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Abstract
This study presents the efficiency of the wind-driven optimisation (WDO) approach in solving non-convex economic dispatch 
problems with point-valve effect. The best economic dispatch for a power system is one wherein the system can generate 
energy at a low cost. The calculation of the generating cost is subject to a number of constraints, such as the power demand 
for the entire system and the generation limit for each generator unit in the system. In addition, the system should also 
produce low power loss. The WDO optimisation technique is developed based on the concept of natural wind movement, 
which serves as a stabiliser to equalise the inequality of air pressure in the atmosphere. One major advantage of WDO over 
other techniques is its search accuracy. The proposed algorithm has been implemented in two systems, namely, the 10-gen-
erator and 40-generator systems. Both systems were tested in a Matlab environment. To highlight the capabilities of WDO, 
the results using this proposed technique are compared with the results obtained using flower pollination algorithm, moth 
flame optimisation, particle swarm optimisation and evolutionary programming techniques to determine the efficiency of 
the proposed approach in solving economic dispatch. The simulation results show the capability of WDO in determining 
the optimal power generation value with minimum generation cost and low rate of power loss.

Keywords Non-convex problem formulation · Wind driven optimisation · Flower pollination algorithm · Moth flame 
optimisation · Particle swarm optimisation · Evolutionary programming

1 Introduction

With the simultaneous increase of economic and popula-
tion growth, the demand for electricity in a country is also 
expected to rise every year. However, in early 2020, the 
world was shocked by the outbreak of COVID-19, which 
was later declared a pandemic by the World Health Organi-
sation (WHO). The spread of this pandemic has significantly 

affected power sectors worldwide. Most countries have 
declared lockdowns for prolonged periods, leading to a sig-
nificant decline in energy consumption in the industrial and 
commercial sectors. However, as a result of this lockdown, 
the workforce has to manage their work from their own 
homes, paving the way for the so-called ‘work-from-home’ 
concept. This has resulted in increased energy demand in 
residential areas. Such developments have urged utility com-
panies to improve their power grid networks and restructure 
their power generation scheduling.

Economic Dispatch (ED) schedules the power unit opera-
tions to meet a specific power demand whilst also imposing 
a minimum fuel cost. Categorised as a type of optimisation 
problem, ED solutions using optimisation can be divided 
into mathematical and heuristic techniques. Mathematical 
techniques include linear [1, 2], quadratic [3] and mixed-
integer [4] programming. These traditional ED solutions, 
however, are time-consuming, unable to solve non-linear 
cost functions and can only provide suboptimal solutions. 
Such disadvantages have led scientists to introduce heuristic 
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approaches, in which ED problems can be categorised as 
smooth and non-smooth. In non-smooth problems, the 
impact of the valve system is considered in the power gener-
ation cost function. Both smooth and non-smooth problems 
have been successfully solved using heuristic techniques, as 
respectively reported in [5, 6] and [7–10].

Artificial intelligence (AI) is widely used in the field of 
power systems. Amongst the techniques used are flower 
pollination algorithm (FPA) [11–14], moth flame optimi-
sation (MFO) [15–18], particle swarm optimisation (PSO) 
[19–22] and evolutionary programming (EP) [23–26]. The 
FPA optimisation technique is developed based on the trans-
fer of pollen from one flower to another on the same tree or 
another tree using natural pollinators, such as honey bees, 
birds, water or wind. MFO is inspired by moth navigation 
methods in nature and is known as a transverse orientation, 
ensuring that a moth is at a constant angle to the source of 
light, such as the moon and the candle flame for orientation. 
The PSO technique, which is also based on the movement 
of animal, is inspired by the feeding process of certain ani-
mals, such as swarming birds and schooling fish. EP is one 
of the evolutionary computing, which uses the models of 
biological evolutionary process such as mutation, for the 
solution of complex engineering problems. In the present 
study, a new metaheuristic-based method called wind driven 
optimisation (WDO) is introduced [27–30]. WDO is based 
on the concept of natural wind movement, which serves as 
a stabiliser to equalise the inequality of air pressure in the 
atmosphere. One advantage of WDO over other techniques 
is its search accuracy. In particular, its optimisation capa-
bilities have been proven in various optimisation problems, 
such as economics delivery, engineering design and medical 
applications.

