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Abstract 

In this paper we present a non-deterministic call-by-need 

(untyped) lambda calculus X,d with a constant choice and a 

let-syntax that models sharing. Our main result is that Xnd 

has the nice operational properties of the standard lambda 

calculus: confluence on sets of expressions, and normal or- 

der reduction is sufficient to reach head normal form. Us- 

ing a strong contextual equivalence we show correctness of 

several program transformations. In particular of lambda- 

lifting using deterministic maximal free expressions. These 

results show that And is a new and also natural combination 

of non-determinism and lambda-calculus, which has a lot of 

opportunities for parallel evaluation. 

An intended application of And is as a foundation for compil- 

ing lazy functional programming languages with I/O based 

on direct calls. The set of correct program transformations 

can be rigorously distinguished from non-correct ones. All 
program transformations are permitted with the slight ex- 

ception that for transformations like common subexpression 

elimination and lambda-lifting with maximal free expres- 

sions the involved subexpressions have to be deterministic 

ones. 

1 Introduction 

Currently, the preferred methods in non-strict functional 

languages to implement l/O and other interactions with 

the environment are monadic programming as in Haskell 

([PHA+97]) or direct calls that are embedded in a system 
of unique types as in Clean [NSvPSl, Ach96]. In the com- 
mercial non-strict functional programming language Natu- 

ral EL [HNSSH97] these interactions were implemented as 

direct calls. 

The intention of this paper is twofold: On the one hand a 

non-deterministic lambda calculus &,d is described that is 

different from most other non-deterministic lambda calculi 
insofar as it is lazy, i.e., call-by-need, and has all the ad- 

vantageous properties of a lambda-calculus, where instead 

of confluence a generalized notion (set-confluence) is used. 

On the other hand we want to demonstrate that the ntive 

approach to I/O in non-strict functional languages can be 

justified, based on a different set of transformations of the 

non-deterministic lambda-calculus. 

The following well-known example demonstrates the prob- 
lems in adding non-determinism to the lambda calculus: Let 

0 be non-deterministic choice and let the function double be 

defined as double z = z + z. The issue is: “What is the 

result of reducing the expression double (1 0 a)?” Using p- 

reduction there are two different reduction sequences that 

conflict with set-confluence. 

l double (1 0 2) -+ (1 0 2) + (1 0 2), which may result 

in 2, 3, or 4. 

l double (1 0 2) -+ double n, where n = 1 V 2, which 

may result in 2 or 4. 

This means that depending on the selected redex to be re- 

duced, the set of possible results is different after one re- 
duction step, which means that this kind of beta-reduction 

makes an “implicit choice”. This is not only counterintu- 

itive, but leads to inconsistencies. One remedy is to restrict 

the permitted redexes, usually by only permitting a fixed re- 

duction strategy like strict evaluation or normal order eval- 

uation. 

The first possibility is the method chosen for strict func- 

tional programming languages and also for Clean. It has 

the disadvantage that it severely restricts the permitted pro- 

gram transformations, since the sequence of evaluation is 

highly fixed. 

Another remedy, which we will pursue, is to modify the cal- 
culus by introducing sharing such that the calculus does not 
unnecessarily copy expressions. In the example above, the 
expression (1 0 2) is not copied, such that the set of possi- 

ble results is 2 or 4. We are strongly influenced by the let- 

calculi described in [AFM+95, AF97, MOW981 which model 

sharing. The only syntactic addition is to add choice as a 

constant. 

In order to be able to built a compiler using program trans- 

formations like lambda-lifting, partial evaluation, inlining, 

etc., it is important that the calculus is rather permissive 

in the applicability of its reduction rules, such that a wide 
range of program transformations can be shown to be cor- 

rect. The sequence of evaluations should have a maximal 
degree of freedom, such that parallel evaluation is possible. 

On the other hand, the normal order reduction should be 
rather close to a possible implementation. The calculus &d 

meets these requirements. 
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There are two criteria that play a role in the correctness 

proofs: One is set-confluence, the other is the existence 

of (in)finite normal order reductions. Set-confluence corre- 

sponds to the intuition that the initial program determines 

the set of possible results, and that exactly these results can 

be computed using reduction rules. Moreover, it also cap- 

tures the intuition that all choices are explicit. Thus it is a 

natural generalization of confluence. 

The achievements of this paper are that the non- 

deterministic call-by-need lambda calculus X,d is set- 

confluent (Theorem 3.8) and that whenever an expression 

can be reduced to a HNF, there is a normal order reduction 

to a HNF (Theorem 4.9). We show correctness of lambda- 

lifting with maximal free expressions wrt contextual equiva- 

lence, a result which seems of practical value (Theorem 8.2). 

As a corollary it follows by simply dropping the choice, that 

the calculus Xl,t [AFMt95, AF97] may have more permis- 

sive reduction rules without destroying confluence. 

In [SS92] twelve different kinds of non-determinism in 
non-strict functional languages are identified. Using their 

categories, And has an erratic, restrained, singular non- 
determinism. However, x,,d justifies unfolding, (i.e., pro- 

gram transformations) without incompatibilities between 

singular semantics and unfoldability. Hence, And is a new 

kind of non-determinism in non-strict functional languages. 

Unfortunately, it is a real pain to work through case-analyses 

and reductions of lots of diagrams. Due t,o lack of space, we 

often give only the results and omit the tedious computa- 

tions. The diagrams are also mechanically checked (by a 

Haskell-program) up to a certain size of expressions. This 

forces us to correct several errors in the diagrams. An ex- 

tended version of this paper with full proofs is in prepara- 
tion. 

Our calculus And fits into the work on implementing 

and compiling non-strict functional programming languages 

[PJ87, PJLSl], since the calculus is compatible with super- 

combinator reduction. 

The practical application of our calculus is to provide a basis 

for program transformations (i.e. compilation) of lazy func- 

tional (higher order) programming languages that use direct 

calls. The correct program transformations can be derived 

by simulating the result of an I/O-function by a big choice- 
expression. For example, the result of an I/O-function that 

may return True or False can be modeled by the expression 
(choicel(choice True False)). 

The paper is structured as follows. First the calculus is 
described in section 2. Then the basic properties like set- 

confluence and existence of a normal order reduction are 

investigated in sections 3 and 4. Contextual equivalence 

and deterministic expressions are defined in sections 5 and 
7. The correctness of a set of extended rules and of lambda- 

lifting is proved in sections 6, 7 and 8, and the relationship 

with the usual lambda calculus is clarified in section 9. 

2 The Language 

A-expressions may be variables x, the constant choice, ap- 
plications (s t), let expressions (let x = s in t) and abstrac- 

tions Xz.t, where x is a variable, and s, t are A-expressions. 

