
A Non-Deterministic Call-by-Need Lambda Calculus

Arne Kutzner, Manfred Schmidt-SchauB

Fachbereich Informatik

Johann Wolfgang Goethe-Universitgt
Postfach 11 19 32

D-60054 Frankfurt, Germany

email: {schauss , arne}flki . cs .uni-f rankfurt . de
Tel: (f49) 69 798 28597; Fax: (+49) 69 798 28919

Abstract

In this paper we present a non-deterministic call-by-need

(untyped) lambda calculus X,d with a constant choice and a

let-syntax that models sharing. Our main result is that Xnd

has the nice operational properties of the standard lambda

calculus: confluence on sets of expressions, and normal or-

der reduction is sufficient to reach head normal form. Us-

ing a strong contextual equivalence we show correctness of

several program transformations. In particular of lambda-

lifting using deterministic maximal free expressions. These

results show that And is a new and also natural combination

of non-determinism and lambda-calculus, which has a lot of

opportunities for parallel evaluation.

An intended application of And is as a foundation for compil-

ing lazy functional programming languages with I/O based

on direct calls. The set of correct program transformations

can be rigorously distinguished from non-correct ones. All
program transformations are permitted with the slight ex-

ception that for transformations like common subexpression

elimination and lambda-lifting with maximal free expres-

sions the involved subexpressions have to be deterministic

ones.

1 Introduction

Currently, the preferred methods in non-strict functional

languages to implement l/O and other interactions with

the environment are monadic programming as in Haskell

([PHA+97]) or direct calls that are embedded in a system
of unique types as in Clean [NSvPSl, Ach96]. In the com-
mercial non-strict functional programming language Natu-

ral EL [HNSSH97] these interactions were implemented as

direct calls.

The intention of this paper is twofold: On the one hand a

non-deterministic lambda calculus &,d is described that is

different from most other non-deterministic lambda calculi
insofar as it is lazy, i.e., call-by-need, and has all the ad-

vantageous properties of a lambda-calculus, where instead

of confluence a generalized notion (set-confluence) is used.

On the other hand we want to demonstrate that the ntive

approach to I/O in non-strict functional languages can be

justified, based on a different set of transformations of the

non-deterministic lambda-calculus.

The following well-known example demonstrates the prob-
lems in adding non-determinism to the lambda calculus: Let

0 be non-deterministic choice and let the function double be

defined as double z = z + z. The issue is: “What is the

result of reducing the expression double (1 0 a)?” Using p-

reduction there are two different reduction sequences that

conflict with set-confluence.

l double (1 0 2) -+ (1 0 2) + (1 0 2), which may result

in 2, 3, or 4.

l double (1 0 2) -+ double n, where n = 1 V 2, which

may result in 2 or 4.

This means that depending on the selected redex to be re-

duced, the set of possible results is different after one re-
duction step, which means that this kind of beta-reduction

makes an “implicit choice”. This is not only counterintu-

itive, but leads to inconsistencies. One remedy is to restrict

the permitted redexes, usually by only permitting a fixed re-

duction strategy like strict evaluation or normal order eval-

uation.

The first possibility is the method chosen for strict func-

tional programming languages and also for Clean. It has

the disadvantage that it severely restricts the permitted pro-

gram transformations, since the sequence of evaluation is

highly fixed.

Another remedy, which we will pursue, is to modify the cal-
culus by introducing sharing such that the calculus does not
unnecessarily copy expressions. In the example above, the
expression (1 0 2) is not copied, such that the set of possi-

ble results is 2 or 4. We are strongly influenced by the let-

calculi described in [AFM+95, AF97, MOW981 which model

sharing. The only syntactic addition is to add choice as a

constant.

In order to be able to built a compiler using program trans-

formations like lambda-lifting, partial evaluation, inlining,

etc., it is important that the calculus is rather permissive

in the applicability of its reduction rules, such that a wide
range of program transformations can be shown to be cor-

rect. The sequence of evaluations should have a maximal
degree of freedom, such that parallel evaluation is possible.

On the other hand, the normal order reduction should be
rather close to a possible implementation. The calculus &d

meets these requirements.

324

There are two criteria that play a role in the correctness

proofs: One is set-confluence, the other is the existence

of (in)finite normal order reductions. Set-confluence corre-

sponds to the intuition that the initial program determines

the set of possible results, and that exactly these results can

be computed using reduction rules. Moreover, it also cap-

tures the intuition that all choices are explicit. Thus it is a

natural generalization of confluence.

The achievements of this paper are that the non-

deterministic call-by-need lambda calculus X,d is set-

confluent (Theorem 3.8) and that whenever an expression

can be reduced to a HNF, there is a normal order reduction

to a HNF (Theorem 4.9). We show correctness of lambda-

lifting with maximal free expressions wrt contextual equiva-

lence, a result which seems of practical value (Theorem 8.2).

As a corollary it follows by simply dropping the choice, that

the calculus Xl,t [AFMt95, AF97] may have more permis-

sive reduction rules without destroying confluence.

In [SS92] twelve different kinds of non-determinism in
non-strict functional languages are identified. Using their

categories, And has an erratic, restrained, singular non-
determinism. However, x,,d justifies unfolding, (i.e., pro-

gram transformations) without incompatibilities between

singular semantics and unfoldability. Hence, And is a new

kind of non-determinism in non-strict functional languages.

Unfortunately, it is a real pain to work through case-analyses

and reductions of lots of diagrams. Due t,o lack of space, we

often give only the results and omit the tedious computa-

tions. The diagrams are also mechanically checked (by a

Haskell-program) up to a certain size of expressions. This

forces us to correct several errors in the diagrams. An ex-

tended version of this paper with full proofs is in prepara-
tion.

Our calculus And fits into the work on implementing

and compiling non-strict functional programming languages

[PJ87, PJLSl], since the calculus is compatible with super-

combinator reduction.

The practical application of our calculus is to provide a basis

for program transformations (i.e. compilation) of lazy func-

tional (higher order) programming languages that use direct

calls. The correct program transformations can be derived

by simulating the result of an I/O-function by a big choice-
expression. For example, the result of an I/O-function that

may return True or False can be modeled by the expression
(choicel(choice True False)).

The paper is structured as follows. First the calculus is
described in section 2. Then the basic properties like set-

confluence and existence of a normal order reduction are

investigated in sections 3 and 4. Contextual equivalence

and deterministic expressions are defined in sections 5 and
7. The correctness of a set of extended rules and of lambda-

lifting is proved in sections 6, 7 and 8, and the relationship

with the usual lambda calculus is clarified in section 9.

2 The Language

A-expressions may be variables x, the constant choice, ap-
plications (s t), let expressions (let x = s in t) and abstrac-

tions Xz.t, where x is a variable, and s, t are A-expressions.

As a convention we shall assume that all bound variables are

different, which can be achieved by a consistent renaming of

bound variables. The set of variables in a closed expres-

sion t is denoted as V(t), the set of let-bound variables as

Vi,,(t). A closed expression is one without free variables. We

consider expressions as equal (denoted z), if there is some

consistent renaming of bound variables that makes them

equal, i.e., if they are o-convertible. We use the convention

that application is left associating, i.e., el ez e3 means the

expression ((el e2) es).
The constant choice is intended to be a function that may

reduce (choice s t) to either s or t. We use several kinds

of reduction relations. We shall use the +,*-notation for

the transitive and the transitive-reflexive closure. The sym-
bol “?,, is used for reduction consisting of 0 or 1 steps. A

context C[.] is a closed A-expression with exactly one hole,

where the hole can be at every position where an expression

is permitted, i.e., the syntax is C ::= [.]] C s] s C] (let x =

C in s)] (let x = S in s)] Xx.C, where s is a A-expression

and x a variable. The notation C[s] stands for the expres-

sion, where s is plugged into the hole. A reduction rule +

is compatible, iff t -+ t’ implies C[t] --+ C[t’] for every
context C[.].

