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Abstract Channel assignment in multi-channel multi-

radio wireless networks poses a significant challenge due to

scarcity of number of channels available in the wireless

spectrum. Further, additional care has to be taken to con-

sider the interference characteristics of the nodes in the

network especially when nodes are in different collision

domains. This work views the problem of channel assign-

ment in multi-channel multi-radio networks with multiple

collision domains as a non-cooperative game where the

objective of the players is to maximize their individual

utility by minimizing its interference. Necessary and suf-

ficient conditions are derived for the channel assignment to

be a Nash Equilibrium (NE) and efficiency of the NE is

analyzed by deriving the lower bound of the price of

anarchy of this game. A new fairness measure in multiple

collision domain context is proposed and necessary and

sufficient conditions for NE outcomes to be fair are

derived. The equilibrium conditions are then applied to

solve the channel assignment problem by proposing three

algorithms, based on perfect/imperfect information, which

rely on explicit communication between the players for

arriving at an NE. A no-regret learning algorithm known as

Freund and Schapire Informed algorithm, which has an

additional advantage of low overhead in terms of

information exchange, is proposed and its convergence to

the stabilizing outcomes is studied. New performance

metrics are proposed and extensive simulations are done

using Matlab to obtain a thorough understanding of the

performance of these algorithms on various topologies with

respect to these metrics. It was observed that the algorithms

proposed were able to achieve good convergence to NE

resulting in efficient channel assignment strategies.

Keywords Multi-channel multi-radio wireless networks �
Channel assignment � Centralized and distributed

algorithms � Game theory

1 Introduction

The dawn of the age of ubiquitous wireless networks has

given rise to myriad issues related to growing bandwidth

demand coupled with scarcity of available spectrum. These

challenges make wireless networks a very exciting area of

research. Significant advances by the research community

in the direction of bandwidth enhancement in wireless

networks has enabled the ability to utilize multiple chan-

nels within the same neighbourhood, thus resulting in

increasing the effective bandwidth available to wireless

network nodes. For example, the IEEE 802.11b/802.11g

standards [1] and IEEE 802.11a standard [2] provide three

and twelve non-overlapping frequency channels respec-

tively. Further, single radio interface per node in a multi-

channel wireless network resulted in the overhead of

channel-switching at the medium access (MAC) layer.

Another significant milestone related to bandwidth aggre-

gation resulted through the support for multiple radio

interfaces in each wireless node. Today, there is a lot of

focus on performance of these multi-channel multi-radio
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(MCMR) networks. There have been new architectures of

MCMR networks proposed to cater to additional demands

like self-configurability, flexibility and easy deployment.

MCMR networks promise several advantages such as low

deployment cost, easy maintenance and reliable service

coverage. There is also a need to support bandwidth-

intensive applications such as streaming video, real-time

voice and video traffic with better Quality of Service (QoS)

guarantees in such networks. Such guarantees are highly

dependent on the channel assignment algorithm which

effectively utilizes and distributes the network resources.

Also, due to the usage of multiple radio interfaces, the

throughput guarantees provided by these networks are very

high. Thus, in order to utilize the multiple radios and

multiple channels effectively, efficient channel assignment

algorithms are needed.

This paper addresses the problem of channel assignment

in MCMR wireless networks. Further, this issue is

addressed in multiple collision domain (MCD) context i.e.,

each communication link of the network interferes with a

subset of all the links of the network.

The main contributions of this paper can be put forth as

follows.

• The problem of channel assignment in an MCMR

wireless network with multiple collision domains is

considered and modelled as a non-cooperative game

where individual players exhibit rational behaviour and

aim to maximize their individual throughput. Necessary

and sufficiency conditions for this game to have the

Nash equilibrium (NE) are derived. The efficiency of

the NE is analyzed through establishing lower bound on

the price of anarchy (PoA). QoS aspects of the problem

are studied by proposing a new measure for fairness in

MCMR-MCD game and necessary and sufficient

conditions for NE outcomes to be fair are derived.

• Four channel assignment algorithms based on the NE

conditions are proposed. The first is a centralized

algorithm with perfect information about all the

channels, the second algorithm also has perfect infor-

mation on all the channels but is in a distributed

scenario, and the third is another distributed algorithm

but with imperfect information on interfering radios in

the channels. The fourth algorithm is a no-regret

learning-based distributed algorithm applied in a unin-

formed setting where every player need not have

knowledge of other players.

• Finally, performance evaluation metrics based on

convergence are defined and simulations have been

performed to evaluate these algorithms based on these

metrics.

The rest of the paper is organized as follows. Section 2

discusses related work in the area of channel assignment.

Section 3 explains the problem setting by introducing the

system model through the conflict graph representation and

analytically formulates the channel assignment problem as

a non-cooperative game. The concept of NE and analytical

conditions on NE for MCMR networks in a MCD scenario

along with efficiency analysis are presented in Sect. 4.

Fairness analysis of the problem is presented in Sect. 5. We

propose four algorithms in Sect. 6 to solve the channel

assignment problem, each in a different setting. Finally,

Sect. 7 presents detailed performance evaluation results of

the algorithms proposed. Section 8 discusses the conclu-

sions and future work.

2 Related work and motivation

Channel assignment in wireless networks has been an

interesting topic that has been actively discussed by the

research community. A large number of solutions have

been suggested for cellular networks and wireless local

area networks (WLANs). Techniques such as graph col-

oring, neural networks, simulated annealing and tabu

search have been applied in solving the channel assignment

problem. A comprehensive review on various solutions for

frequency assignment in cellular networks is given in

Aardal et al. [3]. Riihijarvi et al. [4], Leung and Kim [5]

propose solutions in a centralized as well as distributed

setting to the channel assignment problem in WLANs.

Mishra et al. [6] studied channel assignment as a weighted

graph coloring problem in WLANs.

Alicherry et al. [7] jointly considered routing problem

with channel assignment. They present linear programming

(LP) formulation to maximize the aggregate throughput.

They also propose a centralized algorithm that assigns

channels to node radios and finds routing paths. Shin et al.

proposed a distributed channel assignment algorithm in [8]

which uses a skeleton assisted channel assignment strategy.

It relies on the construction of a spanning subgraph (called

skeleton) of the connectivity graph using a distributed

algorithm Local Minimum Spanning Tree (LMST) [9]. The

proposed protocol uses the constructed skeleton to assign

channels while preserving connectivity. Das et al. consid-

ered a fixed MCMR network in [10] and propose a mixed

integer linear program (MILP) based static channel

assignment scheme that maximizes the number of bidi-

rectional links that can be activated simultaneously subject

to interference constraints.

Most of the approaches used in channel assignment

discussed so far are based on the inherent premise that

there is cooperation among nodes in order to achieve high

throughput from the entire network point of view. How-

ever, realistic scenarios show that nodes will be selfish by

nature and will want to maximize their own throughput
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regardless of the performance of the network. It is in these

contexts that game theoretic approaches have found tre-

mendous applicability. Applying game-theoretical tools

have been found successful in modelling various problems

in wireless networks where issues of conflict and cooper-

ation arise. Cagalj et al. [11] and Konorski [12] investi-

gated the behaviour of CSMA/CA protocol amidst selfish

users who can violate the protocol deferment times to gain

unfair share of bandwidth. MacKenzie and Wicker [13]

studied NE scenarios in presence of selfish users using the

Aloha protocol.

Recently, game theoretical approaches have been

applied to solve the channel assignment problem. Hall-

dorsson et al. [14] analyzed the fixed channel assignment

problem in a game-theoretic context. Here, the work

identifies NE outcomes with the solutions to a maximal

colouring problem in an appropriate graph. It also analyzes

the price of anarchy and provides bounds for it and further,

relate the price of anarchy of the spectrum sharing game to

the approximation factor of local optimization algorithms

for the maximum k-colourable subgraph problem. But the

main drawback of this work is that it did not consider the

scenario of multiple radio devices.

In an MCMR network, there may be interference

between different transmitting links. If all the links are in

the sensing range of each other, then the network is said to

be in single collision domain. In a single collision domain,

if all the devices are using the same channel then every

device can hear the transmission of every other device. Wu

et al. [15] address the problem of channel assignment by

devising a payment formula so that the channel assignment

converges to a strongly dominant NE instead of an NE

which the authors show through experiments that it leads to

higher throughput than normal NE solutions. Though it is

an interesting and relevant work in channel assignment in

wireless network of selfish nodes, the setup of the paper is

in a single collision domain and the work does not address

the issues present in the multiple collision domain scenario.

Nie and Comaniciu [16] propose a game theoretic frame-

work to analyze the behavior of cognitive radios for dis-

tributed adaptive spectrum allocation, but their main results

are for cooperative users only.

The work of Felegyazi et al. [17] solved the channel

assignment problem by modelling it as a non-cooperative

game for single-hop MCMR networks but considered

nodes only in a single collision domain. Gao and Wang

[18] addressed the problem for multi-hop ad hoc wireless

networks (AWNs) from a game theoretical perspective

but the work was again limited to a single collision

domain. However, in realistic scenarios, every device

need not be in the sensing range of every other device in

the network. Hence, in such a scenario, each transmitting

link will have a subset of links in the network with which

its interference range overlaps. In this work, we continue

the investigation of the static channel assignment problem

as discussed in [17, 18] and focus on solving it in a

single-hop MCMR network where nodes need not have

same collision domain with respect to each other (i.e., in

a MCD scenario).

3 Problem setting and formulation

3.1 Generic network model

Consider a generic network, K ¼ ðV ; TÞ, represented as

graph where V is the number of nodes in the network and

T represents the edges of the network. An edge exists

between two nodes in the network if and only if there is a

communication session in progress between them.

T denotes the set of communication sessions in the network

represented by T ¼ fei ¼ ðsi; diÞjsi 2 S; di 2 D and i 2
f1; 2; . . .;mgg where S = {s1, s2, …, sm} represents the set

of all source nodes in K and D = {d1, d2, …, dm} repre-

sents set of all destination nodes in K. Note that |T| rep-

resents the cardinality of set T and hence, |T| = m. We now

put forth the details of our problem setting which is similar

to the related works in [17, 18] but with the relaxation of

the assumption about single collision domain. The single

collision domain constraint is very restrictive in the sense

that it requires all the communication sessions to be within

a particular geographical neighbourhood so that they will

all be in the sensing range of each other. However, in our

setting, communication sessions may no longer need to be

constrained to a single collision domain context and may

now be able to have their own collision domains based on

their geographical location. We assume each node consists

of a radio device with k radio transceivers. Each radio

transceiver in a device can be tuned to a particular channel

for transmission or reception of data. Each source node,

si [ S, has always some packets to exchange and partici-

pates in a single communication session. The wireless

spectrum is divided into p channels denoted by C = {c1,

c2, ..., cp}, each of which can be used for transmission.

