that one can obtain MV -algebras

as special cases of dually residuated l-monoids (DRl-monoids) because MV -algebras
are equivalent to DRl-monoids of a class of bounded DRl-monoids.

In the paper we define a generalization of MV -algebras as algebras A = (A,⊕,�,

¬,∼, 0, 1) of signature 〈2, 2, 1, 1, 0, 0〉 in which the binary operations ⊕ and �
in general need not be commutative. (MV -algebras introduced by Chang are
then called commutative.) In the first part of the paper some properties of

non-commutative MV -algebras are described. In the second part it is proved
that (non-commutative) MV -algebras are in a one-to-one correspondence with
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some bounded non-commutative DRl-monoids, and in the last section it is shown

that every interval [0, u] of any (non-commutative) l-group can be viewed as an
MV -algebra and that every linearly ordered MV -algebra is isomorphic to an analo-
gous interval of some linearly ordered loop.

(Note that the class of commutative l-groups is the smallest non-trivial variety of
l-groups. Therefore, from this point of view, intervals of non-commutative l-groups

represent a very essential generalization of Chang’s MV -algebras.)
We use the terminology and results of [2], [7] and [9] concerning the theory of

lattice ordered groups and of [1] concerning the theory of loops.

2. Properties of non-commutative MV -algebras

An algebra A = (A,⊕,�,¬,∼, 0, 1) of signature 〈2, 2, 1, 1, 0, 0〉 is called a (non-

commutative) MV -algebra if for any x, y, z, u ∈ A:

(1) x⊕ (y ⊕ z) = (x⊕ y)⊕ z; (1′) x� (y � z) = (x� y)� z

(2) x⊕ ∼x = 1 = ¬x ⊕ x; (2′) x�∼x = 0 = ¬x� x

(3) x⊕ 1 = 1 = 1⊕ x; (3′) x� 0 = 0 = 0� x

(4) x⊕ 0 = x = 0⊕ x; (4′) x� 1 = x = 1� x

(5) ¬(x⊕ y) = ¬x� ¬y; (5′) ¬(x� y) = ¬x⊕ ¬y

(6) ∼(x⊕ y) = ∼x�∼y; (6′) ∼(x� y) = ∼x⊕∼y

(7) ¬∼x = x = ∼¬x

(8) ¬0 = 1 = ∼0
(9) y ⊕ (x�∼y) = (¬y � x)⊕ y; (9′) y � (x⊕∼y) = (¬y ⊕ x)� y

Denote x ∨ y = y ⊕ (x�∼y), x ∧ y = y � (x⊕∼y). Then

(10) x ∨ y = y ∨ x; (10′) x ∧ y = y ∧ x

(11) x ∨ (y ∨ z) = (x ∨ y) ∨ z; (11′) x ∧ (y ∧ z) = (x ∧ y) ∧ z

(12a) x⊕ (y ∧ z)⊕ u = (x⊕ y ⊕ u) ∧ (x ⊕ z ⊕ u)

(12b) x⊕ (y ∨ z)⊕ u = (x⊕ y ⊕ u) ∨ (x⊕ z ⊕ u)
(12′a) x� (y ∧ z)� u = (x� y � u) ∧ (x� z � u)

(12′b) x� (y ∨ z)� u = (x� y � u) ∨ (x� z � u)

Note. It is obvious that the above system of axioms is not the simplest one,
but we use it in this form to have the possibility comparing the introduced notion

with that of a commutative MV -algebra. We can see that A can be considered as
a commutative (Chang’s) MV -algebra if and only if both operations ⊕ and � are

commutative and the unary operations ¬ and∼ coincide. (Note that conditions (12b)
and (12′a) are not directly required but can be derived for Chang’s MV -algebras.

See e.g. [8], Theorem 3.1.) A simple axiomatic system for commutative MV -algebras
is used e.g. in [6].
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Theorem 1. If A is an MV -algebra, x, y ∈ A, then

(a) ¬1 = 0 = ∼1;

(b) x� y = ¬(∼x⊕∼y) = ∼(¬x⊕ ¬y);

(c) x ∨ 0 = x = x ∧ 1, x ∧ 0 = 0, x ∨ 1 = 1;

(d) ¬(x ∨ y) = ¬x ∧ ¬y, ¬(x ∧ y) = ¬x ∨ ¬y,

∼(x ∨ y) = ∼x ∧ ∼y, ∼(x ∧ y) = ∼x ∨ ∼y;

(e) x ∧ (x ∨ y) = x = x ∨ (x ∧ y).

�����. (a) It follows from (7) and (8).

(b) From (5), (6) and (7).

(c) From (4′) and (8).

¬(x ∨ y) = ¬(y ⊕ (x�∼y)) = ¬y � ¬(x �∼y)(d)

= ¬y � (¬x ⊕ ¬∼y) = ¬y � (¬x⊕∼¬y) = ¬x ∧ ¬y.

The remaining equalities are analogous.

x ∧ (x ∨ y) = x ∧ ((¬x � y)⊕ x) = x� (((¬x � y)⊕ x)⊕∼x)(e)

= x� ((¬x� y)⊕ 1) = x� 1 = x

Analogously the second equality. �

We obtain the following theorem as a consequence of (10), (10′), (11), (11′), and
(c) and (e) from Theorem 1.

Theorem 2. If A is an MV -algebra then (A,∨,∧) is a bounded lattice with the
least element 0 and the greatest element 1.

Hence we can consider the order relation � on A induced by the lattice (A,∨,∧),

i.e.

x � y ⇐⇒ x ∨ y = y ⇐⇒ x ∧ y = x.

