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A Non-Cooperative Framework for Coordinating
a Neighborhood of Distributed Prosumers

Armin Ghasem Azar, Hamidreza Nazaripouya, Members, IEEE, Behnam Khaki, Student Member, IEEE,

Chi-Cheng Chu, Rajit Gadh, Member, IEEE, and Rune Hylsberg Jacobsen, Senior Member, IEEE

Abstract—This paper introduces a scalable framework to
coordinate the net load scheduling, sharing, and matching in a
neighborhood of residential prosumers connected to the grid. As
the prosumers are equipped with smart appliances, photovoltaic
panels, and battery energy storage systems, they take advantage
of their consumption, generation, and storage flexibilities to ex-
change energy with neighboring prosumers through negotiating
on the amount of energy and its price with an aggregator.
The proposed framework comprises two separate multi-objective
mixed integer nonlinear programming optimization models for
prosumers and the aggregator. Prosumers’ objective is to max-
imize the comfort level and minimize the electricity cost at
each instant of time, while aggregator intends to maximize its
profit and minimize the grid burden by matching prosumers’
supply and demand. The evolutionary Non-dominated Sorting
Genetic Algorithm-III (NSGA-III) is employed to generate a set
of feasible non-dominated solutions to the optimization problem
of each individual prosumer and the aggregator. As a bilateral
negotiation between each prosumer and the aggregator results in
significant computational and communication overhead, a virtual
power plant is introduced as an intermediator on behalf of
all prosumers to proceed the negotiation with the aggregator
in a privacy-preserving non-cooperative environment, where no
private information is shared. Hence, an automated negotiation
approach is embedded in the framework, which enables the
negotiators to reactively negotiate on concurrent power and
price using private utility functions and preferences. To converge
to an acceptable agreement, the negotiation approach follows
an alternating-offer production protocol and a reactive utility
value concession strategy. The effectiveness of the framework
is evaluated by several economic and environmental assessment
metrics through a variety of numerical simulations.

Index Terms—Distributed coordination, energy negotiation,
multi-objective optimization, pricing, prosumers, smart grid.
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Digital Object Identifier XXX

β, θ, α Desired operating end time, flexibility, and start

time of an appliance

n Number of appliances

Bcap BESS capacity (kWh)

δ Negotiation convergence tolerance

ǫ Decay rate controller for the time-dependent con-

cession values

T Number of negotiation iterations

ρ A prosumer

m Number of prosumers

K Number of solutions to the optimization problem

PVcap Power generation capacity of a PV (kW)

∆t Time interval resolution

T Number of time intervals

ψ Utility function

Bc(d) Maximum (dis)charging power of a BESS (kW)

Indexes

k̃, k, j, ι, i Behavior matrix, behavior pair, appliance, negoti-

ation iteration, prosumer, and time interval

Sets

AP,P Set of appliances, and prosumers

lp Load profile of an appliance

R,B,N Real, Binary, and Natural numbers

Variables

Z (t) The zone of agreement in the negotiation

τ (t) Load demand of an appliance (kW)

Be (t) Amount of energy stored in a BESS (kWh)

Bc(d) (t) (Dis)Charging power of a BESS (kW)

υc(d) (t) Binary (dis)charging status of a BESS

B̃M (t) A behavior matrix

BP (t) A behavior pair

dec (t) Binary decision variable of operating an appliance

ω (ι) Reactive concession value

Π(ι) Desired utility value

p (t) Electricity price ($/kWh)

Z (t) Set of feasible desired offer packages

Z (ι) Subset of feasible desired offer packages

flex (t) Binary flexibility status of an appliance

σ (ι) Offer package

ℵ (t) , ℵ̃ (t) Power exchanged between a prosumer/aggregator

and the grid (kW)

ϕ (ι) Offer package projection weight

PVg (t) PV generation (kW)

SI (t) Satisfaction index

ς (ι) Time-dependent concession value

χ (ι) Weighted offer package
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I. INTRODUCTION

A. Motivation and Problem Statement

O
WING to advanced communication, data processing, and

control systems, the smart grid from a global perspective

is a promising technology for increasing the grid integration

of Renewable Energy Sources (RESs), such as Photovoltaics

(PVs), as well as Battery Energy Storage Systems (BESSs) [1].

Such integration leads to the enhancement of grid services,

e.g., peak demand reduction, and, therefore, provides system

operators with a capability of an efficient and optimal man-

agement of the power grid. Although electricity prosumers are

also benefiting from the smart grid technology by flexibility

utilization and electricity bill reduction as a consequence of re-

sponding to demand response incentives, they are not involved

directly in the benefits of this technology [2]. In other words,

prosumers, without having collaboration with aggregators, do

not have enough authority, in terms of flexibility, to be able to

individually participate in a dynamic bilateral decision-making

procedure, which could provide them with the opportunity to

influence the amount of electricity they receive (inject) from

(to) the grid as well as the electricity price [3].

Realizing such an interactive and fair bilateral trade is chal-

lenging due to lack of: i) a scalable framework, in terms of the

number of consumers, to coordinate the scheduling, sharing,

and matching tasks, ii) a practical real-time decision-making

model to consider the dynamic behavior of the prosumers’ load

demands and RESs’ generation, and iii) an efficient negotiation

approach to enable the coordination in a privacy-preserving

environment, in which neither prosumers nor aggregators (or

system operators) share their sensitive information, such as

flexibility information and objective functions, with each other.

B. Related Work

Efforts have been devoted to solving the coordination

problem in two interrelated zones: i) transmission-distribution

system operators (by e.g., proposing decentralized decision-

making algorithms for optimal power flow implementation

while respecting the operators’ autonomy and information

privacy [4]), and ii) scheduling, sharing, and matching be-

tween a set of end users. The latter has recently received

much attention, where the proposed solutions in the literature

fall into two categories, i.e., centralized and distributed. In

the former, a centralized coordinator receives load demand

scenarios accompanied with available flexibility of prosumers

and attempts to match supply and demand according to peer-

to-peer energy sharing model with price-based demand re-

sponse. Such approaches comprise a single- or multi-objective

optimization model to reduce prosumers’ electricity bills,

flatten the aggregated peak demand, or maximize comfort

level [5]–[11]. The main issues with the centralized approaches

include having no guarantee in balancing demand and supply,

nonscalability, unfair energy trading pricing, and prosumers’

privacy violation. Distributed approaches, which attempt to

address the issues raised for centralized approaches, propose

distributed energy management systems based on model pre-

dictive control methodologies under a dynamic pricing sys-

tem. [12]–[20] are some examples of proposing day-ahead or

real-time demand-side management systems for peer-to-peer

exchanging of electricity between prosumers, equipped with

PVs and BESSs, where the pricing and trading contracts are

handled by submission-based, iterative or (non-)cooperative

game theory mechanisms. Even though these mechanisms

are able to achieve an exact demand supply balance based

on a dynamic pricing scheme, they should, however, access

to a complete list of preferences, full information of aggre-

gated consumption/generation profiles, which violates privacy.

Moreover, no negotiation takes place between prosumers and

excess energy is injected to the grid at a fixed price rate defined

by the grid rather than prosumers.

C. Contributions and Organization of the Paper

This paper, to address the above-mentioned challenges and

fulfills the existing gaps, makes the following contributions:

1) We propose a scalable non-cooperative framework to

coordinate the scheduling, sharing, and matching tasks of

prosumers and the aggregator. Its principal advantageous is

that the trading amount, which depends on prosumers’ real-

time available flexibility, and trading price, which is subject

to considerable fluctuations in the market, are co-decided by

all the prosumers. This implies that each prosumer has an

equal privilege and is able to switch its interaction mode

(buyer/seller) at any time instant. Fig. 1 shows an overview of

the proposed framework.