2.1 Non-Deterministic Reduction

We use the reduction rules in table 1, which are a gener-

alization of the ones in [AFMt95, AF97]. The calculus is

almost the same as the one in [MOW98], but we leave out

the garbage collection rule (ldel), see 2.

The rule (nd) is not compatible, which is justified by the

intuition that a compiler should not be able to “optimize”

functions by evaluate I/O’s at compile time. It could be

made compatible by formulating the reduction rules on sets

of expressions. The presented formulation is close to the

operational view that the choice-decisions are taken outside

the functional program, and that once a decision is made,

you can forget the alternatives (committed choice).

Definition 2.1 Let s denote an expression. A reduc-

tion context R[.] is dejined by the syntax: R ::=

[*I 1 (R s) ((s R) 1 (let x = s in R) I (let x = R in 3).

A let-context is defined by the syntm L ::= [.I I (let x =

s in L). We will use the symbols R, L only with this mean-

ing. Moreover, let LL ::= (let x = ’ in s), AL ::= . s, and

W ::= L) L[LL[A;]]

Definition 2.2 Based on the reductions in table I, we de-

fine: s 3 t, ifs 4 t for p E {llet, lbeta, lapp}.

s loq t, ifls llef t or s % t.

Definition 2.3 We define relations on sets of closed ex-

pressions. Let s, t be closed expressions and let M be a set

of closed expressions.

l Ifs 4 t, then MU (3) 2 MU {t} for all labels

p E (cp, llet, lapp, lbeta}.

set,let,nd set&t set,nd

l ------+ := -----+u----+.

set set,let,nd set,cp

. +X,nd := +u+.

We define redexes as immediately reducible subexpressions

within an expression.

325

Let C, D be arbitrary contexts.

(llet) C[(let 2 = (let y = t, in tl) in s)] + C[(let y = t, in (let x = t, in s))]

(lapp) C[((let x = t, in 3) t)] + C[(let x = t, in (s t))]

I’bd”,“a) C((X 2.. t) 3)l -+ C[(let x = 3 in t)]

n R[(cholce s)] + R[((X x . (X y . y)) s)] where Z, y are fresh variables.

-+ R[((X x (X y . 2)) s)] where x, y are fresh variables.

(cp) C[(let x = 3 in D[x])] --+ C[(let 5 = s in D[s’])]

If s is a lambda-abstraction or choice and s’ is a renamed copy of s

Table 1: The non-deterministic calculus And

3 Confluence of Reduction on Sets

Usually, confluence of reduction is interpreted as the inde-

pendence of the result of a computation from the sequence

of reductions. For a non-deterministic reduction, this no-

tion has to be generalized. For example, choice s t may be

reduced to s as well as t. Since the expressions s, t are arbi-

trary, we cannot hope that there is any sensible relationship

between s and t. The criterion that we will use instead is

that the set of possible results is an invariant of reduction:

For non-nd reductions this means that the set of possible re-

sults does not change, i.e., there will be no implicit choices.

For an nd-reduction t “4 tl, where the other alternative is

t -% t2, we require that the set of possible results of t is the

same as the union of the possible results of tl, t2.

3.1 Confluence of -%

Definition 3.1 A relation + is locally confluent, iff

whenever a + b and a + c for some closed expressions

a, there is some d, such that b 4 d, and c & d.

Lemma 3.2 The reduction relations -% and
set,let,nd

+ are
terminating.

Proof. The following measure cp = (cpl, (~2) is used for ex-

pressions, where pairs are compared lexicographically. The

first component cpi is the number of occurrences of choice,

and the second is defined as follows:

I 1 if s is a variable or choice

$72(s) :=

I

;:(lp'(tJ + w(r)) ifs = (t r)
If3 r (A x t)

2 * v2(r) + 92(t) ifs E (let x = r in t)

It is an easy task to check that all the reductions -% for

p E {Ret, lapp, lbeta, nd} strictly reduce the measure. It is

easy to extend this to sets using well-foundedness of the

corresponding multiset ordering. 0

Lemma 3.3 The reduction relations -% and
set,let,nd
+ are

locally confluent.

Proof. For local confluence of 3, we have to check 5 non-

trivial overlappings. We show only for the overlap of the
llet-rule with itself that there is a common reduct:

(let x = (let y = (let z = t, in tY) in tz) in s) reduces

either to (let y = (let .z = t, in tY) in (let x = t, in 3))

or to (let 2 = (let z = t, in (let y = t, in t,)) in s).

The first expression reduces in one further let-reduction to

(let z = t, in (let y = t, in (let 2 = t, in 3))). The sec-

ond expression reduces as follows: (let z = t, in (let x =

(let y = t, in tl) in s)), which further reduces to (let z =

t, in (let y = t, in (let x = t, in s))). The other compu-

tations are similar.

To check that
set,let,nd

+ is locally confluent, there are no extra

nontrivial overlappings. The only nontrivial argument is
that let-reductions cannot move a choice out of a reduction

context. cl

Proposition 3.4 The relations -% and
set,let,nd
___$ are con-

fluent.

Proof. The Newman-lemma [New421 (see also [HueSO])

shows confluence of the relation 2 and
set,let,nd

+ using lem-

mas 3.3 and 3.2. 0

3.2 Confluence of 3

The same technique as in subsection 3.1 is used to show

confluence of %.

Definition 3.5 The measure $J is defined using an environ-

ment parameter. For closed expressions let $(s) := [s]~ 0.

[f:Tce] p

:= p(x)

:=

2. t&J := it] p[x c-) O]

b t&&J := b& + WI~LP

[(let z = s in t)]+p := [s]+p+ [t]+p’

where p’ := Pb I+ B+JJ + 11

Lemma 3.6 The relations -% and ..t,,q are terminating.

Proof. The measure is strictly monotone in the measure of

subexpressions. 3 strictly reduces the measure 4. Since

the measure is well-founded, -% terminates. A consequence
set,cp

is t,hat __) terminates. q

Proposition 3.7 The relation 2 is locally confluent.

3.3 Confluence

Theorem 3.8 The relation %X,nd is confluent

326

Proof. We use Lemma 3.3.6 in [Bar841 which states the fol-

lowing: If for all a, b, c: if a +i b, a +a c there exists some d,

such that b &J d,c <1‘r d, then --%I and -%2 commute.

We use this lemma with +r := 3, -+s :=
set,lct,nd

w .

We have to check the nontrivial overlappings and to show

that the forking reductions can be joined according to the re-

strictions. I.e., we have to check the situations tl + t2, tl +

t3 using the syntactical structure of expressions.

l Case: one reduction is an nd-reduction. Then there

is no problem in joining, since a cp-reduction cannot

duplicate the nd-redex.

l Case: One reduction is a let-reduction. Then one cp-

reduction and 1 or 2 let-reductions are sufficient to join

the reduction. The latter case is possible if the let-

reduction is within an abstraction.

set,let,nd,r

The relations ___+ and -=% commute. The propo-

sitions 3.4 and 3.7 and the commutation property now show

that the relation ‘*X,nd is confluent. cl

Example 3.9 The reduction +Qd would become non-

set-confluent, if we would permit the choice-reduction in

the body of abstractions: Consider the expression (let x =

(A y . choice 1 2) in (z 0)+(x 0)), which results in {2,3,4}
after the correct reductions. The wrong choice-reduction

would give {(let x = (X y . 1) in (x 0) + (x O)),(let x =

(A y . 2) in (x 0) + (x 0))}, which results in {2,4}.