Theorem 3. For any x, y, z, u ∈ A we have

x � y =⇒ u⊕ x⊕ z � u⊕ y ⊕ z,(a)

u� x� z � u� y � z

(i.e. (A,⊕, �) and (A,�, �) are ordered monoids);

(b) x� y � x ∧ y � x ∨ y � x⊕ y;

(c) x � y ⇐⇒ ¬y � ¬x ⇐⇒ ∼y � ∼x.
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�����. (a) If x � y then u ⊕ (x ∧ y) ⊕ z = u ⊕ x ⊕ z, hence by (12a)

(u⊕ x⊕ z) ∧ (u⊕ y ⊕ z) = u⊕ x⊕ z, thus u⊕ x⊕ z � u⊕ y ⊕ z.
Using (12) and (12′) we also obtain the remaining implications.
(b) Since y � 1, by (a) and (4′) we get x � y � x � 1 = x. Similarly x � y � y,

and so x� y � x ∧ y.
The equality x ∨ y � x⊕ y is dual.

(c) Let x � y. Then ¬(x∨y) = ¬y, hence by Theorem 1(d) we have ¬x∧¬y = ¬y,
and thus ¬y � ¬x.

Suppose that ¬y � ¬x. Then ∼(¬y ∧ ¬x) = ∼¬y, hence by Theorem 1(d),
∼¬y ∨ ∼¬x = ∼¬y, that means y ∨ x = y, therefore x � y.

The second equivalence is analogous. �

Theorem 4. For any x, y ∈ A we have

(a) x⊕ y = 0 =⇒ x = 0 = y;

(b) x� y = 1 =⇒ x = 1 = y.

�����. (a) Let x⊕ y = 0. Then by Theorem 1(c) and conditions (4) and (12a),

0 = x ∧ 0 = x ∧ (x⊕ y) = (x⊕ 0) ∧ (x⊕ y) = x⊕ 0 = x.

Hence 0 = x⊕ y = 0⊕ y = y.
(b) Dually. �

Theorem 5. For any x, y ∈ A the following conditions are equivalent:

(a) x � y;

(b) y ⊕∼x = 1;

(c) ¬x⊕ y = 1;
(d) x�∼y = 0;

(e) ¬y � x = 0.

�����. (a)⇔(b): Let x � y. Then by (2) and Theorem 3, 1 = x⊕∼x � y ⊕∼x,

hence y ⊕∼x = 1.
Conversely, if y ⊕ ∼x = 1, then by (4′) we get x ∧ y = x� (y ⊕∼x) = x� 1 = x,

thus x � y.
(a)⇔(c): Analogously.

(a)⇔(d), (a)⇔(e): Dually. �

Theorem 6. a) If x ⊕ z = y ⊕ z (z ⊕ x = z ⊕ y) and x, y � ¬z (x, y � ∼z,

respectively), then x = y.

b) If x� z = y � z (z � x = z � y) and ¬z � x, y (∼z � x, y, respectively), then

x = y.
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�����. a) Let x⊕ z = y⊕ z and x, y � ¬z. Then by Theorem 5, (9′) and (10′),

x = 1� x = (¬x ⊕ ¬z)� x = ¬z � (x ⊕∼¬z)

= ¬z � (x⊕ z) = ¬z � (y ⊕ z) = y.

Analogously the second implication.

b) Dually. �

Theorem 7. For any x, y ∈ A the following conditions are equivalent:

(a) x⊕ y = y;

(b) x� y = x;

(c) ∼x ∨ y = 1;

(d) x ∧ ¬y = 0.

�����. (a)⇔(d): Let x⊕ y = y. Then

x ∧ ¬y = ¬y � (x ⊕∼¬y) = ¬y � y = 0.

Conversely, let x ∧ ¬y = 0. Then

y = 0⊕ y = (x ∧ ¬y)⊕ y = (x ⊕ y) ∧ (¬y ⊕ y)

= (x⊕ y) ∧ 1 = x⊕ y.

(b)⇔(c): If x� y = x then

∼x ∨ y = (¬∼x� y)⊕∼x = x⊕∼x = 1.

Conversely, if ∼x ∨ y = 1 then

x = x� 1 = x� (∼x ∨ y) = (x� ∼x) ∨ (x� y)

= 0 ∨ (x� y) = x� y.

(c)⇔(d): If ∼x ∨ y = 1 then ¬(∼x ∨ y) = ¬1, hence x ∧ ¬y = 0.

Conversely, let x ∧ ¬y = 0. Then ∼(x ∧ ¬y) = ∼0 = 1, thus ¬x ∨ y = 1. �

The proof of the following theorem is analogous.

Theorem 8. For any x, y ∈ A the following conditions are equivalent:

(a) x⊕ y = x;

(b) x� y = y;
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(c) x ∨ ¬y = 1;

(d) ∼x ∧ y = 0.

As a consequence we get

Theorem 9. For any x ∈ A the following conditions are equivalent:

(a) x⊕ x = x;

(b) x� x = x;

(c) ∼x ∨ x = 1;

(d) x ∨ ¬x = 1;
(e) x ∧ ¬x = 0;

(f) ∼x ∧ x = 0;
(g) ¬x⊕ ¬x = ¬x;

(h) ¬x� ¬x = ¬x;

(i) ∼x⊕∼x = ∼x;

(j) ∼x�∼x = ∼x.

Let us now consider the set of all elements in A having the properties from the
preceding theorem.

Theorem 10. The set B = {x ∈ A; x ⊕ x = x} is a sublattice of the lattice
(A,∨,∧) containing 0 and 1 such that if x ∈ B then also ¬x and ∼x belong to B

and both are complements of x in B.