The current study proposes efficient techniques for calcu-
lating optimal, non-smooth power generation capacity based 
on power demand as well as the constraints of each generator 
unit, using the WDO optimisation approach. Test systems 
using 10- and 40-unit power generators are simulated using 
MATLAB. The objective function of this optimisation is to 
minimise the total cost of power generation. To determine 
the performance of the proposed technique, the results of 
using the WDO technique are compared with those obtained 
via FPA, MFO, PSO and EP.

The rest of the paper is organised into sections. Section 2 
presents the non-convex problem formulation for ED. Sec-
tion 3 explains the WDO algorithm. Section 4 provides the 
simulation results and discussions. Finally, Sect. 5 presents 
the conclusions.

2  Formulation of Economic Dispatch

In economic dispatch, energy generation planning is focused 
on coordinating energy production for each generation unit 
within a system. The amount of energy generated should 
exceed the power demand that has been set at an early stage. 
However, the production of high surplus energy will result 
in financial losses to energy operators. In addition, each 
generator unit has its own generating cost characteristics 
and different generating capacities. The generating unit cost 
calculation method can be divided into two formulations: 
convex and non-convex problem formulations.

In the fundamental concept of convex problem formula-
tion, the cost function of each generator can be presented by 
a simple quadratic function presented by Eq. (1):

where Costc(Pi) is the convex production cost of Pi in $ per 
hour, Pi is the real power output of the ith generator in MW, 
and ac,i, bc,i, and cc,I are three of the convex generation cost 
coefficients of Pi. The operating limits of Pi can be presented 
as follows:

where the minimum and maximum operating limits of Pi are 
Pi,min and Pi,max, respectively.

According to its basic concept, the fuel cost function per 
generating unit is considered to increase quadratically; how-
ever, it cannot solve the ED problem practically without con-
sidering the point-valve effect. Such an effect can cause the 
generator input–output curve to become more complicated. 
This method of calculation based on the point-valve effect is 
called non-convex problem formulation. To model the point-
valve effect, a recurring rectified sinusoid contribution was 
added to the Eq. (1), represented by Eq. (3):
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Fig. 1  Cost function according to the point-valve effect system (non-
convex) and without point-valve effect system (convex)
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where Costn(Pi) is the non-convex production cost of Pi, in $ 
per hour. Five of the non-convex generation cost coefficients 
of Pi are represented by an,i, bn,i, cn,i, en,i and fn,i, respectively. 
The obvious difference between these two problem formu-
lations is the presence of a sinusoidal function on the cost 
equation for the non-convex problem formulation.

Figure 1 illustrates the convex problem formulations (sys-
tems without point-valve effects) and non-convex problem 
formulations (systems with point-valve effects). As can be 
seen, the cost rate for the system without the point-valve 
effect increases quadratically. In comparison, the cost rate 
for a system with a point-valve effect goes up and down 
(like a hill) along a quadratic line. This is the effect of the 
valve opening according to the requested power generation. 
In this study, the calculation of the generation cost of each 
generator unit will use the concept of non-convex problem 
formulation.

Based on the calculated production cost of every genera-
tor using non-convex problem formulations, the total pro-
duction cost CostT with all n generators in the system can 
be expressed as follows:

The correlations among the total amount of power gener-
ated by all unit PT, total power demand PD, and power losses 
PL can be expressed as

Apart from producing low generation costs, a good gen-
eration system also produces low PL.

3  Wind Driven Optimisation Techniques

This study proposes a new technique based on wind move-
ment called WDO. The basic optimisation method for WDO 
and the stopping criteria for finding the best generation cost 
are described in the next subtopic.