Also, no two radios of the same node are assigned the same

channel and the number of radios per node is less than the

total number of channels in the wireless spectrum i.e.,

k\ |C|. We consider a network setting where any node in

the network should be participating in some communica-

tion session i.e., V ¼ S [ D represents all the nodes in K.

We assume that all the communication links are single hop

by nature i.e., for a communication session (si, di) [ T, the

nodes si and di are in transmission range of each other.

The channels are orthogonal and the characteristics of

all the channels are identical. All the communication ses-

sions are symmetric links i.e., the sender and receiver have
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same transmission ranges and thus, are able to coordinate

and tune their radios to a common channel to ensure suc-

cessful transmission. In an MCMR-MCD channel assign-

ment problem, the objective is to devise a channel

assignment scheme where each radio of every transmitting

node is assigned a particular channel from the wireless

spectrum which it can use for transmission of data. It will

be assumed that the corresponding receiver will tune to the

same channel as transmitter for reception of data. Hence-

forth, we will consider only transmitting nodes for all our

discussion on channel assignment.

3.2 An example MCMR-MCD network

A simple example of this type of network setting is given in

Fig. 1. In this figure, S = {si | i [ {1, 2, 3}} and D = {di |

i [ {1, 2, 3}}. We can see that there are three communi-

cation sessions (or links) represented by T = {ei = (si, di) |

i [ {1, 2, 3}}. From the figure, we can infer that e1 and e3
interfere with link e2 independently, while link e2 interferes

with both e1 and e3. So, e1, e2, and e3 have different

interference neighbourhoods and so they are in different

collision domains with respect to each other.

Throughout this paper, we will consider such type of

multiple collision domain networks and will focus on

developing a channel assignment scheme which can be

applied to such generic interference aware topologies.

3.3 Conflict graph representation

We will use the conflict graph representation which is

widely used in the literature (for example, Gupta et al.

[19], Luo et al. [20], Jain et al. [21]) to depict the inter-

ference relation between different links in K. Every node in

a conflict graph basically corresponds to a unique com-

munication session in K. A conflict graph is represented by

W ¼ ðNCG;ECGÞ. Let NCG = {1, 2, …, N} denote the set

of nodes in W where N denotes the cardinality of the set

NCG. An edge eij [ ECG if and only if there exists two

communication sessions, ðsi; diÞ; ðsj; djÞ 2 K, which inter-

fere with each other. From the above construction, we can

see that N = |T|.

We represent the interference characteristics of the

given generic network, K, by defining an N 9 N Link

Interference Matrix (LIM) for the conflict graph (W) to

capture the interference between any two communication

sessions in the given network i.e., Vi, j [ {1, 2,…, N},

LIMði; jÞ ¼ 1 if eij is an edge in W or i ¼ j

0 otherwise

�

Note that LIM is a symmetric matrix. The conflict graph

W and the corresponding LIM for the network given in

Fig. 1 is shown in Fig. 2.

As explained earlier, the conflict graph given in

Fig. 2(a) comprises of three nodes, NCG = {1, 2, 3}, cor-

responding to the communication sessions, T = {(si, di) |

i [ {1, 2, 3}}, of the network given in Fig. 1. We

emphasize here that the conflict graph represents the

interference relations between different communication

sessions and does not represent the network traffic

flow. Throughout this paper, we will adopt this notion of

conflict graph to characterize different network topologies

based on interference between different communication

sessions.
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Fig. 1 A set of communication

sessions in a multiple collision

domain scenario
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3.4 A game-theoretic formulation of channel

assignment problem

We now model the problem of channel assignment in an

MCMR-MCD network (represented by the conflict graph,

W) as a non-cooperative game. Continuing further, due to

the effect of interference between various nodes, the

channel assignment for every node needs to be evaluated

by taking its corresponding collision domain into consid-

eration. In a non-cooperative game [22], each player is

assumed to be rational in the sense that it is aware of all the

alternatives, forms expectations about any unknowns, has

clear preferences and chooses its action to maximize its

utility. Players take into account their knowledge or

expected behaviour of other players i.e., they reason stra-

tegically. In the current context, we consider each vertex

i [ NCG in the conflict graph W as a rational player whose

aim is to maximize its data rate or throughput. Alternately,

there is a one-to-one mapping from each rational player i in

W to a unique communication session (si, di) [ T of the

given network, K. Every player i in the non-cooperative

game has a set of actions, Ai, from which it can make

a choice. In the current context, an action ai [ Ai for a

player i corresponds to a channel assignment scheme which

gives all the channels on which it has been assigned radios.

Let kic denote number of radios of player i that have been

assigned a channel c [ C. We assume kic B 1 as discussed

before. Formally, we can define ai which is the channel

assignment for player i as follows.

ai ¼defðki1; ki2; . . .; kijCjÞ ð1Þ

We denote a channel assignment scheme for all N players

as an action profile, a ¼ ða1; . . .; aNÞ ¼ ðaiÞi�NCG
which is a

row vector in which column i of the vector corresponds to

action of player i as given in Eq. 1. The set of all

possible action profiles is represented by the set

A ¼ fðaiÞi2NCG
jai 2Ai; 8i2NCGg. For any action profile,

a ¼ ðajÞj�NCG
, and any i [ NCG, we denote a�i ¼ ðajÞj2NCGni

to be the list of actions (i.e., the channel assignments in this

context) for all players except i. Conversely, given a list

a�i ¼ ðajÞj2NCGni and an element ai, we denote (ai, a-i) as

the action profile a ¼ ðaiÞi�NCG
.

Before continuing further, we will illustrate the notations

with the help of a simple example. Let us consider a conflict

graph, W, with vertex set NCG = {1, 2, 3, 4, 5, 6} as given

in Fig. 3. Let us assume that each player i [ NCG has two

radios (k = 2), each represented by ri, and there are three

channels for contention (|C| = 3). The LIM and an example

channel assignment scheme forW are given in Fig. 4. Based

on our notations, we get a1 : (k11, k12, k13) = (1, 0, 1).

This implies that player 1 has radios assigned to channels c1
and c3. Similarly, a2 : (k21, k22, k23) = (1, 1, 0); a3
: (k31, k32, k33) = (0, 1, 1) and so on. Collectively, the

channel assignment scheme of Fig. 4(b) is given by the

action profile a = (a1, a2, a3, a4, a5, a6).

We denote the utility of every player i [ N for a given

channel assignment a [ A by Ui(a). For simplicity, we

assume that the total data rate obtained by a player i from

all channels that it has been assigned is an indicator of the

player’s utility. Every player will try to maximize its utility

which results in maximizing the total data rate obtained

from all the channels it has been assigned.

It is known that the maximum data rate possible in a

channel c [ C depends on the number of radios sharing the

channel (say nc). We denote this maximum data rate of

channel c as smax(nc). Let the data rate of a channel

c [ C when only one radio is using the channel be denoted

by sc. Since all the channel characteristics are similar, we

assume that sc = sC, Vc [ C, where sC is a constant. It

follows that smax(1) = sC.

(a) (b)

Fig. 2 (a) Conflict Graph for the network in Fig. 1. (b) The

corresponding Link Interference Matrix (LIM)

1 3 5

2 4 6

Fig. 3 An example network with the conflict graph representation

(a) (b)

Fig. 4 (a) The Link Interference Matrix (LIM). (b) A candidate

channel assignment scheme, a [ A, for the network represented by the

conflict graph in Fig. 3. Note that in this figure, {c1, c2, c3} represent

the three channels under consideration and {r1, r2, ..., r6} represent the

radios (two for every player) of the players {1, 2, ..., 6}. Each column

corresponds to a particular channel and represent the radios that are

assigned the corresponding channel. For example, in the figure,

channel c1 is assigned to radios r1, r2, r4, r5, channel c2 is assigned to

radios r2, r3, r5, r6 and so on
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Now, in the current context, let Kic be the number of

radios, which have been assigned channel c, interfering

with the radio of player i. For example, in the channel

assignment scheme of Fig. 4(b), we can get K11 = 2,

K12 = 1, K13 = 1. The maximum data rate obtained in

channel c in the collision domain of player i can be denoted

by smax(Kic). We assume that smax(Kic) is shared equally

among the interfering radios which are assigned channel

c. This fair rate assignment can be realized by using a

MAC protocol like reservation-based time division multi-

ple access (TDMA) schedule on a given channel. Fair

sharing can also be attained using carrier sense multiple

access/collision avoidance (CSMA/CA) protocol as shown

by Cagalj et al. [11].

We divide the set of channels C into Ci and Ci where

Ci = {c | kic = 1, Vc [ C } and Ci ¼ CnCi. Basically, Ci

represents the set of channels where player i has been

assigned radios. We know that, for a TDMA protocol and

for CSMA/CA protocol which uses optimal back-off win-

dow values (as shown by Bianchi [23]), smax(Kic) is inde-

pendent of Kic and in this context, can be taken to be equal

to sC. However, in practical CSMA/CA as implemented in

the 802.11 standard [24], this assumption may not hold and

thus, due to collisions, smax(Kic) will behave as a non-

increasing function of Kic. Thus, the utility, Ui(a), for a

player i when the action profile is a can be formulated as

below.

UiðaÞ ¼
X

8c2Ci

sðKicÞ

where, Kic ¼
X

fjjLIMði;jÞ¼1g
kj;c; 8j 2 NCG

and, sðKicÞ ¼
1
Ki;c
� smaxðKicÞ

� �

if kic ¼ 1

0 otherwise

(

ð2Þ

We explain the equations above using the example of

Fig. 3. A summary of important notations is given in

Table 1. Figure 4 gives the LIM and a channel assignment

scheme, a, respectively, for the conflict graph (W) of

Fig. 3. For easier understanding of the example, let us

assume smax(Kic) = sC. The utility, U1(a), of player 1 in

this example can be obtained as follows: U1(a) :

s(K1,1) ? s(K1,3) = (1/2 ? 1) 9 sC = 3/2 9 sC. Similarly,

U2(a) : s(K2,1) ? s(K2,2) = sC; U3(a) : s(K3,2) ?

s(K3,3) = sC.

Each player has a characteristic collision domain com-

prising of the nodes adjacent to it in the conflict graph W.