�����. Let x, y ∈ B. Then by (12′b) and Theorem 3(b),

(x ∨ y)� (x ∨ y) = (x � x) ∨ (x� y) ∨ (y � x) ∨ (y � y)

= x ∨ y ∨ (x� y) ∨ (y � x) = x ∨ y,

hence x ∨ y ∈ B. Similarly we get x ∧ y ∈ B.

By Theorem 9, ¬x, ∼x ∈ B, by (4) and (4′), 0, 1 ∈ B, and thus by Theorem 9,
¬x and ∼x are complements of x in B. �

Now let us denote by MV the class of all (non-commutative) MV -algebras. From
the definition it is obvious that MV is a variety of algebras of type (⊕,�,¬,∼, 0, 1).

Recall that a variety of algebras is called arithmetical if it is congruence distributive
and permutable. It is well known (e.g. [3], Theorem II.12.5) that by Pixley’s theorem
a variety V is arithmetical if and only if there is a term w(x, y, z) of given type such

that the identities
w(y, y, x) = w(x, y, x) = w(x, y, y) = x

are satisfied in V .
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Theorem 11. The varietyMV of MV -algebras is arithmetical.

�����. Set

w(x, y, z) = ((¬y ⊕ z)� x) ∨ ((¬y ⊕ x) � z) ∨ (x ∧ z).

It is obvious that w(x, y, z) is indeed a term in the language (⊕,�,¬,∼, 0, 1) because

the operations ∨ and ∧ only express abbreviations of the corresponding terms of the
type of MV -algebras.

Let A be an MV -algebra and x, y, z ∈ A. Then

w(y, y, x) = ((¬y ⊕ x)� y) ∨ ((¬y ⊕ y)� x) ∨ (y ∧ x),

and so (9′), (2) and (4′) of the definition of an MV -algebra yield

w(y, y, x) = (x ∧ y) ∨ x ∨ (x ∧ y) = x.

Further,

w(x, y, x) = ((¬y ⊕ x)� x) ∨ ((¬y ⊕ x)� x) ∨ x,

and because (¬y ⊕ x) � x � x by Theorem 3, we get

w(x, y, x) = x.

Finally,

w(x, y, y) = ((¬y ⊕ y)� x) ∨ ((¬y ⊕ x)� y) ∨ (x ∧ y)

= x ∨ (x ∧ y) ∨ (x ∧ y) = x.

�

3. Connections between MV -algebras and dually residuated
lattice ordered semigroups

Definition. An algebra A = (A, +, 0,∨,∧, ⇀, ↽) of signature 〈2, 0, 2, 2, 2, 2〉 is

called a dually residuated (non-commutative) lattice ordered monoid (a DRl-monoid)
if:

(1) (A, +, 0) is a (non-commutative) monoid;

(2) (A,∨,∧) is a lattice;
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(3) (A, +, 0,∨,∧) is a lattice ordered monoid, i.e. for any x, y, z, v ∈ A,

x + (y ∨ z) + v = (x + y + v) ∨ (x + z + v),

x + (y ∧ z) + v = (x + y + v) ∧ (x + z + v);

(4) if � denotes the order on A induced by the lattice (A,∨,∧) then for any x, y ∈ A,

x ⇀ y is the least element s ∈ A such that s + y � x,

x ↽ y is the least element r ∈ A such that y + r � x;

(5) A satisfies the identities

(a) ((x ⇀ y) ∨ 0) + y � x ∨ y, y + ((x ↽ y) ∨ 0) � x ∨ y,

(b) x ⇀ x � 0, x ↽ x � 0.

Remark. Condition (4) is equivalent to the following identities:

(4a) (x ⇀ y) + y � x, y + (x ↽ y) � x;

(4b) (x ⇀ y) � ((x ∨ z) ⇀ y), (x ↽ y) � ((x ∨ z) ↽ y);

(4c) ((x + y) ⇀ y) � x, ((y + x) ↽ y) � x.

Therefore DRl-monoids form a variety of algebras of signature 〈2, 0, 2, 2, 2, 2〉.
Commutative DRl-monoids have been introduced and studied by K. L. N. Swamy

in [15], [16] and [17] as common generalizations of commutative lattice ordered groups

and Brouwerian (and so also Boolean) algebras. (For commutative DRl-monoids,
the operations ⇀ and ↽ coincide and the common result x ⇀ y = x ↽ y is denoted

by x − y for any elements x and y. Then commutative DRl-monoids are regarded
as algebras in the language (+, 0,∨,∧,−) of signature 〈2, 0, 2, 2, 2〉.) Connections

between commutative MV -algebras and DRl-monoids were described by the author
in [13] and [14]. The properties of non-commutative DRl-monoids were studied by

T. Kovář in [10].

Now we will deal with connections between MV -algebras and DRl-monoids in
non-commutative cases.

Theorem 12. Let A = (A, +, 0,∨,∧, ⇀, ↽) be a DRl-monoid with a greatest

element 1 which satisfies the conditions

(i) ∀x ∈ A; 1 ↽ (1 ⇀ x) = x = 1 ⇀ (1 ↽ x);

(ii) ∀x, y ∈ A; 1 ⇀ ((1 ↽ x) + (1 ↽ y)) = 1 ↽ ((1 ⇀ x) + (1 ⇀ y)).

Set

¬x = 1 ⇀ x, ∼x = 1 ↽ x, x · y = ¬(∼x +∼y)

for any x, y ∈ A.

Then (A, +, ·,¬,∼, 0, 1) is an MV -algebra.

262



�����. By [10], Theorem 1.2.3, if a DRl-monoid A is bounded above, then it

is bounded below too, and moreover, 0 is the least element in A.
We will verify the axioms of an MV -algebra for A. Since (A, +, 0) is a monoid,

(1) and (4) are satisfied.