3.1  Wind Driven Optimisation

The concept of WDO was first developed by Zikri Bayraktar 
in 2010. It is based on the concept of natural wind move-
ment, which serves as a stabiliser to equalise the inequal-
ity of air pressure in the atmosphere. Wind blows from a 
high- to a low-pressure area, according to a velocity that 
is directly proportional to the pressure gradient (the higher 
the pressure difference, the stronger the wind blows). Wind 
can be thought of as moving horizontally by assuming that 
the horizontal motion of the air is stronger than its vertical 

(4)CostT = Costn
(
P1

)
+ Costn

(
P2

)
+⋯⋯ + Costn

(
Pn

)
.

(5)PT = P1 + P2 +⋯Pn = PD + PL.

motion. The main principle behind the WDO technique is 
Newton’s second law of motion:

where a is the acceleration vector, ρ is the air density 
for an element with a very small volume and Fi is the force 
acting on the mass. Air pressure, density and temperature 
are related by an equation according to the ideal gas law 
expressed as

where P, R and T represent pressure, universal gas constant 
and temperature, respectively.

In Eq. (6), the main forces that cause the wind blowing in 
a direction to deviate from that direction can be broken down 
into four: pressure gradient force (FPG), frictional force (FF), 
gravitational force (FG) and coriolis force (FC). Their corre-
sponding force equations are given below:

where ∇P is the pressure gradient, δV is a very small volume 
of air, Ω represents the rotation of the earth, u is the wind 
velocity vector and g is the gravitational acceleration. The 
combination of Eqs. (6) and (8)–(11) produces an equation 
represented by Eq. (12) below:

A packet of air moving with the wind can be considered 
very small. The unit step of time, Δt can also be considered 
equal to 1. The combination of Eqs. (7) and (12) produces the 
following equation:

where unew and uold are the updated velocity and the current 
velocity, respectively; xold and xmax are the current location 
and the highest-pressure location of the air pack, respec-
tively; Pmax and Pold are the maximum pressure and the pres-
sure at the current location, respectively; T is the tempera-
ture; and R, α and c are constants.

(6)𝜌a⃗ =
∑

��⃗Fi,

(7)P = �RT ,

(8)F⃗PG = −∇P𝛿V ,

(9)F⃗C = −2Ω × u⃗,

(10)F⃗G = 𝜌𝛿V ��⃗g,

(11)F⃗F = −𝜌𝛼��⃗u,

(12)𝜌u⃗Δt = −∇P𝛿V − 2Ω × u⃗ + 𝜌𝛿Vg⃗ − 𝜌𝛼u⃗.
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The pressure value in Eq. (13) is usually high. Therefore, 
the new velocity estimations will also be high. This causes 
the performance level of the WDO to decrease. To solve this 
problem, the use of pressure values will be replaced by method 
based on ranking of air parcel [30]. The air parcel population is 
ranked in descending order based on its pressure value. Equa-
tion (13) is rearranged into the following equation:

Here, k denotes the ranking between all air parcels 
(k = 1, 2,…, 20). The following equation is used to update 
the position of the air pack:

The potential trajectories of the pressure gradient force, 
coriolis force, frictional force and gravitational force in 
WDO are shown in Fig. 2.

The flow chart of the optimisation process using the 
WOA technique is shown in Fig. 3. In this study, the abil-
ity of WOA to find the optimal generation cost value is 
compared with that of four other selected optimisation 
techniques, namely, FPA, MFO, PSO and EP. Detailed 
explanations of the FPA, MFO, PSO and EP approaches 
can be found in [11, 15, 19] and [23], respectively.