4 Normal order reduction sequences

In this section we define normal order reduction and show

that normal order reduction is sufficient to reduce expres-

sions to HNF. This definition models the normal order re-

dex as an outermost redex that is demanded. This is a

slightly more lazy variant of the normal order definition in

[MOW98].

Definition 4.1 A normal order redex (n-o-redex) of a

closed expression t is defined using rules for shifting a la-
bel E (for evaluation) up and down in the expression to a

final position, thereby leaving as trace a label e and also a
compound label describing the n-o-reduction. We start with

tE, where t is unlabelled.

i) C[s”], and s is an abstraction or the constant choice.

Stop, the expression t is a HNF.

ii) C[(r s)“] and r is an abstraction. Mark the expression

in the brackets as (lbeta) and return.

iii) C[(choice s)~]. Mark the expression in the bracket as
(nd) and return.

iv) C[(r s)~], and r is a variable or an application. Proceed

with C[(rE s)~].

v) C[(r s)~], and r is a let-expression. Mark the expres-

sion in the bracket as (lapp) and return,

vi) C[(let x = s in t)E]. Proceed with C[(let x =

s in tE)“].

vii) C[(let x = (let y = t, in t5) in D[x”])]. Mark the

expression in the bracket as (llet) and return.

viii) C[(let x = r in D[xE])] and r is an abstraction or the

constant choice. Mark the expression in the [.]-bracket

as (cp) and also with the context D[.], and return.

ix) C[(let x = r in D[x”])] and r is an application
or a variable. Proceed labeling with C[(let I =

rE in D[x”])]

The subexpression that is finally labelled E is called the n-o-

redex if it is not a lambda-abstraction or choice, otherwise

the whole expression t is a head normal form (HNF).

The normal order reduction has to be performed such that the

rule corresponding to the label is executed. The rule (cp) has

to be performed such that the variable labelled E is replaced

at the position indicated by the context D[.].

A reduction sequence that reduces only n-o-redexes is called

a normal order reduction.

Lemma 4.2 The following holds for the labeling algorithm.

The labeling terminates and either marks a unique n-

o-redex or marks the whole expression as a HNF.

Every superexpression of an n-o-redex is marked e in

the labeling.

An n-o-redex may only be subexpression of another re-

dex of type cp or llet, but not in the expression to be

copied by the cp-rule. It is also not a subexpression of
another redex of type lapp, lbeta, or nd.

Any n-o-redex and also the variable to be replaced is in

the context W.

An n-o-redex of type (cp) or (llet) is only possible in a

let-context L[.].

A HNF is of the form L[(X y . t)] or L[choice] .

Lemma 4.3 Let t be a HNF. If t + t’ then t’ is a HNF.

Lemma 4.4 Let t be a closed expression with an n-o-redex.

If t + t’, by a non-n-o-reduction, then t’ is not a HNF.

Proof. If the redex in t ----+ t’ is not labelled e, this is

obvious. Otherwise, this redex is marked e. It is an easy
exercise to check the cases where the reduction is of type

llet or cp. 0

Corollary 4.5 The last reduction before reaching a HNF is
a normal order reduction of type (cp) or (lbeta).

In the following we show that an arbitrary reduction to a

HNF can be turned into an n-o-reduction by commuting the

reductions. A non-n-o-reduction is also denoted as i(nternal)

reduction. In order to ease notation, we denote a sequence of

reductions as words: 3 is denoted as (a, p) for all types
nqnd ‘I

of rules and for a E {no, i}. For example __) o z is

denoted as (no, nd) o (i, cp). We will use meta-reductions on

sequences of reductions.

Definition 4.6 Let t be a closed expression. The reduction

t 7 t’ is defined as follows: For x, y 6 &t(t) let x <. y,

ifl (let y = t, in s) is a subexpression oft and x occurs in

t,, and let < be the transitive closure of <* .
Select an antichain W s V&t(t), i.e. the variables in W

are not related by <. Then define the relation cppa:~ for
subexpressions s oft as follows:

327

CPPar
0 x-WI

. x cppa:w tl, if x E W and x is let-bound in t to the

abstraction t,, and tk is a renamed version of t,.

CPPar
l choice --+w choice

cppar
a If (31 ~2) is a subexpression of t, and s1 +W s;,

s2 xW sb, then s1 s2 ZW si si.

fPPar
. If (A z ~1) is a subexpression oft, and s1 -----+w s{,

then (A z . ~1) ZW (A z . s:).

l Let (let 2 = t, in st) be a subexpression of t.

If sz Cppa:W s;,
CPPar I t, ww t,, then (let z =

t, in sz) 5~ (let z = t: in s:). Note that if
ZEW thens,=s:.

Let t z t’ i# t cppa:w t’ for some antichain W.

Lemma 4.7 If t x t’, then t x t’, where the re-

ductions can be performed in any order. Moreover, there is

at most one n-o-reduction among them. This n-o-reduction

can be shifted to the left.

We give an explanation of the notation in the following
lemma: (i, a) o (no, b) u (no, b) o (i,a) means Vtl, t2, t3 :

t1 z,a t-2 z t3 j 34 : t1 z t4 I t3.

Lemma 4.8 Every i-reduction followed by normal order re-

ductions can be shifted to the right according to one of the

following rules:

(i, a) o (no, b) + (no, b) o (i, a).

(i, a) o (no, b) u (no, b) o (no, a) for a # cppar.

(i,a) 0 (no,cp) cr, (no,cp) 0 (no,a)? 0 (i,a)*, for a #

nd, cppar.

(i,cppar) o(no,a)u (no,a) o(no,cp)* o(i,cppar)‘.

(i, llet) 0 (no,lapp)” 0 (no,llet)? 0 (no, lapp)” 0

(no,llet)’ -+ (no,lapp)W o (no,llet)’ o (a,llet) where
(a E {i, no}) and UJ 2 0.

Theorem 4.9 Let t be a closed expression. If t -% t’ where

t’ is a HNF, then there is a HNF t”, such that t no,: t” and

t” -G t’.

Proof. We use the previous lemmas. Let t -% t’ be a

reduction. We use as meta-reduction strategy to shift the
rightmost i-reduction to the right dropping the i-reductions

after reaching a HNF. The following well-founded ordering

shows termination of this meta-reduction, since it is strictly

decreased in every meta-reduction.

It is a lexicographic ordering of four components. The first

component is the number of (i, cppar)-reductions. The sec-

ond is a multiset of the following numbers: For every i-

reduction: the number of (no,cp) reductions that are right

of it. The third component is the total number of internal

reductions. The fourth component is the number of n-o-

reductions to HNF right of the rightmost i-reduction.

It is easy to see that this measure is well-founded and that

every meta-reduction on the reductions to HNF strictly de-

creases this size. Hence the meta-reduction will end with a

reduction that is a sequence of n-o-reductions followed by a

sequence of i-reductions to a HNF. The i-reductions retain

the property of being a HNF, hence the theorem holds. q

Corollary 4.10 If an expression can be reduced to HNF,

then an n-o-reduction sequence has the smallest number of
nd-reduction steps.

Corollary 4.11 Every infinite n-o-reduction contains an

infinite number of cp-reductions and an infinite number of
beta-reductions

Proof. The only rule that may increase the measure $ is
the rule lbeta. On the other hand, the only rule that can

increase t,he measure cp is cp. 0

5 Contextual Equivalence

In order to prove correctness of optimized lambda-lifting and

to clarify the connection with the deterministic lambda cal-

culus, the criterion of contextual equivalence [AbrSO, How891

is required. We will use a rather strong criterion including

termination as well as non-termination.