As a convention we shall assume that all bound variables are 

different, which can be achieved by a consistent renaming of 

bound variables. The set of variables in a closed expres- 

sion t is denoted as V(t), the set of let-bound variables as 

Vi,,(t). A closed expression is one without free variables. We 

consider expressions as equal (denoted z), if there is some 

consistent renaming of bound variables that makes them 

equal, i.e., if they are o-convertible. We use the convention 

that application is left associating, i.e., el ez e3 means the 

expression ((el e2) es). 
The constant choice is intended to be a function that may 

reduce (choice s t) to either s or t. We use several kinds 

of reduction relations. We shall use the +,*-notation for 

the transitive and the transitive-reflexive closure. The sym- 
bol “?,, is used for reduction consisting of 0 or 1 steps. A 

context C[.] is a closed A-expression with exactly one hole, 

where the hole can be at every position where an expression 

is permitted, i.e., the syntax is C ::= [.] ] C s ] s C ] (let x = 

C in s) ] (let x = S in s) ] Xx.C, where s is a A-expression 

and x a variable. The notation C[s] stands for the expres- 

sion, where s is plugged into the hole. A reduction rule + 

is compatible, iff t -+ t’ implies C[t] --+ C[t’] for every 
context C[.]. 

2.1 Non-Deterministic Reduction 

We use the reduction rules in table 1, which are a gener- 

alization of the ones in [AFMt95, AF97]. The calculus is 

almost the same as the one in [MOW98], but we leave out 

the garbage collection rule (ldel), see 2. 

The rule (nd) is not compatible, which is justified by the 

intuition that a compiler should not be able to “optimize” 

functions by evaluate I/O’s at compile time. It could be 

made compatible by formulating the reduction rules on sets 

of expressions. The presented formulation is close to the 

operational view that the choice-decisions are taken outside 

the functional program, and that once a decision is made, 

you can forget the alternatives (committed choice). 

Definition 2.1 Let s denote an expression. A reduc- 

tion context R[.] is dejined by the syntax: R ::= 

[*I 1 (R s) ( (s R) 1 (let x = s in R) I (let x = R in 3). 

A let-context is defined by the syntm L ::= [.I I (let x = 

s in L). We will use the symbols R, L only with this mean- 

ing. Moreover, let LL ::= (let x = ’ in s), AL ::= . s, and 

W ::= L ) L[LL[A;]] 

Definition 2.2 Based on the reductions in table I, we de- 

fine: s 3 t, ifs 4 t for p E {llet, lbeta, lapp}. 

s loq t, ifls llef t or s % t. 

Definition 2.3 We define relations on sets of closed ex- 

pressions. Let s, t be closed expressions and let M be a set 

of closed expressions. 

l Ifs 4 t, then MU (3) 2 MU {t} for all labels 

p E (cp, llet, lapp, lbeta}. 

set,let,nd set&t set,nd 

l ------+ := -----+u----+. 

set set,let,nd set,cp 

. +X,nd := +u+. 

We define redexes as immediately reducible subexpressions 

within an expression. 
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Let C, D be arbitrary contexts. 

(llet) C[(let 2 = (let y = t, in tl) in s)] + C[(let y = t, in (let x = t, in s))] 

(lapp) C[((let x = t, in 3) t)] + C[(let x = t, in (s t))] 

I’bd”,“a) C((X 2.. t) 3)l -+ C[(let x = 3 in t)] 

n R[(cholce s)] + R[((X x . (X y . y)) s)] where Z, y are fresh variables. 

-+ R[((X x (X y . 2)) s)] where x, y are fresh variables. 

(cp) C[(let x = 3 in D[x])] --+ C[(let 5 = s in D[s’])] 

If s is a lambda-abstraction or choice and s’ is a renamed copy of s 

Table 1: The non-deterministic calculus And 

3 Confluence of Reduction on Sets 

Usually, confluence of reduction is interpreted as the inde- 

pendence of the result of a computation from the sequence 

of reductions. For a non-deterministic reduction, this no- 

tion has to be generalized. For example, choice s t may be 

reduced to s as well as t. Since the expressions s, t are arbi- 

trary, we cannot hope that there is any sensible relationship 

between s and t. The criterion that we will use instead is 

that the set of possible results is an invariant of reduction: 

For non-nd reductions this means that the set of possible re- 

sults does not change, i.e., there will be no implicit choices. 

For an nd-reduction t “4 tl, where the other alternative is 

t -% t2, we require that the set of possible results of t is the 

same as the union of the possible results of tl, t2. 

3.1 Confluence of -% 

Definition 3.1 A relation + is locally confluent, iff 

whenever a + b and a + c for some closed expressions 

a, there is some d, such that b 4 d, and c & d. 

Lemma 3.2 The reduction relations -% and 
set,let,nd 

+ are 
terminating. 

Proof. The following measure cp = (cpl, (~2) is used for ex- 

pressions, where pairs are compared lexicographically. The 

first component cpi is the number of occurrences of choice, 

and the second is defined as follows: 

I 1 if s is a variable or choice 

$72(s) := 

I 

;:(lp'(tJ + w(r)) ifs = (t r) 
If3 r (A x t) 

2 * v2(r) + 92(t) ifs E (let x = r in t) 

It is an easy task to check that all the reductions -% for 

p E {Ret, lapp, lbeta, nd} strictly reduce the measure. It is 

easy to extend this to sets using well-foundedness of the 

corresponding multiset ordering. 0 

Lemma 3.3 The reduction relations -% and 
set,let,nd 
+ are 

locally confluent. 

Proof. For local confluence of 3, we have to check 5 non- 

trivial overlappings. We show only for the overlap of the 
llet-rule with itself that there is a common reduct: 

(let x = (let y = (let z = t, in tY) in tz) in s) reduces 

either to (let y = (let .z = t, in tY) in (let x = t, in 3)) 

or to (let 2 = (let z = t, in (let y = t, in t,)) in s). 

The first expression reduces in one further let-reduction to 

(let z = t, in (let y = t, in (let 2 = t, in 3))). The sec- 

ond expression reduces as follows: (let z = t, in (let x = 

(let y = t, in tl) in s)), which further reduces to (let z = 

t, in (let y = t, in (let x = t, in s))). The other compu- 

tations are similar. 

To check that 
set,let,nd 

+ is locally confluent, there are no extra 

nontrivial overlappings. The only nontrivial argument is 
that let-reductions cannot move a choice out of a reduction 

context. cl 

Proposition 3.4 The relations -% and 
set,let,nd 
___$ are con- 

fluent. 

Proof. The Newman-lemma [New421 (see also [HueSO]) 

shows confluence of the relation 2 and 
set,let,nd 

+ using lem- 

mas 3.3 and 3.2. 0 

3.2 Confluence of 3 

The same technique as in subsection 3.1 is used to show 

confluence of %. 

Definition 3.5 The measure $J is defined using an environ- 

ment parameter. For closed expressions let $(s) := [s]~ 0. 

[f:Tce] p 

:= p(x) 

:= 

2. t&J := it] p[x c-) O] 

b t&&J := b& + WI~LP 

[(let z = s in t)]+p := [s]+p+ [t]+p’ 

where p’ := Pb I+ B+JJ + 11 

Lemma 3.6 The relations -% and ..t,,q are terminating. 

Proof. The measure is strictly monotone in the measure of 

subexpressions. 3 strictly reduces the measure 4. Since 

the measure is well-founded, -% terminates. A consequence 
set,cp 

is t,hat __) terminates. q 

Proposition 3.7 The relation 2 is locally confluent. 

3.3 Confluence 

Theorem 3.8 The relation %X,nd is confluent 
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Proof. We use Lemma 3.3.6 in [Bar841 which states the fol- 

lowing: If for all a, b, c: if a +i b, a +a c there exists some d, 

such that b &J d,c <1‘r d, then --%I and -%2 commute. 