3.2  Stopping Criteria

In this study, a total of 100 tests were simulated to obtain 
optimal results for each technique in every case. The 
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(15)x⃗new = x⃗old + u⃗new × Δt.
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Fig. 2  Potential trajectories of the pressure gradient force, coriolis 
force, frictional force and gravitational force in WDO

Initialize random air parcel:
position xi and velocity ui

(i = 1, 2, 3,…, N; N is no. of air parcels)

Find the best air parcel xbest and best solution ybest
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solution ybest,new
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Fig. 3  The flow chart of the optimisation process using WOA
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Fig. 4  The flow chart of the calculation process of PT and CostT
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maximum number of iterations per case is set at 300 itera-
tions. Based on 100 tests for each of these cases, a consist-
ent result can be obtained. Figure 4 shows the flow chart 
of the calculation process of PT and CostT.

As shown in Fig. 4, there are two criteria for the opti-
misation process to stop: (i) the difference between the 
maximum and minimum generation cost is less than 0.1% 
of minimum CostT, and (ii) the current iteration is equal 
to the maximum number of iterations.

4  Results and Discussions

There were two test systems involved, namely, the 10- and 
40-generator systems. Cases 1-A and 1-B were run using a 
10-generator test system, whilst Cases 2-A and 2-B were 
run using a 40-generator test system. The simulations 
were conducted using Matlab software in a computer with 
Intel (R) Core (TM) i5-8250U processing specifications. 
Table 1 illustrates all the test systems, cases and specific 
power demand PD values.

Table  2 shows the list of parameter values used in 
WDO, FPA, MFO, PSO and EP in this study.

Table 3 and Table 4 present the fuel cost coefficients (an,i, 
bn,i, cn,i, en,i and fn,i) with minimum and maximum power 
limits (Pmin and Pmax) for each generator unit in ten-generator 
and forty-generator test systems, respectively [31].

Based on the simulations conducted, the iteration period 
taken by the EP technique is the lowest amongst the five 
approaches used, i.e. 10–20 iterations. For the WDO, FPA 
and PSO methods, the range of the number of iterations to 
complete the simulation is 50–100 iterations. The MFO 
approach requires the highest number of iterations, i.e. 
50–150 iterations.

Table 5 shows the optimisation results of 10 generator 
values; total power generation, PT; and power loss, PL for 
Case 1 using the WDO, FPA, PSO, MFO and EP techniques. 
This value was obtained from 100 simulations conducted for 
each technique. If we compare the selected generation values 
for all 10 generators, there are very significant differences 
among these five approaches. Although the generation value 
for each of these generators is different, the majority of the 
methods achieve the same PT value as the prescribed PD, 
which is 1400 MW. The PL results obtained using PSO are 
the best, resulting in zero power loss. This is followed by 
FPA, MFO and EP. WDO produces the highest power loss: 
77.6 kW. However, this power loss value is very minimal 

Table 1  Lists of test systems, cases and PD values

Test System Cases PD (MW)

Ten Generators Case 1 1400
Case 2 2050

Forty Generators Case 3 8700
Case 4 9650

Table 2  List of parameter values used in WDO, FPA, MFO, PSO and 
EP

WDO MFO

RT RT coefficient 35 β Constant 1
g Gravity constant 0.01 τ Random value (0,1]
� Alpha 0.9 EP
c Coriolis effect 0.95 β Scaling factor 0.05
vmax Maximum speed 0.1 PSO
FPA ω Inertia weight 0.05
p Boundary value 0.7 c1 Accelerating coef-

ficient
0.5

ε Uniform distribution (0,1] c2 Accelerating coef-
ficient

0.5

Table 3  Power limits and fuel 
cost coefficients with valve-
point effect in ten-generator test 
system

Unit Power limits Fuel cost coefficients with valve-point effect

Pmin (MW) Pmax (MW) an,i ($/h) bn,i ($/MWh) cn,i ($/(MW)2 h) dn,i ($/h) en,i (rad/MW)

1 10 55 1000.403 40.5407 0.12951 33 0.0174
2 20 80 950.606 39.5804 0.10908 25 0.0178
3 47 120 900.705 36.5104 0.12511 32 0.0162
4 20 130 800.705 39.5104 0.12111 30 0.0168
5 50 160 756.799 38.5390 0.15247 30 0.0148
6 70 240 451.325 46.1592 0.10587 20 0.0163
7 60 300 1243.531 38.3055 0.03546 20 0.0152
8 70 340 1049.998 40.3965 0.02803 30 0.0128
9 135 470 1658.569 36.3278 0.02111 60 0.0136
10 150 470 1356.659 38.2704 0.01799 40 0.0141
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compared to PD (only representing 0.006% of the PD value) 
and is acceptable.