(2) By [10], Lemma 1.7, in any DRl-monoid we have

((x ⇀ y) ∨ 0) + y = x ∨ y = y + ((x ↽ y) ∨ 0).

Hence in our case we get for any x ∈ A

x +∼x = x + (1 ↽ x) = 1 + (x ↽ 1) � 1 + 0 = 1.

Analogously,

¬x + x = (1 ⇀ x) + x = (x ⇀ 1) + 1 � 0 + 1 = 1.

(3) x + 1 � 0 + 1 = 1, 1 + x � 1 + 0 = 1.

(7) By condition (i) we get

¬∼x = 1 ⇀ (1 ↽ x) = x, ∼¬x = 1 ↽ (1 ⇀ x) = x.

(5) By (7),

¬x · ¬y = ¬(∼¬x +∼¬y) = ¬(x + y).

(6) By condition (ii) and property (7) we have

∼x · ∼y = ∼(¬∼x + ¬∼y) = ∼(x + y).

(8) ¬0 = 1 ⇀ 0 is the smallest of the elements r ∈ A such that 0 + r � 1, hence

¬0 = 1. Similarly ∼0 = 1.

x · (y · z) = x · (¬(∼y +∼z))(1′)

= ¬(∼x +∼¬(∼y +∼z)) = ¬(∼x + (∼y +∼z)),

(x · y) · z = ¬(∼¬(∼x +∼y) +∼z) = ¬((∼x +∼y) +∼z),

and thus by (1), condition (1′) is satisfied.

(2′) By (7) and (2) we have

x · ∼x = ∼(¬x + ¬∼x) = ∼(¬x + x) = ∼1 = 0.
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Similarly ¬x · x = 0.

(3′) By (3),
x · 0 = ¬(∼x +∼0) = ¬(∼x + 1) = ¬1 = 0,

and similarly also 0 · x = 0.

(4′) x · 1 = ¬(∼x +∼1) = ¬(∼x + 0) = ¬∼x = x.

Similarly 1 · x = x.
(5′) By condition (ii),

¬(x · y) = ¬∼(¬x + ¬y) = ¬x + ¬y.

∼(x · y) = ∼¬(∼x +∼y) = ∼x +∼y.(6′)

Put now x 
1 y ⇐⇒ y + (x · ∼y) = y for any x, y ∈ A. Let x 
1 y. Then by the
definition of the operation ↽ we have x · ∼y � x ↽ y, and hence y + (x ↽ y) = y,

that means, by [10], Lemma 1.1.7, x ∨ y = y, and therefore x � y.
Conversely, let x � y. Then the equality (1 ⇀ x) + x = 1 implies (1 ⇀ x) + y = 1.

Hence

y + (x · ∼y) = y +∼(¬x + y) = y + (1 ↽ ((1 ⇀ x) + y))

= y + (1 ↽ 1) = y + 0 = y,

that means x 
1 y.

Therefore the relation 
1 coincides with the relation � of the DRl-monoid A.
Similarly, put x 
2 y ⇐⇒ (¬y · x) + y = y for any x, y ∈ A. Analogously we

can prove (using the definition of the operation ⇀ and [10], Lemma 1.1.7) that the
relation 
2 also coincides with �.

Hence x∨y = y+(x·∼y) = (¬y ·x)+y is the lattice join and x∧y = y · (x +∼y) =
(¬y + x) · y is the lattice meet also in the MV -algebra constructed. (So at the same

time we have verified the validity of conditions (9) and (9′).) Therefore (10), (10′),
(11) and (11′) are satisfied.

(12) It follows from the fact that (A, +, 0, �) is an l-monoid.
(12′) First verify that ∼(x ∨ y) = ∼x ∧ ∼y and ¬(x ∧ y) = ¬x ∨ ¬y.

∼(x ∨ y) = ∼((¬y · x) + y) = ∼(¬y · x) · ∼y

= (y +∼x) · ∼y = (¬∼y +∼x) · ∼y = ∼x ∧ ∼y,

¬(x ∧ y) = ¬(y · (x +∼y)) = ¬y + ¬(x +∼y)

= ¬y + (¬x · y) = ¬y + (¬x · ∼¬y) = ¬x ∨ ¬y.
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Now we get

x · (y ∨ z) = ¬(∼x +∼(y ∨ z)) = ¬(∼x + (∼y ∧∼z))

= ¬((∼x +∼y) ∧ (∼x +∼z)) = ¬(∼(x · y) ∧∼(x · z))

= ¬∼(x · y) ∨ ¬∼(x · z) = (x · y) ∨ (x · z).

The equality (y ∨ z) · x = (y · x) ∨ (z · x) can be proved analogously, hence (12′b)
is proved. Dually (12′a). �

In the next theorem we will show that also conversely, any MV -algebra induces
some DRl-monoid.

Theorem 13. Let A = (A,⊕,�,¬,∼, 0, 1) be an MV -algebra. For any x, y ∈ A

set

x ⇀ y = ¬y � x, x ↽ y = x�∼y.

If x ∨ y (x ∧ y) denotes the supremum (the infimum) of elements x, y ∈ A in the

order induced on A, then (A,⊕, 0,∨,∧, ⇀, ↽) is a bounded DRl-monoid with the

greatest element 1 satisfying conditions (i) and (ii) of Theorem 12.

�����. By the definition of an MV -algebra and by Theorem 2 we get that

y ⊕ (x � ∼y) = x ∨ y � x. Let v ∈ A be such that y ⊕ v � x. Then by Theorem 5,
x �∼y � v, and hence x� ∼y is the least of the elements v ∈ A with the property

y ⊕ v � x, thus x�∼y = x ↽ y.
Similarly (¬y�x)⊕y = x∨y � x, and if w⊕y � x for w ∈ A, then by Theorem 5

we get ¬y � x � w, that means ¬y � x = x ⇀ y.
We will show the validity of conditions (5) of the definition of a DRl-monoid.