2) We develop two practical Multi-Objective Mixed Integer

Nonlinear Programming (MO-MINLP) optimization models

for prosumers and the aggregator enabling them to negotiate

their energy in the framework. They are tailored the framework

in such a way that help prosumers and the aggregator quantify

their possible social and financial benefits throughout the

negotiation. The first model assists prosumers in scheduling

their appliances and sharing/satisfying their surplus/demand

with/through the grid. It confronts the conflicting objectives

of maximizing the comfort level and benefit considering the

available flexibility of each prosumer [10], [21]. The second

model serves the aggregator to simultaneously maximize the

profit and minimize the grid purchase [22]. It enables the

aggregator to match supply and demand in the grid considering

prosumers’ interaction mode. We employ the Non-dominated

Sorting Genetic Algorithm-III (NSGA-III) [23] to help pro-

sumers and the aggregator strategically make trade-offs over

non-dominated solutions, where each solution declares the

amount of power to sell/buy and the corresponding price.

3) We introduce a bilateral multi-issue negotiation approach

incorporated into the framework to enable the aggregator to

negotiate with a Virtual Power Plant (VPP), as an intermedi-

ator on behalf of prosumers. An alternative solution, though

with high overheads, is concurrent bilateral negotiations be-

tween prosumers and the aggregator. Such approach might not

facilitate such a complicated decision-making process, since:

i) computationally, it would be a high-burden mechanism to

reach an overall agreement during the negotiation procedures,

and ii) infeasible aggregated matching solutions might be

obtained when the amount of power traded by each prosumer

changes over the negotiation process. Of particular interest
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Fig. 1. System model of the proposed framework.

is that the proposed negotiation approach is conducted in

a non-cooperative environment [24], where no private infor-

mation (i.e., flexibility information and utility functions) is

shared between the negotiators. This approach is based on

an alternating-offer production protocol and a novel reactive

utility value concession strategy guaranteeing convergence

to a unanimous feasible agreement. Negotiators own nonlin-

ear, continuous, and strictly concave utility functions. They

start the negotiation with an offer package (made with non-

dominated solutions) providing the highest possible utility

value. They reactively concede to their pre-defined reservation

offer packages (the degraded but still feasible) within a prede-

fined number of negotiation iterations. They neither propose

nor accept any offer package with utility values lower than

their reservation utility values. To help negotiators identify

the most beneficial offer package, a novel evaluation metric,

named satisfaction index, is presented to quantify each offer

package according to the amount of flexibility used and the

profitability of the price offered.

The rest of paper is structured as follows: Section II presents

the system architecture of the framework; Section III intro-

duces the NSGA-III for solving the MO-MINLP problems;

Section IV describes the negotiation approach; Section V

provides the simulation setup and discusses the results; and,

Section VI concludes the paper and outlines the future work.

II. SYSTEM ARCHITECTURE

This paper considers a smart grid including m ∈ N pro-

sumers P = {ρ1, . . . , ρi, . . . , ρm}, which communicate with

an aggregator through a VPP (modeled in Section IV-A).

A. Prosumers

Fig. 2 shows power actions of prosumer ρi at time inter-

val t ∈ N. Let APi be the set of appliances of prosumer ρi.

Appliance aj,i ∈ APi, 1 ≤ j ≤ ni ∈ N is either non-

shiftable (e.g., refrigerator) or shiftable (e.g., electric vehicle).

Shiftability feature provides the prosumer with a flexibility

degree to interrupt the operation of appliances [10], [25]. Let

βj,i∑

t=αj,i

τj,i (t) · decj,i (t) =
∣∣lpj,i

∣∣ , (1)

ni∑

j=1

τj,i (t) · decj,i (t) = ℵP2L
i (t) + ℵB2L

i (t) + ℵG2L
i (t) , (2)

{
decj,i (t) ∈ {0, 1} flexj,i (t) = 1,
decj,i (t) = 1 otherwise,

(3)

flexj,i (t) =

{
0 (βj,i − αj,i) ≤ (θj,i − t) ,
1 otherwise,

(4)

where αj,i, βj,i ∈ Z≥0 are the “desired operation start” and

“normal operation end” times of appliance aj,i, following a

specific load profile lpj,i. Then, τj,i (t) ∈ R≥0 (kW) specifies

the amount of power the appliance needs to operate between

each two time intervals t and t+∆t. Note that ∆t ∈ N is the

time interval resolution. decj,i (t) ∈ B is the binary decision

variable of the corresponding load. Decision variables for non-

shiftable appliances are always one. Eq. (1) ensures that the

energy needed for each appliance over a given time horizon is

fully satisfied. Eq. (2) states that load demands at each time

interval are satisfied through ℵP2L
i (t) , ℵB2L

i (t) ,ℵG2L
i (t) ∈

R≥0 (kW), denoting the power transferred from the PV,

the BESS, and the grid to appliances, respectively. decj,i (t),
as modeled in (3), is affected by the corresponding binary

flexibility status flexj,i (t) ∈ B. The status is updated according

to the flexibility deadline θj,i ∈ Z≥0, which is adjusted by the

prosumer, defining for how long the prosumer is flexible in

having the appliance’s operation finished after its normal end

time [26]. Each prosumer is equipped with a locally installed

PV system (behind the meter). Let

PV
g
i (t) = ℵP2L

i (t) + ℵP2B
i (t) + ℵP2G

i (t) ≤ PV
cap
i , (5)

where PV
g
i (t) ,PV

cap
i ∈ R≥0 (kW) are the amount of power

generated by PV at time interval t and PV’s maximum gen-

erating capacity, respectively. ℵP2B
i (t) ,ℵP2G

i (t) ∈ R≥0 (kW)

are the amount of power transferred from the PV into the

BESS and the grid, respectively [27]. Demand for electricity

changes through the day and does not necessarily match with

the PV production. BESSs, by storing the energy during off-

peak, utilizing it during peak periods, or selling it to the grid,

can alleviate such challenges. Let

Be
i (t+ 1) = Be

i (t) +
(
Bc

i (t) · υ
c
i (t)−Bd

i (t) · υ
d
i (t)

)
·∆t,

(6)

Be
i (t) ≤ B

cap
i , (7)

Bc
i (t) = ℵP2B

i (t) + ℵG2B
i (t) ≤ Bc

i , (8)

Bd
i (t) = ℵB2G

i (t) + ℵB2L
i (t) ≤ Bd

i , (9)

υci (t) + υdi (t) ≤ 1, (10)

where Be
i (t) , B

cap
i ∈ R>0 (kWh) are the amount of energy

stored in the BESS until time interval t and the BESS capacity,

respectively. Notations Bc
i (t) , B

d
i (t) ∈ R≥0 (kW) denote the

PV

GridAppliances

BESS

ℵP2G
i (t)ℵP2L

i (t)

ℵB2G
i (t)

ℵG2B
i (t)

ℵB2L
i (t)

ℵG2L
i (t)

ℵP2B
i (t)

Fig. 2. Model diagram of the power actions of prosumer ρi.
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amount of power the battery is “charged” and “discharged”

with, respectively. The operation of the BESS is controlled

by υci (t) , υ
d
i (t) ∈ B, as binary charging and discharging

variables respectively. Eq. (10) prevents the BESS from being

charged and discharged simultaneously. Thus, the BESS, at

each time interval, can either be charged, discharged, or remain

silent. Notations ℵB2G
i (t) ,ℵG2B

i (t) ∈ R≥0 (kW) denote the

amount of power transferred from the BESS to the grid and

vice versa, depending on Bc
i , B

d
i ∈ R>0 (kW), as maximum

possible charging and discharging power, respectively [28].

Thus, the following defines the optimization model, which

is applicable to each independent prosumer ρi ∈ P:

maximize
{decj,i(t)}

ni
j=1

,Bc
i
(t)

ni∑

j=1

τj,i (t) · decj,i (t) +Bc
i (t), (11)

maximize
ℵi(t),pi(t)

ℵi (t) · pi (t) ·∆t, (12)

subject to

(1)− (10),

ℵi (t) ≤ ℵi (t) ≤ ℵi (t) , (13)

pl (t) ≤ pi (t) ≤ pu (t) , (14)

ℵi (t) = PV
g
i (t)−

ni∑

j=1

τj,i (t)−Bc
i , (15)

ℵi (t) = PV
g
i (t) +Bd

i −
∑

flexj,i(t)=0,

∀aj,i∈APi

τj,i (t), (16)

ℵi (t) = ℵB2G
i (t) + ℵP2G

i (t)− ℵG2B
i (t)− ℵG2L

i (t) , (17)

where the prosumer faces a multi-objective optimization prob-

lem involving two objective functions solved simultaneously.