Table 6 shows the three optimal CostT generation cost 
values (best, worst and average) for Case 1. There are three 
optimal CostT values observed, namely, best, worst and aver-
age CostT. From the perspective of generation cost based on 
the best CostT value, the WDO method yields the cheapest 
cost of $73,550.10, followed by FPA, PSO, EP and finally 

MFO. The cost difference between WDO and MFO is 
$1,616.40, of which the use of WDO saves 2.15% compared 
to MFO. For the worst CostT value, PSO provides the cheap-
est generation cost, followed by FPA, WDO, EP and MFO. 
The PSO performance is also excellent from the perspec-
tive of the average CostT, which is $74,046.00, compared 
to MFO which yields the most expensive average CostT of 
$75,988.90.

Table 4  Power limits and fuel 
cost coefficients with valve-
point effect in forty-generator 
test system

Unit Power limits Fuel cost coefficients with valve-point effect

Pmin (MW) Pmax (MW) an,i ($/h) bn,i ($/MWh) cn,i ($/(MW)2 h) dn,i ($/h) en,i (rad/MW)

1 36 114 94.705 6.73 0.00690 100 0.084
2 36 114 94.705 6.73 0.00690 100 0.084
3 60 120 309.540 7.07 0.02028 100 0.084
4 80 190 369.030 8.18 0.00942 150 0.063
5 47 97 148.890 5.35 0.01140 120 0.077
6 68 140 222.330 8.05 0.01142 100 0.084
7 110 300 287.710 8.03 0.00357 200 0.042
8 135 300 391.980 6.99 0.00492 200 0.042
9 135 130 455.760 6.60 0.00573 200 0.042
10 130 300 722.820 12.9 0.00605 200 0.042
11 94 375 635.200 12.9 0.00515 200 0.042
12 94 375 635.200 12.8 0.00569 200 0.042
13 125 500 913.400 12.5 0.00421 300 0.035
14 125 500 1760.400 8.84 0.00752 300 0.035
15 125 500 1760.400 8.84 0.00752 300 0.035
16 125 500 1760.400 8.84 0.00752 300 0.035
17 220 500 647.850 7.97 0.00313 300 0.035
18 220 500 649.690 7.95 0.00313 300 0.035
19 242 550 647.830 7.97 0.00313 300 0.035
20 242 550 647.810 7.97 0.00313 300 0.035
21 254 550 785.960 6.63 0.00298 300 0.035
22 254 550 785.960 6.63 0.00298 300 0.035
23 254 550 794.530 6.66 0.00284 300 0.035
24 254 550 794.530 6.66 0.00284 300 0.035
25 254 550 801.320 7.10 0.00277 300 0.035
26 254 550 801.320 7.10 0.00277 300 0.035
27 10 150 1055.100 3.33 0.52124 120 0.077
28 10 150 1055.100 3.33 0.52124 120 0.077
29 10 150 1055.100 3.33 0.52124 120 0.077
30 47 97 148.890 5.35 0.01140 120 0.077
31 60 190 222.920 6.43 0.00160 150 0.063
32 60 190 222.920 6.43 0.00160 150 0.063
33 60 190 222.920 6.43 0.00160 150 0.063
34 90 200 107.870 8.95 0.00010 200 0.042
35 90 200 116.580 8.62 0.00010 200 0.042
36 90 200 116.580 8.62 0.00010 200 0.042
37 25 110 307.450 5.88 0.01610 80 0.098
38 25 110 307.450 5.88 0.01610 80 0.098
39 25 110 307.450 5.88 0.01610 80 0.098
40 242 550 647.830 7.97 0.00313 300 0.035
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WDO ranks third in the five methods compared. In this 
Case 1, PSO gives the best and worst CostT difference. This 
indicates that in Case 1, PSO is able to maintain optimal 
value consistency in the 100 simulations run. This is fol-
lowed by FPA, EP, WDO and MFO. Although less promi-
nent for the worst and average CostT values, WDO excelled 
in terms of best CostT, thus making it the best optimisation 
approach amongst the five methods compared.