We use this lemma with +r := 3, -+s := 
set,lct,nd 

w . 

We have to check the nontrivial overlappings and to show 

that the forking reductions can be joined according to the re- 

strictions. I.e., we have to check the situations tl + t2, tl + 

t3 using the syntactical structure of expressions. 

l Case: one reduction is an nd-reduction. Then there 

is no problem in joining, since a cp-reduction cannot 

duplicate the nd-redex. 

l Case: One reduction is a let-reduction. Then one cp- 

reduction and 1 or 2 let-reductions are sufficient to join 

the reduction. The latter case is possible if the let- 

reduction is within an abstraction. 

set,let,nd,r 

The relations ___+ and -=% commute. The propo- 

sitions 3.4 and 3.7 and the commutation property now show 

that the relation ‘*X,nd is confluent. cl 

Example 3.9 The reduction +Qd would become non- 

set-confluent, if we would permit the choice-reduction in 

the body of abstractions: Consider the expression (let x = 

(A y . choice 1 2) in (z 0)+(x 0)), which results in {2,3,4} 
after the correct reductions. The wrong choice-reduction 

would give {(let x = (X y . 1) in (x 0) + (x O)),(let x = 

(A y . 2) in (x 0) + (x 0))}, which results in {2,4}. 

4 Normal order reduction sequences 

In this section we define normal order reduction and show 

that normal order reduction is sufficient to reduce expres- 

sions to HNF. This definition models the normal order re- 

dex as an outermost redex that is demanded. This is a 

slightly more lazy variant of the normal order definition in 

[MOW98]. 

Definition 4.1 A normal order redex (n-o-redex) of a 

closed expression t is defined using rules for shifting a la- 
bel E (for evaluation) up and down in the expression to a 

final position, thereby leaving as trace a label e and also a 
compound label describing the n-o-reduction. We start with 

tE, where t is unlabelled. 

i) C[s”], and s is an abstraction or the constant choice. 

Stop, the expression t is a HNF. 

ii) C[(r s)“] and r is an abstraction. Mark the expression 

in the brackets as (lbeta) and return. 

iii) C[(choice s)~]. Mark the expression in the bracket as 
(nd) and return. 

iv) C[(r s)~], and r is a variable or an application. Proceed 

with C[(rE s)~]. 

v) C[(r s)~], and r is a let-expression. Mark the expres- 

sion in the bracket as (lapp) and return, 

vi) C[(let x = s in t)E]. Proceed with C[(let x = 

s in tE)“]. 

vii) C[(let x = (let y = t, in t5) in D[x”])]. Mark the 

expression in the bracket as (llet) and return. 

viii) C[(let x = r in D[xE])] and r is an abstraction or the 

constant choice. Mark the expression in the [.]-bracket 

as (cp) and also with the context D[.], and return. 

ix) C[(let x = r in D[x”])] and r is an application 
or a variable. Proceed labeling with C[(let I = 

rE in D[x”])] 

The subexpression that is finally labelled E is called the n-o- 

redex if it is not a lambda-abstraction or choice, otherwise 

the whole expression t is a head normal form (HNF). 

The normal order reduction has to be performed such that the 

rule corresponding to the label is executed. The rule (cp) has 

to be performed such that the variable labelled E is replaced 

at the position indicated by the context D[.]. 

A reduction sequence that reduces only n-o-redexes is called 

a normal order reduction. 

Lemma 4.2 The following holds for the labeling algorithm. 

The labeling terminates and either marks a unique n- 

o-redex or marks the whole expression as a HNF. 

Every superexpression of an n-o-redex is marked e in 

the labeling. 

An n-o-redex may only be subexpression of another re- 

dex of type cp or llet, but not in the expression to be 

copied by the cp-rule. It is also not a subexpression of 
another redex of type lapp, lbeta, or nd. 

Any n-o-redex and also the variable to be replaced is in 

the context W. 

An n-o-redex of type (cp) or (llet) is only possible in a 

let-context L[.]. 

A HNF is of the form L[(X y . t)] or L[choice] . 

Lemma 4.3 Let t be a HNF. If t + t’ then t’ is a HNF. 

Lemma 4.4 Let t be a closed expression with an n-o-redex. 

If t + t’, by a non-n-o-reduction, then t’ is not a HNF. 

Proof. If the redex in t ----+ t’ is not labelled e, this is 

obvious. Otherwise, this redex is marked e. It is an easy 
exercise to check the cases where the reduction is of type 

llet or cp. 0 

Corollary 4.5 The last reduction before reaching a HNF is 
a normal order reduction of type (cp) or (lbeta). 

In the following we show that an arbitrary reduction to a 

HNF can be turned into an n-o-reduction by commuting the 

reductions. A non-n-o-reduction is also denoted as i(nternal) 

reduction. In order to ease notation, we denote a sequence of 

reductions as words: 3 is denoted as (a, p) for all types 
nqnd ‘I 

of rules and for a E {no, i}. For example __) o z is 

denoted as (no, nd) o (i, cp). We will use meta-reductions on 

sequences of reductions. 

Definition 4.6 Let t be a closed expression. The reduction 

t 7 t’ is defined as follows: For x, y 6 &t(t) let x <. y, 

ifl (let y = t, in s) is a subexpression oft and x occurs in 

t,, and let < be the transitive closure of <* . 
Select an antichain W s V&t(t), i.e. the variables in W 

are not related by <. Then define the relation cppa:~ for 
subexpressions s oft as follows: 
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CPPar 
0 x-WI 

. x cppa:w tl, if x E W and x is let-bound in t to the 

abstraction t,, and tk is a renamed version of t,. 

CPPar 
l choice --+w choice 

cppar 
a If (31 ~2) is a subexpression of t, and s1 +W s;, 

s2 xW sb, then s1 s2 ZW si si. 

fPPar 
. If (A z ~1) is a subexpression oft, and s1 -----+w s{, 

then (A z . ~1) ZW (A z . s:). 

l Let (let 2 = t, in st) be a subexpression of t. 

If sz Cppa:W s;, 
CPPar I t, ww t,, then (let z = 

t, in sz) 5~ (let z = t: in s:). Note that if 
ZEW thens,=s:. 

Let t z t’ i# t cppa:w t’ for some antichain W. 

Lemma 4.7 If t x t’, then t x t’, where the re- 

ductions can be performed in any order. Moreover, there is 

at most one n-o-reduction among them. This n-o-reduction 

can be shifted to the left. 

We give an explanation of the notation in the following 
lemma: (i, a) o (no, b) u (no, b) o (i,a) means Vtl, t2, t3 : 

t1 z,a t-2 z t3 j 34 : t1 z t4 I t3. 

Lemma 4.8 Every i-reduction followed by normal order re- 

ductions can be shifted to the right according to one of the 

following rules: 

(i, a) o (no, b) + (no, b) o (i, a). 

(i, a) o (no, b) u (no, b) o (no, a) for a # cppar. 

(i,a) 0 (no,cp) cr, (no,cp) 0 (no,a)? 0 (i,a)*, for a # 

nd, cppar. 

(i,cppar) o(no,a)u (no,a) o(no,cp)* o(i,cppar)‘. 