Eq. (11) aims at maximizing the prosumer’s comfort level by

satisfying as many load demands as possible and charging its

BESS as much as possible. The reason for considering the

charging completeness of the BESS [29] in (11) is twofold:

i) to allow wide solution-space exploration by making the

corresponding objective function continuous. With empty bat-

tery, due to the discrete nature of appliances (on and off), the

demand profile would also be discrete, and ii) to store energy

during low-price and utilize it (to either satisfy load demands

or inject it back to the grid) during high-price periods. Eq. (12)

intends to maximize the prosumer’s profit by selling more

power to the grid. These two objectives are in conflict with

each other, since trying to inject more power to the grid

results in jeopardizing the prosumer’s comfort level and vice

versa. ℵi (t) ∈ R (kW) is the desired amount of power the

prosumer strives to exchange with the grid coupled with a

price offer pi (t) ∈ R>0 ($/kWh). This price is selected

between
[
pl (t) , pu (t)

]
∈ R>0 ($/kWh) as the minimum and

maximum offerable price for trading energy, respectively.

ℵi (t) and ℵi (t) are the optimum values for trading the

power, which can maximize the comfort level, and profit,

respectively, where ℵi (t) ≤ ℵi (t) ≤ ℵi (t). When ℵi (t) =
ℵi (t), all demanding appliances are allowed to operate

and the BESS is fully charged. When ℵi (t) = ℵi (t),
the profit is maximized and appliances, with no flexibility

(
flexj,i (t) = 0, ∀aj,i ∈ APi

)
, are only allowed to operate. The

remaining is sold to the grid. Prosumers are not allowed

to buy and sell at the same time. Each prosumer at each

interval can either be: i) a buyer, i.e., ℵi (t) ≤ ℵi (t) < 0,

where ℵG2B
i (t)+ℵG2L

i (t) > 0 and ℵB2G
i (t) = ℵP2G

i (t) = 0, ii)

a seller, i.e., 0 < ℵi (t) ≤ ℵi (t), where ℵB2G
i (t)+ℵP2G

i (t) > 0
and ℵG2B

i (t) = ℵG2L
i (t) = 0, or iii) flexible (can either be

buyer or seller), i.e., ℵi (t) < 0,ℵi (t) > 0.

B. Aggregator

The aggregator holds no physical connection with the grid

and is only responsible for trading prosumers’ flexibility

in the market while making profitable contracts [30]. The

aggregator makes decisions in response to prosumers’ surplus

and shortage based on the following optimization model:

maximize
{ℵ̃i(t),p̃i(t)}

m

i=1

∆t ·
m∑

i=1

{
ℵ̃i (t) ·

(
p
l
G (t)− p̃i (t)

)
ℵ̃i (t) > 0,

ℵ̃i (t) · (p̃i (t)− p
u
G (t)) ℵ̃i (t) < 0,

(18)

minimize
{ℵ̃i(t)}

m

i=1

−
m∑

i=1

ℵ̃i (t), (19)

subject to




[
0 < ℵ̃i (t) ≤ max

∀ρi∈P
ℵi (t)

pl (t) ≤ p̃i (t) ≤ plG (t)
ℵi (t) > 0, ∀ρi ∈ P,

[
min
∀ρi∈P

ℵi (t) ≤ ℵ̃i (t) < 0

puG (t) ≤ p̃i (t) ≤ pu (t)
ℵi (t) < 0, ∀ρi ∈ P,

(20)
m∑

i=1

ℵ̃i (t) + ℵ̃A (t) = 0, (21)

where the aggregator, similar to prosumers, confronts with a

multi-objective optimization problem making trade-off over

two objectives. Eq. (18) attempts to maximize the aggregator’s

profit by selling more power to buyer prosumers with high

price and buying less power from seller prosumers who offer

prices higher than grid. This leads to buying more power

from the grid. Eq. (19), however, aims at minimizing the

grid burden. ℵ̃i (t) ∈ R (kW) is the amount of power the

aggregator is interested in trading with prosumer ρi with

a price offer p̃i (t) ∈ R>0 ($/kWh). Eq. (20) prevents the

aggregator from requesting buyer prosumers to sell and vice

versa. ℵ̃A (t) ∈ R (kW) is the amount of electric power that

the aggregator exchanges with the grid (matching supply with

demand). plG (t) , puG (t) ∈ R>0 ($/kWh) are the grid’s prices

for buying/selling energy from/to the aggregator, respectively.

III. NSGA-III: AN EVOLUTIONARY MULTI-OBJECTIVE

OPTIMIZATION ALGORITHM

Typically, there exists no unique optimal solution to multi-

objective optimization problems of prosumers and the aggrega-

tor including multiple conflicting criteria. Hence, the concept

of an optimal solution is replaced by the set of non-dominated

solutions in the objectives space. A non-dominated solution is

a solution from which moving to any other solution requires

a trade off with at least one objective value.
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This paper employs the evolutionary NSGA-III [23], [31]

to produce K ∈ N feasible and well-spread solutions to

the optimization problem of each independent prosumer as

well as the aggregator, using a systematic decomposition-

based reference-point-based non-dominated sorting approach.

These solutions lie on the first Pareto-front (after running

a pre-defined number of generations). The NSGA-III places

reference points on a rectangle with a number of divisions

along each objective axis in the objective space [23]. This

approach is maintained by making one individual solution

associated with one reference point. Therefore, the generated

solutions are likely to be widely distributed on the Pareto-

front, since the reference points are widely distributed on

the objective space. The computational complexity of one

generation of the NSGA-III is O
(
2 ·K2

)
, whereas for the

NSGA-II, it is O
(
2 ·K3

)
[32].

The main part in the NSGA-III is to generate an initial set

of feasible solutions. For each prosumer ρi ∈ P , let

BPk
i (t) ,

(
ℵk
i (t) , p

k
i (t)

)
, (22)

SIk
i (t) ,





ℵk
i (t)

ℵi(t)
+

pk
i (t)

pu(t) ℵk
i (t) > 0,

ℵk
i (t)

ℵi(t)
+ pl(t)

pk
i
(t)

ℵk
i (t) < 0,

(23)

where behavior pair BPk
i (t) , 1 ≤ k ≤ K is a feasible

solution to the prosumer’s optimization problem. Fig. 3 shows

how such behavior pair, according to (1)-(10) and (13)-(17), is

randomly generated. Depending on the prosumer’s status (i.e.,

buyer, seller, or silent), satisfaction index SIk
i (t) ∈ (0, 2]

is a measure, which shows to which extent BPk
i (t) uses

the available flexibility and provides a more beneficial price

offer [8], [12]. This index is maximized when: i) a buyer

prosumer purchases the lowest possible amount of power

(ℵi (t)) at the lowest possible price (pl (t)), or ii) a seller

prosumer sells the maximum possible amount of electricity

(ℵi (t)) at the highest possible price (pu (t)).

Similar to prosumers, the aggregator also benefits from the

NSGA-III to generate K feasible non-dominated solutions to

its optimization problem. Let

B̃M
k̃

A (t) ,




B̃P
k̃

1 (t)
...

B̃P
k̃

m (t)


 , (24)

B̃P
k̃

i (t) ,
(
ℵ̃k̃
i (t) , p̃

k̃
i (t)

)
, (25)

SI k̃
A (t) ,

1

m
·

m∑

i=1





ℵ̃k̃
i (t)

max
∀ρi∈P

ℵi(t)
+ pl(t)

p̃k̃
i
(t)

ℵ̃k̃
i (t) > 0,

ℵ̃k̃
i (t)

min
∀ρi∈P

ℵi(t)
+

p̃k̃
i (t)

pu(t) ℵ̃k̃
i (t) < 0,

(26)

where behavior matrix B̃M
k̃

A (t) , 1 ≤ k̃ ≤ K includes

m behavior pairs B̃P
k̃

i (t) , ∀ρi ∈ P . Fig. 4 shows how

a feasible behavior matrix, according to (20), is randomly

generated. Each of which is the aggregator’s action in re-

sponse to the behavior pair of a prosumer. Satisfaction in-

Start

Generate a

random ℵk
i (t)

subject to (13)
ℵP2L
i (t) = min {

∑
τj,i (t),PV

g
i (t)}

ℵk
i (t) = 0ℵk

i (t) < 0

ℵB2L
i (t) =

∑
τj,i (t) − ℵP2L

i (t)

ℵG2L
i (t) = min{

∑
τj,i (t) − ℵP2L

i (t) ,ℵk
i (t)}

ℵB2L
i (t) =

∑
τj,i (t) − ℵP2L

i (t),

ℵP2G
i (t) = min

{
PV

g
i (t)− ℵP2L

i (t) ,ℵk
i (t)

}
,

ℵB2G
i (t) = ℵk

i (t) − ℵP2G
i (t)

Run the EDF and

update relevant

power actions

accordingly

Feasibility

validated?