The optimum values of 10 generators, PT and PL using 
WDO, FPA, PSO, EP and MFO for Case 2 are shown in 
Table 7. The five methods successfully tuned the values for 
each generator to produce the total generating power as set 
by PD which is 2,050 MW. PSO produced the lowest PL i.e. 
zero loss, followed by MFO, WDO, EP and FPA. The value 
of PL by FPA is 400.6 kW, which is 0.02% of PD. Despite 
the occurrence of power loss, the values given by the four 
techniques other than PSO are all extremely minimal and 
acceptable.

Table 8 tabulates the optimal CostT (best, worst and aver-
age) based on 100 simulation tests for Case 2. On the one 
hand, for Case 2, the best and the average CostT values by 
WDO, which are $109,162.90 and $109,909.00, respec-
tively, are both considered excellent by producing the lowest 
values amongst the five methods. MFO, on the other hand, 
is an optimisation method that tunes the generator unit with 
the most expensive CostT amongst the best, worst and aver-
age optimal values. Amongst the five worst optimal values, 
WDO also provides the lowest generation cost values, fol-
lowed by FPA, EP, PSO and MFO. Based on the results 
obtained for Case 2, WDO is the best approach among those 
compared in terms of tuning the generator value to produce 
the lowest generation cost.

Table 9 shows the optimum values of 40 generators using 
WDO for Case 3. As a proposed technique, the generator 
values calculated by WDO are tabulated in this table.

The values for total generation, PT; power loss, PL; and 
optimal fuel cost, CostT (best, worst and average) based on 
100 simulation tests for the five optimisation techniques 
for Case 3 are shown in Table 10. As can be seen, WDO 
and FPA techniques generate total power values that are 
approximately similar to the power demand, PD, which is 
8,700 MW, with PL values at 39.9 and 28.1 kW, respectively. 
This is followed by PSO, EP and MFO with PL values at 
203.3, 871.4 and 954.3 kW, respectively. The highest PL 
value is produced by the MFO, which is about 0.01% of the 
PD value—a minimal and acceptable value of power loss. 
From the best CostT generation cost perspective, WDO pro-
duces the cheapest cost at $104,503.90, followed by FPA, 
PSO, EP and MFO.

Table 10 also shows that the difference between the best 
costT and worst costT values (i.e. $838), which is calculated 

Table 5  Optimal values of ten generators, PT and PL for Case 1

Generators Power Output (MW)

WDO FPA PSO EP MFO

P1 37.2460 32.8694 28.7449 13.9650 45.6974
P2 52.0730 42.1987 41.9311 41.2693 52.1088
P3 55.0002 61.4683 71.6364 94.6273 76.6114
P4 44.1233 35.3087 56.9393 89.4375 69.8739
P5 59.0050 57.5162 50.0248 50.0169 103.4620
P6 70.1490 71.9811 70.8618 89.1754 115.7997
P7 176.7250 184.3209 169.5514 90.9592 181.7518
P8 208.3102 194.2257 207.1486 155.3605 176.4693
P9 357.6415 368.1389 337.8918 422.3723 260.8406
P10 339.8043 351.9893 365.2700 352.8614 317.4054
PT 1400.1 1400.0 1400.0 1400.0 1400.0
PL 0.0776 0.0172 0.0000 0.0447 0.0203