Definition 5.1 Let s, t be (open) expressions. Then s wC t,
i# the following holds

i) For all contexts C[.], such that C[s], C[t] is closed: C[s]
has a reduction to HNF iff C[t] has a reduction to HNF.

ii) For all contexts C[.], such that C[s], C[t] is closed: C[s]

has an infinite n-o-reduction, iflC[t] has an infinite n-

o-reduction.

Note that -C is a congruence, which can be proved straight-

forwardly.
To justify the second requirement, consider for example the

two expressions 0 and Y(X x choice z 0), where Y is the
usual fixpoint combinator. Clearly, the two expressions be-

have differently, and are also different using our definition,
but would be equivalent without the requirement ii).

We define a relation similar to a parallel reduction in

[Bar84].

Definition 5.2 Let t be a closed expression. The relation

s is defined as follows: First select a set W c Vi,,(t),

which is an antichain w.r.t. to the ordering defined in defy-

nition 4.6. Then consider the subexpressions oft and define

the relation S\W.

Par
l choice ----+w choice

Par
l x-w-7:

l (app) Ifs parw s’, r parw r’, then (s r) ZW

(s’ r’).

l (lam) Ifs CW s’, then (A x . s) zw (A x s’).

Par Par
l (let) Zf r ---+w r’, s +W s’, then (let x =

rz in .sI) 5~ (let I = r: in s:). If x E W,

then r5 E r:.

328

(cp) x parw t; if x E W and x is let-bound to the

abstraction t, in t and tk is a renamed version oft,.

(lapp) if t, parw t6, s5 Gw s:, r Cw r’,

then ((let x = t, in s”) r) Zr.v (let x =

tl, in s: r'). If x E W, then t, G t:.

(lbeta) If t, parw t:, s 5~ s’, then

((A x . tz)s) Zw ((let x = s’ in tk)

Par Par Par

(llet) If t, -----+w t:, t, -----+w th, and s ------+w

s', then (let x = (let y = t, in t%) in s) 5~

(let y = t’, in (let x = tl, in s')). If y E W, then

t, E t&.

Let t Z t’ ifl t -%.Lv t’ for some antichain.

Not,e that an (nd)-reduction is not permitted in the par-

relation.

Lemma 5.3 If t Z t’, then there is a sequence of re-

ductions (using the basic calculus) from t + t’, such that the
reductions can be performed in any order. It is possible to

arrange the sequence, such that all normal order reductions
come first.

Proof. That the reductions can be performed in any order

follows from the definition. The normal-order reductions

can be shifted to the left using Lemma 4.8. 0

In the following we use the wording complete set of fork-

ing (commutation) diagrams for a relation P. A com-

plete forking (commutation) diagrams means a set of meta-

reduction rules, such that for every maximal n-o-reduction

sequence red, the prefix of every reduction sequence &

ored (L ored) can be meta-reduced. Note that these

complete sets are not unique.

Lemma 5.4 In the following we consider only par-
reductions consisting of internal reductions.

A complete set of forking diagrams for par is:

7%0,LZ,* no,b

ii) to/o’3 X+ “~‘o~whereafnd.

TW,llet,+ iii) yet*+ o z,pa: r̂t s,pa:,? o ~ .

i?J)

n0,10CZ,* no,laPP - o - o iq ‘u r,par,?
7W,l0Cl,* no,‘aPP

---+o+----00.

Proposition 5.5 Let t, t’ be closed expressions such that

t q t’. Then t wC t’:

Proof. Note that it is not necessary to use the context C[.],

since the par-reduction does not contain an nd-reduction,

and hence has no restrictions of applications in an expres-

sion.

If t’ has a HNF, then t prime has an n-o-reduction to HNF,

which follows from Theorem 4.9. If t’ has an infinite n-o-

reduction, then the diagrams in Lemma 4.8 and corollary

4.11 show that there is also an infinite n-o-reduction for t.

Now assume that there is an n-o-reduction for t ending with

a HNF. The diagrams in Lemma 5.4 show that by induction

on the length of an n-o-reduction of t, we get also an n-o-
reduction for t’. If the n-o-reduction for t is infinite, then

the diagrams show that we can shift the (i,par) down the

n-o-reduction for t and that we can produce an infinite n-o-

reduction for t’. 0

Corollary 5.6 Let t, t’ be closed expressions such that t +

t’ by a non-ad reduction. Then t wC t’

Proof. Every one step non-nd-reduction is also a par-

reduction. q

Note that this is not true for nd-reductions, since
nd nd

(choice 0 I) ---+ I, and (choice 0 I) __$ 0, hence

(choice 0 I) has a finite as well as an infinite n-o-reduction,

but -L has only an infinite one. Thus (choice 0 I) $c 1.

6 Behavioral Equivalence of the Rules ldel and lcv

In the following we give forking and commutation diagrams

for the reductions in Table 2 in the same way and under the

same conditions as in Lemmas 5.4 and 4.8. The rule (ldel)

is the garbage collection rule, whereas (lcv) corresponds to

an elimination of indirections.

Lemma 6.1 A complete set of commutation diagrams for
(ldel) is:

l ldel o (no, a) --+ (no, a) o ldel.

l ldel o (no, cp) w (no, cp) o ldel o ldel.

l ldel o (no,lapp)wt’ o (no,lZet)” ^rs (no,lapp)ws’ o

(no, llet)ko(no, lapp)“+‘o(no, llet)ko ldel, where ‘w >_ 0

and k E (0, 1).

l ldel o (no, llet) c\it (no, llet) o (no, llet) o ldel

l ldel o (no, p) u (no,lapp) o (no, p) o Zdel, where p E
{nd, lbeta}

For (ldel) the forking diagrams are a sufficient set of meta-

reductions that met.a-reduce every reduction sequence of the
ldel

form tl ----+ tz together with an n-o-reduction starting

from tl into another sequence.

Lemma 6.2 A complete set of forking diagrams for (ldel)

is:

no,a ldel ldel n”,a
bi----00 13 --+O+----

?KJ,CP ldel ldel ldel no,CP
bt-00 -A +o+o+--.

no,‘aPP ldel ldel

l e----o--+ cvt -.

nqllet ldel ldel

l +---00 -A ___).

Theorem 6.3 Let t, t’ be closed expressions and t ldef t’.

Then t wC t’.

329

ldel

F-w g’b”,“, ~o=o~c~~~~ces ofF CM

(lcv) C[(let x = y in D[z])] Icv C[(let x = y in D[y])]

where y is a variable

Table 2: Extended rules of AZ,

Proof. Let t Ide! t’ and assume there is an n-o-reduction for

t’, finite or infinite. If the n-o-reduction is a finite one to

a HNF, then use as a measure for meta-reductions the fol-

lowing lexicographical ordering of three components: i) the

multiset of: for every ldel-reduction, the number of (no,cp)

that are right of it. ii) The total number of ldel-reductions,
iii) the number of n-o-reductions to HNF right of the right-

most ldel reduction. It is easy to see using the commutation
diagrams for ldel, that this measure is strictly decreased if

the rightmost ldel is shifted and an ldel for a HNF are elim-

inated.