Generate a

random pki (t)
subject to (14)

End

Yes

No

Yes

No

Yes No

Fig. 3. Flowchart of generating a feasible behavior pair BPk
i (t),

where
∑

τj,i (t) is the summation of load demands of appliances with insuffi-
cient flexibility. Earliest Deadline First (EDF) mechanism [9] is applied on the
remaining appliances and relevant power actions are, then, updated. Feasibility
is related to constraints formulated in each prosumer’s MO-MINLP.

dex SI k̃
A (t) ∈ (0, 2] determines how much the aggregator is

satisfied with B̃M
k̃

A (t).

Start i = 1 i ≤ m

Generate a

random B̃P
k̃

i (t)

subject to (20)

i = i+ 1

Update ℵ̃A (t)
by (21)

End

Yes

No

Fig. 4. Flowchart of generating a feasible behavior matrix B̃M
k̃

A (t).

IV. NEGOTIATION APPROACH

Prosumers’ rational behaviors are more conspicuous when

the uncertainty about the aggregator’s decision space increases.

This paper employs a novel negotiation approach, proposed

in [24]. This approach facilitates the concurrent negotiation

on power and price with offer packages between negotiators

provably coming to an agreement, given that negotiators are

reactive and no private information is shared. To the best of our
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knowledge, this paper is among the first attempts, that tack-

les the peer-to-peer automated energy trading problem with

designing (close to real-life) MO-MINLP models integrated

with a fully adaptive real-time negotiation approach.

A. Formulation of Offer Packages and Utility Functions

This paper, to alleviate the challenges of parallel bilateral

negotiations between m prosumers and the aggregator, utilizes

an intermediate VPP to negotiate on behalf of prosumers.

The negotiators (i.e., the VPP and the aggregator) conduct

the negotiation procedure between each two time intervals t

and t + ∆t for maximum T ≥ 2 ∈ N iterations, which is

set arbitrarily. The following defines how an offer package

for each negotiator is formulated and evaluated through its

relevant utility function defined.

1) VPP: Let

σV (ι) =




BPk
1 (t)
...

BPk′

m (t)


 , (27)

where σV (ι) is an offer package that the VPP produces and

sends to the aggregator at negotiation iteration 1 ≤ ι ≤ T . Su-

perscripts k in BPk
i (t) , ∀ρi ∈ P and k′ in BPk′

i′ (t) , ∀ρi′ ∈
P , where 1 ≤ k, k′ ≤ K, are not necessarily equivalent. Let

ψV (SIV (ι)) = 1−

m∑
i=1

(
1
2 · SIk

i (t)
)2

m
, (28)

SIV (ι) ,
m⋃

i=1

SIk
i (t), 1 ≤ k ≤ K, (29)

where ψV ∈ [0, 1) is the VPP’s private, continuous, and strictly

concave utility function [24], [33]. Due to privacy concerns,

negotiators have no knowledge about each other’s utility

function. Basically, such functions return the utility value of a

single offer package, e.g., σV (ι) , ∀ι ≤ T , by receiving its cor-

responding satisfaction index, i.e., SIV (ι). This satisfaction

index is the union of satisfaction indexes SIk
i (t) , ∀ρi ∈ P

of BPk
i (t) , ∀ρi ∈ P stored in σV (ι). Let

σres
V (t) =




BP res
1 (t)
...

BP res
m (t)


 , (30)

BP res
i (t) = (ℵres

i (t) , pres
i (t)) , (31)

ℵres
i (t) =





ℵi (t)
∑

flexj,i(t)=0,

∀aj,i∈APi

τj,i (t) ≤ PV
g
i (t) ,

ℵi (t) otherwise,

(32)

pres
i (t) =

{
pl (t) ℵres

i (t) > 0,
pu (t) ℵres

i (t) < 0,
(33)

where σres
V (t) is the reservation offer package of the VPP in-

cluding prosumers’ reservation behavior pairs BP res
i (t) , ∀ρi ∈

P . ℵres
i (t) ∈ R (kW) and pres

i (t) ∈ R>0 ($/kWh) are the

reservation power and price offers of prosumer ρi at time

interval t. Prosumers in the worst case have to: i) satisfy

appliances with no flexibility remained (flexj,i (t) = 0, ∀aj,i ∈

APi, ∀ρi ∈ P), and ii) utilize the electric power generated

by the PV completely. Then, the reservation price offer,

depending on the status of the reservation power, will either

be the lowest or highest possible offerable electricity price.

SIres
V (t) ∈ (0, 2], as the satisfaction index of σres

V (t), is the

union of SIres
i (t) ∈ (0, 2] , ∀ρi ∈ P (calculated by (23))

associated with BP res
i (t) , ∀ρi ∈ P . VPP will not accept any

offer package with the utility value less than ψV (SIres
V (t)).

2) Aggregator: Let

σA (ι) = B̃M
k̃

A (t) , (34)

where σA (ι) (equivalent to k̃-th behavior matrix, see (24)) is

an offer package that the aggregator produces and sends to the

VPP at negotiation iteration ι. Let

ψA

(
SI k̃

A (t)
)
= 1−

(
1

2
· SI k̃

A (t)

)2

, (35)

where ψA ∈ [0, 1) is the aggregator’s private, continuous, and

strictly concave utility function [24], [33]. Let

σres
A (t) =




B̃P
res

1 (t)
...

B̃P
res

m (t)


 , (36)

B̃P
res

i (t) =

(
min
∀ρi∈P

ℵi (t) , p
l (t)

)
, (37)

where σres
A (t) is the reservation offer package of the aggregator

denoting m · min
∀ρi∈P

ℵi (t) amount of electric power must be

exchanged (in the worst case) with the grid for pl (t). It is

coupled with a satisfaction index SIres
A (t) ∈ (0, 2] (calculated

by (26)). Similarly, the aggregator will not accept any offer

package with the utility value less than ψA (SIres
A (t)). The

negotiation approach, to guarantee the convergence to an

acceptable agreement in a non-cooperative environment within

a reasonable time frame, requires negotiators to define private

reservation offer packages, formulated as the worst but still

feasible offer packages [24]. The VPP, by (30), ensures all

prosumers that their non-flexible appliances operate uninter-

ruptedly until completion. The aggregator, on the other hand,

is guaranteed by (36) to receive the lowest possible profit,

despite having the lowest possible amount of exchange.