(i, llet) 0 (no,lapp)” 0 (no,llet)? 0 (no, lapp)” 0 

(no,llet)’ -+ (no,lapp)W o (no,llet)’ o (a,llet) where 
(a E {i, no}) and UJ 2 0. 

Theorem 4.9 Let t be a closed expression. If t -% t’ where 

t’ is a HNF, then there is a HNF t”, such that t no,: t” and 

t” -G t’. 

Proof. We use the previous lemmas. Let t -% t’ be a 

reduction. We use as meta-reduction strategy to shift the 
rightmost i-reduction to the right dropping the i-reductions 

after reaching a HNF. The following well-founded ordering 

shows termination of this meta-reduction, since it is strictly 

decreased in every meta-reduction. 

It is a lexicographic ordering of four components. The first 

component is the number of (i, cppar)-reductions. The sec- 

ond is a multiset of the following numbers: For every i- 

reduction: the number of (no,cp) reductions that are right 

of it. The third component is the total number of internal 

reductions. The fourth component is the number of n-o- 

reductions to HNF right of the rightmost i-reduction. 

It is easy to see that this measure is well-founded and that 

every meta-reduction on the reductions to HNF strictly de- 

creases this size. Hence the meta-reduction will end with a 

reduction that is a sequence of n-o-reductions followed by a 

sequence of i-reductions to a HNF. The i-reductions retain 

the property of being a HNF, hence the theorem holds. q 

Corollary 4.10 If an expression can be reduced to HNF, 

then an n-o-reduction sequence has the smallest number of 
nd-reduction steps. 

Corollary 4.11 Every infinite n-o-reduction contains an 

infinite number of cp-reductions and an infinite number of 
beta-reductions 

Proof. The only rule that may increase the measure $ is 
the rule lbeta. On the other hand, the only rule that can 

increase t,he measure cp is cp. 0 

5 Contextual Equivalence 

In order to prove correctness of optimized lambda-lifting and 

to clarify the connection with the deterministic lambda cal- 

culus, the criterion of contextual equivalence [AbrSO, How891 

is required. We will use a rather strong criterion including 

termination as well as non-termination. 

Definition 5.1 Let s, t be (open) expressions. Then s wC t, 
i# the following holds 

i) For all contexts C[.], such that C[s], C[t] is closed: C[s] 
has a reduction to HNF iff C[t] has a reduction to HNF. 

ii) For all contexts C[.], such that C[s], C[t] is closed: C[s] 

has an infinite n-o-reduction, iflC[t] has an infinite n- 

o-reduction. 

Note that -C is a congruence, which can be proved straight- 

forwardly. 
To justify the second requirement, consider for example the 

two expressions 0 and Y(X x choice z 0), where Y is the 
usual fixpoint combinator. Clearly, the two expressions be- 

have differently, and are also different using our definition, 
but would be equivalent without the requirement ii). 

We define a relation similar to a parallel reduction in 

[Bar84]. 

Definition 5.2 Let t be a closed expression. The relation 

s is defined as follows: First select a set W c Vi,,(t), 

which is an antichain w.r.t. to the ordering defined in defy- 

nition 4.6. Then consider the subexpressions oft and define 

the relation S\W. 

Par 
l choice ----+w choice 

Par 
l x-w-7: 

l (app) Ifs parw s’, r parw r’, then (s r) ZW 

(s’ r’). 

l (lam) Ifs CW s’, then (A x . s) zw (A x s’). 

Par Par 
l (let) Zf r ---+w r’, s +W s’, then (let x = 

rz in .sI ) 5~ (let I = r: in s:). If x E W, 

then r5 E r:. 
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(cp) x parw t; if x E W and x is let-bound to the 

abstraction t, in t and tk is a renamed version oft,. 

(lapp) if t, parw t6, s5 Gw s:, r Cw r’, 

then ((let x = t, in s”) r) Zr.v (let x = 

tl, in s: r'). If x E W, then t, G t:. 

(lbeta) If t, parw t:, s 5~ s’, then 

((A x . tz)s) Zw ((let x = s’ in tk) 

Par Par Par 

(llet) If t, -----+w t:, t, -----+w th, and s ------+w 

s', then (let x = (let y = t, in t%) in s) 5~ 

(let y = t’, in (let x = tl, in s')). If y E W, then 

t, E t&. 

Let t Z t’ ifl t -%.Lv t’ for some antichain. 

Not,e that an (nd)-reduction is not permitted in the par- 

relation. 

Lemma 5.3 If t Z t’, then there is a sequence of re- 

ductions (using the basic calculus) from t + t’, such that the 
reductions can be performed in any order. It is possible to 

arrange the sequence, such that all normal order reductions 
come first. 

Proof. That the reductions can be performed in any order 

follows from the definition. The normal-order reductions 

can be shifted to the left using Lemma 4.8. 0 

In the following we use the wording complete set of fork- 

ing (commutation) diagrams for a relation P. A com- 

plete forking (commutation) diagrams means a set of meta- 

reduction rules, such that for every maximal n-o-reduction 

sequence red, the prefix of every reduction sequence & 

ored (L ored) can be meta-reduced. Note that these 

complete sets are not unique. 

Lemma 5.4 In the following we consider only par- 
reductions consisting of internal reductions. 

A complete set of forking diagrams for par is: 

7%0,LZ,* no,b 

ii) to/o’3 X+ “~‘o~whereafnd. 

TW,llet,+ iii) yet*+ o z,pa: r̂t s,pa:,? o ~ . 

i?J) 

n0,10CZ,* no,laPP - o - o iq ‘u r,par,? 
7W,l0Cl,* no,‘aPP 

---+o+----00. 

Proposition 5.5 Let t, t’ be closed expressions such that 

t q t’. Then t wC t’: 

Proof. Note that it is not necessary to use the context C[.], 

since the par-reduction does not contain an nd-reduction, 

and hence has no restrictions of applications in an expres- 

sion. 

If t’ has a HNF, then t prime has an n-o-reduction to HNF, 

which follows from Theorem 4.9. If t’ has an infinite n-o- 

reduction, then the diagrams in Lemma 4.8 and corollary 

4.11 show that there is also an infinite n-o-reduction for t. 

Now assume that there is an n-o-reduction for t ending with 

a HNF. The diagrams in Lemma 5.4 show that by induction 

on the length of an n-o-reduction of t, we get also an n-o- 
reduction for t’. If the n-o-reduction for t is infinite, then 

the diagrams show that we can shift the (i,par) down the 

n-o-reduction for t and that we can produce an infinite n-o- 

reduction for t’. 0 

Corollary 5.6 Let t, t’ be closed expressions such that t + 

t’ by a non-ad reduction. Then t wC t’ 

Proof. Every one step non-nd-reduction is also a par- 

reduction. q 

Note that this is not true for nd-reductions, since 
nd nd 

(choice 0 I) ---+ I, and (choice 0 I) __$ 0, hence 

(choice 0 I) has a finite as well as an infinite n-o-reduction, 

but -L has only an infinite one. Thus (choice 0 I) $c 1. 