If the reduction for t’ is infinite, then the number of its

(no,cp)-reduction steps is infinite. We show by induction on

the number of (no,cp)-reductions in a normal order reduc-

tion sequence of t’, that shifting ldel’s to the right does not

change this number. By using the strategy to shift all ldels

over the first (no,cp), then all ldel’s over the second and so

forth, we get an infinite normal order reduction for t.
Now assume that there is an n-o-reduction for t. Now we

have to use the forking diagrams in lemma 6.2. Using as
main measure the number of (no,cp)-reductions in a se-

quence, it is easy to see that for a finite as well as for an

infinite normal order reduction, we can construct a hnite

(infinite) normal order reduction for t’. 0

Lemma 6.4 A forking of an n-o-reduction and an internal

cppar-reduction can be meta-reduced according to one the

following rules.

no,o t,cPPar i,cppar no,a

l t00 w ---+Ot-

no,cp,* no,b : 1 CPPar i,cppar,? no,b

0 tot-o- - __) of-.

Proof. The main arguments are: an internal cp cannot copy

an n-o-redex nor the into-position of an (no,cp)-redex. The
second rule covers the case that there may be an normal-

order reduction in the (i,cppar) after another n-o-reduction.

0

Lemma 6.5 A complete set of commutation diagrams for

lcv is:

0 lcff 0 (no,a) -+ (no,a) 0 lcu.

0 lcv 0 (no, cp) cv) (no, cp) 0 lcu 0 lcu

0 zcv 0 (no,cp) -A (no,cp) 0 (a,cp)o Z where a E

(6 no)

Lemma 6.6 A complete set of forking diagram8 for lcv is:

no,a lcv lcv no,a
l to---+ ?$ -0t.

no,CP lcu lcv lcu no,CP
rtoo - ----)O~O+----.

no,cP no,CP lcv i,cp no,CP

0 t-0000 -4 tot.

no,cp 1CU i,cp i,cp no,CP

l too -A *ot00.

We require a special measure for lcv.

Definition 6.7 The measure t is defined using an environ-

ment parameter. For closed expressions rue define c(s) :=

BJBE 0.

6Xl~P := p(x)

[choice]l p

I[(X x .

UJ t&P

tf&P

:=

:= ;tj p[x I-) O]

:= 2 *c[s]cP + [t&p
[(let x = 3 in t)](p := [slep+ [t&p’

where p’ := P[X e I[s]~P + a]

where a = 0 ifs is a variable.

Otherwise: a = 1.

Lemma 6.8 If t Y, t’ for y E {ZZet,Zapp,cp,nd}, then

E(t) > ((t’). If t Icq t’, then r(t) = t(t’)

Proof. Evaluate the expressions before and after application

of the rules and compare the measures. 0

Icv
Theorem 6.9 Let t, t’ be closed expressions and t __) t’.

Then t wC t’.

Proof. First let a normal order reduction for t’ be given.

We use induction on the number of lbeta-reductions and

the size [(t’). First assume that the reduction is finite. We

make induction on triples (t, t’, red), where red is a nor-

mal order reduction from t’ to HNF. The induction ordering

is: (tl, t;,redl) < (tz, t;, redz), iff (#(lbeta,redl),[(tl)) <
(#(lbeta, reds), t(h)) in the lexicographical ordering. The
induction hypothesis is that we can find a normal order re-

duction for t with the same number of lbeta-reductions. We

go through the three possibilities in Lemma 6.5. In the

first diagram, induction is easy. In the second diagram, let

t x tl -% t2 2 t3 :o,cp t’. Lemma 6.8 shows that

we can apply the induction hypothesis first to the triple

(t2, t3, reds), where red = t 2 reds. Then we can use

the hypothesis for the triple (tl, tl, reds), where reds is the

existing n-o-reduction for t2. In the last diagram, we use

Lemma 6.4 and 4.8, which shows an (i,cppar) reduction in

front of a normal order reduction leaves the number of lbeta
reductions unchanged. Since lcv keeps the property of being

a HNF, we have shown that there is a finite n-o-reduction

to a HNF starting from t.
If the reduction starting from t’ is infinite, then we use the

same arguments for the claim: “the number of lbeta reduc-

tions of a normal order reduction of t’ is greater than n” .

This permits to construct an infinite n-o-reduction for t.

330

Let t have a finite or infinite n-o-reduction. Similar as above,

we base the proof on the number of lbeta-reductions in a n-

o-reduction of t and t’.
0

7 Deterministic subexpressions

In order to provide optimized lambda-lifting and to clarify

the relation to the deterministic lambda calculus, we iden-

tify certain subexpressions that can be copied as they can

be in the deterministic lambda calculus. This is not in-

tended as an operational rule for an implementation, but

only for proving correctness of lambda-lifting with deter-

ministic maximal free expressions, and also of correctness of
the usual lambda-calculi rules in the absence of choice.

Definition 7.1 Let t be a closed expression. Then a subex-

pression s oft is deterministic iff s is an expression without

occurrences of choice, which is either closed, or in which all

free variables are let-bound variables and moreover, all the

let-bound variables are bound to deterministic subexpressions

ojt.

Definition 7.2 A subexpression oft is reproducible, i@ it is

either a lambda-abstraction, a variable, the constant choice

or deterministic.

The following rule (pdcp) is a parallel copy rule that is di-

rectly related to the lambda calculus. The rule (pdld) de-

fined below is used for technical purposes.

Deflnition 7.3 Let t be a closed expression. The reduction

t s t’ is defined as jollows: Use the same ordering < as

in Lemma 4.6

Select an antichain W E K,t(t), such that the variables
in W are introduced by lets, and all terms let-bound to a

variable in W are deterministic. Then define the relation

-f%~ for subexpressions s oft as jollows:

PdcP
0 x-----+wx

l x pdcpw tl, ijx is let-bound in t to the (deterministic)

expression t,, and t: is a renamed version oft,.

PdcP
l choice -----+w choice

PdcP
l If (81 82) is a subexpression of t, and 81 -----+w s;,

pdcp PdcP
sa *w si, then 81 sa +w 8; 81.

b Ij(X z . 81) is a subexpression oft, and s1 zW si,

then (X z 81) SW (X z . 9;).

a Let (let z = t, in sz) be a subexpression of t.

i-j sa pdcpw s:,
Pdv ,

t, *W t,, then (let z =

t, in sZ) 3~ (let z = t: in 8:). Note that if

ZEW thent,=t:.

Let t 3 t’ i# t 3~ t’ for some antichain W.

Note that pdcp may also copy (deterministic) variables.

Definition 7.4 Let t be a closed expression. The reduction

t z t’ is defined as jollows.

Select a set W c K,,(t), such that the variables in W are

deterministic. Then define the relation SW for subex-

pressions s oft as jollows:

pdld
x----+wx

pdld

choice ----+w choice

pdld

If (81 82) is a subexpression oj t, and s1 *w si,
pdld

32 ------+w 84,
pdld

then 31 32 +W 8; s;.

Ij(Xt.
pdld

81) is a subexpression oft, and 81 *w s;,

then (X z . 81) -fff+~ (X z . 8:).

Let (let z = t, in sz) be a subexpression of t. Let
pdld

s, --$w 8:. If z E W, then let t, E t:. Other-
pdld pdld

wise, let t, *W t: and (let z = t, in sZ) ----+w
(let 0 = ti in s:),

pdld

Let s1 ----+w 82. If x E W, let the subexpression oft

be (let x = t, in s=), such that 81 is a subexpression

ojs,. Then sy -ff%w (let x’ = tk in s;), where tk

is a renamed version of t, and s: is a version of 92,

where any occurrences of x are renamed by x’.

Let t -ff+ t’ iff t -ff%w t’ for some W.