Table 6  CostT (best, worst and average) for Case 1

CostT (×  103 $) WDO FPA PSO EP MFO

Best Value 73.5501 73.5681 73.5805 74.6649 75.1665
Worst Value 75.2377 75.1034 74.5993 76.2122 76.9685
Average Value 74.2104 74.1112 74.0460 75.7129 75.9889

Table 7  Optimal values of ten generators for Case 2

Generators Power Output (MW)

WDO FPA PSO EP MFO

P1 54.7399 53.1208 46.8454 31.2615 53.8569
P2 79.8961 77.2853 69.6440 78.4024 57.0711
P3 105.4016 118.7199 103.9364 74.0878 99.9383
P4 91.0725 94.7526 97.8784 128.9845 97.2851
P5 68.1580 81.2763 78.9019 76.5929 141.6828
P6 71.6061 75.1139 92.2134 150.7565 192.0888
P7 299.7558 296.6702 298.1497 284.8565 251.2110
P8 339.8989 338.3731 340.0000 315.9169 317.0608
P9 469.9720 467.8319 468.6216 452.7929 436.7844
P10 469.5987 447.2566 453.8091 456.4505 403.0211
PT 2050.1 2050.4 2050.0 2050.1 2050.0
PL 0.0996 0.4006 0.0000 0.1024 0.0002

Table 8  CostT (best, worst and average) for Case 2

CostT (×  103 
$)

WDO FPA PSO EP MFO

Best Value 109.1962 109.4541 109.4660 110.5981 112.4619
Worst Value 111.2749 110.3995 110.4337 113.4144 114.7050
Average 

Value
109.9090 110.0390 110.1242 112.1201 113.8818
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using EP, is the smallest amongst the five methods. This 
indicates that for Case 3, the values based on the EP tech-
nique are the most consistent values for the entire 100 simu-
lations conducted. Meanwhile, FPA has the largest best and 
worst costT difference of $1,110.39. Despite providing the 

most consistent value, EP provides the most expensive costT 
of the five techniques for this case. Therefore, the best tech-
nique that provides the cheapest costT is WDO, followed by 
FPA, PSO and MFO.

Table 9  Optimal generator 
values using WDO for Case 3

Gen Values (MW) Gen Values (MW) Gen Values (MW) Gen Values (MW)

P1 91.7379 P11 94.2034 P21 527.9771 P31 187.5987
P2 37.6354 P12 94.2941 P22 541.8251 P32 177.6737
P3 67.6266 P13 125.2984 P23 530.5006 P33 66.8977
P4 80.0122 P14 125.1635 P24 545.0939 P34 91.4794
P5 94.4204 P15 385.1753 P25 533.2426 P35 160.6316
P6 68.0171 P16 148.4389 P26 461.4438 P36 90.0110
P7 144.6910 P17 399.0958 P27 10.0316 P37 103.5682
P8 266.7026 P18 487.6544 P28 10.6505 P38 25.1094
P9 134.8687 P19 515.6547 P29 10.0184 P39 26.5686
P10 130.3725 P20 47.0359 P30 54.2192 P40 507.3999

Table 10  PT, PL and CostT 
(best, worst and average) for 
Case 3

Generators Power Output (MW)

WDO FPA PSO EP MFO

PT (MW) 8700.0 8700.0 8700.2 8700.9 8701.0
PL (MW) 0.0399 0.0281 0.2033 0.8714 0.9543
Best costT (×  103 $) 104.5039 104.7626 105.8389 112.7587 112.1324
Worst costT (×  103 $) 112.0477 115.8665 109.6689 113.5967 113.9424
Average costT (×  103 $) 108.3233 109.1284 107.0617 113.1129 115.5889

Table 11  Optimal generator 
values using WDO for Case 4

Gen Values (MW) Gen Values (MW) Gen Values (MW) Gen Values (MW)