6 Behavioral Equivalence of the Rules ldel and lcv 

In the following we give forking and commutation diagrams 

for the reductions in Table 2 in the same way and under the 

same conditions as in Lemmas 5.4 and 4.8. The rule (ldel) 

is the garbage collection rule, whereas (lcv) corresponds to 

an elimination of indirections. 

Lemma 6.1 A complete set of commutation diagrams for 
(ldel) is: 

l ldel o (no, a) --+ (no, a) o ldel. 

l ldel o (no, cp) w (no, cp) o ldel o ldel. 

l ldel o (no,lapp)wt’ o (no,lZet)” ^rs (no,lapp)ws’ o 

(no, llet)ko(no, lapp)“+‘o(no, llet)ko ldel, where ‘w >_ 0 

and k E (0, 1). 

l ldel o (no, llet) c\it (no, llet) o (no, llet) o ldel 

l ldel o (no, p) u (no,lapp) o (no, p) o Zdel, where p E 
{nd, lbeta} 

For (ldel) the forking diagrams are a sufficient set of meta- 

reductions that met.a-reduce every reduction sequence of the 
ldel 

form tl ----+ tz together with an n-o-reduction starting 

from tl into another sequence. 

Lemma 6.2 A complete set of forking diagrams for (ldel) 

is: 

no,a ldel ldel n”,a 
bi----00 13 --+O+---- 

?KJ,CP ldel ldel ldel no,CP 
bt-00 -A +o+o+--. 

no,‘aPP ldel ldel 

l e----o--+ cvt -. 

nqllet ldel ldel 

l +---00 -A ___). 

Theorem 6.3 Let t, t’ be closed expressions and t ldef t’. 

Then t wC t’. 
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ldel 

F-w g’b”,“, ~o=o~c~~~~ces ofF CM 

(lcv) C[(let x = y in D[z])] Icv C[(let x = y in D[y])] 

where y is a variable 

Table 2: Extended rules of AZ, 

Proof. Let t Ide! t’ and assume there is an n-o-reduction for 

t’, finite or infinite. If the n-o-reduction is a finite one to 

a HNF, then use as a measure for meta-reductions the fol- 

lowing lexicographical ordering of three components: i) the 

multiset of: for every ldel-reduction, the number of (no,cp) 

that are right of it. ii) The total number of ldel-reductions, 
iii) the number of n-o-reductions to HNF right of the right- 

most ldel reduction. It is easy to see using the commutation 
diagrams for ldel, that this measure is strictly decreased if 

the rightmost ldel is shifted and an ldel for a HNF are elim- 

inated. 

If the reduction for t’ is infinite, then the number of its 

(no,cp)-reduction steps is infinite. We show by induction on 

the number of (no,cp)-reductions in a normal order reduc- 

tion sequence of t’, that shifting ldel’s to the right does not 

change this number. By using the strategy to shift all ldels 

over the first (no,cp), then all ldel’s over the second and so 

forth, we get an infinite normal order reduction for t. 
Now assume that there is an n-o-reduction for t. Now we 

have to use the forking diagrams in lemma 6.2. Using as 
main measure the number of (no,cp)-reductions in a se- 

quence, it is easy to see that for a finite as well as for an 

infinite normal order reduction, we can construct a hnite 

(infinite) normal order reduction for t’. 0 

Lemma 6.4 A forking of an n-o-reduction and an internal 

cppar-reduction can be meta-reduced according to one the 

following rules. 

no,o t,cPPar i,cppar no,a 

l t00 w ---+Ot- 

no,cp,* no,b : 1 CPPar i,cppar,? no,b 

0 tot-o- - __) of-. 

Proof. The main arguments are: an internal cp cannot copy 

an n-o-redex nor the into-position of an (no,cp)-redex. The 
second rule covers the case that there may be an normal- 

order reduction in the (i,cppar) after another n-o-reduction. 

0 

Lemma 6.5 A complete set of commutation diagrams for 

lcv is: 

0 lcff 0 (no,a) -+ (no,a) 0 lcu. 

0 lcv 0 (no, cp) cv) (no, cp) 0 lcu 0 lcu 

0 zcv 0 (no,cp) -A (no,cp) 0 (a,cp)o Z where a E 

(6 no) 

Lemma 6.6 A complete set of forking diagram8 for lcv is: 

no,a lcv lcv no,a 
l to---+ ?$ -0t. 

no,CP lcu lcv lcu no,CP 
rtoo - ----)O~O+----. 

no,cP no,CP lcv i,cp no,CP 

0 t-0000 -4 tot. 

no,cp 1CU i,cp i,cp no,CP 

l too -A *ot00. 

We require a special measure for lcv. 

Definition 6.7 The measure t is defined using an environ- 

ment parameter. For closed expressions rue define c(s) := 

BJBE 0. 

6Xl~P := p(x) 

[choice]l p 

I[(X x . 

UJ t&P 

tf&P 

:= 

:= ;tj p[x I-) O] 

:= 2 *c[s]cP + [t&p 
[(let x = 3 in t)](p := [slep+ [t&p’ 

where p’ := P[X e I[s]~P + a] 

where a = 0 ifs is a variable. 

Otherwise: a = 1. 

Lemma 6.8 If t Y, t’ for y E {ZZet,Zapp,cp,nd}, then 

E(t) > ((t’). If t Icq t’, then r(t) = t(t’) 

Proof. Evaluate the expressions before and after application 

of the rules and compare the measures. 0 

Icv 
Theorem 6.9 Let t, t’ be closed expressions and t __) t’. 

Then t wC t’. 

Proof. First let a normal order reduction for t’ be given. 

We use induction on the number of lbeta-reductions and 

the size [(t’). First assume that the reduction is finite. We 

make induction on triples (t, t’, red), where red is a nor- 

mal order reduction from t’ to HNF. The induction ordering 

is: (tl, t;,redl) < (tz, t;, redz), iff (#(lbeta,redl),[(tl)) < 
(#(lbeta, reds), t(h)) in the lexicographical ordering. The 
induction hypothesis is that we can find a normal order re- 

duction for t with the same number of lbeta-reductions. We 

go through the three possibilities in Lemma 6.5. In the 

first diagram, induction is easy. In the second diagram, let 

t x tl -% t2 2 t3 :o,cp t’. Lemma 6.8 shows that 

we can apply the induction hypothesis first to the triple 

(t2, t3, reds), where red = t 2 reds. Then we can use 

the hypothesis for the triple (tl, tl, reds), where reds is the 

existing n-o-reduction for t2. In the last diagram, we use 

Lemma 6.4 and 4.8, which shows an (i,cppar) reduction in 

front of a normal order reduction leaves the number of lbeta 
reductions unchanged. Since lcv keeps the property of being 

a HNF, we have shown that there is a finite n-o-reduction 

to a HNF starting from t. 
If the reduction starting from t’ is infinite, then we use the 

same arguments for the claim: “the number of lbeta reduc- 

tions of a normal order reduction of t’ is greater than n” . 

This permits to construct an infinite n-o-reduction for t. 
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Let t have a finite or infinite n-o-reduction. Similar as above, 

we base the proof on the number of lbeta-reductions in a n- 

o-reduction of t and t’. 
0 

7 Deterministic subexpressions 

In order to provide optimized lambda-lifting and to clarify 

the relation to the deterministic lambda calculus, we iden- 

tify certain subexpressions that can be copied as they can 

be in the deterministic lambda calculus. This is not in- 

tended as an operational rule for an implementation, but 

only for proving correctness of lambda-lifting with deter- 

ministic maximal free expressions, and also of correctness of 
the usual lambda-calculi rules in the absence of choice. 