Lemma 7.5 All reductions in And , Xz, and the reductions
pdcp, pdld preserve the property that a subexpression is de-

terministic.

Proof. An easy analysis of the cases. 0

We give the commutation and forking diagrams for pdcp

and pdld

We assume that pdcp is internal, i.e., has no normal order

component.

Lemma 7.6 A complete set of commutation diagrams jor

(pdcp) is:

pdcp o (no,a) ?+ (~,a) o (no,cp)’ o pdcp?, where a
means a reduction in the base calculus.

pdcpo(::;;r! “A (no,Zlet)*o(no,cp)o(no,cp)‘opdcp?o

pdld’o &
t,CP

0+.

pdcp o (no, cp) -.+ (no, cp) o (no, cp)? o pdcp’o ‘c

pdcp o (no, a) ?A (no, a) o (no, cp)’ o pdcp?o :,,,. for

a E {lbeta, Zapp}.

pdw 0 (wbp) - (no,Zlet) o (no,cp)’ o pdcp? o
t,llet.*

pdldo +------.

pdcp o (n~,~U~et)~~ (no, Zlet) o (no, cp)? o pdcp? o pdld o

(i,Zlet)‘o I).

331

Lemma 7.7 A complete set of commutation diagram8 for

(pdld) is:

l pdld o (no, nd) -rs (no, nd) o pdld.

l pdld o (no, Q) cr) (no,a) o pdldo z for all a E

{cp, llet, lapp, lbeta}.

l pdld o (no, a) + pdld for a E {lapp, llet}.

Proof. There are less complications than in the commutation
case for pdcp. We illustrate a complex case:

(let y = (let x = t, in tY) in y)

--ff$ (let y = (let x = t, in tY) in (let y = (let x =

t, in tY) in y))
no,llet

4 (let y = (let x = t, in tY) in (let x =

t, in (let y = t, in y))).

The other reduction gives: (let y = (let x = t, in tY) in y)

no,llel (let x = t, in (let y = t, in y))
pdld

----+ (let x = t, in (let y = t, in (let x’ =
t,llet

tl, in (let y’ = tl, in y’)))) t-. The pdld reduction in the

second reduction sequence fulftlls the condition of the defi-

nition, since the replaced positions are not within a copied

body. q

In the following we use the measure of a reduction sequence

~1 that is a pair, compared lexicographically, where the first

component ~1 is the number of nd, lbeta, and cp-reductions,

and the second component ~2 is the measure cp defined in

subsection 3.1.

Lemma 7.8 Let an n-o-reduction red from t (to a HNF)

be given. If t -f+ t’, with p E {llet, lapp,cp,lbeta},

then there is an n-o-reduction red’ from t’ (to a HNF) with

pl(red’) 5 pl(red)

Proof. Follows from lemma 5.4 q

Lemma 7.9 Let an n-o-reduction red’ from t’ (to a HNF)

be given. If t % t’, then there is an n-o-reduction red

from t (to a HNF) with pl(red) = pl(red’)

Proof. Follows from lemma 4.8 q

Lemma 7.10 Let t % t’. Ijt’ has an n-o-reduction red’

to a HNF, then t has an n-o-reduction red to a HNF, where

~(red) 5 ~(red’).

Proof. We use lemma 7.7. The second diagram in lemma

7.7 has a backward reduction, for which we need Lemma

7.8. q

pdld

Lemma 7.11 Let t ---+ t’. If t’ has an infinite n-o-

reduction red’, then t has an infinite n-o-reduction red.

Proof. We use lemma 7.7. The second diagram in lemma

7.7 has a backward reduction, for which we need lemma 5.6.

For the third diagram we need the argument that an infinite

n-o-reduction cannot contain solely of lapp, llet-reductions.

q

Lemma 7.12 Let t -ff? t’. Ij t’ has a finite n-o-reduction

to HNF, then t has a finite n-o-reduction to a HNF.

Proof. By induction using the following lexicographically
PdcP

ordered measure: Let t __) t’ and red’ be a n-o-reduction

to HNF from t’. Then the first component of the measure

is p(red’), the second is t(t).

If the first reduction from t’ is of type nd, lbeta, or cp, then
the diagrams in lemma 7.6 show that the first component is

sufficient to use the induction, where lemmas 7.8, 7.7, and

7.10 are used.

If the first reduction in red’ is a llet or lapp-reduction.

Then the corners of the diagram are t % tl, t - t’,

t’ z t2. The tail of the n-o-reduction red’ is red;. We
use for t,he last diagram in lemma 7.6, the claim of lemma

7.9 to show that pl(reda) 5 pl(red’). In any case, we can

apply the induction hypothesis since ((tl) < E(t).
If t’ is already a HNF, then t is also a HNF. q

Lemma 7.13 Let t z t’. If t’ has an infinite n-o-

reduction red, then t has an infinite n-o-reduction.

Proof. By induction on ~1.

The diagrams show that there is a reduction sequence
no,t Pdcp

t ----+ t1 -----+ t;. It is easy to see for all cases of di-

agrams in lemma 7.6 that if t’ has an infinite n-o-reduction,

then t; has an infinite n-o-reduction, where lemma 7.11 and

lemma 5.6 is required. Since every such step adds at least

one n-o-reduction to the n-o-reduction sequence after t, we

can construct an infinite n-o-reduction for t. q

Lemma 7.14 A complete set of forking diagram8 for inter-

nal pdcp is:

nqcp,? no,a

l +---0+--o
Pdcp ?$ PdfPO’no,a

no,cp,? no,a

a+----0+--o
p* Lv) pdcp i+h* nola

0 to tjor

a E {lapp, lbeta, cp}.

%Xcp,? ?W,llet pdcp u pdcp pdld,? i,llet,r

l +----000 *o*o+

nqllet,?

O+------.

Proof. By checking the possible overlaps using the same
techniques as before. q

Lemma 7.15 A complete set of forking diagrams for (pdld)

is:

no,a
.+----Opdld -4 9 o x for all a in the base

calculu8.

no,”
.+--o”2 crs

no,loa,*

pd”’ 0 Zo Zo t--- for all

a E {lapp, lbeta, llet} .

no,llet , +o,d$ 2$ pdleO+-,

Proof. By checking the possible overlaps. u

332

Lemma 7.16 Let t 5 t’ such that t has a finite n-o-

reduction to a HNF. Then t’ has a finite n-o-reduction to a

HNF.

Proof, By induction on the length of an n-o-reduction of

t, the diagrams in lemma 7.15 show that there is a mixed

reduction for t’ to a HNF. Theorem 4.9 shows that there is

also a n-o-reduction to some HNF. 0

Lemma 7.17 Let t a t’ such that t has a finite n-o-

reduction to a HNF. Then t’ has a finite n-o-reduction to a

HNF.

Proof. By induction on the length of an n-o-reduction of

t, the diagrams in lemma 7.15 and lemma 7.16 show that

there is a mixed reduction for t’ to a HNF. Theorem 4.9

shows that there is also a n-o-reduction to some HNF. 0

Lemma 7.18 Let t s t’ such that t has an infinite n-

o-reduction. Then t’ has an infinite n-o-reduction.

Proof. We show by induction on the number of lbeta-

reduction, that if t has an n-o-reduction with more than

n lbeta-reductions, then this holds also for t’.

First, if s s s’ and s has an n-o-reduction with more

than n lbeta-reductions, then we can construct a mixed re-

duction for s’ with not less than n n-o-lbeta-reductions by

lemma 7.15. The commutation lemma 4.8 then shows that

there are at least n lbeta-reductions in the n-o-reduction

after using the commutation rules.