Hence we can obtain different player-specific channel

assignment diagrams each from the perspective of an

individual player. We illustrate two such diagrams for two

Table 1 Summary of important

notations
Notation Description

K ¼ ðV ;TÞ Input network with V vertices and T edges

i, j Representation of indices from the set of natural numbers

S = {s1, s2, …, sm} Source nodes in K

D = {d1, d2, …, dm} Destination nodes in K

ei = (si, di) An edge (or communication session) in the network

k Number of radios per node in K

C = {c1, c2, …, cp} Set of channels in the network

W ¼ ðNCG;ECGÞ Conflict graph with NCG nodes and ECG edges

N The cardinality of the set NCG

eij An edge in conflict graph W

LIM The N 9 N Link Interference Matrix for the conflict graph (W)

kic (or ki,c) Number of radios of player i assigned a channel c [ C

Ai Set of actions of player i [ NCG

a-i The list of actions for all players except i

ri Radio transceiver of player i

smax(nc) Maximum data rate of channel c having nc radios

sc Data rate of a channel c [ C when only one radio is using the channel

Kic (or Ki,c) Number of radios assigned channel c and interfering with radio of player i

Ci Set of channels where player i has been assigned radios

Ui(a) Utility for a player i when the action profile is a

Ni The number of links in K that interfere with a link l in K where l = (si, di) [ T

Ri Number of radios which are assigned channels in the player i’s collision domain
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players (player 2 and player 6) in Fig. 5. Let Ni be the

number of links in K that interfere with a link l in K where

l = (si, di) [ T. Note that link l is associated with player

i of the corresponding conflict graph W. Thus,

Ni ¼ ð1þ degree of node i in the conflict graph WÞ. We

can see that Ni = 2, Vi [ {1, 6} and Ni = 3, Vi [ {2,

3, 4, 5} for the conflict graph of Fig. 3.

In the player-specific channel assignment diagrams, for

every player i [ NCG, as discussed earlier, we divide the set

of channels C into Ci = {c | kic = 1, Vc [ C }. It follows

that Ci ¼ CnCi. Since there are Ni interfering players, we

know that there are Ri = (Ni 9 k) radios which have to be

assigned channels in the collision domain of player i. We

now divide the number of competing radios Ri into Rþi and

R�i , where

Rþi ¼
P

c2Ci

Kic; R�i ¼
P

c2Ci

Kic ¼ Ri � Rþið Þ ð3Þ

Clearly, for the example in Fig. 5(a), C2 � fc1; c2g;
C2 � fc3g;Rþ2 � K2;c1 þ K2;c2 ¼ 4;R�2 � K2;c3 ¼ 2.

4 Nash equilibrium and its properties in the channel

assignment game

4.1 Concept of Nash equilibrium

In this section, we will introduce the fundamental concept

of Nash equilibrium [22] and study its properties for the

MCMR-MCD channel assignment game. We model the

MCMR-MCD channel assignment with a single stage game

represented by hN, (Ai), (Ui)i which corresponds to a fixed

channel assignment among the players.

Definition 1 (Nash equilibrium) An action profile

a* [ A is said to be an Nash equilibrium (NE) of a non-

cooperative game, hN, (Ai), (Ui)i, if for every player i [ N,

we have Uiða�i ; a��iÞ�Uiðai; a��iÞ for every action ai [ Ai.

This implies that, if a* is an NE, then no player i has an

action yielding an outcome that it prefers to that obtained

when it chose a�i , given that every other player j chooses its

equilibrium action a�j . Hence no player i can profitably

deviate from a�i , given the actions of the other players.

We will now establish necessary and sufficient condi-

tions for NE and analyze the efficiency of the NE in this

non-cooperative channel assignment game.

4.2 NE in MCMR-MCD channel assignment game

Lemma 1 If a* is an NE of the MCD channel assignment

game, then ki ¼
P

c2C kic ¼ k; 8i 2 N:

This implies that any player i in an NE will have to

completely assign all its radios in order to achieve the

maximum possible utility. In other words, each radio of the

player i contributes positively to the overall utility of the

player.

Now, consider any two arbitrary channels c, d [ C. We

define a parameter di,c,d for a player i as the difference

between the number of interfering radios in channel c and

channel d, i.e., di,c,d = (Kic - Kid), Vc, d [ C.

Theorem 1 a* is an NE for the MCMR channel assign-

ment game, if and only if, for a player i [ 1, 2, …, N,

• Case 1: ðNi � kÞ[ jCj and ðkic � di;c;dÞ� 1; 8c; d 2
C such that kid ¼ 0

OR

• Case 2: (Ni 9 k) B |C| and (kic 9 Kic) B 1 Vc [ C

Discussion In a single collision domain scenario (as

considered in [17]), it is possible to give NE conditions that

apply over the global channel assignment scheme [such as

given in Fig. 4(b)], as in this case, every player in every

channel is equally affected by congestion due to other

players who are assigned the same channel. However, in a

multiple collision domain setup, though there may be many

players assigned to a particular channel (say c [ C), the

effect of congestion on a single player (say player i) in

c will be dependent on a subset of those players who are

assigned c and need not be dependent on all the players

who are assigned c. Only those players who are in the

sensing range of player i will have an impact on the data

rate of player i. Hence, we need a way to characterize this

collision-domain specific effect of congestion in the eval-

uation of NE. The above theorem provides results for NE

for a particular collision domain of player i. As we are

considering a multiple collision domain scenario, the sig-

nificance of the above theorem lies in the fact that it pre-

scribes conditions for NE in every player’s collision

domain. Thus, the global channel assignment scheme

(involving all the players) can be considered to be in NE if

every collision domain specific channel assignment scheme

(corresponding to a single player), such as given in

Fig. 5(a) and (b), obeys the conditions evaluated by the

(a) (b)

Fig. 5 Player-specific diagrams with respect to (a) player 2,

(b) player 6, of channel assignment scheme given in Fig. 4
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above theorem. We now discuss the proof of the above

result.

Proof

()) Case 1: Suppose kic = 1. We need to check if di,c,d
B 1 is a necessary condition for NE for player i [

1, 2, …, N. We prove this case by contradiction. Let us

assume that di,c,d C 2 for some channel c, d [ C such

that kic = 1, kid = 0 and this represents an NE condition

for the channel assignment game. Let a�i be the action of

player i in this NE and the utility obtained by player i be

denoted by Uiða�i ; a��iÞ. Now if player i changes his

action to a0i in which he moves his radio from channel

c to d, we can write the utility difference ðDÞ obtained by
player i as follows

D ¼ Uiða0i; a��iÞ � Uiða�i ; a��iÞ
¼ ðkic � 1Þ � sðKic � 1Þ þ ðkid þ 1Þ � sðKid þ 1Þ
� ðkic � sðKicÞÞ � ðkid � sðKidÞÞ
¼ sðKid þ 1Þ � sðKicÞ; as kic ¼ 1; kid ¼ 0

Thus D[ 0 as ðKid þ 1Þ\Kic due to our premise that

di,c,d C 2. This is a contradiction to the assumption that

a* is an NE.

(() Case 1: Consider a channel assignment a that

satisfies conditions of case 1 in the above theorem. We

need to show that a is an NE. Now assume a player i [

1, 2, …, N moves his radio from channel c to d. If

di,c,d = 1 before changing the channel, then there is no

change in utility after changing the channel because

Kold
ic ¼ Knew

id . If di,c,d\ 1, then player i will get a lower

utility after moving the radio as Kold
ic \Knew

id . Thus a

player i cannot unilaterally change his strategy and

increase his utility which shows that a is an NE. Hence

the condition of Theorem 1 is also sufficient condition

for NE in channel assignment game.

()) Case 2: Similar to the previous proof, we prove this

condition by contradiction. Assume that Ac [ C such that

kic = 1. Suppose in an NE, (kic 9 Kic)[ 1 holds. Then,

since the number of interfering radios is at the most

equal to the number of channels, we can always find a

channel c0 to move radio of player i where Kic0 ¼ 0. But

the utility to player i in the latter case is more than the

utility obtained in NE, which is a contradiction. Hence

the condition of Theorem 1 is a necessary condition for

NE in channel assignment game.

(() Case 2: Similarly, consider a channel assignment

a which satisfies the condition (kic 9 Kic) B 1

Vc [ C. Now, if c [ Ci, then moving radio of player i in

channel c to another channel c0 will not increase the utility
of player i. Hence, player i cannot take any other action

unilaterally and get a better utility. Hence a is an NE.

Hence the condition of Theorem 1 is also sufficient

condition for NE in channel assignment game. h

We can see that the above conditions hold true for all the

collision domains in the example given in Fig. 4(b). Hence

we can say that the global channel assignment scheme

given in Fig. 4(b) is an NE. NE is an outcome of a game

where players tend to be selfish in maximizing their utility.

In the next section, we characterize the efficiency of an NE.

4.3 Efficiency of Nash equilibrium

Efficiency of an NE can be characterized through the

concept of Price of Anarchy (PoA) as introduced by

Koutsoupias and Papadimitriou [25], which compares the

worst case NE to the socially optimal channel assignment.

We establish a result below characterizing the lower bound

that can be achieved for the PoA by considering the col-

lision domain of player i. The PoA of a game is the ratio

between the sum of the utilities of all players in a globally

optimal solution compared to the sum of the utilities

achieved in a worst-case NE (or alternatively, how much

more cost does the NE bear with respect to the globally

optimal). As we are considering benefits of players (i.e.,

sum of utilities) instead of costs throughout our work, it

will be more appropriate to calculate the bounds on the

inverse of PoA as PoA is usually evaluated with respect to

costs incurred by the players. Hence, we will derive a lower

bound on the inverse of PoA (denoted by j) in our analysis

i.e., j = 1/PoA.

Theorem 2 For a player i [ 1, 2, …, N and c [ C, if

((Ni 9 k)[ |C|) and smaxðKicÞ is a non-increasing function

of Kic, the (inverse of) price of anarchy (PoA) for the

MCMR-MCD channel assignment game is at least
sðgÞ

smaxð1Þ

� �

where g ¼ ðN�kÞ
jCj

l m

.

Proof We have assumed that, in a channel, the maximum

possible data rate is a non-increasing function of the

number of radios allocated to that channel i.e., if more

radios are allocated the same channel, the maximum pos-

sible data rate reduces from the channel perspective.

Hence, in order to maximize network utilization, we should

have a scenario wherein in every channel, the maximum

data rate possible is achieved. This can be possible if there

is only one radio allocated in every channel. Hence, the

system optimal assignment is the state wherein, in every

channel, there is only one radio allocated. Note that here

we may not be able to assign channels to all radios of all

players. Our objective is simply to maximize the utilization

of the network regardless of whether every player has been

satisfied with respect to his channel allocations or not.
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So, if smaxðKicÞ is a non-increasing function of Kic, then

the maximum possible data rate will be achieved when Kic is

1, Vc [ C. In the MCMR-MCD channel assignment game,

the social optimum is a situation where there is maximum

utilization of all the channels from the network point of view

i.e., the maximum data rate achieved from all channels

c [ C in the collision domain of player i is smax(1) 9 |C|.