Definition 7.1 Let t be a closed expression. Then a subex- 

pression s oft is deterministic iff s is an expression without 

occurrences of choice, which is either closed, or in which all 

free variables are let-bound variables and moreover, all the 

let-bound variables are bound to deterministic subexpressions 

ojt. 

Definition 7.2 A subexpression oft is reproducible, i@ it is 

either a lambda-abstraction, a variable, the constant choice 

or deterministic. 

The following rule (pdcp) is a parallel copy rule that is di- 

rectly related to the lambda calculus. The rule (pdld) de- 

fined below is used for technical purposes. 

Deflnition 7.3 Let t be a closed expression. The reduction 

t s t’ is defined as jollows: Use the same ordering < as 

in Lemma 4.6 

Select an antichain W E K,t(t), such that the variables 
in W are introduced by lets, and all terms let-bound to a 

variable in W are deterministic. Then define the relation 

-f%~ for subexpressions s oft as jollows: 

PdcP 
0 x-----+wx 

l x pdcpw tl, ijx is let-bound in t to the (deterministic) 

expression t,, and t: is a renamed version oft,. 

PdcP 
l choice -----+w choice 

PdcP 
l If (81 82) is a subexpression of t, and 81 -----+w s;, 

pdcp PdcP 
sa *w si, then 81 sa +w 8; 81. 

b Ij(X z . 81) is a subexpression oft, and s1 zW si, 

then (X z 81) SW (X z . 9;). 

a Let (let z = t, in sz) be a subexpression of t. 

i-j sa pdcpw s:, 
Pdv , 

t, *W t,, then (let z = 

t, in sZ) 3~ (let z = t: in 8:). Note that if 

ZEW thent,=t:. 

Let t 3 t’ i# t 3~ t’ for some antichain W. 

Note that pdcp may also copy (deterministic) variables. 

Definition 7.4 Let t be a closed expression. The reduction 

t z t’ is defined as jollows. 

Select a set W c K,,(t), such that the variables in W are 

deterministic. Then define the relation SW for subex- 

pressions s oft as jollows: 

pdld 
x----+wx 

pdld 

choice ----+w choice 

pdld 

If (81 82) is a subexpression oj t, and s1 *w si, 
pdld 

32 ------+w 84, 
pdld 

then 31 32 +W 8; s;. 

Ij(Xt. 
pdld 

81) is a subexpression oft, and 81 *w s;, 

then (X z . 81) -fff+~ (X z . 8:). 

Let (let z = t, in sz) be a subexpression of t. Let 
pdld 

s, --$w 8:. If z E W, then let t, E t:. Other- 
pdld pdld 

wise, let t, *W t: and (let z = t, in sZ) ----+w 
(let 0 = ti in s:), 

pdld 

Let s1 ----+w 82. If x E W, let the subexpression oft 

be (let x = t, in s=), such that 81 is a subexpression 

ojs,. Then sy -ff%w (let x’ = tk in s;), where tk 

is a renamed version of t, and s: is a version of 92, 

where any occurrences of x are renamed by x’. 

Let t -ff+ t’ iff t -ff%w t’ for some W. 

Lemma 7.5 All reductions in And , Xz, and the reductions 
pdcp, pdld preserve the property that a subexpression is de- 

terministic. 

Proof. An easy analysis of the cases. 0 

We give the commutation and forking diagrams for pdcp 

and pdld 

We assume that pdcp is internal, i.e., has no normal order 

component. 

Lemma 7.6 A complete set of commutation diagrams jor 

(pdcp) is: 

pdcp o (no,a) ?+ (~,a) o (no,cp)’ o pdcp?, where a 
means a reduction in the base calculus. 

pdcpo(::;;r! “A (no,Zlet)*o(no,cp)o(no,cp)‘opdcp?o 

pdld’o & 
t,CP 

0+. 

pdcp o (no, cp) -.+ (no, cp) o (no, cp)? o pdcp’o ‘c 

pdcp o (no, a) ?A (no, a) o (no, cp)’ o pdcp?o :,,,. for 

a E {lbeta, Zapp}. 

pdw 0 (wbp) - (no,Zlet) o (no,cp)’ o pdcp? o 
t,llet.* 

pdldo +------. 

pdcp o (n~,~U~et)~~ (no, Zlet) o (no, cp)? o pdcp? o pdld o 

(i,Zlet)‘o I). 
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Lemma 7.7 A complete set of commutation diagram8 for 

(pdld) is: 

l pdld o (no, nd) -rs (no, nd) o pdld. 

l pdld o (no, Q) cr) (no,a) o pdldo z for all a E 

{cp, llet, lapp, lbeta}. 

l pdld o (no, a) + pdld for a E {lapp, llet}. 

Proof. There are less complications than in the commutation 
case for pdcp. We illustrate a complex case: 

(let y = (let x = t, in tY) in y) 

--ff$ (let y = (let x = t, in tY) in (let y = (let x = 

t, in tY) in y)) 
no,llet 

4 (let y = (let x = t, in tY) in (let x = 

t, in (let y = t, in y))). 

The other reduction gives: (let y = (let x = t, in tY) in y) 

no,llel (let x = t, in (let y = t, in y)) 
pdld 

----+ (let x = t, in (let y = t, in (let x’ = 
t,llet 

tl, in (let y’ = tl, in y’)))) t-. The pdld reduction in the 

second reduction sequence fulftlls the condition of the defi- 

nition, since the replaced positions are not within a copied 

body. q 

In the following we use the measure of a reduction sequence 

~1 that is a pair, compared lexicographically, where the first 

component ~1 is the number of nd, lbeta, and cp-reductions, 

and the second component ~2 is the measure cp defined in 

subsection 3.1. 

Lemma 7.8 Let an n-o-reduction red from t (to a HNF) 

be given. If t -f+ t’, with p E {llet, lapp,cp,lbeta}, 

then there is an n-o-reduction red’ from t’ (to a HNF) with 

pl(red’) 5 pl(red) 

Proof. Follows from lemma 5.4 q 

Lemma 7.9 Let an n-o-reduction red’ from t’ (to a HNF) 

be given. If t % t’, then there is an n-o-reduction red 

from t (to a HNF) with pl(red) = pl(red’) 

Proof. Follows from lemma 4.8 q 

Lemma 7.10 Let t % t’. Ijt’ has an n-o-reduction red’ 

to a HNF, then t has an n-o-reduction red to a HNF, where 

~(red) 5 ~(red’). 

Proof. We use lemma 7.7. The second diagram in lemma 

7.7 has a backward reduction, for which we need Lemma 

7.8. q 

pdld 

Lemma 7.11 Let t ---+ t’. If t’ has an infinite n-o- 

reduction red’, then t has an infinite n-o-reduction red. 

Proof. We use lemma 7.7. The second diagram in lemma 

7.7 has a backward reduction, for which we need lemma 5.6. 