(a) Let x, y ∈ A. Then (9) of the definition of an MV -algebra yields

(x ⇀ y)⊕ y = (¬y � x)⊕ y = x ∨ y,

y ⊕ (x ↽ y) = y ⊕ (x�∼y) = x ∨ y.

(b) For any x ∈ A we get by (2) and (2′) of the definition of an MV -algebra:

x ⇀ x = ¬x� x = 0,

x ↽ x = x�∼x = 0.

Hence (A,⊕, 0,∨,∧, ⇀, ↽) is a DRl-monoid and 1 is its greatest element.
We will verify conditions (i) and (ii).

1 ↽ (1 ⇀ x) = 1 ↽ (¬x� 1) = 1 ↽ ¬x = 1�∼¬x = x,(i)

1 ⇀ (1 ↽ x) = 1 ⇀ (1�∼x) = 1 ⇀ ∼x = ¬∼x� 1 = x.
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1 ⇀ ((1 ↽ x)⊕ (1 ↽ y)) = 1 ⇀ ((1 �∼x)⊕ (1 �∼y))(ii)

= 1 ⇀ (∼x⊕∼y) = ¬(∼x⊕∼y)� 1 = x� y,

1 ↽ ((1 ⇀ x) ⊕ (1 ⇀ y)) = 1 ↽ ((¬x � 1)⊕ (¬y � 1))

= 1 ↽ (¬x⊕ ¬y) = 1�∼(¬x ⊕ ¬y) = x� y.

�

Remark. Let A = (A,⊕,�,¬,∼, 0, 1) be an MV -algebra and let A1 =

(A,⊕, 0,∨,∧, ⇀, ↽) be the DRl-monoid generated by A by the method of The-
orem 13, that means, in A1, x ⇀ y = ¬y � x, x ↽ y = x � ∼y for any x, y ∈ A.

Then in the MV -algebra A2 = (A,⊕, ·,�,≈, 0, 1) induced by A1 by the method of
Theorem 12, we have in A2 for any x ∈ A,

� x = 1 ⇀ x = ¬x � 1 = ¬x,

≈ x = 1 ↽ x = 1 · ∼x = ∼x,

and hence by Theorem 1(b) also

x · y = x� y

for any x, y ∈ A. Therefore the MV -algebras A and A2 coincide and thus every
MV -algebra is induced by a DRl-monoid.

Let C∞ and C∈ be classes of algebras of given types. Recall that two classes C∞ and
C∈ of algebras are equivalent if there exists a one-to-one correspondence F between

C∞ and C∈ such that for any A ∈ C∞, A and F(A) have the same underlying set,
and for each A, B ∈ C∞ and each mapping f of A into B, f is a C∞-homomorphism

of the algebra A into the algebra B if and only if f is a C∈-homomorphism of F(A)
into F(B). It is obvious that the algebraic categories corresponding to the equivalent

classes C∞ and C∈ are isomorphic.
Let us denote by MV the class of MV -algebras (which is a variety of algebras of

signature 〈2, 2, 1, 1, 0, 0〉). For the class of bounded DRl-monoids we will consider
the greatest element 1 as a nullary operation and so we will extend the type of

such DRl-monoids to (+, 0,∨,∧, ⇀, ↽, 1) of signature 〈2, 0, 2, 2, 2, 2, 0〉. Now, let us
denote by DRl1(i)(ii) the class of DRl-monoids with 1 satisfying conditions (i) and

(ii) viewed as a variety of the above type. Then we get the following theorem.

Theorem 14. The classesMV and DRl1(i)(ii) are equivalent.

�����. If A = (A,⊕,�,¬,∼, 0, 1) is an MV -algebra, denote by F(A) =
(A,⊕, 0,∨,∧, ⇀, ↽, 1) the induced DRl-monoid. By the preceding remark it is clear
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that F is a one-to-one correspondence between MV and DRl1(i)(ii). Moreover, if

f : A → B is an MV -homomorphism then (since the operations ∨,∧, ⇀ and ↽ are
defined by MV -terms) f is also an DRl1-homomorphism, and vice versa. �

Corollary 15. The categoriesMV and DRl1(i)(ii) are isomorphic.

Let CMV denote the class of commutative MV -algebras and CDRl1(i) the class of
commutative DRl-monoids with the greatest element 1 satisfying condition (i) which

is now in the form 1− (1− x) = x. (Note that condition (ii) is trivially satisfied for
commutative DRl-monoids.)

Thus as a consequence we have (see also [14]):

Theorem 16. The classes CMV and CDRl1(i) are equivalent (and hence the

corresponding equational categories are isomorphic).

Moreover, by [10], Theorem 1.1.23, the lattice (A,∨,∧) of any DRl-monoid A is

distributive. Hence we have:

Theorem 17. If A = (A,⊕,�,¬,∼, 0, 1) is any MV -algebra, then the lattice

(A,∨,∧) is distributive.

At the same time we obtain as an immediate consequence of Theorem 10:

Corollary 18. For every MV -algebra A the set B = {x ∈ A ; x ⊕ x = x} of its
additive idempotents is a Boolean algebra in which the complement x′ of arbitrary

element x ∈ B fulfils x′ = ¬x = ∼x.