We will now understand the worst case NE condition. In

the worst case NE for a player i, the channel assignment will

be such that there will be maximum interference possible in

all the channels where player i has radios assigned, so that the

net utility for player iwill be the lowest. This can be achieved

when the Ni 9 k radios are uniformly distributed among all

channels c [ C. Formally, by using basic number-theoretic

principles, for b\ |C|, we can write

ðNi � kÞ ¼ ðða� jCjÞ þ bÞ ) a ¼ Ni � k

jCj

� �

It is important to note that this worst case NE should still

conform to the conditions put forth by Theorem 1. Now,

based on the parameter b, we have three possible scenarios.

• b C k ) Ri
?
= (a ? 1) 9 k

• b\k) Rþi ¼ ða� kÞ þ b

• b ¼ 0) Rþi ¼ ða� kÞ
where Rþi is evaluated based on Eq. 3. We claim that, for

any of the cases given above,

Rþi � gi � kwhere gi ¼
ðNi � kÞ
jCj

� �

ð4Þ

Using these observations, we now proceed to derive the

lower bound for j for the MCMR-MCD channel assignment

game.

j� Cumulative utilities inWorst CaseNEðA�Þ
Cumulative utilities in system optimal assignment

In a system optimal assignment, each channelwill have just a

single radio assigned so that the maximum throughput of the

channel is achieved (due to our assumption that maximum

throughput is a non-increasing function of number of

interfering radios). For the lower bound of inverse of PoA,

we need to consider the case where the denominator is

maximized. This is possible in a system optimal assignment

where, in the collision domain of a player i, all its k radios

will be assigned a separate channel.

j�
P

i2NCG
UiðA�Þ

P

i2NCG
smaxð1Þ � k

�
P

i2NCG
k � sðgiÞ

smaxð1Þ � k � N

Firstly, s(gi) is a non-increasing function and hence the

numerator will be a minimum value because gi is the

maximum number of interfering radios in any channel

c [ C in a worst case NE (as given by Eq. 4). Secondly, in

a worst case NE, there are equal number of interfering

radios (gi) in all channels where radios of player i have

been assigned. Hence, for the lower bound of PoA, the

numerator is minimized.

Let g ¼ ðN�kÞ
jCj

l m

. We know that gi B g as Ni B N. We

can write

j�

P

i2NCG

k � sðgÞ

smaxð1Þ � k � N
¼ sðgÞ

smaxð1Þ

h

The above inequality is now independent of any colli-

sion domain specific parameters and thus, can be evaluated

using the basic network parameters.

5 Fairness in MCMR-MCD channel assignment

In MCMR-MCD CA game, there may be multiple Nash

Equilibrium (NE) outcomes and hence, it is necessary to

characterize the quality of these NE outcomes. One

important aspect of QoS in wireless networks is the notion

of fairness. We will now assess the quality of NE outcomes

by evaluating fairness of different NE allocations.

In a single collision domain scenario, all players are in

the collision domain of each other and hence, it is rea-

sonable to expect that the notion of fairness in such a setup

corresponds to the utilities of all players being equal

(assuming, of course, that all players have equal radios to

be allocated). But in a multiple collision domain setup,

every player has its own unique collision domain and

hence, the notion of fairness is not straightforward to define

in this setup as the throughput or utility obtained by the

nodes need not be equal to one another and will depend on

their corresponding collision domains.

Hence, we will define a measure of fairness called the

MCMR-MCD-fairness and use this criterion to distinguish

among different NE outcomes. In other words, we will

classify different NE outcomes of the MCMR-MCD CA

game either as MCMR-MCD-fair or not. We also derive

necessary and sufficient conditions for an NE channel

assignment to be termed MCMR-MCD-fair with respect to

all the players in the MCMR-MCD CA game.

We now introduce some basic notation before pro-

ceeding with the fairness analysis. Let a* be an NE channel

assignment for the MCMR-MCD game. As explained in

previous sections, we can easily generate the various

player-specific channel assignment diagrams correspond-

ing to this NE channel assignment a*. For example, we

know that Fig. 5 gives the player-specific channel assign-

ment diagrams for player 2 and player 6 corresponding to
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the channel assignment given in Fig. 4 for the conflict

graph given by Fig. 3.

Given any channel assignment scheme a (not necessar-

ily an NE), let K
j
ix be the number of radios interfering with

radio of player i in the player j-specific channel assignment

diagram corresponding to channel x [ C. For example,

from Fig. 5(a), we can get K2
1c1
¼ 2;K2

1c2
¼ 1;K2

1c3
¼ 1 and

so on. Let the set of all players in the collision domain of

player i be represented by CDi i.e.,

CDi ¼ fj 2 NnfigjLIMði; jÞ ¼ 1g

Lemma 2 In any NE channel assignment, a*, of the

MCMR-MCD CA game, K i
ix�K

j
ix; 8i; j 2 N; 8x 2 C.

Proof If not, then there is some i [ N and x [ C such that

K i
ix\K

j
ix ¼) There is some radio which interferes with

radio i in collision domain of player j but not in collision

domain of player i which is absurd. Hence the result. h

Now, given an NE channel assignment configuration,

we will characterize the maximum utility that a player can

obtain.

Definition 2 Given an NE channel assignment, a*, for

the MCMR-MCD CA game, the best possible utility of a

player i [ N is given by

umax
i ða�Þ ¼ min

j2CDi

u
j
iða�Þ

u
j
iða�Þ is the utility of player i in the collision domain of

player j. As explained in the MCMR-MCD utility model

description, we have

u
j
iða�Þ ¼

X

x2Ci

1

K
j
ix

sðK j
ixÞ; 8i 2 N; 8j 2 CDi

where sðK j
ixÞ is a non-increasing function of K

j
ix.

It should be observed that u
j
iða�Þ can be evaluated from

the player-j-specific channel assignment diagram which, in

turn, can be evaluated from the global channel assignment

scheme as explained before.

The intuition behind the above observation is that a

player in the multiple collision domain scenario is con-

strained in its payoff by its collision domain. If a player

does not have any players in its collision domain, then it

can use the whole bandwidth for itself. But, in a MCD

scenario, a player will have possibly multiple interfering

neighbouring players. As a result of that, a player will be

constrained in its payoff by each of the collision domains

of its interfering neighbours.

The distinction between umax
i ða�Þ and uiða�Þ should be

made clear here. The former is a measure of the maximum

utility that is possible for a player to achieve in a given NE

configuration while the latter is the actual utility that the

player is getting under the given NE configuration. Basi-

cally, if both of these utilities are the same for any player in

the MCMR-MCD game under a given NE channel

assignment, then we term the given NE configuration to be

MCMR-MCD-fair. It is important to note here that there

may existMCMR-MCD-unfair NE configurations which do

not satisfy the above property for all players and it will be

our objective to understand these configurations in more

detail in the rest of the section.

For notational ease, we will henceforth denote uiða�Þ by
ui; u

max
i ða�Þ by umax

i and u
j
i ða�Þ by u

j
i . It is understood that

there is a NE channel assignment a* behind the evaluations

of these expressions. It is also understood that all NE

channel assignment schemes satisfy the conditions speci-

fied by Theorem 1 (necessary and sufficient conditions for

NE in MCMR-MCD CA game) as explained earlier.

For illustration purposes, consider the network given by

Fig. 3. Here, player 5 has player 4 and player 6 in its

collision domain. Now let us consider the collision domain

of player 4 and player 6 separately (given in Fig. 6(a), (b),

respectively). In the corresponding NE channel assignment

given in Fig. 4(b), we can see that player 5 has been

allocated channel c1 and c2. Assuming s(kx) = constant

and normalized i.e., s(1) = 1, and observing channels c1

and c2 in Fig. 6, we get u45 ¼ 0:5þ 1 ¼ 1:5 (as r3 does not

interfere with r5) and u65 ¼ 1þ 0:5 ¼ 1:5. The above

observation states that the maximum utility of player 5

cannot be more than minðu45; u65Þ ¼ 1:5 ¼ umax5 .

Now we will use the following notion of fairness for the

MCMR-MCD channel assignment game.

Definition 3 An NE configuration a* of the MCMR-

MCD CA game is MCMR-MCD-fair if ui ¼ umaxi ; 8i 2 N:

Motivation There is a subtle observation to be made

here. A player getting umaxi in a NE channel configuration

does not mean that this is the maximum payoff that the

player in any NE channel configuration. It may happen that

there are other NE configurations wherein the player may

get better payoff. We are interested only in noting whether,

given an NE channel assignment, do all the players achieve

their maximum utilities given their collision domain char-

acteristics in the given NE configuration? It turns out that it

cannot be guaranteed that in any NE channel assignment

(a) (b)

Fig. 6 Player-specific diagrams with respect to (a) player 4,

(b) player 6, of channel assignment scheme given in Fig. 4
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configuration of the MCMR-MCD game, all players

achieve the maximum utility that is allowed by their cor-

responding collision domains. In other words, given an NE

a* it is not necessary that uiða�Þ ¼ umaxi ða�Þ; 8i 2 N. To

illustrate this, let us consider the following example

Figure 7(b) gives an NE channel assignment configura-

tion for all the players for the corresponding conflict graph of

Fig. 7(a). Assuming s(kx) = constant and normalized i.e.,

s(1) = 1, it can be seen that u21 ¼ 1:5; u31 ¼ 1:5.Butweknow

that u1 ¼ 1 6¼ minðu21; u31Þ ¼) u1 6¼ umax
1 . Hence, such an

NE configuration is notMCMR-MCD-fair to player 1 as it is

not enabling player 1 to achieve the maximum utility that is

possible in the NE configuration.

It can also be seen that if the number of available

channels is increased to 4, then we can get an NE

channel configuration in which each player achieves its

maximum payoff possible in the configuration. The

scenario is given in Fig. 8 where u1 ¼ u21 ¼ u31 ¼ umax1 . It

can be easily seen that similar conditions hold for player

2 and player 3. Hence, we see that this NE configu-

ration is, in a multiple collision domain context, fair

to all players in the game and thus, it is termed MCMR-

MCD-fair.

We now derive necessary and sufficient conditions for

an NE configuration to be MCMR-MCD-fair. As before, let

K
j
ix denote the number of interfering radios of player i in

the collision domain of player j associated with channel

x [ C. We note that the below result is true for any non-

increasing throughput function s(kx) where kx is the number

of channels allocated to channel x [ C.