For the third diagram we need the argument that an infinite 

n-o-reduction cannot contain solely of lapp, llet-reductions. 

q 

Lemma 7.12 Let t -ff? t’. Ij t’ has a finite n-o-reduction 

to HNF, then t has a finite n-o-reduction to a HNF. 

Proof. By induction using the following lexicographically 
PdcP 

ordered measure: Let t __) t’ and red’ be a n-o-reduction 

to HNF from t’. Then the first component of the measure 

is p(red’), the second is t(t). 

If the first reduction from t’ is of type nd, lbeta, or cp, then 
the diagrams in lemma 7.6 show that the first component is 

sufficient to use the induction, where lemmas 7.8, 7.7, and 

7.10 are used. 

If the first reduction in red’ is a llet or lapp-reduction. 

Then the corners of the diagram are t % tl, t - t’, 

t’ z t2. The tail of the n-o-reduction red’ is red;. We 
use for t,he last diagram in lemma 7.6, the claim of lemma 

7.9 to show that pl(reda) 5 pl(red’). In any case, we can 

apply the induction hypothesis since ((tl) < E(t). 
If t’ is already a HNF, then t is also a HNF. q 

Lemma 7.13 Let t z t’. If t’ has an infinite n-o- 

reduction red, then t has an infinite n-o-reduction. 

Proof. By induction on ~1. 

The diagrams show that there is a reduction sequence 
no,t Pdcp 

t ----+ t1 -----+ t;. It is easy to see for all cases of di- 

agrams in lemma 7.6 that if t’ has an infinite n-o-reduction, 

then t; has an infinite n-o-reduction, where lemma 7.11 and 

lemma 5.6 is required. Since every such step adds at least 

one n-o-reduction to the n-o-reduction sequence after t, we 

can construct an infinite n-o-reduction for t. q 

Lemma 7.14 A complete set of forking diagram8 for inter- 

nal pdcp is: 

nqcp,? no,a 

l +---0+--o 
Pdcp ?$ PdfPO’no,a 

no,cp,? no,a 

a+----0+--o 
p* Lv) pdcp i+h* nola 

0 to tjor 

a E {lapp, lbeta, cp}. 

%Xcp,? ?W,llet pdcp u pdcp pdld,? i,llet,r 

l +----000 *o*o+ 

nqllet,? 

O+------. 

Proof. By checking the possible overlaps using the same 
techniques as before. q 

Lemma 7.15 A complete set of forking diagrams for (pdld) 

is: 

no,a 
.+----Opdld -4 9 o x for all a in the base 

calculu8. 

no,” 
.+--o”2 crs 

no,loa,* 

pd”’ 0 Zo Zo t--- for all 

a E {lapp, lbeta, llet} . 

no,llet , +o,d$ 2$ pdleO+-, 

Proof. By checking the possible overlaps. u 
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Lemma 7.16 Let t 5 t’ such that t has a finite n-o- 

reduction to a HNF. Then t’ has a finite n-o-reduction to a 

HNF. 

Proof, By induction on the length of an n-o-reduction of 

t, the diagrams in lemma 7.15 show that there is a mixed 

reduction for t’ to a HNF. Theorem 4.9 shows that there is 

also a n-o-reduction to some HNF. 0 

Lemma 7.17 Let t a t’ such that t has a finite n-o- 

reduction to a HNF. Then t’ has a finite n-o-reduction to a 

HNF. 

Proof. By induction on the length of an n-o-reduction of 

t, the diagrams in lemma 7.15 and lemma 7.16 show that 

there is a mixed reduction for t’ to a HNF. Theorem 4.9 

shows that there is also a n-o-reduction to some HNF. 0 

Lemma 7.18 Let t s t’ such that t has an infinite n- 

o-reduction. Then t’ has an infinite n-o-reduction. 

Proof. We show by induction on the number of lbeta- 

reduction, that if t has an n-o-reduction with more than 

n lbeta-reductions, then this holds also for t’. 

First, if s s s’ and s has an n-o-reduction with more 

than n lbeta-reductions, then we can construct a mixed re- 

duction for s’ with not less than n n-o-lbeta-reductions by 

lemma 7.15. The commutation lemma 4.8 then shows that 

there are at least n lbeta-reductions in the n-o-reduction 

after using the commutation rules. 

We use lemma 7.14 to show that the same arguments apply 

to pdcp. 
Finally, every infinite n-o-reduction has an infinite number 

of lbeta-reductions, hence the lemma holds. 0 

Theorem 7.19 If t ‘dcp t’ , then t wC t’ 

Proof. Follows from lemmas 7.12, 7.13, 7.17, 7.18. 0 

8 Lambda-lifting using deterministic maximal free 

expressions 

In general, lambda-lifting using expressions larger than vari- 

ables (maximal free expressions in [PJ87]) is not correct for 
non-deterministic reduction. However, it can be used for 
expressions that do not use choice, i.e., for deterministic 

maximal free expressions (dmfe). We provide a definition 

that generalizes lambda-lifting: 

Definition 8.1 Let C[D[tl , . . . , tn]] be an expression, such 

that the t, are reproducible expressions. Then the following 

relation generalizes dmfe-lambda-lifting: 

C[D[tl, . , tn]] - li-dmfe C[((XZl,. . . ,z*.D[z1,. . . , Zn] t1 . . . tn)] 

where zs are fresh variables. 

Theorem 8.2 Let C[D[tl, . , tn]] be an expression, such 
that the t, are reproducible expressions. Then 
C[(Xz,, . . . , Z,.D[Zl,. . . , zn]) t1 . . . tn] NC C[Lql,. . *, tn]] 

Proof. Using Theorem 7.19, 6.3 and 6.9 we show that 

the lambda-lifted expression is contextually equivalent to 

the previous one. C[(Xzr, . . . , z,.D[zr, , zn]) tl . . . tn] 

wC C[(let ZI = tl in Xzz,. . ,zn.D[zr,. . . , zn]) tz . . . tn] 
pdcp ( Ica 

C[(let = tl in Xrz,. . . , z,.D[tl, 22 , zn]) tz . tn] 

ldel C[(Xz2,. . , z,.D[tl, z2 . . . , zn]) t2 . . . tn]. By induc- 

tion on n and using the lemmas above, we obtain the claim 
that this is NC C[D[h, . , tn]]. 0 

In general, lambda-lifting using arbitrary maximal free ex- 

pressions [PJ87] is not correct for non-deterministic reduc- 

tion: 

Example 8.3 The expression 

(let z = Xx.(choice 1 z) in (z 0) + (z 0)) has {O,l, 2) as 

possible results. Using unrestricted lambda-lifting with Max- 

imal free expressions, the following expression would result: 

(let z = (Xy.Xz.(y z)) (choice 1) in (z 0) + (z 0)), which 

has as possible results {0,2}. 

Example 8.4 This example demonstrates that the rule 

let-over-lambda is not correct in the catcutus And. 
The expressions (let x = t, in (A y . ty)) and 

(ihy (let I = tz in ty)) are not behaviorally equivalent: 

(let z = (let E = choice 0 1 in (A y . x)) 

expression 

in (z 0) + 

(z 0)) has as possible results {0,2}, whereas (let t = 

(A y . (let z = choice 0 1 in x)) in (z 0) + (z 0)) has 

(0, 1,2} as possible results. 