We use lemma 7.14 to show that the same arguments apply

to pdcp.
Finally, every infinite n-o-reduction has an infinite number

of lbeta-reductions, hence the lemma holds. 0

Theorem 7.19 If t ‘dcp t’ , then t wC t’

Proof. Follows from lemmas 7.12, 7.13, 7.17, 7.18. 0

8 Lambda-lifting using deterministic maximal free

expressions

In general, lambda-lifting using expressions larger than vari-

ables (maximal free expressions in [PJ87]) is not correct for
non-deterministic reduction. However, it can be used for
expressions that do not use choice, i.e., for deterministic

maximal free expressions (dmfe). We provide a definition

that generalizes lambda-lifting:

Definition 8.1 Let C[D[tl , . . . , tn]] be an expression, such

that the t, are reproducible expressions. Then the following

relation generalizes dmfe-lambda-lifting:

C[D[tl, . , tn]] - li-dmfe C[((XZl,. . . ,z*.D[z1,. . . , Zn] t1 . . . tn)]

where zs are fresh variables.

Theorem 8.2 Let C[D[tl, . , tn]] be an expression, such
that the t, are reproducible expressions. Then
C[(Xz,, . . . , Z,.D[Zl,. . . , zn]) t1 . . . tn] NC C[Lql,. . *, tn]]

Proof. Using Theorem 7.19, 6.3 and 6.9 we show that

the lambda-lifted expression is contextually equivalent to

the previous one. C[(Xzr, . . . , z,.D[zr, , zn]) tl . . . tn]

wC C[(let ZI = tl in Xzz,. . ,zn.D[zr,. . . , zn]) tz . . . tn]
pdcp (Ica

C[(let = tl in Xrz,. . . , z,.D[tl, 22 , zn]) tz . tn]

ldel C[(Xz2,. . , z,.D[tl, z2 . . . , zn]) t2 . . . tn]. By induc-

tion on n and using the lemmas above, we obtain the claim
that this is NC C[D[h, . , tn]]. 0

In general, lambda-lifting using arbitrary maximal free ex-

pressions [PJ87] is not correct for non-deterministic reduc-

tion:

Example 8.3 The expression

(let z = Xx.(choice 1 z) in (z 0) + (z 0)) has {O,l, 2) as

possible results. Using unrestricted lambda-lifting with Max-

imal free expressions, the following expression would result:

(let z = (Xy.Xz.(y z)) (choice 1) in (z 0) + (z 0)), which

has as possible results {0,2}.

Example 8.4 This example demonstrates that the rule

let-over-lambda is not correct in the catcutus And.
The expressions (let x = t, in (A y . ty)) and

(ihy (let I = tz in ty)) are not behaviorally equivalent:

(let z = (let E = choice 0 1 in (A y . x))

expression

in (z 0) +

(z 0)) has as possible results {0,2}, whereas (let t =

(A y . (let z = choice 0 1 in x)) in (z 0) + (z 0)) has

(0, 1,2} as possible results.

9 Relation to classical lambda calculus

We consider the usual lambda calculus with ,&reduction and
P-equivalence, where we assume implicit a-conversions. Let

‘T be a translation of choice-free expressions with r((let z =

s in t)) = ((A x t) s). Then the following holds:

Theorem 9.1 Let s, t be choice-free closed expression.

Then

T(9) B, T(t) =i' 3 NC t

9 iA,,& t =k' T(8) & T(t).

Let t be an expression without lb&o-redex. Then t e’s in

Hh’F ifs r(t) can be reduced to a HNF as follows: First
mark all /3 - redexes in the expression; then reduce the

expression using a normal order strategy, where only

marked redexes are allowed to be reduced.

Proof. The first implication follows from Theorem 7.19. The

second implicat,ion follows straightforwardly by proving this

for the reductions llet, lapp, cp, and lbeta. The third claim

holds, since if t is a HNF w.r.t. &d,r.&, the transformed

expression can be reduced to a HNF by first marking the

redexes, then reducing only the marked redexes. The other

direction follows, since every redex of T(t) corresponds to a
let-expression in t. 0

333

10 Remarks

10.1 Supercombinators

A common step in compiling lazy functional programming

languages is to transform expressions into a set of defini-

tions of supercombinators. This requires lambda-lifting or

an equivalent technique, which is clarified in Theorem 8.2.

Further transformations by extracting non-recursive super-

combinators do not present a problem.

10.2 Recursion

The fixed point combinator Y := Xf . (AZ .

f(~ z)) (XX . f(~ x)) is sufficient to express recursion. It

is a fixed point combinator, since for a lambda-expression

F: Y F -+ (let f = F in (XX f(~ x)) (XX f(z x)))

ldef (Xx . F(z z)) (Xx . F(x z)) -& (let x =

CAY. F(Y Y)) in F(x xl)) 5. F((~Y. F(Y Y)) (XY . F(Y Y))).
Using the criterion of behavioural equivalence it appears to

be~pissible in to use Y implemented as a cyclic fixed-point
combinator if F is deterministic or a lambda abstraction of

at least two arguments. However, see the discussion on re-

cursion in [MOW98]. For recursively defined constants that

are not deterministic like the constant L := choice 1 (l+L),

a noncyclic implementation of Y is required.

11 Applications of the calculus X,d

Natural EL [HNSSH97] is a lazy functional programming

language that uses direct calls for I/O. The implementors

based the compiler on [PJ87], but they soon detected that

the transformation rules did not properly work in this frame-

work. In particular the lambda-lifting rule using maximal

free expressions once introduced an infinite loop by using

the value of a previous I/O-action instead of repeating the

I/O. This was remedied by lambda-lifting variables only.

There are also other restrictions in Natural EL, for exam-

ple Natural EL uses a non-cyclic Y-combinator. Recently,

Nigel Hutchison told me that the optimzations crossed let-

boundaries, but not X-boundaries. Happily, the combination

of all the methods, in particular sharing of nodes, finally

produced a lazy functional programming language with an

easy-to-grasp operational behavior.

The calculus X,d can be seen as an important part of the

theoretic foundation for such a language and for a com-
piler based on transformations into supercombinators. The
I/O-calls can be modeled in &d as a big choice-expression.

The results on deterministic subexpressions are of practical
advantage in that they provide an (easily) decidable crite-

rion to use optimizing transformations, for example lambda-

lifting with maximally free expressions.

The effect of using &d in a lazy functional programming

language can be illustrated by three applications: i) The

usage of a trace functions that outputs a certain text by a

direct call and then returns True. The trace expression is

simulated by (choice True I) and thus cannot be optimized

away. ii) Calling a random number generator using a direct

call is easily possible. An infinite list of random numbers
could be defined bv randlist = (rand 0) : randlist.

Interestingly, t,he logical sequence may be different from the
sequence of calls t.o the random oracle. iii) Several threads

of execution are possible by simply permitting (conserva-

tive) parallel evaluation. For example, parallel evaluation

of the expression askint 0 + askint 0 using an appro-
priate user interface would behave as follows: Two windows

asking for a number are opened, the user can decide which

to answer first or second. Only if both are answered, the

sum is returned as a result.

12 Related work

There is a lot of work on non-deterministic computation. It

is impossible to cite or discuss the literature in depth. We

confine ourselves to a selection of papers that is concerned

with higher-order functions and non-determinism.

There are papers that investigate combinations of lambda-

calculi where a fixed (strict or call-by name or call-by value)
reduction strategy is used e.g. [Man95]. Some other ap-

proaches [Ong93, DP95, San941 do not take care of shar-

ing properties and thus suffer from the “implicit choice”-

problem mentioned in the introduction.