B. Negotiation Protocol and Strategy

We employ an alternating-offer production protocol [34],

where the VPP produces an offer and the aggregator either ac-

cepts it or makes a new one. The negotiation begins with offer

packages produced with the highest possible utility values and

continues with offer packages with lower utility values until

reaching the reservation offer packages. It terminates when

both negotiators accept the offer on the table or it reaches

iteration T . Negotiators, at each negotiation iteration, produce

(and only accept) an offer package that provides a utility

value equivalent to or higher than their desired utility value

at that iteration (or their reservation utility value). To produce

new offer packages over negotiation iterations, they follow

reactive utility value concession strategy [24]. It assumes
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negotiators are reactive to the concession strategies of the

other agents. Their concession rate depends on: i) whether

the current offer of the opponent negotiator provides higher

utility value than the negotiator’s reservation utility value, and

ii) the negotiator’s perception of how much the other party

has conceded. It is also assumed that each negotiator’s utility

value obtained by an agreement is higher than the one with

no agreement. Therefore, they prefer to concede over risking

negotiation breakdown. Let

ςV (ι) = ψV (SIV (1))− σres
V (t) ·

( ι

T

) 1

ǫ

, (38)

ςA (ι) = ψA (SIA (1))− σres
A (t) ·

( ι

T

) 1

ǫ

, (39)

where ςV (ι) , ςA (ι) ∈ [0, 1) are monotonically decreasing

time-dependent concession values of the VPP and aggregator,

respectively. Their values only depend on each negotiator’s

reservation utility value and the number of negotiation itera-

tions passed with the decay rate ǫ ∈ R>0 [35]. One reason

for a negotiator to stop decreasing its desired utility value over

time is to gain higher utility. This happens when the other

negotiator, without realizing that the negotiator has stopped

conceding, accepts time-dependent concession values at all

negotiation iterations. This behavior is called the “deliberate

stopping of concession.” As a result, let

ωV (ι) =
(
ψV

(
SI temp

V

)
− ψV

(
SI temp′

V

))+

, (40)

ωA (ι) =
(
ψA

(
SI temp

A

)
− ψA

(
SI temp′

A

))+

, (41)

where ωV (ι) , ωA (ι) ∈ [0, 1) are reactive concession

values of the VPP and aggregator, respectively. Note

that y+ = max {0, y}. The VPP, using (23), calculates SI temp

V

and SI temp′

V for σA (ι) and σA (ι− 1), respectively. The ag-

gregator, by using (26), follows a similar procedure. Then, let

ΠV (ι) = min {ςV (ι) ,ΠV (ι− 1)− ωV (ι)} , (42)

ΠA (ι) = min {ςA (ι) ,ΠA (ι− 1)− ωA (ι)} , (43)

where ΠV (ι) ,ΠA (ι) ∈ [0, 1) are desired utility values of the

VPP and the aggregator at iteration ι, respectively. To produce

a new offer package based on ΠV (ι) ,ΠA (ι), ∀ι ≤ T , let

us assume ZV (t) (including maximum Km offer packages)

and ZA (t) (including maximum K possible feasible offer

packages) are the convex feasible offer package sets of the

VPP and the aggregator, respectively. These offer packages

provide negotiators with utility value equivalent to or no less

than their reservation offer package’s utility value. For an

agreement to exist, let Z (t) = ZV (t)
⋂
ZA (t) 6= ∅, ∀t

remain unchanged during the negotiation, where Z (t) is the

zone of agreement denoting the common intersection of the

feasible offer package sets. If an offer package is within Z (t),
a negotiator may not accept it if it yields a utility value lower

than the negotiator’s current desired utility value [24]. To

make an acceptable agreement, negotiators keep conceding to

their reservation utility values subject to the nonempty zone of

agreement at each time interval. Geometrically speaking, the

main goal is to find a point in the zone of agreement, under

the restriction that this zone is unknown to negotiators and

none of them has any explicit knowledge about each other’s

utility functions [24].

Let ι be the negotiation iteration when it is the VPP’s turn

to produce a new offer package. Let BPk
i (t) ∈ σV (ι− 1),

where ∃ρi ∈ P . The VPP (temporarily) updates σV (ι− 1)

with behavior pairs BPk′

i (t) , ∀k + 1 ≤ k′ ≤ K and ex-

pands ZV (ι) with the updated offer packages individually

only if each returns a utility value equivalent to ΠV (ι).
ZV (ι) ⊆ ZV (t) , ∀ι ≤ T is the continuously expanding

feasible offer package subset of the VPP. The aggregator

at iteration ι + 1 updates ZA (ι+ 1) with new offer pack-

ages B̃M
k̃+1

A (t) , ∀k̃ + 1 ≤ K, where each provides the

aggregator with a utility value equivalent to ΠA (ι+ 1).
ZA (ι) ⊆ ZA (t) , ∀ι ≤ T is the continuously expanding

feasible offer package subset of the aggregator. Let

σV (ι) = PZV(ι) [χ (ι)] = argmin
q∈ZV(ι)

‖q − χ (ι)‖ , (44)

σA (ι) = PZA(ι) [χ (ι)] = argmin
q∈ZA(ι)

‖q − χ (ι)‖ , (45)

χ (ι) = ϕV (ι) · σV (ι− 1) + ϕA (ι) · σA (ι− 1) , (46)

ϕV (ι) + ϕA (ι) = 1, (47)

where P is the operator of projecting the weighted offer

package χ (ι), created based on the latest offers made by

all agents, on current continuously expanding feasible offer

package subsets ZV (ι) and ZA (ι) [36]. argmin ‖·‖ is the

Frobenius norm with argument of minimum. This method

generates an offer that is acceptable to the relevant negotiator

and is closest (in terms of Euclidean distance) to the weighted

offer package χ (ι). Notations ϕV (ι) , ϕA (ι) ∈ (0, 1) are the

weights that each negotiator puts on the other’s offer package.

C. Algorithms of the Overall Computational Steps and the

Negotiation Approach

Algorithms 1 provides the pseudo-code for the overall

computational steps in the framework between each two time

intervals t and t+∆t. Prosumers, e.g., via their home energy

management gateways, independently forward their behavior

and the reservation pairs to the VPP. At the same time, the

aggregator produces its own behavior and reservation matrices.

Both the VPP and the aggregator are most likely hosted e.g.,

in the cloud. Then, as Algorithm 2 describes, the negotiation

approach starts with the second iteration and continues for

maximum T iterations. Finally, the VPP returns the indexes of

agreed behavior pairs to the prosumers. Algorithm 2 basically

follows the negotiation protocol and strategy developed in

Section IV-B. We define a binary flag IsConverge to deter-

mine when the negotiation approach, apart from reaching the

maximum number of iterations T , terminates. Depending on

the negotiator’s turn determined by S ∈ B, the corresponding

negotiator attempts to produce a new offer package whereas

the other negotiator remains with its previous offer package.

Following the same principle, Found ∈ B assures whether a

temporarily produced offer package is equal to the desired

utility value. Fig. 5 conceptualizes the offer package space

showing how the VPP and the aggregator negotiate with each
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Algorithm 1: Communication steps in the framework

between time each two intervals t and t+∆t

// Prosumers’ part;

1 for i = 1 to m do

2 Run the NSGA-III to produce
{
BPk

i (t)
}K

k=1
;

3 Determine the reservation behavior pair BP res
i (t);

4 end

// VPP’s part (i);

5 Determine the reservation offer package σres
V (t);

6 Produce the first offer package σV (1);
// Aggregator’s part;

7 Run the NSGA-III to produce

{
B̃M

k̃

A (t)

}K

k̃=1

;

8 Determine the reservation offer package σres
A (t);

9 Produce the first offer package σA (1);
// Negotiation approach;

10 Run Algorithm 2;

// VPP’s part (ii);

11 Return the indexes of agreed behavior pairs to prosumers;

other over, for example, T = 9 iterations [24]. Offer packages

existing on each concession curve have equal utility values (see

lines 16 and 35 in Algorithm 2). The negotiation terminates

when the maximum of Euclidean distances between the current

iteration’s offer packages and the weighted offer package are

less than a constant convergence tolerance δ ∈ R>0 (see

line 48 in Algorithm 2). The computational complexity of the

negotiation approach is O (T ·m ·K) [24].

Power Issue

P
ri

ce
 I

ss
u

e

∀𝝆𝒊∈𝓹min ℵ𝒊 𝒕 ∀𝝆𝒊∈𝓹max ℵ𝒊 𝒕𝒑𝒍 𝒕

𝒑𝒖 𝒕 𝝈𝓥 𝟏

𝝈𝓐 𝟏

𝝈𝓥 𝟐

𝝈𝓐 𝟑

𝝈𝓥 𝟒

𝝈𝓐 𝟓

𝝈𝓥 𝟔𝝈𝓥 𝟖

𝝌 𝟐
𝝌 𝟓

Offer package

Weighted offer package

Aggregator’s concession 
curve

VPP’s concession curve
Projection operator

𝝈𝓐 𝟕

Concession

𝝌 𝟗𝝈𝓐 𝟗

Fig. 5. Conceptual example of the offer package space during the negotiation.