9 Relation to classical lambda calculus 

We consider the usual lambda calculus with ,&reduction and 
P-equivalence, where we assume implicit a-conversions. Let 

‘T be a translation of choice-free expressions with r((let z = 

s in t)) = ((A x t) s). Then the following holds: 

Theorem 9.1 Let s, t be choice-free closed expression. 

Then 

T(9) B, T(t) =i' 3 NC t 

9 iA,,& t =k' T(8) & T(t). 

Let t be an expression without lb&o-redex. Then t e’s in 

Hh’F ifs r(t) can be reduced to a HNF as follows: First 
mark all /3 - redexes in the expression; then reduce the 

expression using a normal order strategy, where only 

marked redexes are allowed to be reduced. 

Proof. The first implication follows from Theorem 7.19. The 

second implicat,ion follows straightforwardly by proving this 

for the reductions llet, lapp, cp, and lbeta. The third claim 

holds, since if t is a HNF w.r.t. &d,r.&, the transformed 

expression can be reduced to a HNF by first marking the 

redexes, then reducing only the marked redexes. The other 

direction follows, since every redex of T(t) corresponds to a 
let-expression in t. 0 

333 



10 Remarks 

10.1 Supercombinators 

A common step in compiling lazy functional programming 

languages is to transform expressions into a set of defini- 

tions of supercombinators. This requires lambda-lifting or 

an equivalent technique, which is clarified in Theorem 8.2. 

Further transformations by extracting non-recursive super- 

combinators do not present a problem. 

10.2 Recursion 

The fixed point combinator Y := Xf . (AZ . 

f(~ z)) (XX . f(~ x)) is sufficient to express recursion. It 

is a fixed point combinator, since for a lambda-expression 

F: Y F -+ (let f = F in (XX f(~ x)) (XX f(z x))) 

ldef (Xx . F(z z)) (Xx . F(x z)) -& (let x = 

CAY. F(Y Y)) in F(x xl)) 5. F((~Y. F(Y Y)) (XY . F(Y Y))). 
Using the criterion of behavioural equivalence it appears to 

be~pissible in to use Y implemented as a cyclic fixed-point 
combinator if F is deterministic or a lambda abstraction of 

at least two arguments. However, see the discussion on re- 

cursion in [MOW98]. For recursively defined constants that 

are not deterministic like the constant L := choice 1 (l+L), 

a noncyclic implementation of Y is required. 

11 Applications of the calculus X,d 

Natural EL [HNSSH97] is a lazy functional programming 

language that uses direct calls for I/O. The implementors 

based the compiler on [PJ87], but they soon detected that 

the transformation rules did not properly work in this frame- 

work. In particular the lambda-lifting rule using maximal 

free expressions once introduced an infinite loop by using 

the value of a previous I/O-action instead of repeating the 

I/O. This was remedied by lambda-lifting variables only. 

There are also other restrictions in Natural EL, for exam- 

ple Natural EL uses a non-cyclic Y-combinator. Recently, 

Nigel Hutchison told me that the optimzations crossed let- 

boundaries, but not X-boundaries. Happily, the combination 

of all the methods, in particular sharing of nodes, finally 

produced a lazy functional programming language with an 

easy-to-grasp operational behavior. 

The calculus X,d can be seen as an important part of the 

theoretic foundation for such a language and for a com- 
piler based on transformations into supercombinators. The 
I/O-calls can be modeled in &d as a big choice-expression. 

The results on deterministic subexpressions are of practical 
advantage in that they provide an (easily) decidable crite- 

rion to use optimizing transformations, for example lambda- 

lifting with maximally free expressions. 

The effect of using &d in a lazy functional programming 

language can be illustrated by three applications: i) The 

usage of a trace functions that outputs a certain text by a 

direct call and then returns True. The trace expression is 

simulated by (choice True I) and thus cannot be optimized 

away. ii) Calling a random number generator using a direct 

call is easily possible. An infinite list of random numbers 
could be defined bv randlist = (rand 0) : randlist. 

Interestingly, t,he logical sequence may be different from the 
sequence of calls t.o the random oracle. iii) Several threads 

of execution are possible by simply permitting (conserva- 

tive) parallel evaluation. For example, parallel evaluation 

of the expression askint 0 + askint 0 using an appro- 
priate user interface would behave as follows: Two windows 

asking for a number are opened, the user can decide which 

to answer first or second. Only if both are answered, the 

sum is returned as a result. 

12 Related work 

There is a lot of work on non-deterministic computation. It 

is impossible to cite or discuss the literature in depth. We 

confine ourselves to a selection of papers that is concerned 

with higher-order functions and non-determinism. 

There are papers that investigate combinations of lambda- 

calculi where a fixed (strict or call-by name or call-by value) 
reduction strategy is used e.g. [Man95]. Some other ap- 

proaches [Ong93, DP95, San941 do not take care of shar- 

ing properties and thus suffer from the “implicit choice”- 

problem mentioned in the introduction. 

Bottom-avoiding choice operators like amb or por as inves- 

tigated for example in [HOgO, H089, HM92, Bou94] cor- 

responds to the operational semantics of (local) speculative 

evaluat.ion; i.e. it is not like a committed choice. In [Bou94], 

confluence of a calculus using (por) is shown, which is related 

to the properties of And, but the calculi are different, since 

Xnd builds upon a stronger contextual equivalence (Defini- 

tion 5.1) and t,hus justifies a different set of valid program 

transformations. 

In [Pat911 similar ideas are developed for an application in 

the field of functional-logic programming, but rigorous con- 

sideration of the operational behavior are missing. [AC791 

also considered sharing (of ground expressions) as an im- 

portant, technique for modeling non-determinism. However, 

their calculus is also different, since they included the let- 

over-lambda rule, which is not correct in our setting (see 

Example 8.4). 

Explicit sharing in functional programming is also a base for 

investigations in optimal reductions [Yos93, ACCL91] and 

in [Lau93] for a better understanding of implementations of 

lazy functional programs. 

Our calculus can be seen as a generalization of the calculi 

in [MOW98, AF97] though there are some differences. In 

[MOW98], the core calculus has garbage collection (ldel) 

as an addibional rule, which seems to be not the minimal 

calculus. The normal order reduction in [MOW981 is de- 

fined differently: it uses “strict” evaluation of the let-rules, 

whereas ours is i’lazy”. There are only slight differences, 
for example lengths of normal order reductions are in some 

examples longer than for our calculus (there may be more 
llet’s). We have not explored the way to base the proof on 

their n-o-reduction, but experience shows that the proofs 
based on diagrams are very sensible to minor changes in 

the rules. The proofs of our theorems in a setting based on 

the normal order reduction definition of [MOW981 would be 

very different and perhaps more complex. 

The calculus in [AF97] models almost only the normal order 

reduction and thus has a narrow range of program transfor- 

mations. 

13 Further Research 

The extension of our calculus to non-strict functional lan- 
guages using constructors and a polymorphic type system 

has to be investigated. A more detailed analysis of the 
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input-output behavior of a functional programming lan- 

guage based on the non-determinism is required. The prop- 

erties of choice as a parallel combinator have to be clarified, 

where associativity, commutativity and idempotency appear 

to hold. An investigation in a semantics for And is in order. 
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