Theorem 3 Let a* be an NE for the MCMR channel

assignment game where a player can have at most one

radio allocated to a channel. For any player i [ N, let Ci

be the channels in which player i has been allocated a

radio under a*. For any player i [ N, the following

condition is necessary and sufficient for a* to be MCMR-

MCD-fair.

	
X

x2Ci

K i
ix�

X

x2Ci

K
j
ix with equality holding for at least

player j 6¼ i where j 2 CDi:

Proof (() For any player i 2 N; 8j 2 CDi, suppose it is

given that
X

x2Ci

K i
ix�

X

x2Ci

K
j
ix ð5Þ

We also know from Lemma 2 that, for a player i [ N,

K i
ix�K

j
ix; 8j 2 CDi; 8x 2 Ci ð6Þ

By hypothesis, let equality hold in Eq. 5 for at least one

player j = i where j [ CDi. Using Lemma 2, we have

K i
iy ¼ K

j
iy; 8y 2 Ci ¼) ui ¼ uii ¼

X

y2Ci

1

K i
iy

sðK i
iyÞ

¼
X

y2Ci

1

K
j
iy

sðK j
iyÞ ¼ u

j
i ð7Þ

Now, for other players k [ CDi where strict inequality

holds in Eq. 5, we have by virtue of Lemma 2,

K i
iy�Kk

iy; 8y 2 Ci ð8Þ

with strict inequality in Eq. 8 holding for at least one

channel z [ C. This implies that

ui ¼ uii\uki ð9Þ

Combining Eqs. 7 and 9, we have

ui ¼ min
l2CDi

uli ¼ u
j
i ¼ umaxi ð10Þ

As choice of player i was arbitrary, we have that a* is

MCMR-MCD-fair by Definition 3.

()) Assume a* is MCMR-MCD-fair. Now this implies

that ui ¼ umaxi ¼ minj2CDi
u
j
i; 8i 2 N. This implies that there

is at least one j [ CDi such that ui ¼ u
j
i. From Lemma 2, we

have

8y2Ci;K
i
iy�K

j
iy¼)K i

iy¼K
j
iy¼)

X

x2Ci

K i
ix¼

X

x2Ci

K
j
ix: ð11Þ

For all other players, k [ N, where uk[umaxi ¼ui, it will be

that 9y2Ci;K
i
iy[Kk

iy. Hence,

X

x2Ci

K i
ix[

X

x2Ci

Kk
ix ð12Þ

Combining Eqs. 11 and 12, we have
X

x2Ci

K i
ix�

X

x2Ci

K
j
ix; 8i 2 N; 8j 2 CDi ð13Þ

h

(a) (b)

Fig. 7 (a) Example Conflict Graph. (b) An NE channel configuration

Fig. 8 NE configuration which is fair to all players
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One observation immediately follows from the above

result. For a player i [ N, if, for every j [ CDi, there exists

at least one y [ Ci such that K i
iy[K

j
iy, then clearly utility

value of player i in collision domain of player j is more than

the corresponding utility value in its own collision domain

with respect to channel y. Hence, player i will not achieve

the maximum allowed utility in the given NE channel

assignment. This implies
P

x2Ci
K i
ix[

P

x2Ci
K

j
ix; 8j 2 CDi.

In this case, we can say that the NE configuration is not

MCMR-MCD-fair.

6 Convergence to Nash equilibrium

We now propose four channel assignment algorithms, each

in a different setting, for a givenMCMR-MCD network.We

consider both centralized and distributed decision making

scenarios. Further, the algorithms differ based on how

informed each player is about the number of interfering

radios assigned in all channels in the current assignment. The

first of these algorithms is a centralized algorithmwhich uses

perfect information about interfering radios in the collision

domains of all players in all channels and comes up with a

channel assignment scheme in which the utility for the

players in maximized. Next, we propose a distributed algo-

rithm with perfect information in which the channel

assignment scheme is decided in a distributedway by each of

the nodes of the network, taking into consideration their

corresponding collision domains. This implies that every

node has information about all the interfering radios in all

channels. Next, we considered a more restricted version of

the distributed algorithm which has imperfect information

about the interfering radios in the channels. This algorithm

can use information only from the channels in which it has

radios currently assigned and has to form some expectation

or belief about the occupancy of other channels. Lastly, we

consider using a no-regret learning-based algorithm in a

uninformed setting in which players do not have any

knowledge of the interfering radios in the channels. The

players essentially try to arrive at better channel assignment

schemes based on the rewards they get for using each of its

strategies. We will now investigate each of these algorithms

in more detail in the following sections.

6.1 Centralized algorithm using perfect information

The pseudo-code for the centralized algorithm is given in

Algorithm 1. As illustrated, this algorithm assigns radios to

each player in a sequential manner and hence, this algorithm

needs a centralized control where the assignment is done by

globally co-ordinating with all the players. It requires the

complete conflict graph of the network representing the

interference characteristics. Also, it assumes that, for every

channel assignment of a player, perfect information about its

interfering radios in all the channels is available. Given this

information, the algorithm proceeds by assigning radios to

the channels where minimum interference is caused. As the

assignment scheme is sequential by nature, an advantage of

this scheme is that the assignment of radios for a player is

one-time and does not change due to other players’ assign-

ments. However, in practical scenarios, global coordination

in an wireless network with selfish players cannot be

expected. Secondly, the assumption about perfect informa-

tion about all the interfering radios in all channels for every

player may not be pragmatic. We now relax on the central-

ized nature of the algorithm and present a distributed version

of the algorithm keeping the second assumption true.

Algorithm 1 Centralized NE Channel Assignment with Perfect

information

Require: N = /, k[ 0, |C|[ 0, k\ |C|

Ensure: The channel assignment is a Nash equilibrium

1: for all i [ N

2: for j /1 to k

3: Calculate the Kil values, Vl [ C, for the current

4: channel assignment

5: if Kic == Kil, Vc, l [ C then

6: Update the channel assignment scheme by assigning

radio j of player i on channel c where kic = 0

7: else

8: Update the channel assignment scheme by assigning

radio j of player i on channel c where c = arg minl[C Kil

and kic = 0

9: end if

10: Set the updated channel assignment scheme as the current

channel assignment scheme.

11: end for

12: end for

6.2 Distributed algorithm using perfect information

In this section, we present a distributed version of the

channel assignment algorithm. In this setup, the players

initially tune their radios to some random channels and

from then on the algorithm proceeds in a round-based

manner. As the assignment scheme is static by nature, we

assume that every player is assumed to know the players in

its collision domain. In every round, a node may get an

opportunity to change its channel assignment based on a

selection scheme which is similar to the IEEE 802.11 back-

off mechanism which uses a back-off counter initialized

with a random value chosen with uniform probability from

the set {1, …, W}. We note here that this round-based

approach, which is applied with channel assignment algo-

rithms in the literature like [17, 18], is used to ensure the
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distributed algorithm runs with some arbitrary ordering

among the nodes. This is done to avoid unstable channel

configurations resulting from channel assignment algorithms

with no ordering as mentioned in [17]. An intuition behind

these unstable channel assignments is that if there is no

ordering among the nodes, then every node may consider a

stale channel assignment scheme to make its current channel

reconfigurations and this may lead to recurring channel

reconfigurations which in turn will lead to the algorithm

alternating infinitely among a few channel configurations.

Algorithm 2 Distributed NE Channel Assignment with Perfect

Information

Require: N = /, Ni[ 0, k[ 0, k\ |C|

Ensure: The channel assignment is a Nash equilibrium

1: Get a random channel assignment

2: while not in NE do

3: Get the current channel assignment

4: for all i [ N do

5: if backoffi == 0 then

6: {/* Establish NE*/}

7: if (Ni 9 k)[ |C| then

8: for j /1 to k do

9: Assume that radio j uses channel b. Find cmin
where cmin  argminc2CnCi

Kic

10: if ðKib � KicminÞ[ 1 then

11: Move radio j from channel b to channel cmin

12: end if

13: end for

14: else

15: for j /1 to k

16: Assume that radio j uses channel b

17: if (kib 9 Kib)[ 1 then

18: Move radio j from channel b to a channel

c uniformly chosen from Ci

19: end if

20: end for

21: end if

22: backoffi / number sampled with uniform

distribution from {1, 2, ..., W}

23: else

24: backoffi /(backoffi - 1)

25: end if

26: end for

27: end while

Every round decrements the back-off counter by one and

once a node is in a round where its back-off counter decre-

ments to zero, it will evaluate perfect information about all

the interfering radios currently tuned to all the channels in its

collision domain. One of ways to get this information is by

using an extra radio per player which scans all the channels

and collects relevant information. Based on this information,

it will use the result established in Theorem 1 and change its

assignment to a better reorganization of its radios. The back-

off counter is then reset to a random value and the process is

repeated in a similar way eventually leading to a rationally

beneficial NE. Due to this back-off mechanism, the players

change their channel assignments almost in a sequential

manner. The pseudo-code of the algorithm is presented in

Algorithm 2. We further show later in our simulations that

this algorithm converges to an NE.

As mentioned earlier, knowing the current channel

assignment of interfering users in all channels maybe dif-

ficult and thus, we relax this assumption and present

another distributed algorithm which is based on imperfect

information about the channel assignment.

6.3 Distributed algorithm using imperfect information

This distributed algorithm is similar to the one presented in

the previous section except that here, the players do not

have all the information pertaining to channel assignment

in all the channels. Each player evaluates the imperfect

information of interfering radios only in the channels where

its radios are currently tuned. Before presenting the algo-

rithm, we will develop some analytical results based on the

imperfect information of each player.

Proposition 1 In the MCMR-MCD channel assignment

game with imperfect information, the maximum possible

number of interfering radios for a player i in any assigned

channel in an NE is at most
Ni�kþjCj�k�Rþi

jCj�k

j k� �

.