P1 105.5497 P11 96.1000 P21 535.0146 P31 189.9561
P2 113.724 P12 132.9019 P22 546.4675 P32 170.6419
P3 64.3305 P13 125.0737 P23 524.4567 P33 75.3798
P4 136.119 P14 395.3443 P24 524.9659 P34 199.7569
P5 61.0432 P15 370.5575 P25 540.6237 P35 120.7023
P6 71.3441 P16 131.8998 P26 547.6057 P36 196.2475
P7 187.358 P17 493.3949 P27 11.4685 P37 94.2439
P8 284.0464 P18 477.9911 P28 13.7626 P38 109.7994
P9 134.5449 P19 549.8370 P29 18.7203 P39 108.9533
P10 241.832 P20 538.0521 P30 92.0219 P40 518.4186

Table 12  PT, PL, and CostT 
(best, worst and average) for 
Case 4

Generators Power Output (MW)

WDO FPA PSO EP MFO

PT 9850.3 9850.1 9850.1 9850.5 9850.1
PL 0.2515 0.1171 0.1207 0.4850 0.1134
Best costT (×  103 $) 117.8404 118.9734 119.6477 125.9508 126.8486
Worst costT (×  103 $) 125.0225 125.5121 121.4457 129.4023 130.3201
Average costT (×  103 $) 122.4021 122.4920 122.4960 128.5443 128.6714
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The optimum values of 40 generators (Set 2) using WDO 
for Case 4 are tabulated in Table 11.

The optimal PT, PL and CostT values (best, worst and 
average) for Case 4 are shown in Table  12. As can be 
seen, all techniques are capable of achieving the PD set at 
9850 MW. Of the five methods used, MFO has the lowest 
PL of 113.4 kW, followed by FPA, PSO and WDO. EP tuned 
the highest PL at 485.0 kW, which is 0.005% of the PD value. 
This indicates that all the PL values produced by the five 
optimisation methods in this case are minimal and accept-
able. Despite giving the lowest PL, the MFO yields a CostT 
of 126.8486 MW, which is the most expensive amongst 
the five methods simulated. In Case 4, PSO still retains its 
potential as a method that provides the most consistent CostT 
results in all 100 simulations conducted, i.e. in the range 
between 119.6477–121.4457 MW. Overall, WDO tuned 
40 generators to produce the lowest values among the best, 
worst and average CostT values at 117.8404, 125.0225 and 
122.4021 MW, respectively. This makes WDO as the tech-
nique of choice in tuning the generator unit in producing the 
cheapest generation cost according to the PD that has been 
set with minimum PL.

Figure 5 shows the convergence curves of all five optimi-
zation techniques which give the best costT for Case 1. From 
the figure, EP converge in 16 iterations, followed by PSO (52 
iterations), WDO (62 iterations), FPA (69 iterations) and 
MFO (91 iterations). Although EP gives the fastest tech-
nique to converge, it could not give the lowest generation 
cost compared to the other four methods. On the other hand, 
WDO, FPA and PSO are converge almost the same number 
of iterations. From this result, this indicates the WDO period 
for convergence is within an acceptable range and is almost 
identical to other techniques such as FPA and PSO.

5  Conclusion

This study proposed a power scheduling strategy using 
WDO to achieve optimal power generation by generator 
units with minimum power generation cost based on non-
convex problem formulation. The WDO technique was 
compared with four selected techniques, namely, FPA, 
MFO, PSO and EP. The 10- and 40-generator systems, 
each with two different power demands, were selected as 
test systems and implemented using MATLAB. Results 
showed that the five approaches tested successfully pro-
duced energies that were almost equal to the energy 
demands, with extremely low power losses. In terms of 
generation costs, the majority of scenarios demonstrated 
that WDO outperforms the other four methods in provid-
ing lower generation costs for the same energy demand. 
From the perspective of iteration time, the WDO capabil-
ity is found to be equivalent to most of the techniques 
compared, which requires between 50–100 iterations to 
complete the calculation. In conclusion, WDO is the most 
accurate technique that can be used in power scheduling 
for economic dispatch problems in power systems that 
consider the point-valve effect.
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