D. Solution Concept for the Negotiation Approach

The authors in [24] analytically demonstrate that the so-

lution concept for the proposed negotiation approach is in

the spirit of Herbert Simon [37]. The negotiation approach,

without computing all solution points (i.e., offer packages),

yields a performance sufficiently close to the Nash bargaining

solution [38]. The scale of the utility value of each negotiator

is of no critical importance, as long as the reservation utility

value and the scale of concession are consistent with the utility

Algorithm 2: The negotiation approach

1 IsConverge=False;
2 ι = 2;
3 while ι ≤ T and IsConverge=False do

4 Determine the negotiator’s turn by S = mod (ι, 2);
5 if S = 0 then // VPP’s turn to offer

6 σA (ι) = σA (ι− 1);
7 ΠA (ι) = ΠA (ι− 1);
8 Calculate ΠV (ι) by (42);
9 for i = 1 to m do

10 Determine k, where BPk
i (t) ∈ σV (ι− 1);

11 σ
temp

V = σV (ι− 1);
12 Found=0;
13 while k + 1 ≤ K do

14 Update σ
temp

V with BPk+1
i (t);

15 Calculate SI temp

V for σ
temp

V by (29);

16 if ψV

(
SI temp

V

)
= ΠV (ι) then

17 Add σ
temp

V to ZV (ι);
18 Found=1;
19 k = k + 1;
20 else if Found=1 then

21 k = K;
22 else

23 k = k + 1;
24 end

25 end

26 end

27 Set σV (ι) by (44);
28 else // Aggregator’s turn to offer

29 σV (ι) = σV (ι− 1);
30 ΠV (ι) = ΠV (ι− 1);
31 Set ΠA (ι) by (43);

32 Determine k̃, where B̃M
k̃

A (t) ∈

{
B̃M

k̃

A (t)

}K

k̃=1

;

33 Found=0;

34 while k̃ + 1 ≤ K do

35 if SI k̃+1
A (t) = ΠA (ι) then

36 Add σk̃+1
A to ZA (ι);

37 Found=1;

38 k̃ = k̃ + 1;
39 else if Found=1 then

40 k̃ = K;
41 else

42 k̃ = k̃ + 1;
43 end

44 end

45 Set σA (ι) by (45);
46 end

47 Set χ (ι) by (46);
48 if max {‖σV (ι)− χ (ι)‖ , ‖σA (ι)− χ (ι)‖} < δ then

49 IsConverge=True;
50 else

51 ι = ι+ 1;
52 end

53 end
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value. The negotiation converges in maximum T iterations, if

they concede to reservation utility values in the worst case and

the zone of agreement is nonempty. The convergence holds for

all strictly concave utility functions irrespective of the specific

concession strategy the negotiators adopt.

V. NUMERICAL SIMULATION AND DISCUSSION

This section evaluates the performance of the proposed

framework, which has been implemented in Matlab® R2017a

running with 16 Intel 2.3 GHz Xeon® E5-2686 CPUs and

64 GB memory. All simulation results have been averaged

over 100 independent runs.

A. Performance Assessment Metrics

To assess the performance of the framework, we define

the following metrics: Peak Demand Reduction (PDR) to

determine how much the peak demand is shaved; Peak-to-

Average Ratio (PAR) to measure how much higher the peak

demand is than average demands in a single simulation;

Average Appliance Operation Delay (AOD) to measure the

delay in delivering appliances in the completed status; Average

Flexibility Usage Rate (FUR) to determine how much of pro-

sumers’ flexibility is traded in the market; Average Prosumer

Cost-Benefit (PCB) to study how much money the prosumers

averagely earn/spend with and without exchanging power

with the grid; Average Self Load-Satisfaction Rate (SLR) to

measure the local self satisfaction of prosumers; and Average

Self Sufficiency Rate (SSR) to evaluate PVs’ capability in

maximizing the comfort level of prosumers without purchasing

any amount of power from the grid.

B. Simulation Setup and Scenario

Table I lists the inputs and Table II describes consumption

scenarios, assumed constant in simulations, unless otherwise

stated. For the PV generation profile, the real data is cap-

tured from the UCLA Ackerman Union and scaled down

from the capacity of 35 kW to 7 kW [39]. Operation and

flexibility times are randomly generated by the normal dis-

tribution N (µ, σ2) with mean µ ∈ R and variance σ2 > 0.

Load profiles of appliances are captured from [40], [41] with

time resolution of ∆t = 1 hour. Nissan Altra is chosen as

the electric vehicle with an empty battery at arrival and fully

charged battery at departure. The deadline flexibility concept

from the perspective of an air conditioner is the comfortable

temperature range, where 25°C and ±3°C are prosumers’

desired temperature set point and flexibility, respectively.

Note that a full simulation starts at midnight and terminates

when the last appliance finishes operating. Real-time hourly

electricity prices are captured from Nord Pool Spot [42],

where
{
pl (t) , pu (t)

}
,
{
plG (t) , puG (t)

}
, ∀t are adjusted by

fluctuation rates of ±50% and ±20%, respectively.

C. Analysis and Discussion

Fig. 6 shows the offer package and utility value concession

spaces of randomly picked time intervals in different circum-

stances for 100 prosumers. Points in the offer package spaces,

TABLE I
CONSTANT INPUTS IN ALL SIMULATIONS, UNLESS OTHERWISE STATED.

Parameter Value Parameter Value Parameter Value

∆t 1 hour PV
cap†∗
i 7 kW B

cap∗
i 13.2 kWh

Bc∗
i 5 kW Bd∗

i 5 kW T 100

ǫ 0.8 δ 0.01 ϕV (ι)
‡
, ϕA (ι)

‡
0.5

* ∀ρi ∈ P . † Data for a sunny day is used. ‡ ∀ι ≤ T .

TABLE II
TIMETABLE OF GENERATING LOAD DEMAND SCENARIOS OF APPLIANCES.

aj,i ∈ APi, ∀ρi ∈ P αj,i βj,i θj,i

Refrigerator (RG) 00:00 24:00 24:00

Washing Machine (WM) N (10, 3) αj,i + 02:00 N (16, 4)
Laundry Dryer (LD) N (15, 1) αj,i + 01:30 N (21, 5)
Dishwasher (DW) N (17, 2) αj,i + 01:40 N (23, 2)
Electric Vehicle (EV) N (19, 10) αj,i + 05:00 N (7.5, 1)∗

Air Conditioner (AC) N (9, 1) N (21, 2) 25°C ± 3°C

* The next day.

for the sake of simplicity, represent the summation of power

and the average of price values of columns in the behavior

matrices. Utility values are unitless, (see (28) and (35)). In

Fig. 6(a), no PVs and BESSs are considered. The VPP, for

example at negotiation iteration ι = 15, is interested in buying

1630 kW of electric power for 0.0145 $/kWh. The aggregator,

then, rejects this offer and makes a new one intending to sell

2180 kW of electric power for 0.022 $/kWh. They continue

negotiating until iteration ι = 31, at which they come to

an agreement on exchanging 2000 kW of electric power for

0.016 $/kWh. Fig. 6(b) shows the negotiation process, where

all prosumers own PV and BESS. They reach an agreement

after exactly 100 negotiation iterations. Having an equal utility

value at iteration ι = 85 does not terminate the negotiation,

since the VPP provides an offer package with selling 8385 kW

of electric power for 0.0227 $/kWh whereas the aggregator

returns another offer package with buying 4738 kW of electric

power for 0.0212 $/kWh. Fig. 6(c) experiences the same

setting as Fig. 6(b) does, where negotiators reach an agreement

after 71 negotiation iterations. Reasons for having unequal

number of buyer and seller prosumers are the absence of

PV generation (when there is no sun), presence of BESSs

with average state of charge of 48%, and all refrigerators, 23

dishwashers, 12 newly arrived electric vehicles, and all air

conditioners in operation.

Fig. 7 demonstrates how increasing the number of pro-

sumers influences the average computation time and the ne-

gotiation convergence at each time interval. It proves that the

proposed framework is scalable, since in practice, as described

in Section IV-B, it will be executed in a fully distributed

manner. In that case, the NSGA-III for each prosumer (or the

aggregator), would approximately take 0.6 second. To evaluate

the practicality of the framework, we revise the framework

to have parallel bilateral negotiations between prosumers and

the aggregator (without VPP), enabling us to compare with

the concept of the single bilateral negotiation introduced in

this paper (with VPP). Table III compares these scenarios
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(a) 100 buyer prosumers (all equipped with no PVs and BESSs).
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(b) 100 seller prosumers (all equipped with PVs and BESSs).
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(c) 38 buyer and 62 seller prosumers (all equipped with PVs and BESSs).