Proof We will arrive at an upper bound on the maximum

possible number of interfering radios for a player i in any

assigned channel in an NE channel assignment scheme for

the given MCD network. Consider a channel assignment for

player i. Let a ¼ maxa�Ci
Kia. Since number of radios in the

interference neighbourhood of player i is (Ni 9 k) which is a

constant, we know that the total number of radios, i.e., ðRþi þ
R�i Þ (from Eq. 3), in the collision-domain specific channel

assignment diagram is a constant. We can say that

R�i ¼ ðNi � kÞ � Rþið Þ. Applying Theorem 1, we know that

min
a2Ci

Kia ¼ maxa2Ci
Kia � 1 ¼ ða� 1Þ. Now,

R�i � ða� 1Þ � ðjCj � kÞð Þ
ðNi � k � Rþi Þ� ða� 1Þ � ðjCj � kÞð Þ

ð14Þ

) a� Ni � k þ jCj � k � Rþi
jCj � k

	 


� Ni � k þ jCj � k � Rþi
jCj � k

� �	 
 ð15Þ

As we have no knowledge of channels not occupied by

player i (imperfect information), we convert R�i in terms of
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Rþi as shown in Eq. 14. The simplification in Eq. 15 is due to

the fact that a is an integer. Based on the imperfect infor-

mation available to each player, we use the above bound on a

for the evaluation of the current channel assignment and

modify it to lead to an NE. We note here that, due to

imperfect information available to each player, there may

arise some inefficient channel assignment configurations

which the player may misunderstand to be an NE. So, in

order to come out of such unstable NE configurations, we

introduce a perturbation factor, e, which is a very small value

(10-4 in our simulations) and represents the probability with

which a player will change his channel assignment even if it

satisfies conditions of Proposition 1. We present the pseudo-

code of the algorithm in Algorithm 3. h

Algorithm 3 Distributed NE Channel Assignment with Imperfect

Information

Require: N[ 0;Ni[ 0; k[ 0; k\jCj;Rþi [ 0

Ensure: The channel assignment is a Nash equilibrium

1: Get a random channel assignment

2: while not in NE do

3: Get the current channel assignment

4: for all i [ N do

5: if backoffi == 0 then

6: {/* Establish NE*/}

7: l ðNi � kÞ þ jCj � k � Rþið Þ=ðjCj � kÞð Þ
8: if maxd�Ci

Kid[ l then

9: for j /1 to k do

10: Assume that radio j uses channel b

11: if Kib[l then

12: Move radio j from channel b to channel

c 2 Ci, where c is chosen with uniform

probability from Ci.

13: end if

14: end for

15: else

16: for j /1 to k do

17: Assume that radio j uses channel b

18: if Kib[l

19: Move radio j from channel b to channel

c 2 Ci with probability e, where c is

chosen with uniform probability from Ci

20: end if

21: end for

22: end if

23: backoffi / number sampled with uniform

distribution from {1, 2, ..., W}

24: else

25: backoffi /(backoffi - 1)

26: end if

27: end for

28: end while

6.4 No-regret learning for MCMR-MCD channel

assignment game

All the three algorithms proposed above can be termed as

informed by nature in the sense that they depend on the

knowledge of the other players in the game and their

utilities. They also rely on explicit communication between

interfering nodes while deciding on a channel assignment

scheme in every round. Also, the distributed algorithms

proceed in a sequential manner with each player getting an

opportunity to change its channel assignment only when its

turn arrives. Although such informed settings can lead to

stable NE schemes in the MCMR-MCD channel assign-

ment game, there may exist scenarios where such infor-

mation may not be assumed. Here, we will explore the

possibility using learning algorithms to arrive at stable

channel assignment for the MCMR-MCD game in a

uninformed setting where players are unaware of other

players in the game and their strategies. To be specific, we

will use a class of learning algorithms known as no-regret

learning algorithms and study their behaviour in the

channel assignment game. No-regret learning algorithms

allow initially uninformed players to acquire knowledge

about the state of their environment they are in as the game

is played in a repeated way. These algorithms have the

advantage that each player need not explicitly know the

number of players in the game and the strategies used by

them. Further, the players need not be aware of the utility

functions of other players. They will learn to play better

strategies based on the rewards obtained from playing each

of its strategies. In this work, we will focus on an important

randomized no-regret learning algorithm known as the

Freund and Schapire Informed (FSI) algorithm [26] which

is a variant of the Littlestone and Warmuth’s [27] weighted

majority algorithm. Due to space constraints, we explain

the core aspects of the algorithm below. The reader is

directed to [26] and [28] for more details.

One of the measures of the performance of a learning

algorithm is the regret, which is the expected value of the

difference between total utility of the algorithm and the

total utility of the best action. The concept of regret

involves the benefits a player feels after taking a particular

action compared to its other possible actions. The actions

which result in lower regret values will be updated with

higher probabilities and hence, ultimately actions that are

more rewarding will be used more often in the long run i.e.,

the algorithm learns to play profitable actions. It has been

shown in [26] that FSI suffers a regret of at most
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2TlnK
p

where T is the maximum number of rounds and K is the

number of strategies available to a player.

The FSI algorithm works in a round-based manner. In a

round t, each player i maintains a probability distribution,
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pti, on the set of its strategies, together denoted by the

profile pt ¼ ðpt1; pt2; . . .; ptNÞ. The players choose an action

profile denoted by At ¼ ðat1; at2; . . .; atNÞ based on their

corresponding probability distributions of actions i.e., in

round t, player i chooses action ati based on its probability

distribution pti. Based on the action profile, At, chosen by

the players in round t, rewards (or utilities) are obtained for

each of the actions of the players at the end of the round.

Further, this learning algorithm is called fully informed in

the sense that it is assumed that every player on each round

has access to the utility associated with all of his strategies

(not just the one that was chosen in that round).

We should however remark here that the term infor-

mation in the context of no-regret learning algorithms

corresponds to a player being aware of the utilities of all its

possible strategies and not just the strategy it chose in the

current round. This is different in the case of the previous

distributed algorithms discussed in the paper where infor-

mation signifies the players being aware of knowledge of

other players and their actions.

The algorithm, also termed as Hedge, utilizes the

cumulative utility obtained by player i over time t if he

chooses action ai given that other players had played at�i,
for every ai [ Ai. We will denote the cumulative utility

obtained by player i for choosing action ai in all the

t rounds as Ut
i ðaiÞ ¼

Pt
j¼1 Uiðai; aj�iÞ. At the end of every

round, the algorithm updates weights associated with each

action based the cumulative utility function described

above and re-calculates the probability distribution asso-

ciated with the set of its strategies for the next round.

Let ptþ1i ðaiÞ be the probability of choosing ai action by

player i in round t ? 1. The main idea of Hedge is to

simply choose an action ai at time t with probability

proportional to ð1þ aÞUt
i
ðaiÞ. Thus actions yielding high

rewards quickly gain a high probability of being chosen.

For some a[ 0, the probability distribution of actions of

player i in round t þ 1; ptþ1i , is calculated as follows,

ptþ1i ðaiÞ ¼
ð1þ aÞUt

i
ðaiÞ

P

a0
i
2Ai
ð1þ aÞUt

i
ða0

i
Þ ð16Þ

So, an important questions we investigate is—Will

informed no-regret learning algorithm like Hedge

converge to stabilizing outcomes in the MCMR-MCD

channel assignment game? We later find out through

experimental evaluation that, in the MCMR-MCD

channel assignment game, Hedge does lead to a

stabilizing strategies where players choose a probability

distribution over possible actions. Hence, the no-regret

learning approach can be applied in scenarios where

players are unaware of other players’ actions. We will

now study the no-regret algorithm along with other

algorithms proposed in the paper in more detail through

extensive simulations.

7 Performance evaluation

7.1 Simulation environment

We first considered a informed setting where every player

is aware of the existence of its interfering players and their

strategies in the network. An MCMR network with a 10-

node conflict graph representation given in Fig. 9 was

chosen for simulations and performance of the three

algorithms in the informed setting namely Algorithm 1,

Algorithm 2 and Algorithm 3 was studied for this example

network by implementing them in MATLAB. It is to be

noted here that we have not shown the actual network setup

used in simulations due to space limitations. As there is a

one-one relationship with the underlying network and the

corresponding conflict graph, it is assumed that there is a

unique MCMR network consisting of 10 transmitting nodes

which can be represented by the conflict graph given in

Fig. 9. As per our assumptions, each transmitting node has

a corresponding receiver node and hence, the underlying

network is a network of ten transmitter-receiver pairs

having the interference characteristics as shown in Fig. 9.

We considered 8 orthogonal channels as default value for

|C| in our simulations.

The example network was chosen to depict the multiple

collision domain aspect of the underlying network. In the

conflict graph of Fig. 9, we can observe that there is

diversity in the number of interfering neighbours of any

node. For example, node 1 and node 2 have high inter-

ference from their neighbourhood (as much as 6 interfering

nodes) while node 7 and node 8 have low interference (2

interfering nodes). As this work is related to channel

assignment in such diverse interference neighbourhoods,

the example conflict graph given in Fig. 9 can be used to

1

2

3 4

5

6

7

89

10

Fig. 9 Example 10-node conflict graph used in simulations
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obtain good understanding of the performance of the pro-

posed channel assignment algorithms.

Next, we characterized different 10-node networks and

studied efficiency of these algorithms for these random

network topologies. Finally, we considered a uninformed

setting where every player is unaware of its interfering

players and their strategies. In this setup, the no-

regret algorithm, Hedge, was implemented (in MATLAB)

and performance evaluation was done by executing Hedge

in all the nodes of the example network of Fig. 9.

In the simulations, algorithms were executed for several

runs to get different estimates for the measured metrics. In

every run, every algorithm executed for a number of pre-

configured rounds (denoted by parameter T) and a 95%

confidence interval on the mean value of measured metrics

was calculated after obtaining the estimates for all the runs

and the results were plotted. More details on the execution

of the algorithms are given in the following sections.

Before we present our observations, we define metrics to

evaluate the performance of the algorithms. We set

W = 15 and e = 10-4 in all our simulations.

7.2 Performance metrics

Definition 4 (Convergence Index) Given a channel

assignment a [ A, we define the convergence index, c(a),

which gives an indication of how many players satisfy the

conditions put forth by Theorem 1.

cðaÞ ¼
X

i2N

X

ðc;dÞ2Li
1di;c;d � 1 ð17Þ

where

Li ¼ fðc; dÞjkic ¼ 1; kid ¼ 0; 8c; d 2 Cg
0� cðaÞ� k � ðjCj � kÞð Þ

and 1d_i,c,d B 1 is the characteristic function defined as

below.

1di;c;d � 1 ¼
1 if di;c;d � 1

0 otherwise

�

ð18Þ

We consider only channel pairs, (c, d), such that

kic = 1, kid = 0 and use these pairs (represented by the

set Li) to check if they satisfy the condition put forth from

Theorem 1 i.e., (kic 9 di,c,d) B 1. Other channel pairs,

where kic = 0, trivially satisfy this condition and hence, we

do not consider them in the evaluation of c(a). We know

that, for every player i, there are (k 9 (|C| - k)) = |Li|

channel pairs which are needed to evaluate Eq. 18.