Bottom-avoiding choice operators like amb or por as inves-

tigated for example in [HOgO, H089, HM92, Bou94] cor-

responds to the operational semantics of (local) speculative

evaluat.ion; i.e. it is not like a committed choice. In [Bou94],

confluence of a calculus using (por) is shown, which is related

to the properties of And, but the calculi are different, since

Xnd builds upon a stronger contextual equivalence (Defini-

tion 5.1) and t,hus justifies a different set of valid program

transformations.

In [Pat911 similar ideas are developed for an application in

the field of functional-logic programming, but rigorous con-

sideration of the operational behavior are missing. [AC791

also considered sharing (of ground expressions) as an im-

portant, technique for modeling non-determinism. However,

their calculus is also different, since they included the let-

over-lambda rule, which is not correct in our setting (see

Example 8.4).

Explicit sharing in functional programming is also a base for

investigations in optimal reductions [Yos93, ACCL91] and

in [Lau93] for a better understanding of implementations of

lazy functional programs.

Our calculus can be seen as a generalization of the calculi

in [MOW98, AF97] though there are some differences. In

[MOW98], the core calculus has garbage collection (ldel)

as an addibional rule, which seems to be not the minimal

calculus. The normal order reduction in [MOW981 is de-

fined differently: it uses “strict” evaluation of the let-rules,

whereas ours is i’lazy”. There are only slight differences,
for example lengths of normal order reductions are in some

examples longer than for our calculus (there may be more
llet’s). We have not explored the way to base the proof on

their n-o-reduction, but experience shows that the proofs
based on diagrams are very sensible to minor changes in

the rules. The proofs of our theorems in a setting based on

the normal order reduction definition of [MOW981 would be

very different and perhaps more complex.

The calculus in [AF97] models almost only the normal order

reduction and thus has a narrow range of program transfor-

mations.

13 Further Research

The extension of our calculus to non-strict functional lan-
guages using constructors and a polymorphic type system

has to be investigated. A more detailed analysis of the

334

input-output behavior of a functional programming lan-

guage based on the non-determinism is required. The prop-

erties of choice as a parallel combinator have to be clarified,

where associativity, commutativity and idempotency appear

to hold. An investigation in a semantics for And is in order.

References

[AbrSO]

[AC791

[ACCLSl]

[Ach96]

[AF97]

[AFM+95]

[Bar841

[Bou94]

[DP95]

[HM92]

[HNSSH97]

[HO891

Samson Abramsky. The lazy lambda calculus.

In D. Turner, editor, Research Top& in Func-

tional Programming, pages 65-116. Addison-

Wesley, 1990.

Egidio Astesiano and Gerard0 Costa. Sharing

in nondeterminism. In Proc. 6th ZCALP 79,

pages 1-15, 1979.

M. Abadi, L. Cardelli, P.-L. Curien, and J.-J

L&y. Explicit substitutions. J. &zctional pro-

gramming, 4(1):375-416, 1991.

Peter Achten. Interactive functional programs:

models, methods and implementation. PhD the-

sis, Computer Science Department, University
Nijmegen, 1996.

Z.M. Ariola and M Felleisen. The call-by-need

lambda calculus. J. functional programming,

7(3):265-301, 1997.

Z.M. Ariola, M. Felleisen, .J. Maraist, M. Oder-

sky, and P. Wadler. A call-by-need lambda cal-

culus. In Principle3 of programming languages,

pages 233-246, San fiancisco, California, 1995.
ACM Press.

H.P. Barendregt. The Lambda Calculus. Its
Syntax and Semantics. North-Holland, Ams-

terdam, New York, 1984.

G. Boudol. Lambda-calculi for (strict) paral-

lel functions. Information and Computation,

1085-127, 1994.

U. De’Liguoro and A. Piperno. Nondeterminis-

tic extensions of untyped X-calculus. Informa-

tion and Coinputation, 122:149-177, 1995.

J. Hughes and A. Moran. A semantics for lo-
cally bottom-avoiding choice. In Proc. Glasgow

functional programming workshop 199,?, Work-

shops in Computing. Springer-Verlag, 1992.

N.W.O. Hutchison, U. Neuhaus, M. Schmidt-

SchauB, and C.V Hall. Natural Expert: A com-

mercial functional programming environment.

J. of Functional Programming, 7(2):163-182,

1997.

J. Hughes and J. O’Donnell. Expressing and
reasoning about non-deterministic functional
programs. In Glasgow workshop on junctional

programmileg 1989, Workshops in Computing,
pages 308-328. Springer-Verlag, 1989.

[HO901 J. Hughes and J. O’Donnell. Nondeterminis-

tic functional programming with sets. In IV

Higher Order Workshop, Workshops in Com-

puting, pages 11-31. Springer-Verlag, 1990.

[How891

[Hue801

[Lau93]

[Man951

[MOW981

[New421

[NSvPSl]

[On@31

[Pat911

[PHA+97]

[PJ87]

[PJLSl]

[San94]

[SS92]

[Yos93]

D. Howe. Equality in lazy computation sys-

tems. In 4th IEEE Symp. on Logic in Computer

Science, pages 198-203, 1989.

G.P. Huet. Confluent reductions: Abstract

properties and applications to term rewriting
syst,ems. J. of the ACM, 27:797-821, 1980.

J Launchbury. A natural semantics for lazy
evaluation. In Proc. 20th Principles of Pro-

gramming Languages, 1993.

L. Mandel. Constrained Lambda Calculus. Ver-

lag Shaker, Aachen, Germany, 1995.

John Maraist, Martin Odersky, and Philip

Wadler. The call-by-need lambda calculus. J.

of Functdonal programming, 1998. to appear.

M.H.A. Newman. On theories with a combi-

natorial definition of “equivalence”. Annals of
Mathematics, 2~223-243, 1942.

E. NGcker, J. E. Smetsers, M. van Eekelen, and
M. J. Plasmeijer. Concurrent Clean. In Proc

o,f Parallel Architecture and Languages Europe

(PARLE’Sl), number 505 in LNCS, pages 202-

219. Springer Verlag, 1991.

C.-H. L. Ong. Non-determinism in a functional

setting. In Proc. 8th IEEE Symposium on Logic

in Computer Science (LICS ‘99), pages 275-

286. IEEE Computer Society Press, 1993.

Ross Paterson. A tiny functional language

with logical features. In M.Coppo et.al., edi-

tor, Declarative Programming, Sasbachwalden,

pages 66-79, 1991.

J. Peterson [ed.], K. Hammond [ed.], L. Au-

gustsson, B. Boutel, W. Burton, J. Fasel, A. D.

Gordon, J. Hughes, P. Hudak, Th. Johnsson,

M. Jones, E. Meijer, S. Peyton Jones, A. Reid,

and P. Wadler. Report on the programming lan-

guage Haskell: A non-strict, purely functional

language, Version 1.4, 1997.

Simon L. Peyton Jones. The Implementation of

Functional Programming Languages. Prentice-
Hall International, London, 1987.

Simon L. Peyton Jones and David R. Lester.
Implementing Functional Languages: a Tuto-

rinl. Prentice-Hall International, London, 1991.

D. Sangiorgi. The lazy lambda calculus in a

concurrency scenario. Information and Com-

putation, 111:120-153, 1994.

H. Sondergard and P. Sestoft. Non-determinism
in functional languages. The Computer Jour-

nal, 35(5):514-523, 1992.

N. Yoshida. Optimal reductions in weak-X-

calculus with shared environments. In Proc.

functional programming languages and com-

puter architecture, pages 243-252. ACM press,

1993.

335