4. Intervals of lattice ordered groups and loops

Let G be a commutative l-group, 0 � u ∈ G and A = [0, u] = {x ∈ G ; 0 � x � u}.
Set x⊕ y = (x + y)∧ u, ¬x = u− x and x� y = ¬(¬x⊕¬y) for any x, y ∈ A. Then
Γ(G, u) = (A,⊕,�,¬, 0, u) is a commutative MV -algebra. C. C. Chang in [5] proved

that any linearly ordered commutative MV -algebra is isomorphic to Γ(G, u) for a
commutative linearly ordered group G and a strong order unit u in G. D. Mundici

in [11] generalized this result to arbitrary commutative MV -algebras. Namely, he
showed that if A is any commutative MV -algebra then there are a commutative
l-group G and a strong unit u in G such that A is isomorphic to Γ(G, u).

In this section we will examine analogous intervals of non-commutative l-groups.
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Theorem 19. Let G = (G, +, 0,−(·),∨,∧) be a (non-commutative) lattice or-

dered group, 0 � u ∈ G and A = [0, u]. For any x, y ∈ A set

x⊕ y = (x + y) ∧ u, x ⇀ y = (x − y) ∨ 0, x ↽ y = (−y + x) ∨ 0.

Then (A,⊕, 0,∨,∧, ⇀, ↽) is a bounded DRl-monoid (with the greatest element u)

in which any x, y ∈ A satisfy

u ↽ (u ⇀ x) = x = u ⇀ (u ↽ x);(i)

u ⇀ ((u ↽ x)⊕ (u ↽ y)) = u ↽ ((u ⇀ x)⊕ (u ⇀ y)).(ii)

�����. We will verify conditions (1)–(5) of a DRl-monoid.
Condition (1):

x⊕ (y ⊕ z) = (x + y + z) ∧ u = (x⊕ y)⊕ z,

hence (A,⊕, 0) is a monoid.
Condition (2), (3): (A,∨,∧) is a sublattice of the lattice (G,∨,∧) and e.g.

x⊕ (y ∧ z) = (x + y) ∧ (x + z) ∧ u = ((x + y) ∧ u) ∧ ((x + z) ∧ u)

= (x⊕ y) ∧ (x⊕ z),

hence (A,⊕, 0,∨,∧) is an l-monoid.

Condition (4):

y ⊕ (x ↽ y) = y ⊕ ((−y + x) ∨ 0) = (y ⊕ (−y + x)) ∨ y

= (x ∧ u) ∨ y = x ∨ y,

thus y ⊕ (x ↽ y) � x.
Let r ∈ A, y ⊕ r � x. Then (y + r) ∧ u � x, hence y + r � x, i.e. r � −y + x.

Moreover, r � 0, therefore r � (−y + x) ∨ 0 = x ↽ y. Thus x ↽ y satisfies
condition (4). Similarly for x ⇀ y. (Moreover, (x ⇀ y)⊕ y = x ∨ y, as well.)

Condition (5a): Since 0 is the least element in A, we have

((x ⇀ y) ∨ 0)⊕ y = (x ⇀ y)⊕ y = x ∨ y,

y ⊕ ((x ↽ y) ∨ 0) = y ⊕ (x ↽ y) = x ∨ y.

Condition (5b): Evidently x ⇀ x = 0 = x ↽ x.
It remains to show the validity of conditions (i) and (ii).
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Condition (i):

u ↽ (u ⇀ x) = −(u− x) + u = x, u ⇀ (u ↽ x) = u− (−x + u) = x.

Condition (ii):

u ⇀ ((u ↽ x) ⊕ (u ↽ y)) = u ⇀ ((−x + u)⊕ (−y + u))

= u− ((−x + u− y + u) ∧ u) = (y − u + x) ∨ 0,

u ↽ ((u ⇀ x)⊕ (u ⇀ y)) = u ↽ ((u− x) ⊕ (u− y))

= −((u − x + u− y) ∧ u) + u = (y − u + x) ∨ 0.

�

As an immediate consequence of Theorems 12 and 19 we obtain

Theorem 20. Let G = (G, +, 0,−(·),∨,∧) be a (non-commutative) l-group,

0 � u ∈ G and A = [0, u]. If we set

x⊕ y = (x + y) ∧ u, x� y = (y − u + x) ∨ 0,

¬x = u− x, ∼x = −x + u

for any x, y ∈ A then Γ(G, u) = (A,⊕,�,¬,∼, 0, u) is an MV -algebra.

Remark. a) By Remark after the proof of Theorem 12, for arbitrary 0 � u ∈ G,

the set Bu of additive idempotents of Γ(G, u) is a Boolean algebra. Evidently x ∈ Bu

if and only if x ∧ (u− x) = x ∧ (−x + u) = 0.

b) If for 0 < u ∈ G the interval [0, u] is a chain (i.e. u is a basic element in the

l-group G), then Bu = {0, u}. Hence, if G is a linearly ordered group, then for each
0 < u ∈ G, Bu is a two-element Boolean algebra.

c) Let an l-group G be the direct sum of linearly ordered groups G1, . . . , Gn and
let 0 < u = (u1, . . . , un) ∈ G. If ui �= 0 for each i = 1, . . . , n, then Bu is a finite

Boolean algebra having 2n elements. Hence for any finite Boolean algebra B there
are an l-group G and 0 � u ∈ G such that B ∼= Bu.

d) Let G be an l-group and 0 < u ∈ G. Let us suppose that u is a singular element
in G, i.e. for any s, t ∈ [0, u], s + t = u implies s ∧ t = 0. Since for every x ∈ [0, u],

x+ (−x+ u) = u = (u−x) + x, we have x∧∼x = 0 = ¬x∧x, and so x ∈ Bu. Hence
in this case Bu = A = [0, u], therefore A is a Boolean algebra and x′ = ¬x = ∼x for

any x ∈ A.