Basically, c(a) gives an indication of how close the

channel assignment a is to the expected NE channel

assignment.

Definition 5 (MCD-Efficiency) Given a channel assign-

ment a [ A and an NE channel assignment a* [ A, the

MCD-efficiency, x, is defined as

xðaÞ ¼ cðaÞ
cða�Þ ð19Þ

We note here that 0 B x(a) B 1. We claim that the

metric x(a) is suited for evaluating the channel assignment

obtained from the execution of proposed algorithms in

Sect. 6 since it uses the result of Theorem 1 in determining

the convergence properties.

Definition 6 (Average MCD-efficiency and MCD-effi-

ciency ratio) The average MCD-efficiency, �x, at round T is

defined as, �xða; TÞ ¼
PT

t¼1 xðt;aÞ
T

, where x(t, a) is x(a) in

round t. The MCD-efficiency ratio (X) metric is defined as

X ¼ lim infT!1 �xða; TÞ.

7.3 Observations from simulations

Firstly, we will evaluate the performance of the three

informed algorithms namely Algorithm 1, Algorithm 2 and

Algorithm 3. Later, we will study the behaviour of the no-

regret learning algorithm (Hedge). The results obtained

from our simulations for the three informed algorithms are

given in Figs. 10–22.

7.3.1 Efficiency analysis

Figures 10 and 11 plot the behaviour of x with time for the

distributed algorithms, Algorithm 2 and Algorithm 3. We

can observe that x converges to 1 after starting from a

random channel assignment. However, due to imperfect

information available, convergence to 1 is not reached for

Algorithm 3. It can be observed that Algorithm 3, though it

is more constrained due to imperfect information available

to it, performs quite well when it starts with different

random channel assignments. As these plots were taken

after starting from random channel assignments, we mea-

sured the MCD-efficiency ratio, X, to get an idea over the

performance of the algorithms. Simulations were per-

formed by varying the number of radios per device (k). For

each value of k, 100 different estimates of the metric were

collected. Each estimate was obtained by starting from a

random channel assignment. As mentioned before, a back-

off counter per player (similar to the approach used in

802.11b protocol [1]) was used to provide sequential

opportunities to change its corresponding channel assign-

ment. One round is completed when all the nodes have

been given one opportunity to decrement their back-off

counters. During a round, if the back-off counter for any
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player reaches 0, then the updating algorithm for that

player checks for NE conditions and updates the channel

assignment if necessary. The player then resets the back-off

counter. The algorithm is executed for T = 10000 rounds
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Fig. 10 Time versus MCD-efficiency for Algorithm 2 with

N = 10, k = 3, |C| = 8
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Fig. 11 Time versus MCD-efficiency for Algorithm 3 with

N = 10, k = 3, |C| = 8
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Fig. 12 No. of radios/device (k) versus MCD-efficiency ratio (X) for

Algorithm 2 with N = 10 and |C| = 8
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Fig. 13 No. of radios/device (k) versus MCD-efficiency ratio (X) for

Algorithm 3 with N = 10 and |C| = 8
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N = 10, k = 3 and |C| = 8
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and X was calculated. This constituted one estimate of X.

A 95% confidence interval on the mean value of X for 100

runs was calculated and the results were plotted. Similar

experiments were run for different values of k. The results

obtained for each of the algorithms are shown in Figs. 12

and 13.

We can observe that X is closer to 1 for Algorithm 2

than Algorithm 3 due to the full information available in

Algorithm 2 in deciding the channel assignment, while

Algorithm 3 uses a probabilistic approach to compensate

for the imperfect information available to it. We should

note here that both the algorithms try to converge to an NE

by using the conditions established by Theorem 1.

It can also be observed that X tends to increase with

k due to more information made available on the channels

having interfering radios.

7.3.2 Payoff analysis

We will now analyze the utilities obtained by the players as

a result of running the three algorithms. Experiments were

conducted by varying the value of k between 2 and 6. For

each value of k, utilities of the players were obtained for

100 runs of the experiment and then, the average of these

utilities was plotted. We provide an example plot for k = 3

in Fig. 14. We further plot the utility values for different
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Fig. 17 Average Payoff of Players (Algorithm 3) versus Collision

domain size with N = 10, |C| = 8 and k = 3
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Fig. 18 Average Payoff of Players (Algorithm 3) versus Collision

domain size with N = 10, k = 6 and |C| = 8
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values of k for the three algorithms with respect to Player 2

and Player 9 in Figs. 15 and 16, respectively.

First of all, we can observe from Fig. 14 that NE in a

MCD scenario does not necessarily lead to equal utility

distribution among the players as observed in [17] for the

single collision domain scenario. This can be attributed to

the variation in the number of interfering users for every

node. In a single collision domain scenario, the number of

interfering players is the same for all players. But in a

MCD scenario, each node will get a utility which depends

on its interference neighbourhood. For example, in Fig. 14,

which is got due to execution of the centralized algorithm,

players 1, 2, 5, 6 have lower utilities due to their high

interference in the network (see Fig. 9), whereas, players

4, 7, 8 have higher utilities due to reduced interference.

Similar, behaviour with respect to utility distribution was

observed for the other algorithms as well.

Further, we can observe from Figs. 15 and 16 that the

utilities obtained from Algorithm 2 is higher than the

utilities of players obtained from Algorithm 3 due to the

efficiency ratio not converging to 1 for Algorithm 3 which

can be attributed to the imperfect information available to

it. We also observe from the execution of the three

algorithms that, given a fixed number of channels, the

utilities of players varies for lower k values and show

utility convergence for higher values of k, which can be

attributed to fewer NE configurations at higher k values

(due to the fact that the contention in the channels is more

and hence, every channel tends to have more interference

and hence, more congestion in the limited number of

channels leading to fewer NE configurations) than at

lower k values (due to lesser radios for channel assign-

ment which allows the possibility of different NE con-

figurations in each of the algorithms leading to variation

in utilities of the players).

Also, we can observe that there is a variation in the

utility obtained by the players due to the three algorithms.

This can be seen from Figs. 15 and 16 from the point of

view of Player 2 and Player 9 respectively. In Fig. 15, we

can see that the utility of Player 2 is higher in the cen-

tralized algorithm than the distributed algorithms, whereas

we can observe that the distributed algorithms outperform

the centralized algorithm in terms of utility to Player 9 (as

shown in Fig. 16). Though the centralized algorithm may

outperform the distributed algorithms in some cases, the

assumptions about global coordination (in centralized

algorithm) may not be practical and hence, although there
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is a trade-off of utility over flexibility, distributed algo-

rithms provide an alternative for achieving reasonably

efficient channel assignment schemes.

We plot the payoffs of the players as a scatter plot

(Figs. 17, 18) where the results have been accumulated

over multiple network configurations. We present the

results for Algorithm 3 and for k = 3, 6 only due to space

constraints. The simulation was performed for other algo-

rithms and other values of k as well. We briefly explain the

experimental setup below and then summarize the

observations.

Experimental Setup We fixed the number of nodes in

the graph as n = 10. Generate varying density graphs with

edge count = (n 9 t/2) corresponding to parameter t where

(1\ t\ (n - 1)). For t = n - 1, it denotes a complete

graph. 100 random graphs were generated for each value of

t. A random graph was drawn from the generated graphs

and Algorithm 3 was executed for that graph. The corre-

sponding players’ utilities were collected. This process was

repeated for 200 times. Finally all the payoff values of all

players for all observations were plotted as a scatter plot.

We note here that an important parameter is k which is the

number of radios per device. We varied value of k from 3

to 6 and observed the corresponding scatter plots for all the

three algorithms.

Observations It can be observed from the plots that k is

an important parameter in determining the pattern of payoff

values for any player. This holds true for all the algorithms

considered which can be justified as follows. For low

k values (for example, k = 3 as shown in Fig. 17), the total

number of radios to be allocated a channel in any particular

collision domain is smaller and hence the average payoff

values are more on the higher side even when the collision

domain size is quite high. As k value increases (for

example, k = 6 as shown in Fig. 18), more and more

radios compete for channel allocation leading to lesser

player utilities as can be clearly observed from the plots.

Another degree of freedom is the size of the user’s collision

domain. It is observed that as the collision domain size

increases, the average utilities of the players are found

mostly on the lower values which can be attributed to more

radios being allocated to any channel leading to lower

utilities for individual radios.

Figure 19 presents the plot of average payoffs per player

(over multiple network realizations) as a function of the

number of radios for the three algorithms. However, due to

space constraints, we present the results for Player 9 only.

We briefly explain the experimental setup and the corre-

sponding observations below.

Experimental Setup Sample networks were generated as

above. For a particular random graph, all the three

algorithms were executed once for each value of k from 3

to 6. The average payoffs of each of the players were

collected and then the experiment was repeated for another

random graph. This was done for 200 different random

networks. Then the average payoffs for the players was

calculated for each value of k and the bar charts corre-

sponding to each player was plotted.

Observations In all the algorithms, lower k values lead

to more utilities for any player due to number of con-

tending radios being small. For a particular player, Algo-

rithm 2 may lead to better average payoff than centralized

algorithm for lower k values. For higher k values, there

does not seem much difference between the two algo-

rithms. Also, Algorithm 3 (partial information) leads to

lower average payoffs than the complete information sce-

nario. In effect, distributed algorithms offer better flexi-

bility and also may lead to finding better NE solutions than

their centralized counterpart. Note that the payoff values

are all averages over multiple runs with different network

configurations. So, there may be cases when centralized

outperforms the distributed algorithms in some scenarios

and vice versa in others. It is to be noted here that we

have shown here the average case behaviour of the

algorithms.

7.3.3 Convergence analysis

We now focus on the convergence aspects of the distrib-

uted algorithms. Algorithm 2 exhibits good X value as

shown in Fig. 12. Algorithm 3, on the other hand, has X

ranging from 0.75 to about 0.9. This lower value of X can

be attributed to the heuristic nature of the algorithm as, for

a player i, the algorithm probabilistically selects channels

outside Ci whenever the bound value a becomes higher

than the value derived in Eq. 15. To understand this better,

we plot the maximum value of x reached for different

values of k. We can see that the maximum x is between

0.85 and 0.95 for different values of k (see Fig. 20). We

correspondingly measure the convergence time needed to

achieve this x value. We note that it takes 25–40 rounds to

achieve the maximum X as shown in Fig. 21.

7.3.4 Performance evaluation for different networks

In this section, we generate different possible networks and

study the behaviour of Algorithm 2 and Algorithm 3 on

these diverse networks. As the number of networks possi-

ble (with a fixed number of communication sessions i.e.,

|T| = N = 10) is combinatorial in nature, we generate

different networks in two ways—(1) Network-based char-

acterization; (2) Conflict graph-based characterization. We
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should note here that all the results are plotted with 95%

confidence interval on the mean values obtained from

different generated networks.