Fig. 6. Offer package (left) and utility value concession (right).
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Fig. 7. Average computation time of the overall framework and negotiation
convergence at each time interval based on different number of prosumers.

with respect to the average computation time of the overall

framework and negotiation convergence at each time interval.

For example with m = 900 prosumers, having no VPP results,

in average, 37.04% more computation time. The computation

time of the NSGA-III is independent of the presence of the

VPP. Furthermore, in this scenario, CPU and memory usages

of the whole simulation are 79% and 42 GB, respectively.

However, these values for the computation device of each

party, in the presence of the VPP, are 34.6% (of a single core

CPU) and 960 MB, respectively.

Table IV evaluates the assessment metrics with respect to

different number of prosumers. As more prosumers are in-

volved, the VPP has more opportunities in utilizing prosumers’

TABLE III
AVERAGE COMPUTATION TIME AND NEGOTIATION CONVERGENCE WITH

RESPECT TO THE PRESENCE OF THE VPP.

Average computation time at each time interval [sec] Average convergence iteration

at each time intervalOverall Negotiation NSGA-III

m w∗/ VPP wo†/ VPP w/ VPP wo/ VPP w/ or wo/ VPP w/ VPP wo/ VPP

100 9.25 15.10 3.72 5.75 5.48 45 58

300 32.44 52.96 13.85 21.42 18.40 52 63

500 52.59 85.85 24.84 38.42 27.40 57 73

700 73.82 120.51 33.03 51.10 40.33 72 89

900 96.69 157.83 44.78 69.27 51.29 84 98

∗ with. † without.

flexibilities enabling it to: i) decrease the delay in satisfying

load demands of appliances in average, ii) increase the PCB,

and iii) increase the PDR. Increase in SLR and SSR also

depends on the generation profiles of PVs in different weather

conditions and the BESS capacities, and decrease in FUR.

TABLE IV
FRAMEWORK EVALUATION WITH DIFFERENT NUMBER OF PROSUMERS.

m PDR (%) PAR AOD (hrs) FUR (%) PCB (%) SLR (%) SSR (%)

100 15.19 2.76 3.30 42.00 65.40 10.10 14.03

300 25.90 2.23 2.57 37.39 99.34 12.47 21.29

500 32.19 2.13 2.29 31.91 147.97 15.08 32.51

700 34.78 2.37 1.43 23.12 179.49 19.17 47.46

900 38.46 2.01 1.13 18.75 209.47 24.45 51.21

Table V evaluates to which extent the random distribution

of PVs and BESSs influences the values of metrics. Compared

to the setting, where all prosumers own PVs and BESSs (see

the first row in Table IV), here, the grid experience lower PDR

since the amount of flexibility is restricted. Decrease in AOD

and FUR (due to limited flexibility) increases SLR and SSR

(desire to increase the comfort), since the VPP cooperates with

the aggregator to increase the PDR and PCB.

TABLE V
FRAMEWORK EVALUATION IN THE PRESENCE OF PVS AND BESSS.

∀ρi ∈ P PDR (%) PAR AOD (hrs) FUR (%) PCB (%) SLR (%) SSR (%)

Only PV 11.43 2.95 1.56 28.18 46.73 20.16 20.16

Only BESS 33.29 2.08 1.20 11.67 35.46 0.83 0.00

Random 16.32 2.60 1.25 12.91 39.97 6.06 6.51

Table VI analyzes the behavior of framework in different

weather conditions. Fluctuations in the PV generation limit

the VPP, in terms of available flexibility, in the negotiation.

TABLE VI
FRAMEWORK EVALUATION WITH DIFFERENT WEATHER CONDITIONS.

Weather PDR (%) PAR AOD (hrs) FUR (%) PCB (%) SLR (%) SSR (%)

Sunny 15.19 2.76 3.30 42.00 65.40 10.10 14.03

Cloudy 09.42 2.99 1.33 14.04 37.78 07.15 13.30

Table VII evaluates the assessment metrics with respect to

the various BESS capacities (in addition to the base BESS

capacity). High BESS capacity provides prosumers with: i)

more flexibility in storing energy, ii) lower AOD, and iii)

higher PCB by selling more to the grid. The VPP, by such

increase in the capacity, is able to provide the grid with more

flexibility, which in turn, results in having higher PDR.
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TABLE VII
FRAMEWORK EVALUATION WITH VARIOUS BESSS CAPACITIES.

B
cap
i , ∀ρi ∈ P PDR (%) PAR AOD (hrs) FUR (%) PCB (%) SLR (%) SSR (%)

13.2 kWh 15.19 2.76 3.30 42.00 65.40 10.10 14.03

26.4 kWh 24.36 2.38 2.00 34.68 102.72 14.84 14.66

39.6 kWh 39.62 1.98 0.58 25.36 165.57 18.12 14.34

Table VIII evaluates the assessment metrics based on differ-

ent appliance sets of 100 prosumers. A non-shiftable refrigera-

tor yields no PDR and delay. Adding more shiftable appliances

help prosumers provide the VPP with more consumption

flexibility. Such increase has a direct correlation with the AOD

and PCB, where prosumers benefit more whereas waiting for

a longer time to ensure have their appliances completed the

operation. Simulation results confirm that a shiftable appliance

contributes to the PDR in the grid and to the prosumer’s PCB

with averagely 0.1% and 0.37%, respectively.

TABLE VIII
FRAMEWORK EVALUATION WITH DIFFERENT SETS OF APPLIANCES.

APi, ∀ρi ∈ P PDR (%) PAR AOD (hrs) FUR (%) PCB (%) SLR (%) SSR (%)

{RG} 0 3.15 0.00 0.00 6.10 2.94 16.58

{RG, WM} 03.42 3.11 0.14 2.39 10.68 3.32 16.35

{RG, WM, LD} 09.22 3.01 0.58 13.19 26.98 6.20 15.39

{RG, WM, LD, DW} 11.63 2.92 1.37 20.90 34.33 8.06 15.14

{RG, WM, LD, DW, EV} 13.24 2.85 2.26 30.27 49.88 9.44 12.24

{RG, WM, LD, DW, EV, AC} 15.19 2.76 3.30 42.00 65.40 10.10 14.03

Table IX makes a qualitative (system architecture) and

quantitative (simulation results) comparative analysis between

a number of relevant works and the proposed framework.

Simulation results are captured/calculated directly from the

references. However, some fail to provide adequate perfor-

mance analysis considering the assessment metrics selected

for comparison. The comparison validates that the developed

framework outperforms the similar approaches in the literature

considering the size of simulated system.

VI. CONCLUSIONS AND FUTURE WORK

This paper proposes a non-cooperative framework for co-

ordinating a neighborhood of distributed prosumers, which

possess smart appliances, photovoltaics, and battery energy

storage systems. Prosumers intend to maximize their comfort

level and profit at the same time whereas the aggregator aims

at maximizing its profit and minimizing the grid purchase,

simultaneously. Prosumers are able to schedule their appli-

ances and share surplus power with the grid. The aggregator

controls the power matching over time. As a result, the

framework faces two multi-objective mixed integer nonlinear

programming models for prosumers and the aggregator.

To relieve the burden of parallel bilateral communications,

between prosumers and the aggregator, a virtual power plant

communicates with an aggregator on behalf of prosumers to

take advantage of their consumption, generation, and storage

flexibilities. This paper employs an efficient negotiation ap-

proach, in which the virtual power plant and the aggregator

negotiate on packaged power and price offers subject to having

no knowledge about each other’s preferences and utility func-

tions. This approach utilizes an alternating offer package pro-

duction protocol and a reactive utility value concession strat-

egy, where negotiators have no incentive to deliberately stop

conceding while the zone of agreement remains nonempty.

Future work will focus on incorporating industrial and

commercial prosumers, and adding a negotiation level between

various aggregators.