Recall that any commutative MV -algebra is isomorphic to Γ(G, u) for an appro-
priate commutative lattice ordered group G and 0 � u ∈ G (where moreover u can
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be a strong unit of G). This fact has been proved for linearly ordered MV -algebras

and linearly ordered groups by C. C. Chang in [5], and it has been generalized to
arbitrary MV -algebras and commutative l-groups by D. Mundici in [11] using the
possibility of expressing any commutative MV -algebra as a subdirect sum of linearly

ordered MV -algebras.

We will show that for non-commutative MV -algebras the similar construction
does not lead in general to a group, but, nevertheless, we will show that any linearly

ordered MV -algebra can be represented as an interval of a linearly ordered loop.

Definition. a) Let (G, +, 0, /, \) be a loop and let � be an order on G. Then

G = (G, +, 0, /, \, �) is called an ordered loop if

∀x, y, z, v ∈ G ; x � y ⇒ v + x + z � v + y + z.

b) If G is an ordered loop and (G, �) is a lattice with the lattice operations

∨ and ∧, then G = (G, +, 0, /, \,∨,∧) is called a lattice ordered loop if for any
x, y, z, v ∈ G,

v + (x ∨ y) + z = (v + x + z) ∨ (v + y + z),

v + (x ∧ y) + z = (v + x + z) ∧ (v + y + z).

(Recall that for any x, y ∈ G, y/x (y \ x) denotes the unique solution v (w) of the
equation x + v = y (w + x = y, respectively).)

Lemma 21. If G is an ordered loop and x ∈ G, then

0 � x ⇔ 0/x � 0 ⇔ 0 \ x � 0.

�����. If 0 � x then 0/x � x+(0/x) = 0, and if 0/x � 0 then 0 = x+(0/x) � x.

Similarly 0 � x if and only if 0 \ x � 0. �

Lemma 22. Let G be a lattice ordered loop, 0 � u ∈ G, and A = [0, u]. For any

x, y ∈ A set

x⊕ y = (x + y) ∧ u, ¬x = (0 \ x) + u, ∼x = u + (0/x),

x� y = ∼(¬x⊕ ¬y).

Then ⊕ and � are binary and ¬ and ∼ are unary operations on A. (Denote Γ(G, u)
= (A,⊕,�,¬,∼, 0, u).)
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�����. Let x, y ∈ A. Obviously x ⊕ y ∈ A. By Lemma 21, 0 \ x � 0, hence

(0\x)+u � u. Further, 0 = (0\x)+x � (0\x)+u, thus (0\x)+u ∈ A. Analogously
u + (0/x) ∈ A.

Finally, x� y = ∼(¬x⊕¬y) =
(
0 \ ((u + (0 \x))⊕ (u + (0 \ y)))

)
+ u, and because

u + (0 \ x), u + (0 \ y) ∈ A, we have x� y ∈ A. �

Theorem 23. Let A be a bounded linearly ordered DRl-monoid satisfying (i)

and (ii). Then there exist a linearly ordered loop G and 0 � u ∈ G such that Γ(G, u)
is an MV -algebra and A is isomorphic to Γ(G, u).

�����. Let A be a linearly ordered non-commutative DRl-monoid with a

greatest element 1 satisfying conditions (i) and (ii) and let � be the additive group
of integers linearly ordered by the natural order. Denote by B = ��×A the cartesian

product of � and A ordered by the lexicographic order. (That means, (m, x) < (n, y)
if and only if m < n or m � n and x < y.) We will define a binary operation ⊕ on B

as follows: If (m, x), (n, y) ∈ B then

(m, x) ⊕ (n, y) = (m + n, x + y), if x + y < 1,

(m, x)⊕ (n, y) =
(
m + n + 1, 1 ⇀ ((1 ↽ x) + (1 ↽ y))

)
, if x + y = 1.

Moreover, for any m ∈ � put

(m, 1) = (m + 1, 0).

a) Let us show that for any (m, x), (n, y) ∈ B there exists a unique (s, w) ∈ B

such that (m, x)⊕ (s, w) = (n, y).

aα) Suppose that x � y.
aαI) Let y �= 1. Then

(m, x)⊕ (n−m, y ↽ x) = (n, y).

Show that (s, w) = (n −m, y ↽ x) is a unique solution of the above equation. Let

(p, z) ∈ B be such that also (m, x) ⊕ (p, z) = (n, y).
aαI1) Let x + z < 1. Then m + p = n, x + z = y, hence p = n −m, z � y ↽ x,

and x + (y ↽ x) = x + z. We have y ↽ x � 1 ↽ x, and moreover, x + z = y < 1
and x + (1 ↽ x) = 1 imply z < 1 ↽ x. Therefore in the induced MV -algebra we get

x + (y ↽ x) = x + z and z, y ↽ x � ∼x, hence, by Theorem 6, z = y ↽ x.
aαI2) Let x + z = 1. Then m + p + 1 = n, thus p = n − m − 1 and 1 ⇀

((1 ↽ x) + (1 ↽ z)) = y. At the same time, (1 ↽ x) + (1 ↽ z) � 1 ↽ x, hence
1 ⇀ ((1 ↽ x) + (1 ↽ z)) � 1 ⇀ (1 ↽ x) = x, and so y � x. That means x = y.
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Hence by [10], Lemma 1.1.12, (1 ⇀ (1 ↽ z)) ⇀ (1 ↽ x) = x, and therefore by (i),

z ⇀ (1 ↽ x) = x.
Moreover, from x + 1 = 1 we get z � 1 ↽ x, hence by [10], Lemma 1.1.12,

(z ⇀ (1 ↽ x)) + (1 ↽ x) = z. Thus x + (1 ↽ x) = z, that means z = 1.

Therefore (p, z) = (n −m − 1, 1) = (n −m, 0). (At the same time, in this case,
(n−m, y ↽ x) = (n−m, x ↽ x) = (n−m, 0).)

aαII) Let y = 1. Then

(m, x) ⊕ (n−m, 1 ↽ x) = (n, 1).