Network-based characterization In this type of charac-

terization, the basic idea is to generate different possible

MCD networks based on a parameter—Interference

Radius, IR. Suppose the set of m communication sessions

in the network are represented by the set T = {(si, di)}

where i [ {1, 2, …, m}. Now, the interference character-

istics of the network are defined through the parameter IR

as follows: a communication session (si, di) interferes only

with the set of communication sessions in G = {(sj, dj)}

where j [ {1, 2, …, m} and (i - IR) B j B (i ? IR) }. By

varying IR, we can generate different networks and we

studied X for Algorithm 2 and Algorithm 3 for different

values of IR as shown in the Figs. 22 and 23, respectively.

X converges to 1 for Algorithm 2 while ranges from

0.75 to 0.85 for the Algorithm 3. We can observe that these

results are similar to those obtained for the example in

Fig. 9.

Conflict graph based characterization The basic idea

here is to follow the conflict graph model of networks as

explained in Sect. 3 to generate different MCD networks.

As a result, the problem of generating MCD networks with

different interference characteristics can be reduced to the

generation of random conflict graphs. We used Donald

Knuth’s Stanford GraphBase (SGB) [29] platform, which is

very widely adopted in the literature (e.g., [30]), for gen-

erating different network topologies for testing the channel

assignment heuristics. The SGB package defines a file-

based topology format as well as data structures for rep-

resenting networks.

Before we present the results obtained by us, let us

understand some of the parameters used in the random

conflict graph generation process. The random graphs

generated are characterized based on (1) number of ver-

tices, (2) number of edges, (3) in-degree distribution of the

vertices, (4) out-degree distribution of the vertices and (5)

system-independent seed value. We mapped the above

parameters to the interference characteristics of the net-

work that we want to test. We assumed the degree dis-

tribution of the generated random graph to follow a

uniform distribution. We characterize a parameter,

threshold average degree (denoted by threshavg), for gen-

erating different types of conflict graphs. We set N = 10.

Each type of conflict graph has a different number of

edges denoted by m. We set m = ((N 9 threshavg)/2)

where 1 B threshavg B (N - 1). A lower value of thre-

shavg is indicative of a conflict graph with less interference

among the links of the network. This represents a case

where each node has a sparse interference in its collision

domain. Thus, we generate 100 random graphs for each

threshavg value and then run the distributed algorithms

with these random graphs as inputs. In any run, for a

given threshavg, a graph is chosen uniformly from the 100

sample graphs generated. The plots for X are provided in

Figs. 24 and 25. We can observe that the efficiency of

Algorithm 2 converges to 1 while Algorithm 3 also

achieves reasonably good efficiency (0.75–0.95) under

different networks with varied interference neighbour-

hoods. So, we can now conclude that the behaviour of the
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Fig. 23 Interference Radius (IR) versus MCD-efficiency ratio (X) for

Algorithm 3 with N = 10, |C| = 8 and k = 3
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Fig. 24 Threshold avg. degree (t) versus MCD-efficiency ratio (X)

for Algorithm 2 with N = 10, k = 3 and |C| = 8
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distributed algorithms is understood under different net-

works with varied interference characteristics.

7.3.5 Observations for no-regret learning scenario

We will investigate the behaviour of Hedge (explained in

Sect. 6.4), a distributed adaptation (learning) algorithm

based on regret minimization which attempts to learn the

highest rewarding strategy for a player based on its

understanding of the network environment. We will apply

the Hedge algorithm and try to understand through simu-

lations if it can attain stabilizing outcomes for the MCMR-

MCD channel assignment game. Hedge was implemented

in MATLAB and executed for 4,000 rounds (or iterations)

with the example conflict graph given in Fig. 9 as input.

We will now summarize the simulation results.

We show the evolution of weights of strategies for two

players (due to space limitations) which are arbitrarily

chosen (i.e. players 2 and 9) in Figs. 26 and 27. We note

here that all other players also evolve similarly as these two

players. As |C| = 8 and k = 3, each of the players have
8C3 ¼ 56 possible strategies that can be applied in every

round. The players start with equal weights for all strate-

gies and as time progresses, they stabilize to fixed strate-

gies which yield maximum rewards/utilities. As seen from

Fig. 27, player 2 stabilizes to a pure strategy (strategy 35)

after about 400 rounds. It can also been seen from Fig. 26

that player 9 stabilizes to multiple strategies (strategies 48,

17 and 14 with probabilities 0.689, 0.248 and 0.063,

respectively) after about 400 rounds.

Figure 28 plots the fraction of time during the execution

of Hedge that the channel assignment is in NE. We verify

the NE state by using the conditions derived in Theorem 1.

As we can observe, for any value of k, Hedge seems to

stabilize to outcomes that obey NE conditions of Theorem

1 more frequently as time progresses. This is a significant

observation and is conformant with such observations

made in works like Greenwald and Jafari [31] and Lim

et al. [32] which showed no-regret learning has the

potential to converge to pure/mixed/correlated strategy

Nash equilibria. It should be however noted that, though

there is a possibility of convergence (shown through sim-

ulations) to NE by Hedge, this requires a more thorough

understanding of the connection between no-regret learn-

ing and NE. Detailed theoretical examination of the inter-

esting topic of convergence to NE of learning algorithms is

planned to be a part of future work of the authors.

Another observation from Fig. 28 is that players with

lower values of k learn to play stable outcomes faster.

Further, as k value increases, players spend lesser time in

stable states which can be attributed to the increase in the
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Fig. 25 Threshold avg. degree (t) versus MCD-efficiency ratio (X)

for Algorithm 3 with N = 10, |C| = 8 and k = 3

Fig. 26 Probabilities of strategies of player 9 versus time forN = 10,

k = 3
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radios contending for the wireless spectrum resulting in

lesser number of stable configurations for convergence.

The collective performance of the players can be seen

by observing the behaviour of MCD-efficiency (x) metric.

We plot x versus time for Hedge in Fig. 29. We observe

that x converges to 1 at around 500 rounds which is

roughly the time when the strategies of the players

stabilize.

We plot the mean of the total utility acquired by the

players during the execution of Hedge in Fig. 30. We first

note that as learning progresses, the mean total utility

converges to a fixed value. We note that the mean total

utility decreases with increase in k. For lower values of k,

the total mean utility is higher due to lesser radios which

leads to lower interference.

Thus, it can be briefly summarized that use of rein-

forcement learning, and in particular, no-regret learning

based algorithms in the channel assignment game with

multiple collision domain has good potential to give deep

insights into the problem.

8 Conclusion and future work

Radio resource management is a critical factor in deter-

mining the performance of a wireless network. An impor-

tant aspect in this complex area is the frequency channel

selection for the radio interfaces in the network. A good

channel selection algorithm can enable spatial reuse of

available wireless channels resulting in reduced interfer-

ence and corresponding increase in the network capacity.

In this paper, we considered the problem of channel

assignment in MCMR networks. We addressed the prob-

lem in a MCD context where each link may have different

links interfering with it. Any channel assignment algorithm

should try to minimize interference experienced by indi-

vidual links and hence, the problem was formulated as a

non-cooperative game where each link will behave in a

rational manner and aim to increase its individual

throughput. Necessary and sufficient conditions were

derived for the network to converge to an NE and then,

analysis on the efficiency of the NE was done by deriving

the lower bound on the price of anarchy. A new measure of

fairness in multiple collision domain context was proposed

and detailed fairness analysis was presented.

From the algorithmic perspective of the channel

assignment problem, a centralized and two distributed

algorithms were proposed based on perfect/imperfect

information about the number of interfering radios

assigned in a channel and detailed performance evaluation

of these algorithms was done based on metrics like effi-

ciency and utility distribution. The algorithms were also

shown to exhibit good convergence properties. Experi-

ments were extended to networks with different

0 1000 2000 3000 4000
0

0.2

0.4

0.6

0.8

1

1.2

Time (in rounds)

F
ra

c
ti
o

n
 o

f 
ti
m

e
 i
n

 N
E

k = 5

k = 3

k = 4

k = 2

Fig. 28 Percentage of time in NE versus time for N = 10 and

|C| = 8

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.2

0.4

0.6

0.8

1

Time (in rounds)

M
C

D
−

e
ff

ic
ie

n
c
y
 (

ω
)

 

 

MCD−efficiency

Average MCD−efficiency

Fig. 29 MCD-efficiency (x) versus time for N = 10, |C| = 8, and

k = 3

0 1000 2000 3000 4000
0

0.2

0.4

0.6

0.8

1

1.2

Time (in rounds)

M
e
a
n
 o

f 
T

o
ta

l 
U

ti
lit

y
  

A
c
q
u
ir
e
d
 B

y
 A

ll 
P

la
y
e
rs

k = 4
k = 5

k = 2

k = 3

Fig. 30 Mean total utility of all players versus time for N = 10 and

|C| = 8

Wireless Netw (2011) 17:411–435 433

123



interference characteristics by using techniques like ran-

dom conflict graph generation and performance metrics

were studied for these networks. Lastly, a no-regret

learning based algorithm known as Hedge was proposed

and behaviour of this algorithm in the channel assignment

game was studied. One of the important observations was

that Hedge converged to stabilizing strategies for all the

players and yielded fixed utilities for them.

With respect to future work, the following directions

may be interesting and thought-provoking to explore. NE

channel assignment schemes may become more interesting

if multiple radios of the same player are allowed to be

allocated the same channel. Also, game-theoretic analysis

of the multiple collision domain setup in a dynamic wire-

less network may be interesting direction to pursue

research. Another direction of work may be to consider the

scenario where nodes form coalitions among themselves

and act in a cooperative manner. Equilibrium properties

can be studied when nodes form coalitions of arbitrary

sizes and heuristics can be developed to converge to such

an equilibrium if it exists. Also, we considered algorithms

which followed a round-based approach. Other learning-

based approaches can be thought which asynchronously

update the weights for the strategies. The behaviour of such

algorithms in a dynamic environment, where player pop-

ulation and their utility structure varies, can be interesting

directions for future work. Through this paper, the authors

have taken a first step in the direction of casting the

channel assignment problem under the operation of a no-

regret learning algorithm. But much remains to be explored

in this fascinating area. Excellent works like Cesa-Bianchi

and Lugosi [33], Young [34] give a detailed account of

important contributions by the research community in the

fascinating field of learning in games and it is the intention

of the authors to pursue further investigation in this

direction as part of their future work.
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