REFERENCES

[1] D. Niyato, Q. Dong, P. Wang, and E. Hossain, “Optimizations of Power
Consumption and Supply in the Smart Grid: Analysis of the Impact of
Data Communication Reliability,” IEEE Trans. Smart Grid, vol. 4, no. 1,
pp. 21–35, 2013.

[2] Z. Guan, J. Li, L. Zhu, Z. Zhang, X. Du, and M. Guizani, “Toward
Delay-Tolerant Flexible Data Access Control for Smart Grid With Re-
newable Energy Resources,” IEEE Trans. Industrial Informatics, vol. 13,
no. 6, pp. 3216–3225, 2017.

[3] S. M. Nosratabadi, R.-A. Hooshmand, and E. Gholipour, “A Comprehen-
sive Review on Microgrid and Virtual Power Plant Concepts Employed
for Distributed Energy Resources Scheduling in Power Systems,” Re-

newable and Sustainable Energy Reviews, vol. 67, pp. 341–363, 2017.
[4] A. Mohammadi, M. Mehrtash, and A. Kargarian, “Diagonal Quadratic

Approximation for Decentralized Collaborative TSO+DSO Optimal
Power Flow,” IEEE Trans. on Smart Grid, 2018.
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“Distributed and Decentralized Control of Residential Energy Systems
Incorporating Battery Storage,” IEEE Trans. Smart Grid, vol. 6, no. 4,
pp. 1914–1923, 2015.

[7] N. Liu, X. Yu, C. Wang, C. Li, L. Ma, and J. Lei, “Energy-Sharing
Model With Price-Based Demand Response for Microgrids of Peer-to-
Peer Prosumers,” IEEE Trans. Power Systems, vol. 32, no. 5, pp. 3569–
3583, 2017.

[8] T. AlSkaif, M. G. Zapata, and B. Bellalta, “A Reputation-Based
Centralized Energy Allocation Mechanism for Microgrids,” in IEEE

International Conf. on Smart Grid Communications (SmartGridComm),
2015, pp. 416–421.

[9] A. G. Azar and R. H. Jacobsen, “Agent-Based Charging Scheduling
of Electric Vehicles,” in IEEE Online Conf. on Green Communications

(OnlineGreenComm), 2016, pp. 64–69.
[10] ——, “Appliance Scheduling Optimization for Demand Response,”

International Journal on Advances in Intelligent Systems, vol. 9, no.
1&2, pp. 50–64, 2016.

[11] A. G. Azar, M. Afsharchi, M. Davoodi, and B. S. Bigham, “A Multi-
Objective Market-Driven Framework for Power Matching in the Smart
Grid,” Engineering Applications of Artificial Intelligence, vol. 70, pp.
199–215, 2018.

[12] T. AlSkaif, A. C. Luna, M. G. Zapata, J. M. Guerrero, and B. Bellalta,
“Reputation-Based Joint Scheduling of Households Appliances and
Storage in a Microgrid With a Shared Battery,” Energy and Buildings,
vol. 138, pp. 228–239, 2017.

[13] T. AlSkaif, M. G. Zapata, B. Bellalta, and A. Nilsson, “A Distributed
Power Sharing Framework Among Households in Microgrids: A Re-
peated Game Approach,” Computing, vol. 99, no. 1, pp. 23–37, 2017.

[14] J. Kang, R. Yu, X. Huang, S. Maharjan, Y. Zhang, and E. Hossain,
“Enabling Localized Peer-to-Peer Electricity Trading among Plug-In
Hybrid Electric Vehicles using Consortium Blockchains,” IEEE Trans.

Industrial Informatics, vol. 13, no. 6, pp. 3154–3164, 2017.
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TABLE IX
QUALITATIVE AND QUANTITATIVE COMPARATIVE ANALYSIS BETWEEN A NUMBER OF RELEVANT WORKS AND THE PROPOSED FRAMEWORK.

Reference High-level description
System architecture Simulation analysis

Control

mechanism

Optimization

model
Objective(s)

Flexibility per

prosumer
Negotiation Scalable

Simulation scenario

(System Size)
PDR (%) PCB (%)

Computation

time (sec.)

N. Paterakis et al. [5] A formulation for the simultaneous

operation of prosumers via a two-

step coordination strategy consider-

ing bi-directional power flow and

hourly-varying pricing scheme

Centralized MILP A single objective of

minimizing the total en-

ergy procurement cost

Consumption by ap-

pliances, generation

by the PV, and stor-

age by the BESS

No No 3 households, each

equipped with 3

appliances, a PV, and

a BESS

26 1 24

K. Worthmann et al. [6] A control methodology for dis-

tributed RESs to mitigate difficulty

in supply-demand balance relying on

load and generation forecasting

Centralized LP

(E-MPC)

A single objective of

flattening the aggregate

power usage of the RESs

Consumption by ap-

pliances, and storage

by the BESS

No No 3 RESs, each

equipped with a

BESS

19.10 – High

N. Liu et al. [7] An day-ahead energy-sharing model

with dynamical price-based demand

response for peer-to-peer neighbor-

ing PV prosumers

Centralized Convex

(Bi-level)

A single objective of

minimizing prosumers’

inconvenience and elec-

tricity cost

Generation by the

PV

No No 5 buildings, each

equipped with a PV

system

2.52 5.01 200

T. AlSkaif et al. [12] A reputation-based energy manage-

ment system for prosumers to con-

trol the reallocation of available en-

ergy in the shared storage unit

Distributed MILP A single objective of

minimizing the amount

and price of energy ab-

sorbed from the grid

Consumption by ap-

pliances and genera-

tion by the PV

No No A single BESS shared

with 3 households,

each equipped with 4

appliances and a PV

11.5 68 10

I. Atzeni et al. [15] A day-ahead demand-side manage-

ment mechanism based on a general

dynamic energy pricing model regu-

lated via an independent central unit

preserving the prosumers’ privacy

Distributed NLP A single objective of

reducing (accumulated)

monetary expenses for

each (all) prosumer(s)

Consumption by ap-

pliances, generation

possibility, and stor-

age by the BESS

Yes

(Nash)

Yes 120 households, each

with generation pos-

sibility and equipped

with a set of appli-

ances and a BESS

12.6 20.76 –

Y. Zhou et al. [16] A framework for the time-slotted

peer-to-peer energy sharing and co-

ordination aiming at achieving flex-

ible and efficient distributed energy

management and control

Distributed Convex

(ADMM)

A single objective of

minimizing the aggre-

gate economic cost of all

prosumers

Consumption by ap-

pliances, generation,

by e.g., the PV, and

storage by the BESS

No Yes 36 prosumers, each

equipped with a set of

appliances, a PV and a

BESS

20.73 27 –

A. Sha et al. [20] A strategy for optimizing distributed

energy exchange considering pro-

sumers’ involvement, energy loss

of delivery, network topology, and

physical constraints of distribution

networks approached by a graph

theory-based algorithm

Distributed LP A single objective of

minimizing the cost of

buying energy and the

loss in energy delivery

Generation by either

a small wind turbine

or PV

No No 13 prosumers, each

equipped with either a

small wind turbine or

PV

97.5 66 –

This work A scalable non-cooperative frame-

work for coordinating a neighbor-

hood of prosumers, equipped with

appliances, PVs, and BESSs, en-

gaged with a reactive bilateral multi-

issue negotiation approach subject to

sharing no private information

Distributed MO-MINLP Two objectives of maxi-

mizing the comfort level

and profit for each pro-

sumer as well as max-

imizing the profit and

minimizing the grid pur-

chase for the aggregator

Consumption by ap-

pliances, generation

by the PV, and stor-

age by the BESS

Yes Yes 900 prosumers, each

equipped with 6 ap-

pliances, a PV, and a

BESS

38.46 209.47 96.69

Abbreviations for the optimization models denote: MILP: Mixed Integer Linear Programming; LP: Linear Programming; E-MPC: Economic Model Predictive Control; NLP: Nonlinear Programming; ADMM: Alternating Direction

Method of Multipliers; and MO-MINLP: Multi-Objective Mixed Integer Nonlinear Programming. Furthermore, some references fail to provide adequate performance analysis considering the assessment metrics selected for comparison.
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