Let (m, x) ⊕ (p, z) = (n, 1). If x + z < 1, then by the definition of ⊕, x + z =

1, a contradiction. Hence x + z = 1, i.e. z � 1 ↽ x. It is obvious that 1 ⇀

((1 ↽ x) + (1 ↽ z)) is equal either to 1 or to 0.

If 1 ⇀ ((1 ↽ x) + (1 ↽ z)) = 1, then by Theorem 4 we have x = z = 1.
Then (m, 1) ⊕ (p, 1) = (n, 1), thus m + p + 1 = n, i.e. p = n − m − 1. Hence

(p, 1) = (n−m− 1, 1) = (n−m, 0) = (n−m, 1 ↽ 1).
Let 1 ⇀ ((1 ↽ x) + (1 ↽ z)) = 0. Then x � z = 0, hence ¬∼x � z = 0, and

therefore by Theorem 5, z � ∼x = 1 ↽ x, i.e. z = 1 ↽ x.

aβ) Suppose x > y.
Let (m, x) ⊕ (p, z) = (n, y). We have x + z > y, thus x + z = y cannot hold.

Hence x + 1 = 1, so z � 1 ↽ x and 1 ⇀ ((1 ↽ x) + (1 ↽ z)) = y. Therefore
x� z = x� ((1 ↽ x) + y), and since z � 1 ↽ x and (1 ↽ x) + y � 1 ↽ x, we have,

by Theorem 6, z = (1 ↽ x) + y.
b) Analogously, for any (m, x), (n, y) ∈ B there is in B a unique solution (r, v) of

the equation (r, v)⊕ (m, x) = (n, y).
Therefore B is a quasigroup. Obviously, (0, 0) is a zero element in B, hence B is

a loop.
Now it is evident that the MV -algebra corresponding to A is isomorphic to

Γ(B, (0, 1)). �

Remark. If A is a commutative MV -algebra, then the loop B from the proof
of Theorem 23 is a (linearly ordered) group. But in general, for a non-commutative

case, B is not a group. Namely, for any (m, x) ∈ B we have

(m, x)⊕ (−m− 1,∼x) = (m−m− 1 + 1, x�∼x) = (0, 0),

(−m− 1,¬x)⊕ (m, x) = (−m− 1 + m + 1,¬x� x) = (0, 0),

that means (−m − 1,∼x) is a right and (−m − 1,¬x) is a left opposite element of

(m, x) in the loop B. But in general, ∼x is not equal to ¬x, therefore (B,⊕) need
not be a semigroup, and so B need not be a group.
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Problem. The question whether any linearly ordered (non-commutative) MV -

algebra is isomorphic to Γ(G, u) for a linearly ordered group G and an element
0 � u ∈ G remains open.

References

[1] V.D. Belousov: Foundations of the Theory of Quasigroups and Loops. Nauka, Moscow,
1967. (In Russian.)

[2] A. Bigard, K. Keimel and S. Wolfenstein: Groupes et Anneaux Réticulés. Springer-
Verlag, Berlin-Heidelberg-New York, 1977.

[3] S. Burris and H.P. Sankappanavar: A Course in Universal Algebra. Springer-Verlag,
Berlin-Heidelberg-New York, 1981.

[4] C.C. Chang: Algebraic analysis of many valued logics. Trans. Amer. Math. Soc. 88
(1958), 467–490.

[5] C.C. Chang: A new proof of the completeness of the Lukasiewicz axioms. Trans. Amer.
Math. Soc. 93 (1959), 74–80.

[6] R. Cignoli: Free lattice-ordered abelian groups and varieties of MV -algebras. Proc. IX.
Latin. Amer. Symp. Math. Log., Part 1, Not. Log. Mat. 38 (1993), 113–118.

[7] Lattice-Ordered Groups (Advances and Techniques) (A. M. W. Glass and W. Charles
Holland, eds.). Kluwer Acad. Publ., Dordrecht-Boston-London, 1989.

[8] C. S. Hoo: MV -algebras, ideals and semisimplicity. Math. Japon. 34 (1989), 563–583.
[9] V.M. Kopytov and N.Ya. Medvedev: The Theory of Lattice Ordered Groups. Kluwer

Acad. Publ., Dordrecht-Boston-London, 1994.
[10] T. Kovář: A general theory of dually residuated lattice ordered monoids. Thesis, Palacký

University Olomouc, 1996.
[11] D. Mundici: Interpretation of AFC∗-algebras in �Lukasiewicz sentential calculus.

J. Funct. Anal. 65 (1986), 15–63.
[12] D. Mundici: MV -algebras are categorically equivalent to bounded commutative

BCK-algebras. Math. Japon. 31 (1986), 889–894.
[13] J. Rach̊unek: DRl-semigroups and MV -algebras. Czechoslovak Math. J. 48(123) (1998),

365–372.
[14] J. Rach̊unek: MV -algebras are categorically equivalent to a class of DRl1(i)-semigroups.

Math. Bohem. 123 (1998), 437–441.
[15] K.L.N. Swamy: Dually residuated lattice ordered semigroups. Math. Ann. 159 (1965),

105–114.
[16] K.L.N. Swamy: Dually residuated lattice ordered semigroups II. Math. Ann. 160 (1965),

64–71.
[17] K.L.N. Swamy: Dually residuated lattice ordered semigroups III. Math. Ann. 167

(1966), 71–74.

Author’s address: Department of Algebra and Geometry, Faculty of Sciences, Palacký
University, 779 00 Olomouc, Czech Republic, e-mail rachunek@risc.upol.cz.

273


